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ABSTRACT
In this paper, a novel thrusting manoeuvre control scheme is proposed for a small spacecraft
which is based only on the gimbaled thrust vector control (TVC) system. The spacecraft
structure is composed of a body and a gimbaled thruster where common attitude control
systems such as reaction control system (RCS) and spin stabilisation are not employed.
A nonlinear two-body model is considered for the characterisation of the gimbaled-nozzle
spacecraft where the gimbal actuator provides the only active control input. The spacecraft
attitude is affected by a large exogenous disturbance torque which is generated by a thrust
vector misalignment from the centre of mass (CM). To achieve some performance goals
in the both transient and steady-state modes, a new control scheme is derived based on
the combination of two linear and nonlinear controllers. The proposed method ensures the
attitude and thrust vector stability during an impulsive orbital manoeuvre while eliminating
and rejecting an exogenous disturbance torque. The numerical simulations illustrate the
applicability of this method for using in a small spacecraft and its efficiency in sustained
operation.
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NOMENCLATURE
�v velocity change increment
xsyszs body-fixed coordinate frame
xnynzn nozzle-fixed coordinate frame
XIYIZI inertial coordinate system
ωs body angular velocity
τs body external torque
Gs body CM location
Gn nozzle CM location
ωn nozzle angular velocity
τn nozzle external torque
FT thrust force
α gimbal angle
ωr angular velocity of the nozzle with respect to the body
ω̇r angular acceleration of the nozzle with respect to the body
ω̇s spacecraft body angular acceleration
ms body mass
mn nozzle mass
θ body attitude angle
Jd jet damping coefficient
zs uncertainty in the body CM location
xs half of the body length
xn half of the nozzle length
�vd desired velocity change
tb burning time
Is2 body moment of inertia
In2 nozzle moment of inertia
αgimb maximum gimbal angle
δF T thrust vector deviation from the XI

u control input
K linear controller gain
P closed-loop system poles
�vw wasted velocity change
τd exogenous disturbance
ucom combined controller input
ulin linear controller input
unonl nonlinear controller input

1.0 INTRODUCTION
Attitude control of a spacecraft during an impulsive thrusting manoeuvre has been a
difficult problem since the early days of space missions. An impulsive orbital manoeuvre
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(i.e., retrofiring before an atmospheric re-entry) is used to generate a velocity increment �v by
using a large thrust force. During the burning of a rocket, thrust vector misalignment from the
CM always exists and is inescapable(1). This misalignment produces a large disturbance torque
that tends to divert the orientation of spacecraft and thrust vector from the desired inertial
direction. It is obvious that a high-capacity attitude control system is needed to compensate for
the mentioned large exogenous disturbance. Since the spacecraft attitude during a thrusting
manoeuvre is naturally unstable, desired values of �v components cannot be achieved in
practice. A review study about the effects of thrust vector misalignments on orbit transfers
has been addressed in Ref. 2. The main control methods are classified in the NASA report(3)

which are (1) spin-stabilisation for a small spacecraft (i.e. Biosatellite), (2) RCSs (in Mercury
and Gemini), and (3) a combination of a RCS and TVC for large spacecraft (Apollo and
Viking). In addition to the methods presented in Ref. 3, a novel method is proposed in
Ref. 4 where the combination of the TVC scheme and spin-stabilisation is formulated and
investigated.

A simple and low-cost method which is used in orbital manoeuvres of small satellites and
spacecraft is spin stabilisation(5-7). But it has some disadvantages and limitations:

1. Due to the flexibility and energy dissipation sources in a spacecraft, only the spin about
the axis of maximum moment of inertia is stable for a spin-stabilised-only spacecraft.

2. Nutational or coning instability has happened in several spacecraft therefore, a nutation
control system equipped with a RCS is needed(8-10).

3. Some equipment such as thrusters and fuel tanks are needed for spin-up and spin-down(3).

4. In some works such as in Refs 11-13, the resonance in the spacecraft devices created by
the nutation is addressed.

5. Spin-axis stabilisation (thrust vector stabilisation) with respect to the desired inertial
direction is not possible for a spin-stabilised-only spacecraft. In the some works such
as Refs 14-17, it is shown that for the spin-axis stabilisation, an active control system
with extra actuators (such as RCSs) is needed.

6. Spin stabilisation may not be a suitable choice for a spacecraft with solar panels,
directional antennae and sensors which are sensitive to angular motions, especially in
a lengthy mission.

An RCS is able to provide a high level of active control torque to reject exogenous
disturbances and perform fast attitude manoeuvres. Although RCSs have many advantages, in
practice they have many weaknesses and limitations such as:

1. They include several pieces of equipment that increase the complexity and cost of a
spacecraft

2. Because RCSs use liquid propellants, fuel sloshing occurs due to rotational and lateral
motions of propellant tanks; in the presence of sloshing, attitude control of spacecraft
will be very difficult. There are several works such as Refs 18-21 on the interaction of
spacecraft dynamics and slosh dynamics and their control. In Refs 18 and 22-24, the
TVC for the rocket engine is addressed, including the fuel slosh dynamics in which many
external torques are needed in the control system.

3. RCSs are inherently nonlinear actuators with complex control logic(25). Although for
large spacecraft and upper-stage vehicles (see Refs 1, 18 and 26-28) a combination of
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RCSs and TVC has been employed, RCSs are not suitable to be used in a small spacecraft
mission.

The TVC method with all its advantages is a powerful technique in control of spacecraft
and launchers which can be actuated by a servo actuator (without fuel consumption).
For instance, terminal guidance and landing capability of the Falcon 9 rocket with new
TVC system technology is being provided by the company SpaceX. Although during an
impulsive manoeuvre, a high-level disturbance torque is created proportional to the thrust
vector misalignment, a gimbaled TVC can generate an active control torque larger than the
disturbance level. When the disturbance level is larger than the attitude control capacity, a
fixed thrust system is not efficient (Apollo, Cassini(29), (30) and rockets). TVC methods such
as moving plates(31) are accompanied by a highly nonlinear behaviour in comparison with the
gimbaled thruster. A gimbaled TVC can be also employed for a solar-sail spacecraft(32). The
gimbaled nozzle (gimbaled thruster) can be very useful in preserving weight, simplifying the
attitude control system and reducing the requirements of the CM positioning accuracy(3,4,28).
It should be noted that in large and massive spacecraft or launchers with a liquid propellant
rocket, several heavy and complex components as well as fuel tanks are located in the body
not presented (or attached) at the rotatable nozzle. Therefore, the mass properties of the
liquid propellant rocket are negligible in comparison with the body’s, and as a result, the
dynamical interaction between the movable nozzle and body will be very small(1,18,22,23).

It is obvious that using a liquid propellant rocket is not efficient or possible for a small
spacecraft for which a SRM (solid rocket motor) is used where all mass properties of the
SRM (including solid fuel) will be added to the nozzle mass properties. Therefore, for a small
spacecraft equipped with a SRM, the aforementioned interaction cannot be neglected and
leads to nonlinear two-body dynamics(4,28,33). Note that for large spacecraft, a TVC was used
together with RCSs(1,18,26,27) and for a small spacecraft, it has been combined with the spin-
stabilisation method(4). Although in Felicetti et al(34), an adaptive thrust vector control during
on-orbit servicing is addressed, the interaction dynamics between the nozzle and the body is
not considered as well, because it is not applicable for an impulsive orbital manoeuvre. In
Wang et al(28), a nonlinear control law based on a two-axis gimbaled thruster is proposed for
an upper-stage launcher where the launcher is equipped with eight RCSs on the body and two
gimbal actuators by which the nonlinear dynamics is over-actuated. In contrast to Wang(28),
the control of an underactuated system is investigated in this paper.

The use of momentum exchange devices such as reaction wheels and control moment gyros
for attitude control is very attractive because, they do not require any fuel consumption. The
external disturbance rejection is not possible for an attitude control system based only on these
devises. In study(33), a large control torque has been produced by the interaction between the
reaction wheels angular momentum and the spacecraft spin rate, but in this paper the use of
these devices is deficient.

Some major assumptions and goals that establish the control problem of this paper are
considering of 1) a small spacecraft 2) the nonlinear two-body dynamics model 3) an im-
pulsive orbital manoeuvre (high velocity change in a short time) with a high level exogenous
disturbance 4) using only gimbal actuator and 5) not using of the RCS and spin-stabilisation
(because of their limitations). Although attitude control during thrusting manoeuvre has
received a large attention, it is clear that up to now, only TVC method has not been used to
solve the mature problem in hand. The exogenous disturbance torque originates from the CM
location uncertainty, is much more than the other orbital disturbance sources such as drag,
solar pressure, and earth oblate disturbance. The difficulty of the present control problem
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Figure 1. (Colour online) A small spacecraft composed of body (a), nozzle (b) and a gimbal actuator at
the pivot o.

is that for the two-body nonlinear plant, both attitude and thrust vector stabilisation (with
respect to the desired inertial direction ZI) must be performed using only a gimbal actuator
while rejecting the exogenous disturbance torque. According to the previous literatures, these
performances need some thrusters (RCSs) and fuel consumption which are not efficient for
a small spacecraft. Similar to(33), in this paper a small spacecraft equipped with a gimbaled-
SRM is considered in which the nozzle mass properties are not negligible with respect to the
body’s. Although orbital manoeuvres are performed in a three dimensional space, in some pa-
pers such as Reyhanoglu and Hervas(18), a planar manoeuvre is considered in order to facilitate
the stability analysis. In this paper, a planar manoeuvre is also considered. To achieve some
performance goals in transient and steady-state modes, a new control scheme is derived based
on combination of two linear and nonlinear controllers. The proposed method ensures attitude
and thrust vector stability during an impulsive orbital manoeuvre while eliminating and
rejecting the exogenous disturbance torque. The important control object which is considered
for the transient mode is to stabilise the body attitude angle very fast and in an under-damped
behaviour without any overshoot and oscillation. The damped behaviour of the body attitude
is very useful and effective for a flexible spacecraft (i.e., one equipped with solar panels).

The remainder of the paper is organised as follows. In Section 2 the planar dynamics model
of a small spacecraft equipped with a gimbaled-nozzle is achieved. In Section 3, the proposed
control system including linear, nonlinear and combined controllers is designed along with its
simulation results. In Section 4, the important findings are discussed, and the conclusion is
reported in Section 5.

2.0 MODEL FORMULATION
As discussed before, in the modelling of the spacecraft, the dynamical interaction between the
nozzle and body must be considered. As indicated in Fig. 1, the spacecraft is composed of the
three main parts: the body, the nozzle and the gimbal where the nozzle can rotate by means of
a gimbal actuator at the pivot o. Subscripts s, n, o and T denote the body, nozzle, gimbal pivot
and point of acting the thrust force, respectively. xsyszs is the body-fixed coordinate frame
(xs is parallel to the body longitudinal axis), Gs denotes the body CM location,τs ∈ R3 and
ωs ∈ R3 express the body external torque and the angular velocity respectively, ρso ∈ R3 is
the vector from Gs to the gimbal pivot, Gn is the nozzle CM position, xnynzn is the nozzle-
fixed coordinate frame, and τn ∈ R3 and ωn ∈ R3 represent the nozzle external torque and
the angular velocity, respectively. The control input is defined by the gimbal angles of a
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Figure 2. The gimbal rotation at the pivot o and the body, nozzle and inertial coordinate system.

non-throttable thrust engine (FT) without any other moment source. The gimbal deflects
the thrust vector with respect to the spacecraft’s CM and then the attitude control torque is
produced in proportion to the thrust vector misalignment.

2.1 Nonlinear dynamics of the planar manoeuvre

In the planar manoeuvre, the rotations are around the ys (yn) axis. The nozzle rotation with
respect to the body and inertial coordinate system is shown in Fig. 2 with gimbal angle α.
Thus, the relative angular velocity and acceleration of the nozzle with respect to the body will
be ωr = [ 0 α̇ 0 ]T , ω̇r = [ 0 α̈ 0 ]T .

The corresponding rotation matrix that transforms a vector in the nozzle frame to a vector
in the body frame is

Rs
n (α) =

⎡
⎣ cos(α) 0 sin(α)

0 1 0
− sin(α) 0 cos(α)

⎤
⎦ … (1)

The three-dimensional mathematical modelling of a two-body spacecraft is derived in
Ref. 33 by which ω̇s as the spacecraft body angular acceleration can be calculated as

ω̇s = [Ins,T ]−1 [
τns + ρT × F T − I r(ω̇r + ωs × ωr)

+Mρns × (ωs × (ωs × ρso) − ωn × (ωn × ρno))

−ωs × (I sωs) − ωn × (Inωn)
] … (2)

where ωs = [ ωsx ωsy ωsz ]T , ωn = ωs + ωr, τns = τs + τn, ρns = ρno − ρso, ρsn = −ρns.
I s ∈ R3×3 and In

n ∈ R3×3 are the body and the nozzle moment of inertia, respectively. ms

and mn are the body and the nozzle mass, by which M = (mnms)/(mn + ms), Ins,T = Ins −
M[ρns×]2, I r = In − M[ρns×][ρno×], ρT = ρnT + ρsn (M/mn), Ins = I s + In. All vectors
and moment of inertias are presented in the s frame. For a vector s = [ s1 s2 s3 ]T , the operator
[s×] is defined by

[s×] =
⎡
⎣ 0 −s3 s2

s3 0 −s1

−s2 s1 0

⎤
⎦

Some assumptions and definitions are made to summarise and extract the planar manoeuvre
mathematical model from the three-dimensional modelling of Equation (2).

The attitude of the body is the rotation angle θ around the ys axis with angular velocity
ωsy = θ̇ that results in ωs = [ 0 θ̇ 0 ]T . As assumed before, there is no external control torque
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(τs = 03×1) and the only active control input is α̈ (in ω̇r); no attitude control torque exists that
directly controls the spacecraft attitude. Some parameters and inputs are given in Equation
(3) where Jd (α̇ + θ̇) denotes the passive torque created by the jet damping effect and Jd is the
damping coefficient. The jet-damping torque originates from the Coriolis forces due to the
outflow of SRM gases; a detailed discussion on the jet damping can be found in Refs 35 and
36. In vector ρso, zs represents the uncertainty in the CM location that leads to thrust vector
misalignment (offset) and produces the exogenous disturbance torque.

ρn
no = [

xn 0 0
]T

, ρn
nT = 03×1, ρso = [−xs 0 zs

]T
,

In
n = diag(In,11 , In,22, In,33), I s = diag(Is,11 , Is,22, Is,33),

Fn
T = [

F̄T 0 0
]T

, τn = [
0 −Jd (α̇ + θ̇) 0

]T
… (3)

Actually, the magnitude of the thrust offset zs is so much smaller than the dimensions of the
spacecraft’s body and nozzle, it then can be assumed that

zs << xn, zs << xs … (4)

Thus, under the indicated assumptions and considerations, the nonlinear dynamics of
the planar manoeuvre in the y axis is given in Equation (5) where dXzs and u denote the
disturbance acceleration and the control input, respectively. During the engine burn, the
undesired transverse acceleration dXzs, produces the undesired velocity. The details of the
nonlinear terms fX and dX and the two moments of inertia Ir(α) and Iyy(α) are given in
Equations (6) and (7), respectively.

θ̈ = fX − Ir(α)/
Iyy(α) u + dX zs,

α̈ = u.
… (5)

⎧⎨
⎩ fX = − F̄T M

mnIyy(α) xs sin(α) + Mxsxn
Iyy(α) sin(α)(α̇2 + 2α̇θ̇) − Jd (α̇+θ̇)

Iyy(α) ,

dX = M
Iyy(α) ( F̄T

mn
− xn(α̇2 + 2α̇θ̇))cos(α).

… (6)

Ir(α) = In, 22 + Mx2
n + Mxsxn cos(α) + Mxnzssin(α),

Iyy(α) = In, 22 + Is, 22 + M(xs + xncos(α))2 + M(zs + xnsin(α))2 … (7)

2.2 Mission requirements and parameters

The purpose of this section is to define the spacecraft mission requirements and parameters.
Since the aim is to show the specifications of the proposed method and compare it with the
other thrusting methods, a typical mission is considered here which is similar to the deorbiting
manoeuvre of some small spacecraft. The goal of this mission is to generate a large �v

in a short time for performing an impulsive orbital manoeuvre. Based on this mission, the
specifications of the proposed method are obtained, and its merits and weaknesses will then
be compared with the other methods. Because a comparative study will be done here, it
is not necessary to define an absolute accuracy for the orbital mission. Moreover, in space
engineering, one cannot generally say that one method is better than another method; based
on various mission requirements and criteria, design procedures should be passed and finally
the better case may be determined. Therefore, in this paper according to some special criteria
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Table 1
The spacecraft parameters

�vd(m/s) tb(s) F̄T Jd(Nm.s) zs(cm) Is2(kg m2) In2(kg m2) ms(kg) mn(kg) xn(m) xs(m)

100 15 1053N 2 4 10 1 150 8 0.2 0.75

(not generally), the proposed method is compared with the other thrusting method. Moreover,
the attempt is to show that the proposed method is able to satisfy the objectives of this
paper.

The impulsive orbital transfer mission is defined by the desired velocity change �vd

and a short burning time tb. Similar to deorbiting missions of some spacecraft, a large
�vd= 100m/s is selected and the short burning time is chosen to be tb = 15s. The small
spacecraft body parameters selected are ms = 150 kg, xs = 0.75m and Is2 = 10 kgm2. Based
on an SRM burning specification, the nozzle’s mass is approximately mn = 8kg and finally
the thrust force can be calculated as F̄T = (mn+ms) (�vd/tb) = 1053N. The other nozzle
parameters selected are xn = 0.2 m and In2 = 1 kgm2. Maximum offset in the CM location is
considered as zs = 4 cm (more than the value in Ref. 10). Finally, the jet damping coefficient
is considered as Jd = 2 Nms. The parameters are listed in Table 1.

Due to the mechanical limitation and necessity for a good thrusting manoeuvre
performance, the nozzle deviation should not be larger than an inappropriate value. The
maximum value of gimbal angle is considered to be bounded by

|α(t)| < αgimb , … (8)

by which the following approximation can be concluded:

Īr ≈ In, 22 + Mxn(xn + xs),
Īyy ≈ In, 22 + Is, 22 + M(xs + xn)2 … (9)

It should be noted that the closed-loop control system must meet and satisfy the condition (8).

3.0 CONTROLLER DESIGN
This section presents a detailed development of three types feedback control law through the
nonlinear model obtained in Equation (5). First, the control problem statement is presented
and then a linear controller with controllability analysis is designed. Next, in order to modify
some weaknesses of the linear controller in transient mode, a nonlinear control law is proposed
in which the stability of the nonlinear closed-loop system is proved. Finally, both linear and
nonlinear controllers are combined together in order to achieve an efficient controller which
is better than the two aforementioned controllers.

3.1 Control problem statement

For the planar manoeuvre, the linear acceleration components of the spacecraft CM in
the inertial coordinate system (XIYIZI in Fig. 2), is given in Equation (10) where δF T =
α + θ is the thrust vector deviation from the desired inertial direction XI; vx , vz are
the axial and transverse components, respectively, of the velocity change of the CM;
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Figure 3. (Colour online) The desired equilibrium condition of the spacecraft in presence of CM
uncertainty.

Figure 4. (Colour online) Spacecraft body attitude (θ) and gimbal angle (α) without active control.

and amax = F̄T /(ms + mn) represents the maximum acceleration.

v̇x = amax cos(δF T ),
v̇z = −amax sin(δF T )

… (10)

As discussed before, the control object is to eliminate the undesired acceleration component
(v̇z → 0) in order to maximise the velocity change in the XI direction (v̇x → amax). Therefore,
in addition to the attitude stabilisation, the important consideration is to direct the thrust vector
FT toward the inertial XI direction or to achieve δF T,eq = θeq + αeq → 0 as time tends to
infinity. If there is the offset zs in the CM location, then the desired equilibrium condition of
the spacecraft can be shown in Fig. 3. The control system must align the thrust vector through
the spacecraft CM (G) and desired velocity change �vd direction (XI) simultaneously. To
reach these objects, the stabilised state variables will be

θeq = −αeq, θ̇eq = α̇eq = 0 … (11)

Using Equations (5), (6) and (4), θeq and αeq are obtained in Equation (12).

θ̈ = 0, θ̇ = 0, α̇ = 0, u = 0,

⇒ fX + dX zs = 0,

⇒ − F̄T M
mnIyy(αeq ) xs sin(αeq) + M

Iyy(αeq ) ( F̄T
mn

)cos(αeq) zs = 0 ⇒ tan(αeq) = zs
xs

,

⇒ αeq ≈ zs/xs & θeq ≈ −zs/xs.

… (12)
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Thrust vector misalignment must be completely rejected by the proper gimbal deflection
(see Fig. 3). In what follows, it is assumed that zs is constant(24) and can be estimated by a
nonlinear disturbance observer(37,38).

To obtain a stabilisation control problem, the error dynamics are needed, for which new
variables are defined as

θ̄ = θ − θeq , ᾱ = α − αeq … (13)

Using Equations (4), (12), (9) and (13), the form of the nonlinear plant in Equations (5) and
(6) are changed into Equation (14).

¨̄θ = f̄X − (Īr
/

Īyy)u,
¨̄α = u,

… (14)

where f̄X = − F̄T M
mnĪyy

xs sin(ᾱ) + Mxsxn

Īyy
sin(ᾱ)( ˙̄α

2 + 2 ˙̄α ˙̄θ) − Jd ( ˙̄α+ ˙̄θ)
Īyy

3.2 Linear controller design

In this section, at first controllability of the proposed method near the equilibrium point will be
investigated and then a linear controller will be designed to result in a steady-state response.

3.2.1 Controllability of the linearised system

Before designing a linear or nonlinear control law, the controllability analysis of the linearised
system is important to show the behaviour of the nonlinear system near the equilibrium point.
By linearising the plant (Equation 14) about θ̄ = 0 and ᾱ = 0, the linear model is derived and
given by

¨̄θ = − F̄T M
mn Īyy

xs ᾱ − Jd ( ˙̄α+ ˙̄θ)
Īyy

− Īr

Īyy
u,

¨̄α = u.
… (15)

By introducing X = [ θ̄ ˙̄θ ᾱ ˙̄α ]T as the vector of state variables, the linear state space model
is given as

Ẋ = AX + B u, … (16)

where A =

⎡
⎢⎢⎣

0 1 0 0
0 − Jd

Īyy
− F̄T M

mn Īyy
xs − Jd

Īyy

0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0
− Īr

Īyy

0
1

⎤
⎥⎥⎦

The controllability matrix Co is formed here in which the rank condition |Co| �= 0
is guaranteed. Therefore, the origin of the linearised system can be made uniformly
asymptotically stable by a linear state feedback.

Co = [B, AB, A2B, A3B], |Co| = F̄T Mxs(F̄T Ī2
yyMxs + mnJ2

d (Īr − Īyy))

(Ī2
yymn)

2
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If the pair (A, B) be controllable, then the following controller can guarantee the stability of
the above system:

u (t) = −KX (t) , K ∈ R1 × n … (17)

This type of controller is the preferred for many industrial applications. By using a proper
gain K, Ã = A − BK can be stable. To have a good response at first, poles location are selected
then MATLAB place function is used to compute gain K from the mentioned poles.

3.2.2 Numerical simulation

In this subsection, the simulation results of the nonlinear plant with a linear controller are
carried out. The objects are to show the merits and weaknesses of using the linear controller
in the proposed method. The time response specifications which are studied here are transient
and steady-state responses of the body and the gimbal angles and the overshoot of the body
attitude. The set of parameters which are used in the simulations are listed in Table 1. The
disturbance torque is τd = FT zs = 42.13 Nm . The poles location of the linearised closed-
loop system is selected as P = (–1 + 0.5i, –1 –0.5i, –2 –0.8i, –2 + 0.8i) that results in
the control gain K = (–0.138, –0.304, 13.182, 5.846). Simulations are done using MATLB/

Simulink.
From Equation (10) �vx as the actual velocity change along the desired inertial direction XI

can be calculated as follows. The ideal condition at the thrusting manoeuvre is that δF T (t) = 0
for 0 ≤ t ≤ tb (or �vx=�vd).

�vx =
tb∫

0

amax cos(δF T (t)) dt

�vz as the undesired velocity change component in the inertial direction ZI can be
calculated as

�vz = −
tb∫

0

amax sin(δF T (t)) dt

However, the actual wasted velocity change is computed as

�vw = (�v2
d − �v2

x)0.5

The following two numerical simulations are carried out, which are the simulations of the
open-loop system (without active control system) and the nonlinear system with the linear
controller, respectively.

Case 1
In this case, the gimbal actuator is inactivated and fixed at α(t) = 0. The attitude instability

is obvious under the thrust vector misalignment (zs = 4 cm or αeq = 30). This simulation
shows that without an active controller, the disturbance τd = 42.13Nm can rotate the thrust
vector direction more than 1500° in the first 5 s. In the open loop mode, the orbital manoeuvre
cannot be performed correctly. This simulation shows that a high-capacity control system
(a high-level control torque during the burning time) is needed for an impulsive orbital
manoeuvre.
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Figure 5. (Colour online) Spacecraft body attitude (θ) and gimbal angle (α) when using a linear controller.

Figure 6. (Colour online) Thrust vector deviation (δFT ) from the desired inertial direction (XI) when using a
linear controller.

Case 2
The simulation results of the closed-loop system with the linear controller are given in this

case. In Fig. 5, the time response of the body and gimbal angle are presented while they are
converging to θeq = –3.055° and αeq = 3.0550, respectively. This result confirms the desired
equilibrium condition in Fig. 3 where the thrust vector is pointed to the CM. Thrust vector
stabilisation can be observed in Fig. 6 that converges to zero. Spacecraft velocity change along
the two inertial directions is shown in Fig. 7. The velocity change along the axis XI is �vx =
95.27m/s and the wasted velocity change is become �vw = 30.38 m/s.

The advantages of using the linear controller are:

1. After the transient time or in steady-state mode, thrust vector deviation is completely
eliminated.

2. The control action in steady-state mode is zero while a high-level exogenous disturbance
torque (τd= 42.13Nm) is completely rejected.

3. Near the equilibrium point (where a linearised model is a good approximation,) the
closed-loop system has a fast response to reach the steady-state mode.

The weaknesses of using the linear controller are:

1. High overshoot of the body attitude during the transient response (the damped behaviour
is not achieved).
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Figure 7. (Colour online) Spacecraft velocity change along the two inertial directions XI and ZI.

2. Duo to high deviation of the body attitude and consequently a high deviation of the thrust
vector, much velocity change is wasted.

3. In the presence of the nonlinear terms (far from the equilibrium point), there is no stability
analysis for the nonlinear closed-loop system.

3.3 Nonlinear controller design

In the previous section, a linear controller is designed and its weaknesses and merits are
discussed. Here the object is to design a nonlinear controller that lacks the shortcomings
of the linear controller. The purposes of the nonlinear control law are 1) a damped (or under-
damped) behaviour without an overshoot can be achieved for the body attitude in the transient
mode, and 2) to show the stability of the nonlinear closed-loop system.

At the following, at first a nonlinear control law is proposed next, the stability of the
nonlinear closed-loop system is proven and then by using the numerical simulations, its lack
and merits are explained.

3.3.1 Nonlinear control law

By introducing the scalars η , γ and ξ, and using f̄X , Equation (14) is reformed to Equation
(18)

(Īyy
/

Īr)¨̄θ =
(
−η + γ( ˙̄α

2 + 2 ˙̄α ˙̄θ)
)

sin(ᾱ) − ξ( ˙̄α + ˙̄θ) − u,

¨̄α = u,
… (18)

where η = (F̄T Mxs)/(mnĪr) , γ = (Mxsxn)/Īr, ξ = Jd/Īr.

As noticed before, in addition to guarantee the stability of the nonlinear closed-loop system,
the important goal is to achieve a smooth or damped behaviour for the body attitude θ.
Therefore, first a compensator is design for regulating the angle θ in a damped manner and
then the nonlinear stability of the gimbal angle α will be proven. By proposing the nonlinear
control law in Equation (19), the nonlinear closed-loop system is achieved in Equation (20):

u =
(
−η + γ( ˙̄α

2 + 2 ˙̄α ˙̄θ)
)

sin(ᾱ) − ξ( ˙̄α + ˙̄θ) − (Īyy
/

Īr)¨̄θr … (19)
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{ ¨̄θ = ¨̄θr ,

¨̄α =
(
−η + γ( ˙̄α

2 + 2 ˙̄α ˙̄θ)
)

sin(ᾱ) − ξ( ˙̄α + ˙̄θ) − (Īyy
/

Īr)¨̄θr ,
… (20)

where

¨̄θr = −2λ ˙̄θ − λ2 θ̄ … (21)

Putting Equation (21) into (Equation 20), the stable error dynamics of the θ̄(t) are obtained
in Equation (22) as

¨̄θ + 2λ ˙̄θ + λ2 θ̄ = 0 , … (22)

where the constant and positive parameter λis employed for tuning the convergence rate in a
damped manner. Then the following result can be easily concluded:

θ̄(t) → 0, ˙̄θ(t) → 0 & ¨̄θr → 0 as t → ∞ … (23)

According to the outcomes of (23), some terms in Equation (20) can be neglected for t >

Tss where Tss is the settling time of the body attitude, which depends on the magnitude of

λ. For t = Tss, we have θ̄(Tss) ≈ 0 and ˙̄θ(Tss) ≈ 0; therefore, the stability of the following
system remains to be proved.

¨̄α(t) ≈ (−η + γ ˙̄α
2
(t)) sin(ᾱ(t)) − ξ ˙̄α(t) f or t > Tss,

ᾱ(Tss) �= 0 , ˙̄α(Tss) �= 0
… (24)

At first, to understand the behaviour of the dynamics (24), it is supposed that there is no
damping ratio (ξ = 0). The approximate relation between the peak value of gimbal angle ᾱm

(at ˙̄α = 0) and its maximum angular velocity ˙̄αm (at ᾱ = 0) are formulated here. Using the

transformation ¨̄α = ˙̄αd ˙̄α/d ᾱ = d ˙̄α
2
/2d ᾱ and by integrating Equation (24) from point (ᾱ =

0, ˙̄α = ˙̄αm) to (ᾱ = ᾱm, ˙̄α = 0) the mentioned relation between ᾱm and ˙̄αm is obtained in
Equation (25).

−1
2

d ˙̄α
2

η−γ ˙̄α
2
(t)

≈ sin(ᾱ(t))d ᾱ

∫
⇒ 1

2γ
Ln(η − γ ˙̄α

2
)
∣∣∣0

˙̄αm

≈ − cos(ᾱ)|ᾱm
0

⇒ ˙̄α
2
m ≈ η

γ
(1 − exp [2γ(cos(ᾱm) − 1)])

… (25)

In the absence of the jet damping effect, Equation (25) gives the relation between the
amplitude of gimbal angle ᾱm and its rate amplitude ˙̄αm for the oscillatory behaviour of the
dynamics Equation (24). In the other words, for ξ = 0 the maximum rates ˙̄αm (at ᾱ = 0) is
only a function of maximum amplitude ᾱm (at ˙̄α = 0) and does not converge to zero as time
tends to infinity. Note that the condition (8) and the mission parameters can hold the condition

γ ˙̄α
2
m < η.
Theorem 1: in the presence of the jet damping (ξ �= 0), the dynamics in Equation (24) is

stable and ᾱ(t) → 0 and ˙̄α(t) → 0 as t → ∞.
Proof: at first, three sequential points are defined in Equation (26) in order to be used as the

bounds in the integrating of Equation (24). The aim is to show that | ˙̄α(t)|ᾱ=0 will be decreased
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for each oscillation (or | ˙̄α3| < | ˙̄α1|)

P1(t1, ᾱ1 = 0, ˙̄α1), P2(t2, ᾱ2, ˙̄α2 = 0), P3(t3, ᾱ3 = 0, ˙̄α3) f or t1 < t2 < t3 … (26)

Using the transformations ¨̄α = ˙̄αd ˙̄α/d ᾱ = d ˙̄α
2
/2d ᾱ and ˙̄αd ᾱ = ˙̄α

2
dt, and integrating of

Equation (24) from P1 to P3, the following result is obtained in which reduction of the
magnitude of | ˙̄α(t)|ᾱ=0 is shown as time tends to infinity.

1
2γ

Ln(η − γ ˙̄α
2
)
∣∣∣ ˙̄α3

˙̄α1

= − cos(ᾱ)|ᾱ3
ᾱ1

+ σ2 ⇒ Ln( η−γ ˙̄α
2
3

η−γ ˙̄α
2
1

) = 2γσ2

⇒ η−γ ˙̄α
2
3

η−γ ˙̄α
2
1

= exp(2γσ2) > 1 ⇒ ∣∣ ˙̄α3(t3)
∣∣
ᾱ=0 <

∣∣ ˙̄α1(t1)
∣∣
ᾱ=0 f or t1 < t3,

… (27)

where σ2 = ξ
t3∫

t1

˙̄α
2

η−γ ˙̄α
2 dt > 0.

Therefore, it can be claimed that by increasing the time t > tn the | ˙̄α(t)|ᾱ=0 will be

small enough to conclude −η + γ ˙̄α
2
(t) ≈ −η, then the approximate form of the dynamics

in Equation (24) is achieved as

¨̄α(t) ≈ −η sin(ᾱ(t)) − ξ ˙̄α(t) f or t > tn … (28)

The candidate Lyapunov function is introduced as

V = η(1 − cos(ᾱ(t))) +
˙̄α(t)2

2
. … (29)

The time derivative of V along the dynamics (28) is

V̇ ≈ −ξ ˙̄α
2
(t) < 0 … (30)

Because the set ( ˙̄α = 0 , ᾱ �= 0) is not a stable set for the dynamics (28), then from
Equation (30), the stability of the error dynamics (28) can be easily concluded.

3.3.2 Numerical simulation

In this subsection, the performance of the nonlinear closed-loop system proven previously is
illustrated. In addition to the parameters used in subsection 3.2.2, the parameters which are
needed here are selected as Tss = 3 s and λ = 2.5/T ss = 0.83/s.

The body and the gimbal angle are presented in Fig. 8 while they are converging to
θeq = –3.0550 and αeq = 3.0550, respectively. Convergence of the thrust vector deviation can
be observed in Fig. 9. Spacecraft velocity change along the two inertial directions is shown
in Fig. 10. The velocity change along the axis XI is �vx = 99.97m/s and the wasted velocity
change is �vw = 2.0m/s.

The advantages of using the proposed nonlinear controller in comparison with using the
linear controller are:

1. Smaller overshoot of the body attitude during the transient response (the damped
behaviour) is achieved.
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Figure 8. (Colour online) Spacecraft body attitude (θ) and gimbal angle (α) when using a nonlinear
controller.

Figure 9. (Colour online) Thrust vector deviation (δFT ) from the desired inertial direction (XI) when using a
nonlinear controller.

Figure 10. (Colour online) Spacecraft velocity change along the two inertial directions XI and ZI.

2. Due to smaller deviation of the body attitude and consequently a smaller deviation of the
thrust vector, the wasted velocity change is become smaller.

3. The stability of the nonlinear closed-loop system is illustrated.

Although there are advantages, some weaknesses can be seen in this method: 1) in the
steady-state response of the body attitude, gimbal angle deviation is not completely eliminated
and is oscillating during the burning time, and 2) the control action in steady-state mode is
not zero while it is also oscillating.

The important idea presented in the next subsection is to derive a control law based on the
combination of the linear and nonlinear controllers in which only the advantages of the two
mentioned controllers are included and their shortcomings are excluded.
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Figure 11. (Colour online) Spacecraft body attitude (θ) and gimbal angle (α) when using a combined
controller.

Figure 12. (Colour online) Spacecraft velocity change along the two inertial directions XI and ZI when
using a combined controller.

3.4 Combined linear and nonlinear controller

The purpose of this subsection is to combine the mentioned linear and nonlinear controllers
with the aim of utilising their advantages and excluding their weaknesses. The expectation is
to have a better controller than the two others. Moreover, the control effort in the steady-state
mode is an important criterion that will be compared with the other thrusting methods.

3.4.1 Controller design

There are many complex methods to combine two or more control laws, but in this paper
a simple combination law is employed. The combined control logic works according to the
following model:

ucom = (1 − exp(−act)) ulin + exp(−act) unonl , … (31)

where ucom denotes the combined control input, and ulin and unonl are the linear and nonlinear
control law in Equations (17) and (19), respectively. ac is a constant to tune the switching rate
between the two controllers; here it is chosen as 0.25. During the burning, for t < 1.2 Tss,
only unonl acts as the control input and for t > 1.2 Tss, ucom is applied.

3.4.2 Numerical simulation

The time response specifications are illustrated in Figs. 11 and 12. The velocity change along
the axis XI is �vx = 99.97m/s and the wasted velocity change is �vw = 2.0m/s. It can
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Figure 13. (Colour online) Spacecraft body attitude (θ) and gimbal angle (α) in the presence of high initial
attitude deviation.

be easily seen that the nonlinear controller generates the transient response and the linear
controller is working well in steady-state mode; in other words, the combined controller
includes the advantages of the two aforementioned controllers. It should be noted that these
results are for the misalignment zs = 4 cm (αeq = 30); it is obvious that by decreasing the
magnitude of the misalignment, all errors will be decreased and �vx converges to �vd.

In the following, closed-loop system performance is investigated in presence of high
deviation in initial condition.

Based on the definition of the state-variables

X (t) =
[
θ̄(t) ˙̄θ(t) ᾱ(t) ˙̄α(t)

]T
=

[
θ(t) − θeq

˙̄θ(t) α(t) − αeq α̇(t)
]T

,

the vector of initial condition is

X (0) = [
θ0 θ̇0 α0 α̇0

]T − [
θeq 0 αeq 0

]T

In practice, before thrusting manoeuvre the attitude can be stabilised by using the simple
control methods by which θ0 = 0, θ̇0 = 0, α0 = 0 and α̇0 = 0 can be achieved. Then using
αeq = zs/xs and θeq = −zs/xs the initial condition will be

X (0) = [
1 0 −1 0

]T
zs/xs ,

which is used in the previous simulations.
Against previous simulations, there is a simulation in Fig. 13 that shows the ability of the

proposed method in presence of high deviation in initial condition (initial attitude deviation).
To show this ability, in addition to the disturbance, a large deviation is considered for the
body attitude as θ0 = 300. A well transient and steady-state response can be clearly seen in
this simulation.
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4.0 DISCUSSION
The proposed thrusting method has some important merits in comparison with the RCS
method. As shown before, in the steady-state mode of the proposed method, the large
exogenous disturbance torque (τd= 42.13Nm) is completely eliminated and rejected by a
proper gimbal deflection while, in RCS method the mentioned disturbance always exist and
should be rejected by a large active control torque that needs fuel consumption. It is assumed
that four RCSs are located at the z = ±30cm to create the control torque about the ±ys

axis, then the force of each RCS is calculated as FRCS = (τd/0.3)/2 =70.2N. Using the
Isp=260s, the needed fuel is calculated about 0.8kg. As discussed in introduction section, in
addition to the fuel consumption there are many disadvantages and limitations for using a RCS
in a small spacecraft. It is obvious that for a longer time mission the more fuel consumption
is needed but in the steady-state mode of the proposed method, control effort is zero because
disturbances are successfully eliminated.

Many weaknesses and limitations of the basic (common) methods such as: spin-stabilisation
and RCS are discussed in introduction section. At the following some major advantages of the
proposed method in comparison with the spin-stabilisation, RCS, spin-stabilisation/RCS and
TVC/RCS are summarised as:

1) Spin-stabilisation is just able to attenuate the exogenous disturbance effects but is not
able to reject the disturbance caused by thrust vector misalignment, while in the proposed
method the mentioned disturbance can be completely eliminated and rejected by a proper
gimbal deflection at the steady-state mode.

2) When only the RCS method is employed, the disturbance torque rejection is accompanied
by high control effort and fuel consumption during all of the burning time. But in the
proposed method the control effort is zero in steady-state mode.

3) The proposed method does not need fuel consumption, stabilising spin and many complex
components.

4) The combined TVC and RCS method is a powerful and accurate method but, for using in
a small spacecraft it is not efficient and has many structural limitations.

5) Like as combined TVC and RCS, the combined spin-stabilisation and RCS is not suitable
for a small spacecraft.

5.0 CONCLUSION
Although during an impulsive orbital manoeuvre a thrust vector misalignment generates a
high level disturbance torque, an active control torque larger than the disturbance level can be
obtained by using the TVC scheme. Based on some assumptions and criteria the subject of this
paper is defined and then the weaknesses and limitations of the previous thrusting methods are
well discussed to show they are not the proper choices for satisfying the objects of this paper.
The structure of the proposed method is based on only the gimbaled-TVC where, the other
control systems such as RCSs and spin-stabilisation are not employed moreover, a gimbal
actuator does not need fuel consumption.

The major objects of the proposed underactuated control system are considered as 1) a
damped (or under-damped) behaviour without an overshoot can be achieved for the body
attitude in the transient mode 2) show the stability of the nonlinear closed-loop system 3) after
the transient time or in the steady-state mode, thrust vector deviation should be completely
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eliminated 4) The control action in the steady-state mode remains zero while a high level
exogenous disturbance can be completely rejected 5) near the equilibrium point, the closed-
loop system converges to the steady-state mode very fast. To satisfy the mentioned objects,
a linear controller is designed which has a good performance in the steady-state mode and
then a nonlinear controller is proposed which is efficient to satisfy the transient mode objects.
Since each of the linear and nonlinear controllers are just suitable for one mode (transient or
steady-state), a new control law based on the combination of them is derived to satisfy both
of the transient and steady-state modes objects, simultaneously. In the combined controller,
the lacks of the linear and nonlinear controllers are excluded in a good manner. The attitude
and thrust vector stabilisation along with full disturbance rejection are achieved where the
maximum amplitude of the gimbal angle remains bounded in an acceptable range. Moreover,
the good performance of the proposed method in presence of the high initial attitude deviation
is illustrated.

A quantitative comparison to the RCS method is given to show the ability and effectiveness
of the proposed method in sustained operation. It is shown that the proposed method has
some advantages in comparison with the spin-stabilisation, RCS, spin-stabilisation/RCS and
TVC/RCS. Considering the disadvantages of the other control methods, the proposed method
can be very useful for an impulsive orbital manoeuvre of a small spacecraft, especially for
missions with a long burning time.

An important application of the proposed method can be transferring the space debris (junk)
to the deep space because; the other methods (such as spin-stabilisation and RCS) are not
efficient and applicable for this mission.
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