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Abstract. It is shown that the magnetohydrodynamic (MHD) equilibrium
states of an axisymmetric toroidal plasma with finite resistivity and flows
parallel to the magnetic field are governed by a second-order partial differential
equation for the poloidal magnetic flux function ψ coupled with a Bernoulli-
type equation for the plasma density (which are identical in form to the
corresponding ideal MHD equilibrium equations) along with the relation
∆*ψ¯V

c
σ (here ∆* is the Grad–Schlu$ ter–Shafranov operator, σ is the

conductivity and V
c

is the constant toroidal-loop voltage divided by 2π). In
particular, for incompressible flows, the above-mentioned partial differential
equation becomes elliptic and decouples from the Bernoulli equation [H. Tasso
and G. N. Throumoulopoulos, Phys. Plasma 5, 2378 (1998)]. For a conductivity
of the form σ¯σ(R,ψ) (where R is the distance from the axis of symmetry),
several classes of analytic equilibria with incompressible flows can be
constructed having qualitatively plausible σ profiles, i.e. profiles with σ taking
a maximum value close to the magnetic axis and a minimum value on the
plasma surface. For σ¯σ(ψ), consideration of the relation ∆*ψ¯V

c
σ(ψ) in the

vicinity of the magnetic axis leads then to a proof of the non-existence of either
compressible or incompressible equilibria. This result can be extended to the
more general case of non-parallel flows lying within the magnetic surfaces.

1. Introduction

In addition to the case of the long-lived astrophysical plasmas, understanding
the equilibrium properties of resistive fusion plasmas is important, particularly
in view of the next generation of devices, which will possibly demand pulse
lengths of the order of 10$ s (or more for an International Test Reactor (ITR)-
sized machine) ; see Moreau and Voitsekhovitch (1999) and references therein.
Theoretically, however, it was proved by Tasso (1979) that resistive equilibria
with σ¯σ(ψ) are not compatible with the Grad–Schlu$ ter–Shafranov equation.
(Here σ is the conductivity and ψ is the poloidal magnetic flux function). The
non-existence of static axisymmetric resistive equilibria with a uniform
conductivity was also suggested recently (Montgomery and Shan 1994; Bates
and Lewis 1996; Montgomery et al. 1997). Also, in the collisional regime, Pfirsch
and Schlu$ ter (1962) showed that the toroidal curvature gives rise to an enhanced
diffusion, which is related to the conductivity parallel to the magnetic field. In
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the above-mentioned studies, the inertial-force flow term ρ(v[¡)v is neglected
in the equation of momentum conservation. For ion flow velocities of the order
of 100 km s−", which have been observed in neutral-beam-heating experiments
(Suckewer et al. 1979; Brau et al. 1983; Tammen et al. 1994) after the transition
from the low-confinement regime to the high-confinement regime (the L–H
transition), the term ρ(v[¡)v cannot be considered negligible. Therefore it is
worthwhile investigating the nonlinear resistive equilibrium, in particular to
address the following issues: (a) the impact of the nonlinear flow in the
Pfirsch–Schlu$ ter diffusion, and (b) the existence of resistive equilibria, in
particular equilibria with σ¯σ(ψ). Since the magnetohydrodynamic (MHD)
equilibrium with arbitrary flows and finite conductivity is a very difficult
problem, in a recent study (Throumoulopoulos 1998) we considered an
axisymmetric toroidal plasma with purely toroidal flow including the term
ρ(v[¡)v in the momentum conservation equation. It was shown that the
nonlinear flow does not affect the static-equilibrium situation, i.e. σ¯σ(ψ)
equilibria are not possible.

A way of constructing more plausible equilibria from the physical point of
view could be by considering flows less restricted in direction. Also taking into
account the fact that the poloidal flow in the edge region of magnetic-
confinement systems plays a role in the transition from the low-confinement
mode to the high-confinement mode, in the present paper we extend our
previous studies to the case of flows having non-vanishing poloidal components
in addition to toroidal ones. Because of the difficulty of the problem, we
consider flows parallel to the magnetic field. Some of the conclusions, however,
can be extended to non-parallel flows lying within the magnetic surfaces. It is
also noted that possible equilibria with parallel flows would be free of
Pfirsch–Schlu$ ter diffusion because the convective term v¬B in Ohm’s law
vanishes. The main conclusion is that for the system under consideration the
existence of equilibria depends crucially on the spatial dependence of the
conductivity. The paper is organized as follows. The equilibrium equations for
an axisymmetric toroidal resistive plasma with parallel flows surrounded by a
conductor are derived in Sec. 2. The existence of solutions is then examined in
Sec. 3 for the cases σ¯σ(R,ψ) (where R is the distance from the axis of
symmetry) and σ¯σ(ψ). Section 4 summarizes our conclusions.

2. Equilibrium equations

The MHD equilibrium states of a plasma with scalar conductivity are governed
by the following set of equations, written in standard notation and convenient
units :

¡[(ρv)¯ 0, (1)

ρ(v[¡)v¯ j¬B®¡P, (2)

¡¬E¯ 0, (3)

¡¬B¯ j, (4)

¡[B¯ 0, (5)

Ev¬b¯
j

σ
. (6)
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It is pointed out that, unlike in the usual procedure followed in equilibrium
studies with flow (Zehrfeld and Green 1972; Morozov and Solove! v 1980;
Hameiri 1983; Semenzato et al. 1984; Kerner and Tokuda 1987; Z0 elazny et al.
1993), in the present work, an equation of state is not included in the above set
of equations from the outset, and therefore the equation-of-state-independent
equations (15) and (16) below are first derived. This alternative procedure is
convenient because the equilibrium problem is then further reduced for specific
cases associated with several equations of state.

The system under consideration is a toroidal axisymmetric magnetically
confined plasma, which is surrounded by a conductor (see Fig. 1 of
Throumoulopoulos 1998). With the use of cylindrical coordinates (R,φ, z), the
position of the surface of the conductor is specified by some boundary curve in
the (R, z) plane. The equilibrium quantities do not depend on the azimuthal
coordinate φ. Consequently, the divergence-free magnetic field B and current
density j can be expressed, with the aid of Ampe' re’s law (4), in terms of the
stream functions ψ(R, z) and I(R, z), as

B¯ I¡φ¡φ¬¡ψ (7)
and

j¯∆*ψ¡φ®¡φ¬¡I. (8)

Here, ∆* is the elliptic operator defined by

∆*¯R#¡[0¡
R#
1 ,

and constant-ψ surfaces are magnetic surfaces. Also, to ensure tractability of
the problem, it is assumed that the plasma elements flow solely along B :

ρv¯KB, (9)

where K is a function of R and z. This does not exclude flows with non-vanishing
poloidal components, which play a role in the L–H transition. Applying the
divergence operator to (9) and taking (1) into account, one obtains ¡K[B¯ 0.
Therefore the function K is a surface quantity:

K¯K(ψ). (10)

Another surface quantity is identified from the toroidal component of the
momentum conservation equation (2) :

01®
K#

ρ 1 I¯X(ψ). (11)

It follows from (11) that, unlike the case for static equilibria, I is not (in general)
a surface quantity. Furthermore, expressing the time-independent electric field
as

E¯®¡ΦV
c
¡φ, (12)

where V
c
is the constant toroidal-loop voltage divided by 2π, the poloidal and

toroidal components of Ohm’s law (6) respectively yield

¡Φ¯
¡φ¬¡I

σ
(13)
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and
∆*ψ¯V

c
σ¯Eφ Rσ. (14)

Here Eφ is the toroidal component of E. Equation (14) has an impact on the
boundary conditions, i.e. the component of E tangential to the plasma–
conductor interface does not vanish. Therefore the container cannot be
considered perfectly conducting. Accordingly, Ohm’s law with finite con-
ductivity applied in the vicinity of the plasma–conductor interface does not
permit the existence of a surface layer of current (Jackson 1975). It is now
assumed that the position of the conductor is such that its surface coincides
with the outermost of the closed magnetic surfaces. Thus the condition B[n¯
0, where n is the outward unit vector normal to the plasma surface, holds in the
plasma–conductor interface, and therefore the pressure P must vanish on the
boundary. It should be noted that this is possible only in equilibrium, because in
the framework of resistive MHD time-dependent equations, the magnetic flux
is not conserved. With the aid of (7)–(11), the components of (2) along B and
perpendicular to a magnetic surface are put in the respective forms

B[9¡0K#B#

2ρ#
1¡P

ρ :¯ 0 (15)

and

(¡[901®
K#

ρ 1
¡ψ

R#
:K

ρ

¡K[¡ψ

R#
* r¡ψr#

(ρ¡0K#B#

2ρ#
1¡I#

2R#

®
ρ

2R#

¡0IKρ 1
#

¡P*[¡ψ¯ 0. (16)

Equation (16) has a singularity when

K#

ρ
¯ 1. (17)

On the basis of (9) for ρv and the definitions v#
Ap

3 r¡ψr#}ρ for the square of the
Alfve! n velocity associated with the poloidal magnetic field and

M#3
v#
p

v#
Ap

¯
K#

ρ
, (18)

for the square of the Mach number, (17) can be written as M#¯ 1.
Summarizing, the resistive MHD equilibrium of an axisymmetric toroidal

plasma with parallel flow is governed by the set of equations (14)–(16). Owing
to the direction of the flow parallel to B, (15) and (16) do not contain the
conductivity, and are identical in form to the corresponding equations governing
ideal equilibria. Therefore, on the one hand, several properties of the ideal
equilibria, for example the Shafranov shift of the magnetic surfaces and the
detachment of the isobaric surfaces from the magnetic surfaces (see the
discussion following (26) in Sec. 2.3), remain valid. On the other hand, as will be
shown in Sec. 3, the conductivity σ in (14) plays an important role with regard
to the existence of equilibria.

To reduce (15) and (16) further, the starting set of equations (1)–(6) must be
supplemented by an equation of state, such as P¯P(ρ,T ), along with an
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equation determining the transport of internal energy. Such a rigorous
treatment, however, makes the equilibrium problem very cumbersome.
Alternatively, one can assume additional properties for the magnetic surfaces
associated with isentropic processes, or with isothermal processes, or with
incompressible flows. These three cases are examined separately in the
remainder of this section.

2.1. Isentropic magnetic surfaces

We consider a plasma with large but finite conductivity such that for times
short compared with the diffusion time scale, the dissipative term E j#}σ can
be neglected. This permits one to assume conservation of entropy, v[¡S¯ 0,
which, on account of (9), leads to S¯S(ψ) (where S is the specific entropy). It
should be noted that the case S¯S(ψ) was considered in investigations of ideal
equilibria with arbitrary flows (Morozov and Solove! v 1980; Hameiri 1983) and
purely toroidal flows (Maschke and Perrin 1980; Throumoulopoulos and Pantis
1989), as well as of resistive equilibria with purely toroidal flows (Throumo-
ulopoulos 1998). In addition, the plasma is assumed to being a perfect gas whose
internal energy density W is simply proportional to the temperature. Then the
equations for the thermodynamic potentials lead to (Maschke and Perrin 1980)

P¯A(S) ργ (19)
and

W¯
A(S)

γ®1
ργ−"¯

H

γ
. (20)

Here A¯A(S) is an arbitrary function of S, H¯WP}ρ is the specific
enthalpy and γ is the ratio of specific heats. For simplicity and without loss of
generality, we choose the function A to be identical with S. Consequently,
integration of (15) yields

K#B#

2ρ#


γ

γ®1
Sργ−"¯H(ψ). (21)

Equation (16) then reduces to

¡[901®
K#

ρ 1
¡ψ

R#
:(v[B)K«

Bφ

R
X«ρH«®ργS«¯ 0, (22)

where the prime denotes differentiation with respect to ψ. Apart from a factor
1}(γ®1) in the last term on the right-hand side ([1}(γ®1)] ργS« instead of ργS«),
(22) is identical in form with the corresponding ideal MHD equation obtained
by Hameiri (1983) (equation (7) therein). It should be noted that (22) remains
regular for the case of isothermal plasmas (γ¯ 1), while Hameiri’s result would
make the equilibrium equation strangely singular. In particular, for S¯S(ψ)
and T¯ const, (19) leads to ρ¯ ρ(ψ), and consequently the incompressibility
equation ¡[v¯ 0 follows from (1). Incompressible flows, however, are described
by (27) below, which is free of the above-mentioned singularity.

Unlike the case of static equilibria, (22) is not always elliptic ; there are three
critical values of the poloidal-flow Mach number M# at which the type of this
equation changes, i.e. it becomes alternately elliptic and hyperbolic (Zehrfeld
and Green 1972; Hameiri 1983). The toroidal flow is not involved in these
transitions, because this is incompressible by axisymmetry and therefore does
not relate to hyperbolicity (see also the discussion at the beginning of Sec. 2.3).
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2.2. Isothermal magnetic surfaces

Since for fusion plasmas the thermal conduction along B is expected to be fast
compared with the heat transport perpendicular to a magnetic surface,
equilibria with isothermal magnetic surfaces are a reasonable approximation
(Maschke and Perrin 1980; Clemente and Farengo 1984; Throumoulopoulos
and Pantis 1989; Tasso 1996; Throumoulopoulos and Tasso 1997; Tasso and
Throumoulopoulos 1998). In particular, the even simpler case of isothermal
resistive equilibria has also been considered (Grad and Hogan 1970).

For T¯T(ψ), integration of (15) leads to

K#B#

2ρ#

λT ln ρ¯H(ψ), (23)

where λ is the proportionality constant in the ideal gas law P¯λρT.
Consequently, (16) reduces to

¡[901®
K#

ρ 1
¡ψ

R#
:(v[B)K«

Bφ

R
X«ρH«®λρ(1®log ρ)T«¯ 0. (24)

We remark that, apart from the fact that the S terms have been replaced by T
terms, (23) and (24) are identical with (21) and (22) respectively.

2.3. Incompressible flows

The existence of hyperbolic regimes may be dangerous for plasma confinement
because they are associated with shock waves, which can cause equilibrium
degradation. In this respect, incompressible flows are of particular interest,
because, as is well known from gas dynamics, it is compressibility that can give
rise to shock waves; thus, for incompressible flows, the equilibrium equation is
always elliptic. For ¡[v¯ 0, it follows from (1) and (9) that the density is a
surface quantity,

ρ¯ ρ(ψ), (25)

consistent with the fact that equilibrium density gradients parallel to B have
not been observed in fusion experiments.

With the aid of (25), integration of (15) yields an expression for the pressure:

P¯P
s
(ψ)®

v#

2
¯P

s
®

K#B#

2ρ
. (26)

We note here that, unlike in static equilibria, in the presence of flow, magnetic
surfaces in general do not coincide with isobaric surfaces, because (2) implies
that B[¡P in general differs from zero. In this respect, the term P

s
(ψ) is the

static part of the pressure, which does not vanish when v¯ 0. If it is now
assumed that K#}ρ1 1 and (26) is inserted into (16), the latter reduces to the
elliptic differential equation

(1®M#)∆*ψ®
1

2
(M#)«r¡ψr#

1

20
X#

1®M#
1

«

R#P!
s
¯ 0. (27)

Equation (27) is identical in form to the corresponding ideal equilibrium
equation (equation (22) of Tasso and Throumoulopoulos 1998). It should also
be noted that special cases of incompressible ideal equilibria have been
investigated in Avinash et al. (1992) and Andruschenko et al. (1997). Unlike the
corresponding sets of compressible S¯S(ψ) equations (21) and (22), and T¯
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T(ψ) equations (23) and (24), (27) is decoupled from (26). Once the solutions of
(27) are known, (26) only determines the pressure.

3. The existence of solutions in relation to the conductivity profile

We shall show that the compatibility of (14) containing the conductivity σ with
the ‘ ideal ’ equations (15) and (16) depends crucially on the spatial dependence
of σ. In this respect, the cases σ¯σ(R,ψ) and σ¯σ(ψ) are examined below.

3.1. σ¯σ(R,ψ)

An explicit spatial dependence of σ, in addition to that of ψ, is interesting
because it makes the equilibrium problem well posed; i.e., in this case, (14) can
be decoupled from the other equations (15) and (16). A possible explicit spatial
dependence of σ can be justified by the following arguments: (a) even in the
Spitzer conductivity σ¯αT$/#

e
, the quantity α has a (weak) spatial dependence,

and (b) cylindrically symmetric resistive σ¯σ(ψ) equilibria are possible
(Throumoulopoulos 1998), and therefore the non-existence of axisymmetric
static toroidal σ¯σ(ψ) equilibria is related to the toroidicity through the scale
factor r¡φr¯ 1}R ; this could also imply an explicit dependence of σ on R. In
addition, we may remark that the neoclassical conductivity depends on the
aspect ratio !, because the fraction of trapped particles is related to ! (see
Sauter et al. (1999) and references therein). It should be noted, however, that a
knowledge of the σ profile in the various collisionality regimes of magnetic
confinement has not been obtained to date.

For us, the main advantage in allowing σ¯σ(R,ψ) lies in the fact that (14)
can then be considered as a formula determining the conductivity,

σ¯
∆*ψ

V
c

, (28)

provided that ψ is known. Also, the poloidal electric field can then be obtained
from (13).

To determine ψ in the case of compressible flows with isentropic magnetic
surfaces, the set of equations (21) and (22), which are coupled through the
density ρ, should be solved numerically under appropriate boundary conditions.
This can be accomplished using the existing ideal MHD equilibrium codes
(Semenzato et al. 1984; Kerner and Tokuda 1987; Z0 elazny et al. 1993). The
problem of compressible flows with isothermal magnetic surfaces (equations
(23) and (24)) can be solved in a similar way.

For incompressible flows, ψ can be determined from (27) alone, which is
amenable to several classes of analytic solutions. In particular, sheared-
poloidal-flow equilibria associated with ‘radial ’ (poloidal) electric fields, which
play a role in the transition from the low-confinement regime to the high-
confinement regime (the L–H transition) can be constructed by means of the
transformation†

U(ψ)¯&
ψ

!

[1®M#(ψ«)"/#] dψ, M#! 1, (29)

† P. J. Morrison, personal communication: the transformation (29) was discussed in an
invited talk entitled ‘A generalized energy principle ’, which was delivered at the APS
Plasma Physics Conference in Baltimore in 1986. See also Clemente (1993).
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32
27

r
rc

√22/√3
R /Rc

Figure 1. The conductivity profile on the midplane z¯ 0 described by (32).

Under this transformation, (27) reduces (after division by (1®M#)"/# to

∆*U
1

2

d

dU 0
X#

1®M#
1R#

dP
s

dU
¯ 0. (30)

It is noted here that the requirement M#! 1 in the transformation (29) implies
that v#

p
! v#

s
, where v

s
¯ (γP}ρ)"/# is the sound speed. This follows from (18) and

(in Gaussian units)

0 v
s

v
Ap

1#¯
γ

2

8πP

h#r¡ψr#
E 1.

Since, according to experimental evidence from tokamaks (Burrell 1997) the
(maximum) value of the ion poloidal velocity in the edge region during the L–H
transition is of the order of 10 km s−" and the ion temperature is of the order
of 1 keV, the scaling v

p
' v

s
, is satisfied in this region. Therefore the restric-

tion M#! 1 is of non-operational relevance. The simplest solution of (27),
corresponding to M#¯ const, X#¯ const and P

s
£ψ, is given by

ψ¯ψ
c0R

R
c

1#92®0R

R
c

1#®d#0 z

R
c

1#: , (31)

where ψ
c

is the value of ψ on the magnetic axis, which is located at (z¯ 0,
R¯R

c
), and d is a parameter related to the shape of the flux surfaces.

Equation (31) describes the Hill’s vortex configuration (Thompson 1964). The
conductivity then follows from (28):

σ¯σ
c0R

R
c

1%92®0R

R
c

1#®d#0 z

R
c

1#: , (32)

where σ
c
is the value of σ on the magnetic axis. The conductivity profile in the

midplane z¯ 0 is illustrated in Fig. 1. Note the outward displacement of the
maximum-conductivity position R

max
with respect to R

c
(R

max
}R

c
¯ 2}o3) and

the asymmetry of the inner part of the profile as compared with the outer part
due to the explicit R dependence of σ.
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z

Rc

R

x

y
r

h

φ

Figure 2. The system of coordinates (x,y,φ).

3.2. σ¯σ(ψ) and non-parallel flows

For this case, we consider (14) in the vicinity of the magnetic axis by
transforming the coordinates from (R, z,φ) to (x, y,φ) (Fig. 2). The trans-
formation is given by

R¯R
c
x¯R

c
r cos θ, (33a)

z¯ y¯®r sin θ. (33b)

The quantities ψ(x, y) and σ(ψ) are then expanded to second order in x and y :

ψ(x,ψ)¯ψ
c
c

"

x#

2
c

#

y#

2
c

$
xy… (34)

and

σ¯σ
c
σ

"
(ψ®ψ

c
)…¯σ

c
σ

"0c" x#

2
c

#

y#

2
c

$
xy…1… . (35)

Here

c
"
¯ 0¦#ψ

¦x#
1
c

, c
#
¯ 0¦#ψ

¦y#
1
c

, c
$
¯ 0 ¦#ψ

¦x ¦y1
c

,

σ
c
is the conductivity on the magnetic axis, and σ

"
¯ const. On the basis of (34)

and (35), ∆*ψ¯V
c
σ(ψ) becomes a polynomial in x and y that should vanish

identically. This requirement leads to c
"
¯ c

$
¯ 0, and therefore it follows from

(34) that the magnetic surfaces in the vicinity of the magnetic axis are not
closed surfaces.

The non-existence of σ(ψ) equilibria with closed magnetic surfaces can be
extended to the case of non-parallel flows lying within the magnetic surfaces.
Indeed, if the relation v[¡ψ¯ 0 is assumed instead of v sB, the toroidal
component of (6) leads again to (14).
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A proof of the non-existence of η¯ η(ψ) equilibria far from the magnetic axis
has not been obtained to date. It may be noted, however, that for σ¯σ(ψ), (16)
becomes parabolic. This follows by considering in this equation the determinant
$ of the symmetric matrix of coefficients. On account of ∆*ψ¯V

c
σ(ψ), and

ρ¯ ρ(R,ψ,r¡ψr) by (15), the second derivatives of (16) are contained only in
the term

K#

ρ

¦ρ

¦r¡ψr#
¡r¡ψr#[¡ψ,

which comes from the term ¡[[(1®K#}ρ)¡ψ}R#). Subsequent evaluation of $
leads to $¯ 0. Therefore the function ψ is (over)restricted everywhere to
satisfy a parabolic equation and the elliptic equation ∆*ψ¯V

c
σ(ψ).

4. Conclusions

The equilibrium of an axisymmetric plasma with flow parallel to the magnetic
field has been investigated within the framework of resistive MHD theory. For
the system under consideration, the equilibrium equations reduce to a set
comprising a second-order differential equation for the poloidal magnetic flux
function ψ coupled through the density with an algebraic Bernoulli equation,
which are identical in form with the corresponding ideal MHD equations, and
the equation ∆*ψ¯V

c
σ. Here (∆*, V

c
and σ are the Grad–Schlu$ ter–Shafranov

elliptic operator, the constant toroidal loop voltage and the conductivity
respectively. The existence of solutions of the above-mentioned set of equations
is sensitive to the spatial dependence of σ.

For a conductivity of the form σ¯σ(R,ψ), the equation ∆*ψ¯V
c
σ can be

considered uncoupled from the other two equations, thus determining only the
conductivity. For compressible flows and isentopic magnetic surfaces, the
differential equation for ψ, (22), depending on the value of the poloidal flow, can
be either elliptic or hyperbolic. Solutions of the set of this equation and the
coupled Bernoulli equation (21) can be obtained numerically. The problem of
compressible equilibria with isothermal magnetic surfaces, (23) and (24), can be
solved in a similar way. For incompressible equilibria, ψ obeys an elliptic
differential equation (27), uncoupled from the associated Bernoulli equation
(26), which just determines the pressure. Several classes of analytic equilibria
with incompressible flows having qualitatively plausible σ profiles, i.e. profiles
with σ taking a maximum value close to the magnetic axis and a minimum
value on the plasma surface, can be constructed. In particular, sheared-
poloidal-flow equilibria can be derived by means of the transformation (29) for
ψ.

For σ¯σ(ψ), consideration of ∆*ψ¯V
c
σ in the vicinity of the magnetic axis

proves, irrespective of plasma compressibility, the non-existence of closed
magnetic surfaces. This result can be extended to the case of non-parallel flows
lying within the magnetic surfaces. In addition, for parallel flows, ψ is
(over)restricted to satisfy throughout the plasma an elliptic and a parabolic
differential equation. Unfortunately, for non-parallel flows, some of the
integrals found in the form of surface quantities in Sec. 2 are no longer valid,
and the tractability of an extension of the present investigation becomes
questionable.
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According to the results of the present investigation, the existence of resistive
equilibria is sensitive to the spatial dependence of the conductivity. Thus the
task of obtaining this dependence in the various confinement regimes of fusion
plasmas may deserve further experimental and theoretical investigation. A
conductivity with a spatial dependence in addition to that of ψ would, on the
one hand, open up the possibility of the existence of several classes of resistive
equilibria free of Pfirsch–Schlu$ ter diffusion. On the other hand, a strict Spitzer-
like conductivity σ¯σ(ψ) should imply the persistence of a Pfirsch–Schlu$ ter-
like diffusion also in the nonlinear flow regime.

This paper has taken a single transport coefficient into account, namely
resistivity. In fact, viscous effects could also be important – especially for
parallel flows. They will presumably not affect non-existence proofs. Although
flows at sonic level are unlikely to occur in the presence of strong viscous effects,
such investigations are fascinating, but are left for future work in the
expectation that new ideas and methods will put us in a position to treat them
as rigorously and as efficiently as possible.
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