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Abstract

We compare the K-theory stable bases of the Springer resolution associated to different
affine Weyl alcoves. We prove that (up to relabelling) the change of alcoves operators
are given by the Demazure–Lusztig operators in the affine Hecke algebra. We then show
that these bases are categorified by the Verma modules of the Lie algebra, under the
localization of Lie algebras in positive characteristic of Bezrukavnikov, Mirković, and
Rumynin. As an application, we prove that the wall-crossing matrices of the K-theory
stable bases coincide with the monodromy matrices of the quantum cohomology of the
Springer resolution.

1. Introduction

For a symplectic resolutions X with symplectic form ω in the sense of [Kal09], the stable basis
defined in [MO19] has found more and more applications. It is the crucial ingredient in the work
of Maulik and Okounkov in constructing geometrical R-matrices, satisfying the Yang–Baxter
equations. These R-matrices induce a Yangian action on the cohomology of Nakajima quiver
varieties, so that the quantum connection of the quiver variety is identified with the trigonometric
Casimir connection for the Yangian. In the case when X is the cotangent bundle of the flag variety
(the Springer resolution) the stable basis is computed by the first-named author in [Su17]. Using
this, he computed the quantum connection of the cotangent bundle of partial flag varieties
[Su16] and generalized the result in [BMO11]. Pulling back the stable basis of the Springer
resolution to the flag variety, one gets the Chern–Schwartz–MacPherson classes [Mac74] of the
Schubert cells, see [AMSS17, RV18]. Combining this with the fact that the stable basis are the
characteristic cycles of certain D-modules on the flag variety, the authors in [AMSS17] proved
the non-equivariant version of the positivity conjecture in [AM16].

The K-theoretic generalization of the stable basis is also undergoing significant developments,
a survey of which can be found in [Oko18a, Oko18b].

The definition of the K-theory stable bases for a symplectic resolution (X, ω) depends on a
choice of a chamber in the Lie algebra of a maximal torus A in Aut(X, ω), an alcove in Pic(X)Q,
as well as an orientation of the tangent bundle TX (see e.g. § 2). Here a hyperplane configuration
in Pic(X)Q naturally occurs.

It is an interesting question to find the change of bases matrices for stable bases associated
to different choice of chambers or alcoves. The case when X = Hilbn(C2) is studied in [GN17].
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If X is a Nakajima quiver variety, such change of bases matrices are certain trigonometric
R-matrices, and induced an action of certain quantum loop algebra on the K-theory of Naka-
jima quiver varieties [OS16, RTV15], generalizing the construction by Nakajima [Nak01]. These
played a crucial role in calculations of quantum K-theory of Nakajima quiver varieties [Oko17,
OS16]. For example, they fully determined the two sets of the difference equations in the quantum
K-theory of Nakajima quiver varieties.

In the case when X = T ∗B, the Springer resolution, the chamber structure is given by the
Weyl chambers, and the alcove structure is given by the affine Weyl alcoves in ΛQ := Pic(T ∗B)Q

in the dual of the Cartan Lie algebra. That is, the hyperplane configuration occurring in the
definition of stable bases are the affine coroot hyperplanes Hα∨,n for some coroot α∨ and n ∈ Z,
with the affine Weyl group Waff being the group generated by reflections.

In [SZZ20] we calculated the stable bases of T ∗B associated to the fundamental alcove using
the affine Hecke algebra actions via convolution [CG97]. We identified the stable basis (respec-
tively the fixed point basis) with the standard basis (respectively the Casselman basis) in the
Iwahori-invariants of unramified principal series for the p-adic Langlands dual groups. With this,
in [SZZ20] we provided a K-theoretic interpretation of the Macdonald’s formula for the spher-
ical function [Cas80] and the Casselman–Shalika formula for the spherical Whittaker function
[CS80]. Pulling back the stable basis to the flag variety from its cotangent bundle, we get the
motivic Chern classes [BSY10] of the Schubert cells [AMSS19, FRW21]. This connection is used
to prove a series of conjectures about the Casselman basis, see [AMSS19, BN11, BN19].

The goal of the present paper is to calculate the bases associated to an arbitrary choice of
alcove, and find the change of bases operators for the bases associated to two different alcoves.
We also determine the effect of changing the chambers.

As applications, we prove that the K-theory stable basis is categorified by the Verma mod-
ules of the quantization of T ∗B in positive characteristic [BMR08]. Consequently, we prove
that the change of bases operators induced by two different choices of alcoves coincide with
the monodromy matrices of the quantum cohomology. These facts have been conjectured by
Bezrukavnikov and Okounkov to hold for a general symplectic resolution (X, ω) [Oko18a]. The
case when X is the Nakajima quiver variety is proved in unpublished work of Bezrukavnikov
and Okounkov via a different method. However, to the best of our knowledge, the present
paper provides one of the first examples where a connection between K-theory stable bases
and quantizations in positive characteristic is established.

We now state our main result on the wall-crossings, without introducing too many notations
and technicalities. For simplicity we fix the choice of the Weyl chamber to be the positive Weyl
chamber +, and the orientation to be a canonical one given by the tangent bundle § 2. For
each choice of alcove ∇, the basis elements are labelled by the torus fixed points on T ∗B, which
in turn are labelled by elements of the Weyl group W . Hence the stable basis is denoted by
{stab+,TB,∇

w | w ∈ W}.
Let A be the maximal torus of G, and A∨ its Langlands dual. We use subindex reg to denote

the open complement to the coroot hyperplanes. Let B′aff = π1(A∨reg/W ). There is a quotient
C[q±1/2][B′aff ] → H from the group algebra to the affine Hecke algebra, and an action of H on
KA×C∗(T ∗B), constructed by Kazhdan and Lusztig [KL87] and Ginzburg [CG97]. This action
describes the wall-crossings of stable bases completely. This is the first main result in the present
paper. See Theorem 5.4 for a precise statement.

Theorem 1.1. Assume two alcoves ∇1,∇2 are adjacent and separated by Hα∨,n for some posi-
tive coroot α∨ and n ∈ Z, and that (λ1, α

∨) < (λ2, α
∨) for any λi ∈ ∇i. Let b∇1,∇2 be the element
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in π1(h∗C,reg/Waff) ⊆ B′aff represented by a positive path going from ∇1 to ∇2. Then, the image

of b−1
∇2,∇1

in H sends the set {L−ρ ⊗ stab+,TB,∇1
w | w ∈ W} to {L−ρ ⊗ stab+,TB,∇2

w | w ∈ W}, up
to some (explicitly determined) scalars.

As an immediate consequence of Theorem 1.1, we proved that the standard objects in the
quantizations of T ∗B in positive characteristic categorify the stable bases. More precisely, we
have a categorification of the stable basis, well defined for the Springer resolution T ∗BZ over Z.
When base changing to characteristic zero and passing to the Grothendieck group, we get the
usual stable basis. When base changing to positive characteristic, we get localization of Verma
modules via the equivalence [BM13, BMR08, BMR06].

Theorem 1.2 (Theorems 6.4 and 7.5). For any λ ∈ ΛQ not on any hyperplanes Hα∨,n, we define
the set of objects {stabZ

λ(w) | w ∈ W} in the derived category Db
AZ×(Gm)Z

(T ∗BZ).

(1) Applying the derived base change functor ⊗L
ZC and then taking classes in the Grothendieck

group, these objects become the K-theory stable basis for the alcove containing λ.
(2) Applying the base change functor ⊗L

Zk for an algebraically closed field k of characteristic p
greater than the Coxeter number, up to λ = −(λ′ + ρ)/p, these objects become the image
of Verma modules over U(gk) with Harish-Chandra central character λ′ + 2ρ, under the
localization functor γλ′

of [BMR06] (recalled in § 7.1).

In particular, under the duality between A×Gm-equivariant K-theory of T ∗B and the
Iwahori-invariants of the principal series representation of the p-adic Langlands dual group,
the standard objects, which are the Verma modules, are mapped to the standard objects, i.e.
the characteristic functions. The restriction formula of [SZZ20, Theorem 7.5] gives a formula of
the graded Ext between Verma modules and baby Verma modules with respect to the Koszul
grading on [BM13].

It has been well known that the K-theory lift of the monodromy of quantum connection of
T ∗B defines an affine Hecke algebra action on the equivariant K-theory of T ∗B [BMO11], which
coincides with the one coming from [BMR06]. An immediate consequence of Theorem 7.5 is that
the change of bases operator, induced by K-theory stable bases associated to different alcove,
agrees with the monodromy operator in π1(A∨reg/W ) of the quantum connection of T ∗B (see
Theorem 8.1 for a precise statement).

Organization of the paper
In § 2 we recall the definition and basic facts of stable bases, and in § 3 we recall some basic
facts of wall-crossings. In § 4 we compute the formula of crossing walls determined by simple
roots, which is generalized in § 5 to non-simple walls. In § 6 we recall affine braid group actions
on the derived categories of Springer resolutions, and use them to define categorified version of
the stable basis. In § 7, we show such basis coincides with Verma modules under the localization
of Lie algebras in positive characteristic. As another consequence, we deduce in § 8 that wall-
crossing of the stable basis agree with monodromy of quantum cohomology. In the appendix we
compute the wall-crossing matrix in the case of SL(3, C).

2. Recollection of stable bases and the affine Hecke algebra

2.1 Notations
Let G be a connected, semisimple, simply connected, complex linear algebraic group with a Borel
subgroup B, whose roots are positive. Let A ⊂ B be a maximal torus of G, h be the Lie algebra of
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A, and Λ (respectively Λ∨) the group of characters (respectively cocharacters) of A. Let ρ denote
the half sum of the positive roots. Let ± := C± ⊂ Λ∨ ⊗Z R denote the dominant/anti-dominant
Weyl chambers in h. For any coroot α∨, define the hyperplanes in h∗R by

Hα∨,n = {λ ∈ h∗R | (λ, α∨) = n}, n ∈ Z.

We refer the connected components of

h∗R \
( ⋃

α>0,n∈Z

Hα∨,n

)
as the alcoves of this hyperplane arrangement. The walls of an alcove are the codimension-1
facets in the boundary of this alcove. The following alcove will be referred to as the fundamental
alcove

∇+ := {λ | 0 < (λ, α∨) < 1, for any positive coroot α∨}.
In other words, it contains ερ for small ε > 0. Write ∇− = −∇+. We say two alcoves ∇1,∇2 are
adjacent if they share a wall on some hyperplane Hα∨,n.

We will use the same terminologies of alcoves, walls, and fundamental alcoves for their
intersections with ΛQ ⊆ h∗R.

Denote by B � G/B, the variety of all the Borel groups of G, and T ∗B (respectively TB)
its cotangent bundle (respectively tangent bundle). For each λ ∈ Λ, there is an associated line
bundle Lλ on B independent on the choice of B [CG97, §6.1.11]. Pulling it back onto T ∗B, we
still denote it by Lλ. Therefore, we have identity

Pic(T ∗B)⊗Z R = h∗R. (1)

Let C∗ act on T ∗B by z · (B′, x) = (B′, z−2x), where z ∈ C∗ and (B′, x) ∈ T ∗B. Let q−1

denote the character of cotangent fiber under this action. We refer the readers to [CG97] for a
beautiful account of the equivariant K -theory. Let T = A× C∗, and KT (pt) ∼= Z[q1/2, q−1/2][Λ].
In this paper, we will consider KT (T ∗B), which is a module over KT (pt). The A-fixed
points of T ∗B are indexed by W ; each w ∈ W determines the fixed point wB ∈ B ⊂ T ∗B.
We will just use w to denote the corresponding fixed point wB. For each w ∈ W , denote by
1w ∈ KT ((T ∗B)A) ∼= ⊕v∈W KT (pt) the basis corresponding to w, and by ιw its image via the
push-forward of the embedding i : w → T ∗B, that is, ιw = i∗(1) ∈ KT (T ∗B). It follows from
the localization theorem [CG97] that {ιw|w ∈ W} forms a basis for the localized equivariant
K -theory KT (T ∗B)loc := KT (T ∗B)⊗KT (pt) Frac KT (pt), where Frac KT (pt) denotes the fraction
field of KT (pt). For any vector space V with a T -action, write∧ •V =

∑
k

(−1)k ∧k V ∨=
∏

(1− e−α) ∈ KT (pt),

where the last product is over all the T -weights in V , counted with multiplicities. Note that this
is not the standard notation for the wedge product because of the dual ∨.

Recall there is a non-degenerate pairing 〈·, ·〉 on KT (T ∗B) defined via localization:

〈F ,G〉 :=
∑
w

F|wG|w∧ •Tw(T ∗B)
=

∑
w

F|wG|w∏
α>0(1− ewα)(1− qe−wα)

∈ Frac KT (pt), (2)

where F ,G ∈ KT (T ∗B), and F|w denotes the pullback of F to the fixed point wB ∈ B ⊂ T ∗B.

2.2 Definition of stable bases
We recall the definition of stable bases of Maulik and Okounkov.
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Let C be a chamber in Λ∨R. For any cocharacter σ ∈ C, the stable leaf (also called the attracting
set) of the fixed point w is

AttrC(w) =
{

x ∈ T ∗B
∣∣∣ lim

z→0
σ(z) · x = w

}
.

It defines a partial order on W as follows:

w �C v if AttrC(v) ∩ w �= ∅.
For example, with C+ (respectively C−) denoting the dominant chamber (respectively the anti-
dominant chamber) where all the positive roots take positive (respectively negative) values,
then

u �C+ v ⇐⇒ u ≤ v, and u �C− v ⇐⇒ u ≥ v,

where ≤ is the usual Bruhat order of W . In this case, AttrC+(w) (respectively AttrC−(w)) is
equal to the conormal bundle of the Schubert cell BwB/B (respectively opposite Schubert cell
B−wB/B, where B− is the opposite Borel subgroup) inside the flag variety B. Denote the full
attracting set by

FAttrC(v) =
⋃

w�Cv

AttrC(w).

Define a polarization T 1/2 ∈ KT (T ∗B) to be an equivariant K -theory class such that the following
identity holds,

T 1/2 + q−1(T 1/2)∨=T (T ∗B) ∈ KT (T ∗B).

Write T
1/2
opp = q−1(T 1/2)∨. We will mostly use the following two mutually opposite polarizations:

TB and T ∗B, which lie in KG×C∗(T ∗B).
Let Nw := Tw(T ∗B) be the tangent space of T ∗B at the torus fixed point wB, and T

1/2
w :=

T 1/2|w. Each chamber C determines a decomposition Nw = Nw,+ ⊕Nw,− of Nw into A-weight
spaces which are positive and negative with respect to C, and similarly T

1/2
w = T

1/2
w,+ ⊕ T

1/2
w,−. Then

Nw,− = T
1/2
w,− ⊕ q−1(T 1/2

w,+)∨,

and
Nw,− � T 1/2

w = q−1(T 1/2
w,+)∨�T

1/2
w,+.

Thus, (
det Nw,−
det T

1/2
w

)1/2

= q−rank T
1/2
w,+/2 det(T 1/2

w,+)∨∈KT (pt).

For any Laurent polynomial f =
∑

μ∈Λ fμeμ ∈ KT (pt) with fμ ∈ KC∗(pt), define its Newton
polygon to be

degA f = Convex hull ({μ | fμ �= 0}) ⊂ Λ⊗Z Q.

Definition 2.1 [OS16, Oko17]. For any chamber C, polarization T 1/2, alcove ∇, there is a
unique map of KT (pt)-modules (called the stable envelope),

stab : KT ((T ∗B)A) → KT (T ∗B),

satisfying the following three conditions. Write stabC,T 1/2,∇
w = stab(1w). Then we have:

(i) (Support) supp(stabC,T 1/2,∇
w ) ⊂ FAttrC(w);
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(ii) (Normalization) stabC,T 1/2,∇
w |w = (−1)rank T

1/2
w,+(det Nw,−/det T

1/2
w )1/2OAttrC(w)|w;

(iii) (Degree) degA(stabC,T 1/2,∇
w |v) ⊂ degA(stabC,T 1/2,∇

v |v) + L|v − L|w for any v ≺C w,L ∈ ∇.

Remark 2.2. (a) Using the identification in (1), L ∈ ∇ is the same as a fractional line bundle.
(b) The degree condition only depends on the choice of ∇, not the fractional line bundle

L ∈ ∇ itself. Moreover, the normalization condition does not depend on the alcove ∇.
(c) We have duality [OS16, Proposition 1]

〈stabC,T 1/2,∇
v , stab−C,T

1/2
opp ,−∇

w 〉 = δv,w. (3)

(d) The existence of the K -theory stable bases also follows from the existence of the elliptic
stable envelopes, see [AO21, Oko20a, Oko20b].

It follows immediately from the definition that we have the following lemma.

Lemma 2.3. For any w ∈ W , we have

stabC,T 1/2,∇
w |w · stab−C,T

1/2
opp ,−∇

w |w =
∧ •Tw(T ∗B).

We will mostly consider the following two cases:

stab+,∇
w := stabC+,TB,∇

w , stab−,∇
w := stabC−,T ∗B,∇

w .

From [SZZ20, Lemma 3.2], which follows immediately from Definition 2.1(ii), we have

stab+,∇
y |y = q−�(y)/2

∏
β>0,yβ<0

(q − eyβ)
∏

β>0,yβ>0

(1− eyβ), (4)

stab−,∇
y |y = q�(y)/2

∏
β>0,yβ<0

(1− e−yβ)
∏

β>0,yβ>0

(1− qe−yβ). (5)

Moreover, it is easy to see from definition that

stab+,∇
id = [OT ∗

idB], and stab−,∇
w0

= (−q1/2)dim G/Be2ρ[OT ∗
w0
B], (6)

where w0 ∈ W is the longest element in the Weyl group.

2.3 The affine Hecke algebra
We give a brief reminder on the Hecke algebra and Demazure–Lusztig operators.

Let H be the affine Hecke algebra, see [CG97, § 7.1]. Then we have the following well-known
Kazhdan–Lusztig and Ginzburg isomorphism [KL87, CG97]

H � KG×C∗(Z), (7)

where Z = T ∗B ×N T ∗B is the Steinberg variety and N ⊂ g is the nilpotent cone. The right-
hand side KG×C∗(Z) has a convolution algebra structure. Let us recall one construction of this
isomorphism [Ric08, Lus98].

Let �(T ∗B) ⊂ T ∗B ×N T ∗B denote the diagonal copy of T ∗B inside the Steinberg variety Z.
For any torus weight λ, let O	(λ) := Lλ, where Lλ is the line bundle on T ∗B introduced in § 2.1.
For any simple root α, let Pα be the corresponding minimal parabolic subgroup and Pα = G/Pα.
Let

Yα = B ×Pα B ⊂ B × B.

On Yα, the A-fixed points are of the form either (w, w) or (w, wsα) with w ∈ W . Let T ∗Yα
:=

N∗B×B/Yα
be the conormal bundle of Yα inside B × B. Let OT ∗

Yα
(λ, μ) = π∗1Lλ ⊗ π∗2Lμ, where
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πi : T ∗Yα
→ T ∗B are the two projections. Let Tα be the usual generator of H that satisfies (Tα +

1)(Tα − q) = 0. For the purpose of this paper, let us choose the isomorphism (7) as follows:

Tα �→ −[O�]− [OT ∗
Yα

(0, α)], and eλ �→ O	(λ).

This is conjugate to the one in [Ric08, Proposition 6.1.5] by Lρ, since our q and Tα are the same
as v2 and vTα in [Ric08], respectively.

The convolution algebra KG×C∗(Z) is a subalgebra of KA×C∗(Z), and hence defines two
actions of H on KA×C∗(T ∗B), namely, by convolution from the left, or from the right (which
therefore is a right action). The operators on KA×C∗(T ∗B) corresponding to these two convolu-
tions with Tα will then be denoted by Tα and T ′α respectively, following the notations used in
[SZZ20].1 That is, for any F ∈ KA×C∗(T ∗B),

Tα(F) = −F − π1∗(π∗2F ⊗ π∗2Lα), and T ′α(F) = −F − π2∗(π∗1F ⊗ π∗2Lα).

Let Dα := −Tα − 1 and D′α := −T ′α − 1. Then we have adjointness [SZZ20, Lemma 4.4]

〈Dα(F),G〉 = 〈F , D′α(G)〉, ∀F ,G ∈ KT (T ∗B). (8)

The relation between these two operators Tα and T ′α can be deduced as follows.
Since [OT ∗

Yα
(ρ,−ρ + α)] = [OT ∗

Yα
(−ρ + α, ρ)] (see [Ric08, Lemma 1.5.1]), the two operators on

KA×C∗(T ∗B), given by left and right convolutions with this sheaf, are equal to each other. In
other words, for any F ∈ KA×C∗(T ∗B),

π1∗(π∗2F ⊗ [OT ∗
Yα

(ρ,−ρ + α)]) = π2∗(π∗1F ⊗ [OT ∗
Yα

(ρ,−ρ + α)]).

Therefore, we get the following equality as operators on KA×C∗(T ∗B):

LρTαL−ρ = L−ρT
′
αLρ.

The operator of the left action is denoted by TL
α := LρTαL−ρ and the right action is denoted by

TR
α := L−ρT

′
αLρ.

Remark 2.4. In the present paper, compositions of operators are read from right to left, even for
right action operators. So for any K-theory class F ∈ KA×C∗(T ∗(G/B)), Lρ(Tα(L−ρ ⊗F)) =
L−ρT

′
α(Lρ ⊗F). For any reduced decomposition w = s1 · · · sk, we define TL

w := TL
s1
· · ·TL

sk
and

TR
w := TR

sk
· · ·TR

s1
. On the other hand, in [SZZ20] a left action of the affine Hecke algebra through

right convolution operators were used. In particular, under the notations of [SZZ20] we have
T ′s1···sk

:= T ′s1
· · ·T ′sk

. Compared to the notations in the present paper we have, for any x ∈ W ,

TR
x = L−ρT

′
x−1Lρ. (9)

The following is one of the main results in [SZZ20].

Theorem 2.5 [SZZ20, Theorem 4.5]. Let α be a simple root. Then

Tα(stab−,∇+
w ) =

{
(q − 1) stab−,∇+

w +q1/2 stab−,∇+
wsα

if wsα < w,

q1/2 stab−,∇+
wsα

if wsα > w.
(10)

T ′α(stab+,∇−
w ) =

{
(q − 1) stab+,∇−

w +q1/2 stab+,∇−
wsα

if wsα < w,

q1/2 stab+,∇−
wsα

if wsα > w.
(11)

In particular,

stab−,∇+
w = q�(w0w)/2T−1

w0w(stab−,∇+
w0

), and stab+,∇−
w = q−�(w)/2T ′w−1(stab+,∇−

id ).

1 When restricting our Tα to K -theory of G/B, our T−1
α coincides with the T ∨

α in [AMSS19, p. 3]
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3. General facts on the wall-crossing formulas

The definition of a stable basis depends on a choice of a chamber and an alcove. In this section,
we collect some general facts about how the stable basis changes according to the change of these
two choices involved.

When the choice of the chamber is fixed, the formula giving the change of bases associated
to two different choices of alcove is called a wall-crossing formula.

3.1 Duality of coherent sheaves
Since T ∗B is smooth, KT (T ∗B) is generated by vector bundles. For each vector bundle F , there
is a dual vector bundle F∨. This operation is well defined on KT (T ∗B), and gives the duality
operation

F �→ (F)∨,

which sends q to q−1. Then we have the following relations.

Lemma 3.1. Let w ∈ W . Then

(−q)dimBL−2ρ ⊗ (stab−,∇
w )∨ = stab−,−∇

w ∈ KT (T ∗B), (12)

(−1)dimBL2ρ ⊗ (stab+,∇
w )∨ = stab+,−∇

w ∈ KT (T ∗B). (13)

Remark 3.2. See [AMSS19, Lemma 11.1(b)] or [OS16, Equation (15)] for related statements.
In our lemma, the polarizations on both sides of the equalities are unchanged, while those in
[AMSS19, Lemma 11.1(b)] or [OS16, Equation (15)] are changed to the opposite polarizations.

Proof. We first show that (12) implies (13). Indeed, by duality (3) and (12), we have

δw,z = 〈(−q)dimBL−2ρ ⊗ (stab−,∇
w )∨, stab+,∇

z 〉

= (−q)dimB ∑
y∈W

e−2yρ ∗ (stab−,∇
w |y) stab+,∇

z |y∏
α>0(1− eyα)(1− qe−yα)

,

where ∗ in the second line acts on KT (pt) by sending eλ to e−λ and q to q−1. Applying ∗ to the
above identity, we get

δw,z = (−q)− dimB ∑
y∈W

e2yρ stab−,∇
w |y ∗ (stab+,∇

z |y)∏
α>0(1− e−yα)(1− q−1eyα)

= (−1)dimB ∑
y∈W

e2yρ stab−,∇
w |y ∗ (stab+,∇

z |y)∏
α>0(1− eyα)(1− qe−yα)

= 〈stab−,∇
w , (−1)dimBL2ρ ⊗ (stab+,∇

z )∨〉.
Again by duality (3), we then get (13).

Now we prove (12). It suffices to show that (−q)dimBL−2ρ ⊗ (stab−,∇
w )∨ satisfies the defining

properties of stab−,−∇
w . The support condition is obvious. The normalization condition is checked

as follows:(
(−q)dimBL−2ρ ⊗ (stab−,∇

w )∨
)|w = (−q)dimBe−2wρ ∗ (stab−,∇

w |w)

(5)
= (−q)dimBq−(�(w)/2)e−2wρ

∏
β>0,wβ<0

(1− ewβ)
∏

β>0,wβ>0

(1− q−1ewβ)
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= q�(w)/2
∏

β>0,wβ<0

(1− e−wβ)
∏

β>0,wβ>0

(1− qe−wβ)

(5)
= stab−,−∇

w |w.

Therefore, the normalization condition is verified.
Finally, we check the degree condition. Pick L ∈ −∇. We need to check that for any y > w

the following is true:

degA(−q)dimB(L−2ρ ⊗ (stab−,∇
w )∨

)|y ⊂ degA(−q)dimB(L−2ρ ⊗ (stab−,∇
y )∨

)|y + L|y − L|w.

Indeed, this in turn is equivalent to

degA stab−,∇
w |y ⊂ degA stab−,∇

y |y + L|w − L|y = degA stab−,∇
y |y + L−1|y − L−1|w.

Since L−1 ∈ ∇, the above identity is precisely the degree condition for the stable basis stab−,∇
w .

Therefore, the degree condition also follows. �

3.2 Weyl group action
Recall on KT (T ∗B), we have a left Weyl group action induced from the G-action on T ∗B. Using
equivariant localization, w(F) for F ∈ KT (T ∗B) and w ∈ W is determined by its restrictions to
the fixed points, which is given by

w(F)|v = w(F|w−1v), F ∈ KT (T ∗B). (14)

Moreover, the action by w also acts on the base field KT (pt) by the usual Weyl group action.
From the above formula, it is easy to get

w(ιy)|v =

{
w(ιy|y) if v = wy,

0 otherwise.

That is, w(ιy) = ιwy. This action agrees with the �-action defined in [LZZ20, Definition 3.2].
The effect of this group action on a stable basis is the following, which can be proved in exactly
the same way as the proof of (12) in Lemma 3.1 above.

Lemma 3.3 [AMSS19, Lemma 11.1(a)]. For any w, y ∈ W , we have

w(stabC,T 1/2,∇
y ) = stabwC,w(T 1/2),∇

wy .

Remark 3.4. (a) If the polarization T 1/2 = TB or T 1/2 = T ∗B, then w(T 1/2) = T 1/2 as it lies in
the G-equivariant K -theory, which are fixed by the left Weyl group action.

(b) A priori, the alcove on the right-hand side should be w(∇). i.e. for any λ ∈ ∇, the
fractional line bundle Lλ should be changed to w(Lλ). But since Lλ is G-equivariant, w(Lλ) = Lλ.
Thus, the alcove stays the same.

3.3 Wall-crossing matrix
Our computation of wall-crossings for the K -theoretic stable bases is based on the following.

Lemma 3.5 [OS16, Theorem 1]. Suppose the alcoves ∇1 and ∇2 are adjacent and separated by
Hα∨,n. For any y ∈ W , we have

stabC,T 1/2,∇1
y =

{
stabC,T 1/2,∇2

y +f∇1←∇2
y stabC,T 1/2,∇2

ysα
if ysα ≺C y,

stabC,T 1/2,∇2
y if ysα �C y,
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where f∇1←∇2
y ∈ KT (pt). If n = 0, f∇1←∇2

y ∈ KC∗(pt), i.e. it does not depend on the equivariant
parameters of A. In particular,

f∇1←∇2
y = −f∇2←∇1

y .

Proof. Let us first recall the moment map μ : (T ∗B)A → H2(T ∗B, Z)⊗ Λ defined in [OS16,
§ 2.1.7]. It is characterized by the following condition. If p and q are two fixed points connected
by a torus invariant curve C, then

μ(p)− μ(q) = [C]⊗ weight(TpC).

This is also closely related to the Goresky–Kottwitz–MacPherson (GKM) condition in equivariant
cohomology, see [MO19, § 4.8.5].

Identifying H2(T ∗B, Z) with the coroot lattice, we get

μ(y)− μ(ysα) = α∨⊗(−yα).

For any other z different from y and ysα, μ(y)− μ(z) will not be a multiple of α∨.2 The conclusion
then follows from [OS16, Theorem 1]. �

We are interested in computing these wall-crossing coefficients f∇1←∇2
y , which form the

entries of the so-called wall R-matrix [OS16, § 2.2.3]. Similarly as stable bases, these matrices
depend on the choice of the alcove, the chamber, and the polarization. For simplicity of notations,
we omit the last two choices whenever they are clear from the context.

From the definition, those wall-crossing coefficients depend on the wall of the alcove lying on
the hyperplane Hα∨,n. However, it follows from Theorem 5.1 below, that the coefficients do not
depend on the wall where we cross the hyperplane Hα∨,n.

Example 3.6. We consider the case SL(2, C).3 Then B ∼= P1, and Pic(T ∗P1)⊗Z Q = Qα. The
two A-fixed points on T ∗P1 are denoted by 0 and ∞, corresponding to e and sα in the Weyl
group, respectively. The alcoves are ((n/2)α, ((n + 1)/2)α), n ∈ Z. The wall Hα∨,0 is the origin
0. We have ∇+ = (0, 1

2α) and ∇− = (1
2α, 0) = ∇+ − (α/2). Using the translation formula of

Lemma 3.7, we compute f
∇−←∇+
sα for the dominant chamber and the polarization TP1, in which

case 0 ≺C+ ∞. The stable basis is given by the following formulas [SZZ20, Example 2.4]:

stab+,∇−
e = [OT ∗

0 P1 ],

stab+,∇−
sα

= −q−1/2e−α[OP1 ] +
(−q1/2e−2α + (q−1/2 − q1/2)e−α

)
[OT ∗

0 P1 ].

So their localizations are given by

stab+,∇−
e |e = 1− eα,

stab+,∇−
sα

|e = q1/2 − q−1/2, stab+,∇−
sα

|sα = q1/2 − q−1/2e−α.

By (15), for any y, w ∈ W ,

stab+,∇+
y |w = e−1/2yα+1/2wα stab+,∇−

y |w.

Therefore,

stab+,∇+
e |e = 1− eα,

stab+,∇+
sα

|e = (q1/2 − q−1/2)eα, stab+,∇+
sα

|sα = q1/2 − q−1/2e−α.

2 The assumption that µ is positive in [OS16] is not necessary, since n can be chosen as either positive or negative.
See (14) in [OS16].
3 See Appendix A for the example of SL(3, C), where wall-crossing coefficients for a non-simple root are computed.
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By Lemma 3.5,

stab+,∇−
sα

= stab+,∇+
sα

+f∇−←∇+
sα

stab+,∇+
e .

Restricting both sides to the fixed point e, we get

q1/2 − q−1/2 = (q1/2 − q−1/2)eα + f∇−←∇+
sα

(1− eα).

Hence

f∇−←∇+
sα

= q1/2 − q−1/2.

3.4 Translations
We consider the effect of translation by an integral weight μ ∈ Λ on a stable basis. By the
uniqueness of stable basis, we have (see [AMSS19, Lemma 8.2.(c)])

stabC,T 1/2,∇+μ
y = e−yμLμ ⊗ stabC,T 1/2,∇

y . (15)

An immediate corollary of this fact is the following.

Lemma 3.7. Let ∇1,∇2 are adjacent alcoves separated by Hα∨,n. For any integral weight μ ∈ Λ,
we let ∇+ μ be the alcove obtained by translating ∇ by μ. Then

f∇1+μ←∇2+μ
y = e−(μ,α∨)yαf∇1←∇2

y .

Proof. By Lemma 3.5 and (15),

f∇1←∇2
y = eyμ−ysαμf∇1+μ←∇2+μ

y .

Hence the conclusion follows from the identity μ− sαμ = (μ, α∨)α. �
With this lemma, we can reduce the wall-crossing for Hα∨,n to Hα∨,0 as follows. Let ∇1,∇2

be adjacent alcoves separated by Hα∨,n. If α is simple, then ∇1 − n�α,∇2 − n�α are adjacent
alcoves separated by Hα∨,0, where �α is the corresponding fundamental weight. Otherwise,
α = wβ for some w ∈ W and simple root β. Then we can shift the alcoves ∇i by −nw(�β) to
get adjacent alcoves separated by Hα∨,0.

Therefore, we only need to cross the walls on the root hyperplanes Hα∨,0. These are divided
into two cases depending on whether α is simple or not.

4. Crossing the simple walls

In this section, we compute the formula for crossing the simple walls.

4.1 The formulas
The following is the main result of this section.

Theorem 4.1. Let α∨ be a simple coroot. Suppose ∇ has a wall on Hα∨,0, and (λ, α∨) > 0,
∀λ ∈ ∇. Then

stab+,sα∇
y =

{
stab+,∇

y +(q1/2 − q−1/2) · stab+,∇
ysα

if ysα < y,

stab+,∇
y if ysα > y,

(16)

stab−,sα∇
y =

{
stab−,∇

y +(q1/2 − q−1/2) · stab−,∇
ysα

if ysα > y,

stab−,∇
y if ysα < y.

(17)
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Proof. We first show that (16) follows from (17) via duality (3). By Lemma 3.5, we can assume
ysα < y and it suffices to compute

〈stab+,sα∇
y , stab−,−∇

ysα
〉

= 〈stab+,sα∇
y , stab−,−sα∇

ysα
+(q1/2 − q−1/2) stab−,−sα∇

y 〉
= q1/2 − q−1/2,

where the first equality follows from (17) with the alcove being sα(−∇) satisfying the condition
of theorem.

Now we prove (17). From Lemma 3.5 it suffices to assume that ysα > y. Applying the operator
Dα from § 2.3 to the identity

stab−,∇
y +fsα∇←∇

y stab−,∇
ysα

= stab−,sα∇
y ,

and use (18) and (19) below, we get

− stab−,∇
y −q1/2 stab−,∇

ysα
+

∑
w �<ysα

aw stab−,∇
w

+ fsα∇←∇
y

(
−q stab−,∇

ysα
−q1/2 stab−,∇

y +
∑

w �<ysα

aw stab−,∇
w

)
= −q stab−,sα∇

y −q1/2 stab−,sα∇
ysα

+
∑

w �<ysα

aw stab−,sα∇
w

Lemma 3.5= −q(stab−,∇
y +fsα∇←∇

y stab−,∇
ysα

)− q1/2 stab−,∇
ysα

+
∑

w �<ysα

aw stab−,sα∇
w ,

where the aw are some coefficients. These coefficients are determined by (18) and (19) in
Lemma 4.4 below. By comparing the coefficients of stab−,∇

y , we see that fsα∇←∇
y = q1/2 − q−1/2.

Note that the sums in the above identity will have no contribution to such coefficients. The
first two are obvious since ysα > y. The reason for the last one is that stab−,sα∇

w is a linear
combination of stab−,∇

w and stab−,∇
wsα

, and both will not be equal to stab−,∇
y when w �< ysα. �

4.2 Some technical lemmas
In this subsection we prove Lemma 4.4, which is used in the proof of Theorem 4.1. First we recall
a well-known fact.

Lemma 4.2 [Deo77, Theorem 1.1]. Let w1, w2 ∈ W , and α be a simple root. Assume w1sα < w1

and w2sα < w2. Then

w1 ≤ w2 ⇔ w1sα ≤ w2 ⇔ w1sα ≤ w2sα.

In preparation for the proof of Lemma 4.4, we have the following lemma.

Lemma 4.3. Let w, y ∈ W .

(1) Assume y ≤ z ≤ w.
(a) If ysα < y, w ≤ y, and w �∈ {y, ysα}, then there is no such z.
(b) If ysα > y, w ≤ ysα, and w �∈ {y, ysα}, then there is no such z.
(c) If w = y, then z = w = y.
(d) If ysα < y and w = ysα, then there is no such z.
(e) If ysα > y and w = ysα, then z = y or z = ysα.
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(2) Assume y ≤ z and w ≥ zsα.
(a) If ysα < y, w ≤ y, and w �∈ {y, ysα}, then there is no such z.
(b) If ysα > y, w ≤ ysα, and w �∈ {y, ysα}, then there is no such z.
(c) If ysα < y and w = y, then z = y.
(d) If ysα > y and w = y, then z = ysα.
(e) If ysα < y and w = ysα, then z = y.
(f) If ysα > y and w = ysα, then z = y or z = ysα.

(3) If w > min{y, ysα} and w �= y, ysα, then y < max{w, wsα}.
Proof. (1a)–(1d) are obvious. For (1e), we have ysα = w ≥ z ≥ y. So z = y or z = ysα.

(2a) w < y and w �= ysα imply that z ≥ y > w ≥ zsα, so

�(z) ≥ �(y) > �(w) ≥ �(zsα) ≥ �(z)− 1.

So �(z) = �(y) and �(w) = �(zsα). That is, z = y and w = zsα. Hence, w = ysα, which is a
contradiction. So no such z exists.

(2b) If z = y, then w ≥ ysα, which contradicts ysα > w. So y < z.
If zsα > z, then �(y) + 1 = �(ysα) > �(w) ≥ �(zsα) = �(z) + 1. So �(y) > �(z). This contra-

dicts the assumption that y ≤ z.
If zsα < z, then �(y) + 1 = �(ysα) > �(w) ≥ �(zsα) = �(z)− 1. So �(y) + 2 > �(z) > �(y)

which forces �(z) = �(y) + 1, i.e. z = ysβ for some positive root β such that yβ > 0. We claim
α = β. If not, then sαβ > 0. But �(ysα) = �(y) + 1 = �(z) > �(zsα) = �(ysβsα) = �(ysαssαβ),
which implies ysα(sα(β)) = yβ < 0. This contradicts the assumption that yβ > 0. Therefore
α = β, and z = ysα.

Then ysα > w ≥ zsα = y. Since w �= y, such w does not exist.
(2c) We have z ≥ y ≥ zsα. So z = y or z = ysα. Since z ≥ y, z must be equal to y.
(2d) The proof is similar as that of (2c).
(2e) Since zsα ≤ ysα < y ≤ z, z = y.
(2f) It is easy to see that z = y and z = ysα satisfy the conditions. Now assume that ysα >

y, z > y and ysα > zsα. Then �(y) + 1 = �(ysα) > �(zsα) ≥ �(z)− 1. Hence, �(y) + 2 > �(z) >
�(y), which implies that �(z) = �(y) + 1. It follows similarly as the proof of (2b) that z = ysα.

(3) This follows from a case-by-case study, using Lemma 4.2. �
Now we are ready to prove the following technical lemma, which has been used in the proof

of Theorem 4.1.

Lemma 4.4. Let α be a simple root, and ∇ be an alcove whose closure intersects with Hα∨,0

non-trivially.

(1) If (λ, α∨) > 0,∀λ ∈ ∇, then

Dα(stab−,∇
y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−q stab−,∇

y −q1/2 stab−,∇
ysα

+
∑
w �<y

aw stab−,∇
w if ysα < y,

− stab−,∇
y −q1/2 stab−,∇

ysα
+

∑
w �<ysα

aw stab−,∇
w if ysα > y.

(18)

(2) If (λ, α∨) < 0,∀λ ∈ ∇, then

Dα(stab−,∇
y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− stab−,∇

y −q1/2 stab−,∇
ysα

+
∑
w �<y

aw stab−,∇
w if ysα < y,

−q stab−,∇
y −q1/2 stab−,∇

ysα
+

∑
w �<ysα

aw stab−,∇
w if ysα > y.

(19)
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Here aw ∈ KT (pt). Note that we have been sloppy about the coefficients aw, since they
clearly depend on ∇, y, and α.

Proof. The proof is similar to that for [SZZ20, Proposition 4.3].

Step 1. By duality (3),

Dα(stab−,∇
y ) =

∑
w∈W

aw stab−,∇
w , with aw = 〈Dα(stab−,∇

y ), stab+,−∇
w 〉.

By the support condition of the stable basis, aw = 〈Dα(stab−,∇
y ), stab+,−∇

w 〉 is a proper integral.
Hence aw ∈ KT (pt). By localization formula and the support condition (see the first several lines
in the proof of [SZZ20, Proposition 4.3]),

aw =
∑

y≤z≤w

stab+,−∇
w |z stab−,∇

y |z∧• Tz(T ∗B)
ezα − q

1− ezα
+

∑
w≥zsα and y≤z

stab+,−∇
w |zsα stab−,∇

y |z∧• Tz(T ∗B)
1− qe−zα

1− e−zα
ezα.

(20)

From Lemma 4.3 above, we know that if ysα < y, w < y and w �∈ {y, ysα}, or if ysα > y,
w < ysα and w �∈ {y, ysα}, then the two sums are empty, so aw = 0. Therefore, we just need to
consider ay and aysα .

In the following Steps 2–5, we assume ysα < y, and starting from Step 6, we assume ysα > y.

Step 2. We compute aysα , assuming ysα < y. By Lemma 4.3, there is only one term in the second
sum with z = y, then

aysα =
stab+,−∇

ysα
|ysα stab−,∇

y |y∧• Ty(T ∗B)
1− qe−yα

1− e−yα
eyα

Lemma 2.3=
stab+,−∇

ysα
|ysα

stab+,−∇
y |y

1− qe−yα

1− e−yα
eyα

(4)
=

q−�(ysα)/2
∏

β>0,ysαβ<0(q − eysαβ)
∏

β>0,ysαβ>0(1− eysαβ)

q−�(y)/2
∏

β>0,yβ<0(q − eyβ)
∏

β>0,yβ>0(1− eyβ)
1− qe−yα

1− e−yα
eyα

�
= q1/2 1− e−yα

q − eyα

1− qe−yα

1− e−yα
eyα

= −q1/2,

where � follows from the facts yα < 0 and sα{β > 0|β �= α} = {β > 0|β �= α}, since α is simple.

Step 3. We consider ay, assuming ysα < y. By Lemma 4.3 above, there is only one term in each
sum with both z = y, and we have

ay =
stab+,−∇

y |y stab−,∇
y |y∧• Ty(T ∗B)

eyα − q

1− eyα
+

stab+,−∇
y |ysα stab−,∇

y |y∧• Ty(T ∗B)
1− qe−yα

1− e−yα
eyα

Lemma 2.3=
eyα − q

1− eyα
+

stab+,−∇
y |ysα stab−,∇

y |y∧• Ty(T ∗B)
1− qe−yα

1− e−yα
eyα

=
eyα − q

1− eyα

(
1− stab+,−∇

y |ysα stab−,∇
y |y · eyα∧• Ty(T ∗B)

)
.
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Step 4. In this step we compute ay, assuming (λ, α∨) > 0, λ ∈ ∇. For any Laurent polynomial
g =

∑
μ∈I cμeμ and ξ ∈ h, write

g(ξ) =
∑
μ∈I

cμe(μ,ξ), Maxξ(g) = max
μ∈I

{(μ, ξ)}, Minξ(g) = min
μ∈I

{(μ, ξ)}.

For example, for any y ∈ W ,

Maxξ

( ∧•
Ty(T ∗B)

)
= −Minξ

( ∧•
Ty(T ∗B)

)
=

{
(2ρ, ξ) if ξ ∈ C+,

−(2ρ, ξ) if ξ ∈ C−.
(21)

Write

f = stab+,−∇
y |ysα stab−,∇

y |y · eyα, and KT (pt)  ay =
∑
μ∈I

cμeμ, cμ ∈ Z[q1/2, q−1/2].

Here I ⊂ X∗(T ) is a finite subset. Following [SZZ20, Lemma 3.1], let ξ be in C+ (so that (2ρ, ξ) >
0) such that

(μ, ξ) ∈ Z\{0}, (μ, ξ) �= (μ′, ξ), ∀μ �= μ′ ∈ I. (22)

Since ysα < y, yα < 0, so (yα, ξ) < 0. Since (λ, α∨) > 0, we adjust λ ∈ ∇ close to Hα∨,0 so that

−1 < (yλ− ysαλ, ξ) = (λ, α∨)(yα, ξ) < 0.

The degree condition together with [SZZ20, (9)] implies that

Maxξ(f) ≤ Maxξ(stab+,−∇
ysα

|ysα) + (L−λ|ysα − L−λ|y, ξ) + Maxξ(stab−,∇
y |y) + (yα, ξ)

= (2ρ, ξ) + (λ, α∨)(yα, ξ).

Since Maxξ(f) ∈ Z, Maxξ(f) ≤ (2ρ, ξ)− 1. Therefore, by using (21), we have

lim
t→∞

f(tξ)∧• Ty(T ∗B)(tξ)
= 0.

So

lim
t→∞ay(tξ) = lim

t→∞

(
e(yα,tξ) − q

1− e(yα,tξ)

(
1− f(tξ)∧• Ty(T ∗B)(tξ)

))
=

0− q

1− 0
· (1− 0) = −q.

Similarly, we have [SZZ20, (10)]

Minξ(f) ≥ Minξ(stab+,−∇
ysα

|ysα) + (L−λ|ysα − L−λ|y, ξ) + Minξ(stab−,∇
y |y) + (yα, ξ)

= −(2ρ, ξ) + (λ, α∨)(yα, ξ).

Since Minξ(f1) ∈ Z, so Minξ(f1) ≥ −(2ρ, ξ). From (21), we get that

lim
t→−∞

f(tξ)∧• Ty(T ∗B)(tξ)
is bounded.

Therefore,

lim
t→−∞ay(tξ) = lim

t→−∞

(
e(yα,tξ) − q

1− e(yα,tξ)

(
1− f(tξ)∧• Ty(T ∗B)(tξ)

))
,

which is bounded. Since ay ∈ KT (pt), ay(tξ) is a Laurent polynomial in variable et. The above
two limits show that ay = −q is a constant Laurent polynomial.
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Step 5. In this step we compute ay assuming (λ, α∨) < 0, λ ∈ ∇. We can pick ξ ∈ C− (so that
(2ρ, ξ) < 0) satisfying (22). In this case, (yα, ξ) > 0, and we adjust λ ∈ ∇ close to Hα∨,0 so that

−1 < (yλ− ysαλ, ξ) = (λ, α∨)(yα, ξ) < 0.

Then similarly as in Step 4, we can show that

lim
t→∞ay(tξ) = lim

t→∞

(
e(yα,tξ) − q

1− e(yα,tξ)

(
1− f(tξ)∧• Ty(T ∗B)(tξ)

))
= −1,

and limt→−∞ ay(tξ) is bounded. Hence, ay = −1.

Step 6. We now consider the case ysα > y. For ay with ysα > y, then in (20), z = y in the first
sum and z = ysα in the second, so

ay =
stab+,−∇

y |y stab−,∇
y |y∧• Ty(T ∗B)

eyα − q

1− eyα
+

stab+,−∇
y |y stab−,∇

y |ysα∧• Tysα(T ∗B)
1− qeyα

1− eyα
e−yα

=
eyα − q

1− eyα
+

stab+,−∇
y |y stab−,∇

y |ysα∧• Tysα(T ∗B)
1− qeyα

1− eyα
e−yα.

Now let k = stab+,−∇
y |y stab−,∇

y |ysαe−yα.

Step 7. Suppose (λ, α∨) > 0,∀λ ∈ ∇. We choose ξ ∈ C+ (so that (2ρ, ξ) > 0 and (yα, ξ) > 0)
satisfying properties similar as (22). We pick λ ∈ ∇, so that

−1 < −(λ, α∨)(yα, ξ) < 0.

Then

Maxξ(k) ≤ Maxξ(stab+,−∇
y |y) + Maxξ(stab−,∇

ysα
|ysα) + (Lλ|ysα − Lλ|y, ξ)− (yα, ξ)

= (2ρ, ξ)− (λ, α∨)(yα, ξ).

So

lim
t→∞ay(tξ) = −1.

On the other hand, we have

Minξ(k) ≥ Minξ(stab+,−∇
y |y) + Minξ(stab−,∇

ysα
|ysα) + (Lλ|ysα − Lλ|y, ξ)− (yα, ξ)

≥ (−2ρ, ξ)− (λ, α∨)(yα, ξ).

Since Minξ(k) ∈ Z, so Minξ(k) ≥ (−2ρ, ξ), therefore,

lim
t→−∞ay(tξ) is bounded.

So ay = −1.

Step 8. If (λ, α∨) < 0,∀λ ∈ ∇, then we can mimic Step 7 by picking ξ ∈ C− (so that (2ρ, ξ) < 0
and (yα, ξ) < 0), and pick λ ∈ ∇ so that −1 < −(λ, α∨)(yα, ξ) < 0; then

lim
t→∞ay(tξ) = −q, and lim

t→−∞ay(tξ) is bounded.

So ay = −q.
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Step 9. We then compute aysα assuming ysα > y. In (20), z = y and z = ysα in both sums, so
we have

aysα =
stab+,−∇

ysα
|y stab−,∇

y |y∧• Ty(T ∗B)
eyα − q

1− eyα
+

stab+,−∇
ysα

|ysα stab−,∇
y |ysα∧• Tysα(T ∗B)

e−yα − q

1− e−yα

+
stab+,−∇

ysα
|ysα stab−,∇

y |y∧• Ty(T ∗B)
1− qe−yα

1− e−yα
eyα +

stab+,−∇
ysα

|y stab−,∇
y |ysα∧• TysαT ∗B

1− qeyα

1− eyα
e−yα.

Write

f1 = stab+,−∇
ysα

|y stab−,∇
y |y, f2 = stab+,−∇

ysα
|ysα stab−,∇

y |ysα ,

f3 = stab+,−∇
ysα

|ysα stab−,∇
y |yeyα, f4 = stab+,−∇

ysα
|y stab−,∇

y |ysαe−yα.

Step 10. If (λ, α∨) > 0,∀λ ∈ ∇, then we can choose ξ ∈ C+ satisfying (22) and (yα, ξ) > 0, and
pick λ ∈ ∇ satisfying −1 < −2(λ, α∨)(yα, ξ) < 0; then

lim
t→∞f1(tξ) = lim

t→∞f2(tξ) = lim
t→∞f4(tξ) = 0,

and it is easy to calculate from (5) and (4) that

f3∧• Ty(T ∗B)
= q−1/2 q − e−yα

1− eyα
.

Therefore,
lim
t→∞aysα(tξ) = −q1/2, lim

t→−∞aysα(tξ) is bounded.

Similarly, if (λ, α∨) < 0,∀λ ∈ ∇, then we can choose ξ ∈ C− (so that (yα, ξ) < 0), and λ ∈ ∇
satisfying −1 < −2(λ, α∨)(yα, ξ) < 0; then

lim
t→∞aysα(tξ) = −q1/2, lim

t→−∞aysα(tξ) is bounded.

Therefore, aysα = −q1/2. �

4.3 Arbitrary chamber
We generalize Theorem 4.1 to the setting of an arbitrary chamber. The choice of a chamber
C determines a set of simple roots. Replacing the positive chamber + in Theorem 4.1 by the
chamber C, we get the following result.

Theorem 4.5. Let α∨ be a simple coroot determined by the chamber C. Suppose ∇ has a wall
on Hα∨,0, and (λ, α∨) > 0,∀λ ∈ ∇. Then

stabC,TB,sα∇
y =

{
stabC,TB,∇

y +(q1/2 − q−1/2) · stabC,TB,∇
ysα

if ysα ≺C y,

stabC,TB,∇
y if ysα �C y.

stab−C,T ∗B,sα∇
y =

{
stab−C,T ∗B,∇

y +(q1/2 − q−1/2) · stab−C,T ∗B,∇
ysα

if ysα �C y,

stab−C,T ∗B,∇
y if ysα ≺C y.

Thanks to this result, in the rest of the paper we focus on stable bases associated to the
positive/negative chamber.

5. Wall-crossings and the affine Hecke algebra action

In this section we compute the formula when crossing a wall of a non-simple root, and also study
the relation between wall-crossing and the affine Hecke algebra action.
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5.1 Crossing the non-simple walls
Theorem 5.1. Suppose ∇ has a wall on Hα∨,0 (so that ∇ and sα∇ share a wall on Hα∨,0), and
(λ, α∨) > 0,∀λ ∈ ∇. Then

stabC,TB,sα∇
y =

{
stabC,TB,∇

y +(q1/2 − q−1/2) · stabC,TB,∇
ysα

if ysα ≺C y,

stabC,TB,∇
y if ysα �C y.

stab−C,T ∗B,sα∇
y =

{
stab−C,T ∗B,∇

y +(q1/2 − q−1/2) · stab−C,T ∗B,∇
ysα

if ysα �C y,

stab−C,T ∗B,∇
y if ysα ≺C y.

Remark 5.2. This theorem shows that the wall-crossing coefficients fsα∇←∇
y do not depend on

where we cross the root hyperplane Hα∨,0, which is not obvious from the definitions. In other
words, for any ∇ having a wall on Hα∨,0, the coefficient fsα∇←∇

y does not depend on the choice
of ∇.

Proof. It suffices to prove the first one, since the other one will follow from it via duality as in
Theorem 4.1. Assume first that C = C+, then we just need to consider the case when ysα < y
due to Lemma 3.5. We have

stabC+,TB,sα∇
y = stabC+,TB,∇

y +fsα∇←∇
y · stabC+,TB,∇

ysα
,

where fsα∇←∇ ∈ KC∗(pt) due to Lemma 3.5. Suppose α∨ = wβ∨ for some simple coroot β∨ and
w ∈ W . Applying w to the above identity and using Lemma 3.3, we get

stabw(C+),TB,sα∇
wy = stabw(C+),TB,∇

wy +fsα∇←∇
y · stabw(C+),TB,∇

wysα
.

Here we have used the fact that w(TB) = TB and w(fsα∇←∇
y ) = fsα∇←∇

y . From definition, we
see that ysα < y implies that wysα ≺wC+ wy. Moreover, since β∨ is a simple coroot with respect
to C+, α∨ = wβ∨ is a simple coroot with respect to wC+, and sα∇,∇ are separated by the simple
wall Hα∨,0. Therefore, Theorem 4.5 implies that fsα∇←∇

y = q1/2 − q−1/2.
Now if C is general, we need to compute fsα∇←∇

y ∈ KC∗(pt) in

stabC,TB,sα∇
y = stabC,TB,∇

y +fsα∇←∇
y stabC,TB,∇

ysα
.

Write C+ = vC; then ysα ≺C y implies vysα < vy. Applying v to the above identity, we get

stabC+,TB,sα∇
vy = stabC+,TB,∇

vy +fsα∇←∇
y stabC+,TB,∇

vysα
.

By using the first part of the proof, we see that fsα∇←∇
y = q1/2 − q−1/2. �

By translation, we can compute the wall-crossing coefficients for any wall Hα∨,n.

Corollary 5.3. Suppose ∇1,∇2 are adjacent and separated by the hyperplane Hα∨,n. More-
over, assume that (λ1, α

∨) < n < (λ2, α
∨),∀λi ∈ ∇i. Then for any chamber C, the polarization

TB or T ∗B, the coefficient f∇1←∇2
y in Lemma 3.5 is equal to e−nyα(q1/2 − q−1/2).

Proof. There exists an integral weight �α ∈ Λ such that, (�α, α∨) = 1. Indeed, if α is simple,
take �α to be the corresponding fundamental weight. If α is not simple, there exists v ∈ W such
that vα is simple. We can take �α = v−1�vα, where �vα is the fundamental weight corresponding
to the simple root vα. Then ∇′1 := ∇1 − n�α and ∇′2 = ∇2 − n�α are adjacent and separated
by Hα∨,0. Lemma 3.7 and Theorem 5.1 imply that

f∇1←∇2
y = e−nyαf

∇′
1←∇′

2
y = e−nyα(q1/2 − q−1/2). �
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5.2 The affine Hecke algebra action
We can further express the wall-crossing formulas in terms of the affine Hecke algebra action.
Let qy = q�(y), εy = (−1)�(y).

Theorem 5.4. For any x, y ∈ W , we have

stab−,x∇+
y = q−1/2

x Tx(stab−,∇+
yx ), (23)

stab+,x∇−
y = q1/2

x (T ′x−1)−1(stab+,∇−
yx ). (24)

Remark 5.5. This, together with (6), (15), and Theorem 2.5 completely determines the stable
basis for the positive and negative chambers. The stable basis associated to other chambers are
determined by § 3.2, on top of those for the positive or negative chambers.

Proof. We first show that (23) implies (24). By the duality of stable bases (3) and the adjointness
between Tα and T ′α (8), we get

q1/2
x (T ′x−1)−1(stab+,∇−

yx ) =
∑
v∈W

〈q1/2
x (T ′x−1)−1(stab+,∇−

yx ), stab−,x∇+
v 〉 stab+,x∇−

v

=
∑
v∈W

〈stab+,∇−
yx , q1/2

x T−1
x (stab−,x∇+

v )〉 stab+,x∇−
v

(23)
=

∑
v∈W

〈stab+,∇−
yx , stab−,∇+

vx 〉 stab+,x∇−
v

= stab+,x∇−
y .

Now we prove (23) by induction on �(x). If x is a simple reflection, it follows from (17) and
(10). Now assume it holds for x. Let α be a simple root such that xsα > x. Then β := xα > 0
and sβ = xsαx−1. Notice that the two alcoves x∇+ and xsα∇+ = sβx∇+ are adjacent alcoves
separated by a wall on Hβ∨,0, and for any λ ∈ ∇+,

(xsαλ, β∨) = (λ, sαx−1β∨) = −(λ, α∨) < 0 < (xλ, β∨).

So we can use Theorem 5.1 with respect to the wall-crossing xsα∇+ ← x∇+, which corresponds
to sβx∇+ ← x∇+.

If yβ < 0, then ysβ < y, and ysβ �C− y. Since yxα = yβ < 0, yxsα �C− yx. Then

stab−,xsα∇+
y

Theorem 5.1= stab−,x∇+
y

induction= q−1/2
x Tx(stab−,∇+

yx )

Theorem 2.5= q−1/2
x Tx

(
q−1/2Tα(stab−,∇+

yxsα
)
)

= q−1/2
xsα

Txsα(stab−,∇+
yxsα

).

If yβ > 0, then ysβ ≺C− y, and yxsα ≺C− yx. We have

q−1/2
xsα

Txsα(stab−,∇+
yxsα

) = q−1/2
xsα

TxTα(stab−,∇+
yxsα

)

Theorem 2.5= q−1/2
xsα

TxTα[q−1/2Tα(stab−,∇+
yx )]

= q−1/2
xsα

Tx

(
q1/2 + (q1/2 − q−1/2)Tα

)
(stab−,∇+

yx )

Theorem 2.5= q−1/2
xsα

Tx

(
q1/2 stab−,∇+

yx +(q1/2 − q−1/2)q1/2 stab−,∇+
yxsα

)
= q−1/2

x

(
Tx(stab−,∇+

yx ) + (q1/2 − q−1/2)Tx(stab−,∇+
yxsα

)
)
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induction= stab−,x∇+
y +(q1/2 − q−1/2) stab−,x∇+

yxsαx−1

Theorem 5.1= stab−,xsα∇+
y . �

Corollary 5.6. If α is a simple root and sαx > x, then we have

q−1/2Tα(stab−,x∇+
y ) = stab−,sαx∇+

ysα
, q−1/2T ′α(stab+,sαx∇−

ysα
) = stab+,x∇−

y .

Proof. We have (Tsαx)−1 = (Tx)−1T−1
α . By Theorem 5.4, we have

q1/2
x (Tx)−1 stab−,x∇+

yx−1 = stab−,∇+
y = q1/2

sαx(Tsαx)−1(stab−,sαx∇+

yx−1sα
)

= q1/2
x q1/2(Tx)−1T−1

α (stab−,sαx∇+

yx−1sα
).

Cancelling q
1/2
x (Tx)−1, we get the first identity. The second one can be proved similarly. �

6. Affine braid group action and categorification of stable basis

In this section we give a quick review of the affine braid group action on Db
T (T ∗B), following

[BR13, BMR06], and then use it to define an integral lift of the stable basis {stab+,TB,∇
w | w ∈ W}.

6.1 The affine braid group
We first recall the level-p affine Weyl group action. In Λ, we consider the level-p configuration
of ρ-shifted affine hyperplanes. That is, for a coroot α∨ and n ∈ Z, let the hyperplanes Hp

α∨,n be
{λ ∈ Λ | 〈α∨, λ + ρ〉 = np}. The open facets are called p-alcoves, and the codimension one facets
are called faces.

There is a special alcove, denoted by A0, which is the alcove containing (ε− 1)ρ for small
ε > 0. It consists of those weights λ such that 0 < 〈λ + ρ, α∨〉 < p for all α ∈ Φ+. This alcove is
referred as the fundamental alcove in [BMR06], which, to avoid confusion, will not be called the
fundamental alcove in the present paper.

Let Q be the root lattice. We consider the level-p affine Weyl group. It is the usual affine Weyl
group Waff := W � Q as an abstract group, with a different action on the lattice Λ, the level-p
dot-action, recalled as follows. Elements in W acts via the usual dot-action w : λ �→ w • λ :=
w(λ + ρ)− ρ. Elements ν in the lattice act by λ �→ λ + pν. The group Waff is generated by
reflections in affine hyperplanes Hp

α∨,n. The set of faces in the closure of A0 will be denoted by Iaff .
The (Waff , •)-orbits in the set of faces are canonically identified with Iaff . Via this identification,
the (Coxeter) generators of the group Waff can be chosen to be the reflections in the faces of the
alcove A0.

We will consider the extended affine Weyl group4 W ′
aff := W � Λ. Let Ω denote the stabilizer

subgroup of W ′
aff that fixes A0. The group W ′

aff is the semi-direct product Ω � Waff [Car79,
§ 3.5(a)]. For example, for type A2 root system (see Figure A.1 below) the subgroup Ω is a cyclic
group of order 3, cyclically permuting the 3 walls of the fundamental alcove. A fundamental
domain of Λ can be chosen to be (W, •)-orbit of A0. This means, for any λ ∈ Λ, there exists
μ ∈ Λ and a Weyl group element w ∈ W, such that λ− μ ∈ w •A0.

Note that in the definition above, as abstract groups, Waff and W ′
aff do not depend on the

level p. When p is equal to 1, this action is the ρ-shift of the action used in § 2, that is, Hp=1
α∨,n is

4 Here we follow the notations of [BMR06]. In [BR13], the notation Waff is used for the extended affine Weyl
group, and W Cox

aff represents the non-extended one. The same convention holds for the corresponding affine Braid
groups.
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the ρ-shift of Hα∨,n. In §§ 6.2 and 6.3 below, we will focus on the p = 1 case. The case when p is
a prime number will be relevant in § 7.

We refer the readers to [Lus80, § 1.1] for the local action of Waff , where for each α ∈ Iaff and
on each alcove sα acts via reflection along the wall labelled by α. We follow [BMR06, § 2.1.2]
to define the local action of W ′

aff . This depends on the choice of a character λ0 ∈ A0, so that
W ′

aff • λ0 is a free W ′
aff•-orbit. Given v ∈ W ′

aff and λ′ = w • λ0 ∈ W ′
aff • λ0 with w ∈ W ′

aff , define
λ′ � v := wv • λ0. Note that • is a left action of W ′

aff on Λ, and � is a right action of W ′
aff only

on the subset W ′
aff • λ0. For λ ∈ W ′

aff • λ0 and w ∈ W ′
aff , we say w increases λ if the following

holds. Write w = s1 · · · snω, with si ∈ Iaff and ω ∈ Ω. Then, λ � (s1 · · · si−1) < λ � (s1 · · · si) in
the standard order of Λ for any i = 1, . . . , n [BMR06, § 2.1.3].

Remark 6.1. (a) We note the difference between A0 and ∇+. We consider the map Λ → Λ⊗Z Q,
sending λ ∈ Λ to (λ + ρ)/p. Note that λ being in A0 is equivalent to (λ + ρ)/p being in the
fundamental alcove ∇+ in the present sense. In turn, this is equivalent to −(λ + ρ)/p ∈ ∇−.
Note that the map Λ → Λ⊗Z Q, sending λ ∈ Λ to −(λ + ρ)/p intertwines the natural action of
Λ on ΛQ and the level-p action of Λ on itself, composed with the abelian group automorphism
Λ → Λ, λ �→ −λ.

(b) Moreover, we have x((λ + ρ)/p) = (x • λ + ρ)/p for any λ and x ∈ W .
(c) For λ0 ∈ A0 and x ∈ Waff , with λ = λ0 � x, we have equivalently λ = x • λ0 and

x−1 • λ = λ0.

To be consistent with [SZZ20] and § 2, the roots of the Borel subalgebra b are positive roots
Δ+. Note that this is the opposite of the convention used in [BMR06, § 1.1.1], and hence results
in an opposite lifting of the affine Weyl group into the affine braid group, as will be discussed in
detail in Remark 6.3(a).

Now we recall the affine braid group. The group Baff is generated by w̃ for w ∈ Waff subject to
the relation w̃u = w̃ũ when l(wu) = l(w) + l(u) [Mac96, § 3]. There is a set theoretical lifting C :
Waff → Baff , sending the simple reflection sα for α ∈ Iaff to s̃α, and any reduced decomposition
w = sα1 · · · sαk

to w̃ = s̃α1 · · · s̃αk
.

On the extended affine Weyl group W ′
aff , the length function is given by l(wω) = l(w) for ω ∈

Ω. The extended affine Braid group B′aff is generated by w̃ for w ∈ W ′
aff , subject to the relation

w̃u = w̃ũ when l(wu) = l(w) + l(u). As Ω permutes Iaff , we have B′aff = Baff � Ω. A smaller set
of generators of B′aff can be chosen to be {s̃α | α ∈ Iaff} and Ω.

The set of finite simple roots Σ can be naturally identified with a subset of Iaff via their corre-
sponding simple reflections. Alternatively, the group B′aff is generated by simple finite reflections
s̃α for α ∈ Σ and translations Λ+ ⊂ Λ consisting of λ ∈ Λ with 〈α∨, λ〉 > 0 for all positive coroots
α∨.

For any w ∈ W , let w = s1 . . . sk be a reduced decomposition of w. Then, in B′aff we have the
element s̃1 . . . s̃k via Σ ⊆ Iaff . This element is independent of the reduced word decomposition,
hence is a well-defined lifting w̃ ∈ B′aff . Sending w ∈ W to w̃ defines a set-theoretical lifting
W → Baff ⊆ B′aff . Since w−1 = sk . . . s1, we have w̃−1 = s̃k . . . s̃1, which is different from (w̃)−1 =
(s̃k)−1 . . . (s̃1)−1. On the other hand, the lifting of Λ ⊆ W ′

aff is a subgroup of B′aff [Mac96, § 3].
Therefore for any λ ∈ A, we will not distinguish between the group inverse taken in Λ and the
group inverse taken in B′aff . For this reason, we will denote the lifting of λ still by λ. A similar
property holds for the subgroup Ω ⊆ W ′

aff .

6.2 A categorical affine braid group action
Let GZ be a split Z-form of the complex algebraic group G. Let AZ ⊆ BZ ⊆ GZ be a maximal
torus and a Borel subgroup, which we assume to have base changes A ⊂ B ⊂ G. Let hZ ⊂ bZ ⊂ gZ
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be the corresponding Lie algebras. Similar to the setup of § 2, we have the integral forms BZ and
T ∗BZ, etc.

In [BR13], an action of the extended affine braid group on the category Db
TZ

(T ∗BZ) is con-
structed, where elements of B′aff act by Fourier–Mukai transforms. Moreover, for any algebraically
closed field k, this affine braid group action can be base changed to k. More precisely, we
have the following. The base change of the groups and varieties from Z to k are denoted by
Ak ⊆ Bk ⊆ Gk, T ∗Bk, etc. When k = C, we will omit the subscripts. This is consistent with the
notations introduced in § 2.

Theorem 6.2 [BR13, Theorem 1.3.1, Proposition 1.4.3, Theorem 1.6.1]. There exists a right
action of B′aff on the category Db

TZ
(T ∗BZ), denoted by JZ

b with b ∈ B′aff , such that the gen-

erator JZ
s for s ∈ Σ acts via a Fourier–Mukai transform with kernel the structure sheaf of a

certain subvariety of T ∗BZ × T ∗BZ (given explicitly in [BR13, § 1.3]), and the generator JZ
λ for

λ ∈ Λ acts via tensoring by the line bundle Lλ.
Similarly, for any algebraically closed field k, applying ⊗L

Z k to the action above, we have
a right action of B′aff on the category Db

Tk
(T ∗Bk), denoted by Jk

b with b ∈ B′aff , such that the

generator Jk
s for s ∈ Σ acts via a Fourier–Mukai transform with kernel the structure sheaf of

certain subvariety of T ∗Bk × T ∗Bk, and the generator Jk
λ for λ ∈ Λ acts via tensoring by the line

bundle Lλ.

Remark 6.3. (a) Using the local affine Weyl group action, the order on Λ, which is determined
by a choice of a dominant dual Weyl chamber Λ+, identifies the abstractly defined Baff above
with the topologically defined π1(h∗C,reg/(Waff , •)). Then the lifting C : Waff → Baff here is char-
acterized as the set of positive paths going from any alcove to an alcove above it in the natural
order [BM13, Lemma 1.8.1(c)].

As mentioned above, the choice of positive roots in the present paper is opposite to that in
[BMR06, BR13], and hence the anti-dominant chamber −Λ+ in our setting consists of ample line
bundles. Consequently, the order on Λ considered here is opposite to that of [BMR06, BR13].
For comparison, denote the order of [BMR06, BR13] by >BMR. Then, for any s ∈ Iaff , λ � s > λ
is equivalent to λ � s <BMR λ � s � s = λ. Taking the corresponding lifting of s to B′aff , which is
denoted by s̃ in the present notation, we have that the lifting taken in [BMR06, BR13] is (s̃)−1.

(b) The action of Baff in [BR13] is a left action. As we will not be considering any left actions
in this section, we use [BR13, Remark 2.5.2] and the paragraph after [BR13, Corollary 2.5.3] to
translate the left action therein to a right action. The effect coincides with taking the opposite
lifting as in part (a) above. Therefore, when k = C, taking the Grothendieck group, the above
actions of the generators Js̃α

and Jλ for α ∈ Σ and λ ∈ Λ of B′aff on KT (T ∗B) from Theorem 6.2
are equal to the operators q−1/2TR

α and Lλ in § 2.3, respectively. In particular, the action factors
through the action of the affine Hecke algebra H considered in § 2.

(c) To remind ourselves that this is a right action, and also to be consistent with the notations
in § 2, we will also write the operator Jb as JR

b . By our convention of a right action, for any w ∈ W ,
via the lifting W → Baff , we have JR

w̃ = JR
s̃k
◦ · · · ◦ JR

s̃1
if w = s1 . . . sk is a reduced decomposition

of w.

6.3 Integral form of stable bases
Now we define the objects stabZ

λ(y) ∈ Db
TZ

(T ∗BZ), y ∈ W, λ ∈ ΛQ in the interior of an alcove,
inductively as follows:

stabZ
λ0

(id) = L−ρ ⊗OT ∗
idBZ

, λ0 ∈ ∇−, (25)
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stabZ
λ0

(w) = JR
w̃ stabZ

λ0
(id), λ0 ∈ ∇−, (26)

stabZ
λ(y) = (JR

x̃ )−1stabZ
λ0

(yx), y, x ∈ W, xλ0 = λ, λ0 ∈ ∇−, (27)

stabZ
λ(y) = e−yμJR

μ stabZ
λ1

(y), y ∈ W, μ + λ1 = λ, μ ∈ Q, λ1 ∈ W∇−. (28)

According to 6.2, the functor JR
μ in (28) is twisting by Lμ. From the definitions, stabZ

λ(y) only
depends on the alcove ∇ containing λ, so sometimes it is also denoted by stabZ

∇(y).
Now we are ready to state the main result of this section.

Theorem 6.4. Applying −⊗L
Z C to stabZ

∇(w) ∈ Db
TZ

(T ∗BZ), and taking the class in the

Grothendieck group, we get L−ρ ⊗ stab+,TB,∇
w ∈ KT (T ∗B).

Proof. We need to verify (25)–(28) inductively. The first equation is a direct consequence of (6).
Keeping in mind Theorem 6.2 and the relations [JC

s̃α
] = q−1/2TR

α and TR
α = L−ρT

′
αLρ, then the

second equation follows directly from Theorem 2.5. The third one follows from Theorem 5.4, and
the last one follows from (15). �

7. Verma modules in prime characteristic

In this section, we prove that, when base changed to a field k of positive characteristic, the
integral form of stable basis defined in § 6.3 agrees with the Verma modules of U(gk) under the
localization equivalence of [BM13, BMR08].

7.1 Reminder on localization in prime characteristic
We start by a brief review of [BMR08]. Now we assume k is an algebraically closed field of
characteristic p greater than the Coxeter number of G. For any k-variety X, its Frobenius twist
is denoted by X(1). If X is defined over Fp, then X(1) ∼= X as abstract k-varieties. However, the
natural map X → X(1) is not an isomorphism. Below we will take X to be Bk, T ∗Bk, etc. We will
often omit the subscript k, when there is a Frobenius twist. For example, Bk

(1) will be simply
denoted by B(1).

Differentiating a character of Ak defines a map d : Λ → h∗k. We call a character λ ∈ h∗k integral
if it lies in the image of d : Λ → h∗k. An integral character is said to be regular if it does not lie
on any walls Hp

α∨,n. For λ ∈ Λ, on the flag variety Bk, consider the ring of Lλ-twisted differential
operators Dλ, which is a sheaf of algebras. Its central subalgebra, i.e. the sheaf of functions on
T ∗B(1), makes any coherent Dλ-module naturally a coherent sheaf on T ∗B(1), and moreover, Dλ

is an Azumaya algebra on T ∗B(1)
k [BMR08, § 2.3].

There exists a vector bundle Es with the following properties.

(1) EndT ∗B(1)∧(Es) ∼= Dλ0 |T ∗B(1)∧ , where T ∗B(1)∧ is the formal neighbourhood of the zero-section
B(1). That is, the Azumaya algebra Dλ0 splits on this formal neighbourhood [BMR08,
Theorem 5.1.1].

(2) Es is Tk-equivariant [BM13, § 5.2.4], where Tk = Ak × k∗.
(3) Define Aλ0 to be EndT ∗B(1)(Es), a O(N (1))-algebra endowed with a compatible Ak × (Gm)k-

action. Then there exists a localization functor γλ0 : Db Modgr(Aλ0 , Ak) ∼= Db
Tk

Coh(T ∗B(1)
k )

[BM13, Theorem 5.1.1].5

(4) The completion (Aλ0)∧0 is related to the Lie algebra gk (see (29) below).

5 The bundle Es is not equal but equidecomposable to the bundle E in [BM13]. See [BM13, Corollary 1.6.8]. Hence,
the algebra Aλ0 considered here is not equal but Morita equivalent to the algebra A in [BM13].
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The algebra U(gk) has two central subalgebras: the Frobenius center, which is naturally
identified with O(g∗(1)); and the Harish-Chandra center, which is identified with O(h∗k/(W, •))
under the choice of the Borel subgroup Bk and the maximal torus Ak. A point W • dλ ∈ h∗k/(W, •)
defines a maximal ideal in O(h∗k/(W, •)), which is a central subalgebra of U(gk). The quotient of
U(gk) by the central ideal is denote by U(gk)λ, that is U(gk)λ := U(gk)⊗O(h∗k/(W,•)) kλ. Similarly
χ ∈ N (1) defines a central ideal, and the completion of U(gk)λ0 at this ideal is denoted by U(gk)λ0

χ .
Then

(Aλ0)∧0 ∼= U(gk)λ0
0 . (29)

The vector bundle Es above is not unique. Different choices are related by Dλ [BMR08,
Remark 5.2.2]. Nevertheless, as has been done in [BR13, BM13], the property (30) below about
baby Verma modules fixes the choice [BMR06, Remark 1.3.5].

For the Borel subalgebra bk and for any χ ∈ N (1) and λ ∈ Λ, consider the U(bk)-character
kλ obtained via the projection b → h composing with the h-character kλ. Recall that the Verma
module of U(gk) associated to the Borel b and λ ∈ Λ is Zb(λ) := U(gk)⊗U(bk) kλ, and the baby
Verma module is Zb

χ(λ) := Uχ(gk)⊗U(bk) kλ, where Uχ(gk) is the quotient of U(gk) by the central
ideal χ ∈ N (1) ⊆ g∗(1).

Recall that under the identification Bk
∼= Gk/Bk, the Tk-fixed points on T ∗B(1) are identified

with the Weyl group elements, with Bk corresponding to id, whose skyscraper sheaf is denoted
by kid. Then [BMR08, Example 5.3.3.(0)]

γλ0Zb
0 (λ0 + 2ρ) ∼= kid. (30)

The isomorphism (29) defines a Tk-action on U(gk)λ0
0 making it an equivariant isomorphism.

Taking completion of Zb(λ0 + 2ρ) with respect to the maximal ideal W • dλ ∈ h∗k/(W, •) of the
central subalgebra O(h∗k/(W, •)) defines a module over U(gk)λ0

0 . The Tk-action on U(gk)λ0
0 pro-

vides Tk-actions on Zb
0 (λ0 + 2ρ) and Zb(λ0 + 2ρ), making (30) equivariant. Taking Gm-finite

vectors in Zb(λ0 + 2ρ), we get an Ak-Koszul graded module of Aλ0 , which, without causing
confusions, will still be denoted by Zb(λ0 + 2ρ). Then, under the equivalence in property (3) of
§ 7.1 above, we have the isomorphism

γλ0Zb(λ0 + 2ρ) ∼= OT ∗
idB(1) . (31)

7.2 Localization and the affine braid group action
We collect a few preliminary results, which are direct consequences of [BMR06] reviewed above.
Let us consider the category Mod0 U(gk)λ of finitely generated modules of U(gk)λ on which the
Frobenius center O(g∗(1)) acts by the generalized character 0 ∈ g∗(1). For λ, μ ∈ Λ, we define
Tμ

λ : Mod0 U(gk)λ → Mod0 U(gk)μ sending M to [Vμ−λ ⊗M ]μ. Here Vμ−λ is a finite-dimensional
representation with extremal weight μ− λ, and [−]μ means taking the component supported on
the point μ in h∗//W . Assume ν lies in a codimension-1 wall of the facet of the alcove containing
μ. Define

Rμ|ν := Tμ
ν T ν

μ : Mod0 U(gk)μ → Mod0 U(gk)μ.

Indeed, Rμ|ν depends only on the wall, not the character ν itself. Taking mapping cone of the
adjunction, we define

Θμ|ν := cone(id → Rμ|ν).

When μ is in the alcove A0, then the wall on which ν lies is labelled by some
α ∈ Iaff , therefore we will also denote Θμ|ν by Θα in this case. For ω ∈ Ω, we write
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T λ0�ω
λ0

: Mod0 U(gk)λ0 → Mod0 U(gk)λ0 simply as Θω. Note that this is possible due to the fact
that λ0 and λ0 � ω have the same central character in h∗k/(W, •).
Remark 7.1. For α ∈ Iaff , the functor Θα is the same as that in [BMR06], and is equal to I−1

α

in [BR13]. Similarly, for ω ∈ Ω, Θω in the present paper is Iω−1 in [BR13]. This inversion is also
noticed in [BR13, Remark 2.5.2]. In the present paper, we adopt the notation from [BMR06] so
as to consider right actions throughout. This is consistent with Remark 6.3.

The following is essentially [BMR06, Theorem 2.1.4] and [BR13, Theorem 2.5.4], taking into
account the correction in [BR13, Remark 2.5.2] and the translation between the left and right
actions in Remark 6.3.

Theorem 7.2. Let λ0 be in the alcove A0.

(i) The functors Θα for α ∈ Iaff and Rω for ω ∈ Ω induce right actions of the group B′aff

on the categories Db Mod0 U(gk)λ0 , Db Modgr
0 (U(gk)λ0 , Ak), Db Modgr(U(gk)λ0

0 , Ak), and
Db Modgr(Aλ0 , Ak).

(ii) For any b ∈ B′aff , write the corresponding auto-equivalence as ΘR
b . The localization functor

γλ0 intertwines these two B′aff -actions. That is, for any b ∈ B′aff , the following diagram
commutes.

Db Mod0 U(gk)λ0
γλ0

�� Db CohB(1) T ∗B(1)

Db Mod0 U(gk)λ0

ΘR
b

��

γλ0

�� Db CohB(1) T ∗B(1)

JR
b

��

Similar conclusions hold for the completed or graded versions:

Db Modgr
0 (U(gk)λ0 , Ak), Db Modgr(U(gk)λ0

0 , Ak), and Db Modgr(Aλ0 , Ak).

Note that under this identification of the two affine braid group actions, Pic(T ∗B) ∼= Λ acts
on Λ as in the level-p affine Weyl group action •.

The un-graded version of the following has been well known (see, e.g. [Jan00, Lemma 4.7]).
Here we give a different proof, which also holds in the Ak-Koszul-bigraded setting.

Lemma 7.3. Assuming μ is regular. Let α ∈ Iaff be such that μ̇ := μ � sα > μ, then we have as
objects in Db Modgr(Aλ0 , Ak)

Θ−1
s̃α

(Zb
0 (μ + 2ρ)) ∼= Zb

0 (μ̇ + 2ρ),

Θ−1
s̃α

(Zb(μ + 2ρ)) ∼= Zb(μ̇ + 2ρ).

Proof. The usual equivariant D-module calculation as in [BB81] (see also [BF04, § 11.2.11])
yields that the global section of the delta-D-module at id ∈ Bk gives the Verma module over
U(gk). More precisely, for any λ regular and integral, let δλ

b be the module of Dλ given by the
δ-distributions at id ∈ Bk. Under the equivalence RΓDλ,0 : Db(Coh0Dλ)

∼=−→ Db(Mod0 U(gk)λ)
[BMR08, Theorem 3.2],

RΓDλ,0(δ
λ
b) ∼= Zb(λ + 2ρ). (32)

Similarly, let δλ
b,0 be the central reduction of δλ

b with respect to the sheaf of ideals corresponding
to B(1) ⊆ T ∗B(1) in the center of Dλ. Then we have [BMR08, § 3.1.4]

RΓDλ,0(δ
λ
b,0) ∼= Zb

0 (λ + 2ρ). (33)
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By [BMR06, Theorem 2.2.8] (taking into account the correction in [BR13] in Remark 2.5.2
and the paragraph afterwards), the following diagram commutes.

Db Coh0Dμ
−⊗Lμ̇−μ

��

RΓDμ,0

��

Db Coh0Dμ̇

RΓDμ̇,0

��

Db Mod0 U(gk)μ

Θ−1
α

�� Db Mod0 U(gk)μ̇

Here we have used the assumption that μ̇ = μ � sα > μ. By definition,

δμ̇
b,0
∼= δμ

b,0 ⊗ Lμ̇−μ.

By (33), RΓDμ,0(δ
μ
b,0) = Zb

0 (μ + 2ρ), and RΓDμ̇,0(δ
μ̇
b,0) = Zb

0 (μ̇ + 2ρ). Therefore, we have
Θ−1

α (Zb
0 (μ + 2ρ)) ∼= Zb

0 (μ̇ + 2ρ). Note that this isomorphism is equivariant with respect to the
Ak and Koszul gradings.

About the assertion on Verma modules, we follow the same argument using (32), with the
commutative square above replaced by their counterparts for the completed algebras. We get an
isomorphism between the completions of Θ−1

α (Zb(μ + 2ρ)) and Zb(μ̇ + 2ρ), which is equivariant
with respect to the Ak and Koszul gradings. Then, taking the subspaces of finite vectors with
respect to the Koszul grading gives the required isomorphism. �

The following is a direct consequence of the existence of the affine braid group action on the
representation category.

Corollary 7.4. If λ0 ∈ A0; then for any w ∈ W we have ΘR

w̃
−1

(Zb(λ0 + 2ρ)) = Zb(λ0 � w−1 +

2ρ). A similar conclusion holds for the baby Verma modules.

Proof. We have λ0 = λ0 � w−1 � w. Clearly w increases λ0 � w−1 by assumption. Then,
the statement follows directly by applying Lemma 7.3 iteratively to ΘR

w̃
−1

= ΘR
s̃1
◦ · · · ◦

ΘR
s̃k

for any reduced decomposition w = s1 . . . sk of w, similar to the calculation done in
Remark 6.3(c). We get (ΘR

w̃−1
)−1Zb(λ0 � w−1) = (ΘR

s̃1
◦ · · · ◦ΘR

s̃k
)−1Zb(λ0 � w−1) = (ΘR

s̃k
)−1 ◦

· · · ◦ (ΘR
s̃1

)−1Zb(λ0 � w−1) = Zb(λ0 � w−1 � w). �
Motivated by [BM13, p.870], for any λ in the W ′

aff -orbit of λ0, we define the localization
functor

γλ : Db Mod0 U(gk)λ0 → Db CohB(1) T ∗B(1),

which is determined by the property that γλ�w = γλ ◦ΘR

w̃
−1

for w ∈ W ′
aff , as long as w increases

λ. Localization functor associated to singular λ has also been studied in [BMR06], although we
will not explicitly use this. In particular, if λ0 ∈ A0, and w ∈ W such that λ = λ0 � w, then using
the fact that λ0 = λ0 � w � w−1 and that w−1 increases λ0 � w, we get

γλ0 = γλ ◦ΘR
w̃ = JR

w̃ ◦ γλ. (34)

7.3 A categorification of the stable basis via the Verma modules
Now we are ready to state and prove the main theorem of this section.

Theorem 7.5. Let k be an algebraically closed field of characteristic p, and p is greater

than the Coxeter number. Assume λ is regular and integral, then in Db
Tk

(T ∗B(1)
k ), we have
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isomorphisms

eρstabk
−(λ+ρ)/p(y) ∼= γλZb(y • λ + 2ρ).

The left-hand side is the base changed integral form of the stable basis defined in § 6.3, not
to be confused with the complex one. The relation between these two is given by Theorem 6.4.
Using the isomorphism of k-varieties T ∗Bk

∼= T ∗B(1), we consider T ∗B(1) as the base-change of
T ∗BZ to the field k.

Proof. As the objects stabk
−(λ+ρ)/p(y) are defined inductively, we prove this theorem inductively.

First, we prove the case when λ = λ0 ∈ A0. We have γλ0Zb(λ0 + 2ρ) = OT ∗
idB = Lρ ⊗

stabk
−(λ0+ρ)/p(id) = eρstabk

−(λ0+ρ)/p(id). Here id ∈ Bk corresponds to the Borel subalgebra b

that has been used to define the Verma modules. For w ∈ W , Remark 6.1(c) yields that
Zb(w • λ0 + 2ρ) = Zb(λ0 � w + 2ρ), so

γλ0Zb(λ0 � w + 2ρ)
Corollary 7.4

= γλ0ΘR
w̃Zb(λ0 + 2ρ)

Theorem 7.2(ii)
= JR

w̃ γλ0Zb(λ0 + 2ρ)

= JR
w̃ eρstabk

−(λ0+ρ)/p(id)
(26)
= eρstabk

−(λ0+ρ)/p(w).

Here the third equality follows from the initial case above.
Second, we prove this for general λ ∈ W •A0, a fundamental domain of the action of the

Picard group. We assume λ = x • λ0 with λ0 ∈ A0 and x ∈ W . We have

stabk
−(λ+ρ)/p(y)

Remark 6.1(b)
= stabk

−x((λ0+ρ)/p)(y)
(27)
= (JR

x̃ )−1stab−(λ0+ρ)/p(yx)

= (JR
x̃ )−1e−ργλ0Zb((yx) • λ0 + 2ρ)

(34)
= e−ργλZb((yx) • λ0 + 2ρ) = e−ργλZb(y • λ + 2ρ).

Here the third equality follows from the first step above; The last equality follows from (yx) • λ0 =
y • λ.

Finally, we consider the case of general λ. There is an μ ∈ Λ, and λ1 ∈ W •A0 so that
λ = λ1 � (−μ). If λ1 = x • λ0 for x ∈ W and λ0 ∈ A0, the above is equivalent to

λ = λ1 � (−μ) = (x • λ0) � (−μ) = x • ((−μ) • λ0) = −px(μ) + x • λ0.

Without loss of generality, we assume −μ increases λ1. That is, −xμ ∈ Λ+. We have

stabk
−(λ+ρ)/p(y) = stabk

x(μ)−(λ1+ρ)/p(y)

(28)
= e−yx(μ)Lx(μ) ⊗ stabk

−(λ1+ρ)/p(y)

Theorem 6.2= e−yx(μ)JR
x(μ)e

−ργλ1Zb(y • λ1 + 2ρ)

(34)
= e−yx(μ)e−ρJR

x(μ)γ
λ0(ΘR

x̃ )−1Zb(y • λ1 + 2ρ)

Theorem 7.2(ii)
= e−yx(μ)e−ργλ0ΘR

x(μ)(Θ
R
x̃ )−1Zb(y • λ1 + 2ρ)

= e−yx(μ)e−ργλ0−px(μ)(ΘR
x̃ )−1Zb(y • λ1 + 2ρ)

= e−yx(μ)e−ργλZb(y • λ1 + 2ρ).

Here the third equality follows from Theorem 6.2 and the second step. The second to last equality
follows from the fact that −xμ increases λ0, since xμ ∈ Λ− and that the inverse of xμ is −xμ. The
last equality follows from the fact that λ � x−1 = λ0 − px(μ), and that x−1 increases λ, which in
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turn is equivalent to x−1 increases λ0 � x. Finally, note that the definition of the Verma modules
only depends on an element in h∗k, which in particular is invariant under shifting by pλ′ for any
λ′ ∈ Λ. Hence , Zb(y • λ1 + 2ρ) and Zb(y • λ + 2ρ) only differ by a Ak-grading, namely, eyx(μ).
Therefore, the proof is finished. �

7.4 Restriction formula and Lie algebra cohomology
In general, for any variety X, let a ∈ X be a closed point with residue field ka and
embedding i : {a} ↪→ X, and F ∈ Db Coh(X). Then F|∨a ∼= Homka(i∗F , ka) ∼= HomX(F , i∗ka) =
HomX(F ,Oa).

We have kxb = LλZxb
0 (λ + 2ρ) for any x ∈ W . Recall that here b is labelled by id ∈ W .

Putting these together with Theorems 6.4 and 7.5, we get

eρ−xρ stab+,TB,−(λ+ρ)/p
y |∨xb= Ext∗(Zb(y • λ + 2ρ), Zxb

0 (λ + 2ρ)).

Here the Ext is taken in the Grothendieck group of the category Modgr(U(gk)λ0
0 , Ak).

Remark 7.6. This is a reinterpretation of the restriction formula of stable bases in terms of
Lie algebra cohomologies. Therefore, the formula [SZZ20, Theorem 7.5] gives the a formula for
Ext∗(Zb(y • λ + 2ρ), Zxb

0 (λ + 2ρ))∨. In particular, this yields an explicit expression of the Koszul
gradings on the Verma modules in terms of those on the baby Verma modules.

Remark 7.7. Let ω ∈ Ω, and μ̇ := μ � ω; then

Θ−1
ω (Zb

0 (μ + 2ρ)) ∼= Zb
0 (μ̇ + 2ρ),

Θ−1
ω (Zb(μ + 2ρ)) ∼= Zb(μ̇ + 2ρ).

The proof is similar to that of Lemma 7.3, using [BMR06, § 2.3.1(1)] in place of [BMR06, Theorem
2.2.8], again taking into account the correction in [BR13] in Remark 2.5.2 and the paragraph
afterwards. Together with Lemma 7.3, one can see that these localization functors have the
properties that γλZb

0 (λ + 2ρ) ∼= kid, the latter being the skyscraper sheaf, and γλZb(λ + 2ρ) ∼=
OT ∗

idB(1) .

The right-hand side of Theorem 7.5 is the standard object in the t-structure associated to
the alcove containing λ [BM13, § 1.8.2].

7.5 Other chambers
For an arbitrary chamber C, let B′Z be the Borel subgroup whose roots are in C. Then, identifying
the maximal torus AZ with the abstract Cartan group using B′Z, and defining the Verma modules
of U(gk) using B′k, these Verma modules under localization functor give the categorification of
stable basis associated to the chamber C.

The change of chambers are controlled by the Weyl group as usual. More precisely, for
any Weyl group element w ∈ W , taking a representative of it in NGZ

(AZ), we get an automor-
phism w : TZ → TZ of groups together with an automorphism w : T ∗BZ → T ∗BZ of varieties.
These two automorphisms intertwine the two actions of TZ on T ∗BZ, hence induces an auto-
equivalence of categories w : Db

TZ
Coh(T ∗BZ) → Db

TZ
Coh(T ∗BZ). Applying this functor to the

objects {stabZ
λ(y) | y ∈ W} for λ ∈ Λ regular, according to § 3.2, we obtain integral forms of

the categorification of the stable basis associated to the chamber wC+ and the polarization
w(TB) = TB ∈ KTZ

(T ∗BZ).
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8. Monodromy of the quantum cohomology

The action of the affine braid group discussed in the previous section is one of the many
incarnations of the same representation. In this section we briefly review some of the other
incarnations, with emphasis on its appearance as the monodromy of the G× C∗-equivariant
quantum connection of T ∗B.

8.1 Other incarnations of the braid group action
(1) As has been reviewed in detail, in [BMR06] an action of B′aff on Db(ModA×C∗ g

Fp
) has been

constructed.
(2) Via the localization of [BM13, BMR08], Db(ModA×C∗ g

Fp
) ∼= Db

A×C∗(T ∗B), the above
affine braid group action lifts to an action on Db

A×C∗(T ∗B).
(3) In [BR13] the Fourier–Mukai kernels on Db

A×C∗(T ∗B) on which the generators of B′aff

acts has been determined. Hence, taking Grothendieck group, this action agrees with the affine
Hecke algebra H action on KA×C∗(T ∗B) of Kazhdan-Lusztig and Ginzburg.

(4) In [BMO11], building up on earlier work of Cherednik [Che05], the monodromy of the
quantum connection of T ∗B, which a priori is an action of the affine braid group on H∗G×C∗(T ∗B),
also agrees with the action of H on KA×C∗(T ∗B) via proper identifications. More details will be
recalled below.

(5) Were the category Db
A×C∗(T ∗B) replaced by Db

G×C∗(T ∗B), then the equivalences of
[Bez16, AB09] give Db

G×C∗(T ∗B) ∼= DI
const(G

L
K/GL

O), where K = Fp((t)), O = Fp[[t]] is the ring
of integers, GL is the dual group, and I is the Iwahori subgroup. The category DI

const(G
L
K/GL

O)
categorifies the action of the Iwahori–Matsumoto Hecke algebra on its (anti)spherical module.
For Db

A×C∗(T ∗B), the corresponding Langlands dual should be DI
const(G

L
K/AL

ONL
K), which is

beyond our present method. Nevertheless, in [SZZ20] we considered its decategorification, which
is the Iwahori-invariants ΠI in the principal series representation of GL

K . This is the periodic
module of the Iwahori–Matsumoto Hecke algebra. Under the isomorphism KA×C∗(T ∗B) ∼= ΠI of
Hecke-modules, we proved that the K-theory stable basis goes to the normalized characteristic
functions of the orbits, and the basis of A-fixed points goes to the Casselman basis [Cas80].

The result in the present paper can be seen as a contribution to yet another realization
of the same affine braid group action, i.e. it comes from wall-crossings of the K-theory stable
bases of T ∗B. Consequently, wall-crossings of the K-theory stable bases of T ∗B are equal to
the monodromy of the quantum connections. This is in line with the results of [AO21] that the
monodromy of the quantum difference equations of Nakajima quiver varieties is equal to the
wall-crossing of the elliptic stable envelope.

Now we recall the details of (4) from the above list, following [BMO11].
The quantum connection of T ∗B is a flat connection on the trivial bundle H∗G×C∗(T ∗B)×A∨reg

on the dual torus A∨ with the root hyperplanes removed. This connection is equivariant with
respect to the Weyl group action, hence descents to a flat connection on A∨reg/W .

On the other hand, by the work of Lusztig [Lus88], H∗G×C∗(T ∗B) can be realized as the
polynomial representation Mξ,t of the graded affine Hecke algebra, where ξ is the C∗-equivariant
parameter and t ∈ h∗ is the A-equivariant parameter. For any module of the graded affine Hecke
algebra, there is an associated affine Knizhnik–Zamolodchikov connection on the trivial bundle
on A∨reg, so that derivatives with respect to Lie(A∨) = h∨ are expressed in terms of operators in
the graded affine Hecke algebra. Cherednik has studied the monodromy of such a flat connection
[Che05]. For any module M of the graded affine Hecke algebra, the monodromy IM , which a
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priori is a representation of π1(A∨reg/W ) ∼= B′aff on the fiber of M , factors through the affine
Hecke algebra H.

In [BMO11], these two flat connections have been identified. In other words, quantum
multiplication by a divisor class in H2(T ∗B, C) ∼= h∨ is expressed as taking derivatives with
respect to the affine Knizhnik–Zamolodchikov connection. Consequently, it follows from the
work of Cherednik that the monodromy I(Mξ,t) is the polynomial representation Mq,z of
the affine Hecke algebra H with q = exp(ξ) and z = exp(t). Moreover, under the natural iso-
morphism Mq,z

∼= KG×C∗(T ∗B), the action of H on Mq,z coming from the monodromy is
further identified with the action on KG×C∗(T ∗B) of Kazhdan–Lusztig [KL87] and Ginzburg
[CG97]. Extending scalars of the module Mq,z via the map KG×C∗(pt) → KA×C∗(pt), we get
an action of B′aff on KA×C(T ∗ B), which factors through the H-action considered in § 2. In
other words, for any b ∈ π1(A∨reg/W ) ∼= B′aff , the monodromy operator b : I(Mξ,t) → I(Mξ,t) is
given by I(Mξ,t) ∼= KG×C∗(T ∗B) → KG×C∗(T ∗B) ∼= I(Mξ,t), the image of b under the projection
C[q±][B′aff ] → H.

8.2 K -theory wall-crossing = cohomological monodromy
Note that h∨C,reg/(Waff , •) is naturally a covering space of A∨reg/W . Let ∇1 and ∇2 be two alcoves
in h∨C,reg, which are separated by a wall, and ∇1 is below ∇2 in the natural order determined
by that on Λ. Note that this order has been used in Remark 6.3(a), and is an extension of the
order used in Theorem 5.1 for C+. Then, the homotopy class of a positive path in h∨C,reg, going
from a point in ∇1 to a point in ∇2 in the same Waff orbit, determines a unique element [BM13,
Lemma 1.8.1]

b∇2,∇1 ∈ π1(h∨C,reg/(Waff , •)) ⊆ π1(A∨reg/W ) ∼= B′aff .

Note that we have b∇3,∇1 = b∇3,∇2b∇2,∇1 , bx∇−,∇− = x̃ for any x ∈ W , and bx∇−+λ,∇− = λx̃ for
any λ ∈ Λ and x ∈ W [BM13, Lemma 1.8.1]. The subscripts of b here we use are again different
from that of [BM13] for the same reason as explained Remark 6.3(a).

To relate the affine braid group action of Bezrukavnikov and Riche with the monodromy
braid group action, we first define the automorphism τ : B′aff → B′aff , s̃α �→ s̃α for α ∈ Σ, and
λ �→ −λ for λ ∈ Λ. Recall that the action of Baff , denoted by JR, is such that JR

ab = JR
b ◦ JR

a .
Hence, in case bx∇−+λ,∇− = λx̃,

(JR
τ(bx∇−+λ,∇− ))

−1 = (JR
τ(λx̃))

−1

= (JR
x̃ ◦ JR

−λ)−1

= JR
λ ◦ (JR

x̃ )−1.

For simplicity, the class in the Grothendieck group of the auto-equivalence JR
τ(b) :

Db
TZ

(T ∗BZ) → Db
TZ

(T ∗BZ) for b ∈ Baff is denoted by [b].

Theorem 8.1. Notations as above. For each pair of alcoves ∇1 and ∇2, the monodromy action
of b∇2,∇1 ∈ π1(A∨reg/W ) ∼= B′aff :

[b−1
∇2,∇1

] : I(Mξ,t)⊗KG×C∗(pt) KA×C∗(pt) ∼= KA×C∗(T ∗B) → KA×C∗(T ∗B)

∼= I(Mξ,t)⊗KG×C∗ (pt) KA×C∗(pt),

sends the set {L−ρ ⊗ stab+,TB,∇1
w | w ∈ W} to {L−ρ ⊗ stab+,TB,∇2

w | w ∈ W}, up to (explicitly
determined) scalars.
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More precisely, assume ∇1 = x∇− + λ and ∇2 = y∇− + μ, with x, y ∈ W and λ, μ ∈ Q.
Then, [b−1

∇2,∇1
] sends L−ρ ⊗ stab+,TB,∇1

w to ewλ−wxy−1μL−ρ ⊗ stab+,TB,∇1

wxy−1 .

For example, in the case when alcoves ∇1 and ∇2 are adjacent and separated by a wall
Hxα̇∨,0 for some x ∈ W and α ∈ Σ, i.e. there exists λ ∈ Λ and x ∈ W , such that ∇1 = x∇− and
∇2 = xsα∇−. Then b∇2,∇1 = x̃sαx̃−1, and the corresponding operator is

JR
τ(b∇2,∇1

) = JR
x̃−1J

R
x̃sα

=
(
JR

x̃

)−1
JR

x̃sα
.

Proof. Let ∇1 = x∇− + λ. Then, a direct consequence of the definition in § 6.3 is
that stabZ

∇1
(w) = e−wλJR

λ (JR
x̃ )−1stabZ

∇−(wx). Hence, induced K -theory map of the functor
(JR

τ(bx∇−+λ,∇− ))
−1 sends L−ρ ⊗ stab+,TB,∇−

wx to e−wλL−ρ ⊗ stab+,TB,∇1
w by Theorem 6.4.

The analysis above implies that [b−1
∇1,∇− ], which is the induced K -theory map of the func-

tor (JR
τ(bx∇−+λ,∇− ))

−1, sends L−ρ ⊗ stab+,TB,∇−
wx to e−wλL−ρ ⊗ stab+,TB,∇1

w . Similarly, [b−1
∇2,∇− ]

which is the induced K -theory map of the functor (JR
τ(by∇−+μ,∇− ))

−1, sends L−ρ ⊗ stab+,TB,∇−
vy

to e−vμL−ρ ⊗ stab+,TB,∇2
v . Hence, [b−1

∇2,∇1
] = [b−1

∇2,∇− ][b∇1,∇− ] sends L−ρ ⊗ stab+,TB,∇1
w to

ewλ−wxy−1μL−ρ ⊗ stab+,TB,∇1

wxy−1 . �
A much more general phenomenon has been expected for symplectic resolutions. Namely,

for a symplectic resolution X, there are derived auto-equivalences of Db(X) that come from
quantizations of X [Kal08]. These derived auto-equivalences are expected to be related to the
monodromy of the quantum connection of X [Oko18a]. For quiver varieties, such results are
proven in unpublished work of Bezrukavnikov and Okounkov. In future works we will explore in
more examples of symplectic resolutions the categorification of the K-theoretic stable bases in
terms of standard objects of the quantizations.
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Appendix A. Wall-crossings in the example of SL(3, C)

In this appendix, we compute some wall-crossing matrix coefficients when G = SL(3, C).

A.1 Crossing a simple wall
There are two simple roots α1, α2 and another positive root α3 = α1 + α2. Let si = sαi . The
identity element of W is denoted by e. The fundamental weights ωi are noted by the arrows. Let
∇1 = s1∇+,∇2 = ∇+ −�1, and ∇3 = ∇2 + �2. See Figure A.1.

We consider the dominant chamber C+ and polarization TB, and compute f
∇1←∇+
y .

We first cross Hα∨
3 ,0, i.e. ∇1 → ∇2. There are two ways to do this: ∇1 → ∇+ → ∇2 and

∇1 → ∇3 → ∇2. The second steps of both ways are done by translations. Then by Lemma 3.5
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Hα∨
3 ,2 +

−
Hα∨

3 ,1 +
−

Hα∨
3 ,0

Hα∨
1 ,2

+−
Hα∨

1 ,1
+−

Hα∨
1 ,0
+−

Hα∨
2 ,0Hα∨

2 ,1

+ −
Hα∨

2 ,2

+ −

∇1

∇+∇3

∇2

0

∇−

ω2 ω1

•

Figure A.1. Alcoves of SL(3, C).

and (15), we have the following formulas corresponding to the two ways:

stab+,∇1
y =

{
stab+,∇+

y +f
∇1←∇+
y stab+,∇+

ys1
if ys1 < y,

stab+,∇+
y if ys1 > y,

=

{
e−y�1L�1 ⊗ stab+,∇2

y +e−ys1�1f
∇1←∇+
y L�1 ⊗ stab+,∇2

ys1
if ys1 < y,

e−y�1L�1 ⊗ stab+,∇2
y if ys1 > y,

(A.1)

stab+,∇1
y =

{
stab+,∇3

y +f∇1←∇3
y stab+,∇3

ys2
if ys2 < y,

stab+,∇3
y if ys2 > y,

=

{
e−y�2L�2 ⊗ stab+,∇2

y +e−ys2�2f∇1←∇3
y L�2 ⊗ stab+,∇2

ys2
if ys2 < y,

e−y�2L�2 ⊗ stab+,∇2
y if ys2 > y.

(A.2)

Comparing (A.1) and (A.2) with y = s1, and restricting to the fixed point e, we get

(1− eα1) stab+,∇2
s1

|e = f∇1←∇+
s1

stab+,∇2
e |e. (A.3)

By the normalization formula (4),

stab+,∇2
e |e = (1− eα1)(1− eα2)(1− eα3).

By (15) and Lemma 3.1,

stab+,∇2
s1

|e = e−α1 stab+,∇+
s1

|e = −e−α1+2ρ(stab+,∇−
s1

)∨|e = −eα2+α3(stab+,∇−
s1

)∨|e.
Due to Lemma 3.1 and [SZZ20, Proposition 3.6(3)], if wsαi > w, we have the following recursion
for any u ∈ W :

q1/2 stab+,∇−
wsαi

|u =
q − 1

1− euαi
stab+,∇−

w

∣∣∣∣
u

− euαi − q

1− e−uαi
stab+,∇−

w

∣∣∣∣
usαi

. (A.4)
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Let w = u = e and αi = α1. We get

stab+,∇−
s1

|e = (q1/2 − q−1/2)(1− eα2)(1− eα3).

Therefore,

stab+,∇2
s1

|e = −eα2+α3(q−1/2 − q1/2)(1− e−α2)(1− e−α3) = (q1/2 − q−1/2)(1− eα2)(1− eα3).

Hence, solving from (A.3), we get

f∇1←∇+
s1

= q1/2 − q−1/2.

By Lemma 3.7, we also have f
∇−←s1∇−
y = f

∇1←∇+
y .

A.2 Crossing a non-simple wall
We calculate the constants f∇2←∇1

s1s2
, f∇2←∇1

s2s1
and f∇2←∇1

s3
. Let y = s1s2 in (A.1). We get

stab+,∇1
s1s2

= e−s1s2�1L�1 ⊗ stab+,∇2
s1s2

.

By Lemma 3.5 and the identity f∇2←∇1
s1s2

= −f∇1←∇2
s1s2

, we have

stab+,∇1
s1s2

= stab+,∇2
s1s2

−f∇2←∇1
s1s2

stab+,∇2
s2

.

Comparing the two identities and restricting to the fixed point s2, we get

e−s1s2�1+s2�1 stab+,∇2
s1s2

|s2 = eα1 stab+,∇2
s1s2

|s2 = stab+,∇2
s1s2

|s2 − f∇2←∇1
s1s2

stab+,∇2
s2

|s2 . (A.5)

So we just need to compute stab+,∇2
s2

|s2 and stab+,∇2
s1s2

|s2 . By (A.4) with w = s1, i = 2, u = s2, we
get

stab+,∇−
s1s2

|s2 = q−1/2 q − e−α2

1− eα2
stab+,∇−

s1

∣∣∣∣
e

= (1− q−1)(q − e−α2)(1− eα3).

By Lemma 3.1,

stab+,∇+
s1s2

|s2 = eα1(1− q)(1− q−1e−α2)(eα3 − 1).

By the translation formula (15),

stab+,∇2
s1s2

|s2 = (1− q)(1− q−1e−α2)(eα3 − 1).

By the normalization formula (4),

stab+,∇2
s2

|s2 = q−1/2(1− eα1)(1− eα3)(q − e−α2).

Therefore, by using (A.5)

f∇2←∇1
s1s2

= q1/2 − q−1/2.

By symmetry of α1 and α2, we have

f∇2←∇1
s2s1

= q1/2 − q−1/2.

Let us compute f∇2←∇1
s1s2s1

. By Lemma 3.5, we have

stab+,∇1
s1s2s1

= stab+,∇2
s1s2s1

−f∇2←∇1
s1s2s1

stab+,∇2
s1

.
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Hence, we only need to know stab+,∇1
s1s2s1

|e and stab+,∇2
s1s2s1

|e. We compute stab+,∇−
s1s2s1

|e first. By
(A.4) with w = s1s2, αi = α2, u = e, we get

q1/2 stab+,∇−
s1s2s1

|e =
q − 1

1− eα1
stab+,∇−

s1s2

∣∣∣∣
e

− eα1 − q

1− e−α1
stab+,∇−

s1s2s1

∣∣∣∣
s1

=
q − 1

1− eα1
q−1(q − 1)2(1− eα3)− eα1 − q

1− e−α1
(1− q−1)(1− eα2)(q − e−α1)

= (1− q−1)(q2 + 1 + qeα3 − qeα2 − q − 1eα1).

By Lemma 3.1, we can compute stab+,∇+
s1s2s1

|e, which, together with the formula ∇2 = ∇+ − ω1,
can be used to get

stab+,∇2
s1s2s1

|e = eα3(q1/2 − q−1/2)(q−1 + q + e−α3 − e−α2 − 1− e−α1).

Finally, from ∇1 = ∇− + ω2, we can get

stab+,∇1
s1s2s1

|e = eα3(q1/2 − q−1/2)(q + q−1 + eα3 − eα2 − 1− eα1).

Therefore,

f∇2←∇1
s2s1s2

=
stab+,∇2

s1s2s1
|e − stab+,∇1

s1s2s1
|e

stab+,∇1
e |e

= (q1/2 − q−1/2)
eα3(e−α3 − e−α2 − e−α1 − eα3 + eα2 + eα1)

(1− eα1)(1− eα2)(1− eα3)

= (q1/2 − q−1/2).
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AMSS17 P. Aluffi, L. Mihalcea, J. Schürmann and C. Su, Shadows of characteristic cycles, Verma

modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells, Preprint
(2017), arXiv:1709.08697.
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resolutions, Ann. Sci. Éc. Norm. Supér. (4) 45 (2013), 535–599.
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