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Abstract

In the literature of stochastic orders, one rarely finds results characterizing non-
comparability of random variables. We prove simple tools implying the non-
comparability with respect to the convex transform order. The criteria are used, among
other applications, to provide a negative answer for a conjecture about comparability in
a much broader scope than its initial statement.
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1. Introduction and preliminaries

Comparisons of ageing properties may be addressed via stochastic orderings between distri-
butions, for which there are several alternative notions (see e.g. Kochar and Wiens [7], Shaked
and Shanthikumar [12], or Marshall and Olkin [11], and references therein).

The specific stochastic order we will consider was introduced by van Zwet [13] based on the
comparison with respect to right-skewness. Shape comparisons have recently been discussed
by Arriaza, Di Crescenzo, Sordo, and Suárez-Llorens [5], introducing functional shape mea-
sures. The convex transform order is defined via relative convexity between quantile functions.
This is a difficult property to verify. However, this ordering may be expressed as a control on
the number of intersections of the graphical representations of the tail functions. This has been
explored by Arab and Oliveira [1, 2] and Arab, Hadjikyriakou, and Oliveira [3, 4] to derive
explicit order relations within the gamma and Weibull families.

Ageing comparisons of parallel systems have been discussed by Kochar and Xu [8, 9]
and Arab et al. [3, 4]. In [8] and [9] it is shown that homogeneous parallel systems with
exponentially distributed components age more rapidly than non-homogeneous ones. Based
on numerical evidence, Kochar and Xu [8] conjectured that the same should hold under
suitable conditions, when comparing parallel systems with non-homogeneous components.
Arab et al. [3] proved this to be false.

We now present the framework and relevant definitions. Let F denote the family of distri-
bution functions such that F(0) = 0. Let X be a non-negative random variable with density
function fX , distribution function FX ∈F , and tail function FX = 1 − FX . Given a sample
X1, . . . , Xn, we denote the sample maximum and minimum by Xn:n and X1:n, respectively.
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Definition 1. Let X and Y be random variables with distribution functions FX, FY ∈F . We
write X ≤c Y if F−1

Y (FX(x)) = F−1
Y (FX(x)) is convex. This also often read as X ageing more

rapidly than Y .

2. Non-comparability of parallel systems

As the convex order is expressed by the convexity of F−1
Y (FX(x)), we first prove a simple

condition implying non-convexity or non-concavity.

Theorem 1. Let h be an increasing function defined on [0,+∞) such that h(0) = 0, and
assume that there exist real numbers b and c such that limx→+∞

(
h(x) − (bx + c)

) = 0. If c> 0
(< 0) then h is not convex (concave). Moreover, if c = 0 and h(x) �= bx, then h is neither convex
nor concave.

Proof. As limx→+∞ (h(x) − (bx + c)) = 0, it follows that limx→+∞ h′(x) = b. Define g(x) =
h(x) − (bx + c). Assume c> 0 and that h is convex. Then it follows that g is decreasing, which
is impossible as g(0) = −c< 0 and limx→+∞ g(x) = 0. Likewise, if we assume that c< 0 and
h is concave, then it follows that h is increasing, which is not compatible with the fact that
g(0) = −c> 0 and limx→+∞ g(x) = 0. Finally, if c = 0, then h cannot be monotonic as g(0) = 0
and limx→+∞ g(x) = 0. Consequently, h′ is not monotonic. �

We prove the non-comparability of parallel systems with Weibull components.

Proposition 1. Let X1, . . . , Xn be independent and identically distributed with distribution
function F(x) = 1 − e−xα , for x ≥ 0, with α > 1. Given distinct integers m, k ≤ n, Xk:k and Xm:m
are not comparable with respect to the convex transform order.

Proof. Let Fk(x) = P(Xk:k ≤ x) and Fm(x) = P(Xm:m ≤ x). Define the nonlinear function

Ck,m(x) = F−1
m (Fk(x)) = (− ln (1 − (1 − e−xα )k/m))1/α .

Then limx→+∞ (Ck,m(x) − x) = 0, hence the conclusion follows. �
The convex transform order is insensitive to scaling, therefore Proposition 1 holds for

Weibull components with general scale parameters. Note that Corollary 7.2 in [4] proved that
when the components have lifetime exponentially distributed and k<m, then Xk:k ≤c Xm:m.
Thus quite different comparability behaviour holds when we deviate from the exponential
world.

Moreover, Proposition 1 still holds if k and m are not integers, hence the non-comparability
is kept when the lifetime distribution of the components is exponentiated Weibull. The argu-
ment is also easily adapted to derive the non-comparability of lifetime of a parallel system with
a series system.

Using Theorem 1 to conclude the non-comparability of X and Y requires us to characterize
the asymptotic behaviour of F−1

Y (FX(x)). These functions are often not available, so we propose
a criterion based on density functions.

Theorem 2. Let F and G be distribution functions of class F with densities f and g,
respectively. Assume there exists c> 0 such that, for all ε > 0, there exists A> 0 such that

x ≥ A ⇒ cg(cx + ε) ≤ f (x) ≤ cg(cx − ε). (1)

Then G−1(F(x)) is neither convex nor concave or else G−1(F(x)) = cx.
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Proof. Assume (1) holds, choose an arbitrary ε > 0, and define H1(x) = F(x) − G(cx + ε)
and H2(x) = F(x) − G(cx − ε). As limx→+∞H1(x) = 0 and H′

1(x) = f (x) − cg(cx + ε) ≥ 0, for
every x ≥ A, it follows that F(x) ≤ G(cx + ε). Analogously, now using H2, it also follows
that G(cx − ε) ≤ F(x). Consequently, when x ≥ A, we have that G(cx − ε) ≤ F(x) ≤ G(cx + ε),
which implies |G−1(F(x)) − cx| ≤ ε, and therefore limx→+∞(G−1(F(x)) − cx) = 0. Now tak-
ing into account Theorem 1, the conclusion follows. �

We now prove the following generalization of Theorem 11 in [3].

Theorem 3. Let α ≥ 1. Consider X1, . . . , Xn independent random variables with Weibull dis-
tributions with shape parameter α and scale parameters 0<λ1 <λ2 ≤ · · · ≤ λn. Analogously,
let Y1, . . . , Yn be independent random variables with Weibull distributions with the same shape
parameter α and scale parameters 0< θ1 < θ2 ≤ · · · ≤ θn. Then, for any integers m and k, Xk:k
and Ym:m are not comparable with respect to the convex transform order.

Proof. The tail functions of the partial maxima Xk:k and Ym:m are

Fk(x) = 1 −
k∏
�=1

(1 − e−λα� xα) and Gm(x) = 1 −
m∏
�=1

(1 − e−θα� xα),

respectively. The corresponding densities are represented by

fk(x) = αxα−1(λα1 e−λα1 xα + Pk(x)) and gm(x) = αxα−1(θα1 e−θα1 xα + Lm(x)),

where Pj(x) = o(e−λα1 xα ) and Lm(x) = o(e−θα1 xα ). According to Theorem 2, the non-
comparability will follow if we prove that, for some c> 0, and x large enough,

cgm(cx + ε) ≤ fk(x) ≤ cgm(cx − ε).

It is easily seen that the right inequality is equivalent to

1

c

(
x

cx − ε

)α−1(
λ1

θ1

)α
≤ e−θα1 (cx−ε)α + Lm(cx − ε)

e−λα1 xα + Pk(x)
.

Choosing c = λ1/θ1, and allowing x −→ +∞, the left term converges to 1. Concerning the
limit of the upper bound, it is enough to look at

lim
x→+∞

e−θα1 (cx+ε)α

e−λα1 xα
=

⎧⎨
⎩

+∞ if α > 1,

eθ1ε > 1 if α= 1.

Handling the inequality cgm(cx + ε) ≤ fk(x) similarly leads to

lim
x→+∞

e−θα1 (cx+ε)α

e−λα1 xα
=

⎧⎨
⎩

0 if α > 1,

e−θ1ε < 1 if α = 1.

Hence the conclusion follows from Theorem 2. �
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3. Rapid variation and non-comparability

Although tail functions are often not available, in some cases it is still possible to com-
pare their behaviour at infinity. This idea is already present in Theorem 2. However, the way
it is expressed implies some applicability limitations. A work around this limitation is pre-
sented below, by incorporating into the analysis information concerning the decrease rate of
tail functions.

Definition 2. A measurable function f : (0,∞) −→ (0,∞) is said to be regularly varying of
index α ∈R, denoted f ∈ RV(α), if, for every λ> 0,

lim
x→+∞

f (λx)

f (x)
= λα .

If α = 0, then f is said to be slowly varying.
A function f is said to be rapidly varying of index +∞, denoted f ∈ RPV(+∞), if

lim
x→+∞

f (λx)

f (x)
=

⎧⎨
⎩

+∞ if λ> 1,

0 if λ< 1.

A function f is said to be rapidly varying of index −∞, denoted f ∈ RPV(−∞), if 1/f ∈
RPV(+∞).

Note that if f is regularly varying and decreasing, then its index of variation is negative.
Next we introduce similar notions for random variables, referring to the behaviour of the
corresponding tail functions.

Definition 3. A random variable X is said to be regularly, slowly, or rapidly varying if its tail
function FX is regularly, slowly, or rapidly varying, respectively.

The theory of regularly or rapidly varying functions is well established. We refer the reader
to Bingham, Goldie, and Teugels [6], for example.

Theorem 4. (Karamata’s theorem.) A positive function f is slowly varying if and only if there
exists B> 0, such that, for every x ≥ B, f can be written in the form

f (x) = η(x) exp

(∫ x

B

ε(t)

t
dt

)
,

where η(x)> 0 is a measurable function such that limx→+∞ η(x) is finite and positive and ε(x)
is a measurable function such that limx→+∞ ε(x) = 0.

Next we present some simple results that will be useful later.

Lemma 1. Let f be a slowly varying and let a(x) be such that

lim
x→+∞

a(x)

x
= 0.

Then, for every λ> 0, we have

lim
x→+∞

f (λx + a(x))

f (x)
= 1.

Proof. Let

T(x) =
∫ λx+a(x)

B

ε(t)

t
dt −

∫ x

B

ε(t)

t
dt.
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Then, using Karamata’s theorem, we have

lim
x→+∞

f (λx + a(x))

f (x)
= lim

x→+∞
η(λx + a(x))

η(x)
eT(x).

To prove the lemma, it is then enough to show that limx→+∞ T(x) = 0. As limx→+∞ ε(x) = 0,
given δ > 0, there exists A> 0 such that |ε(x)|< δ, when x> A. Hence

|T(x)| ≤ δ
∫

I

1

t
dt,

where I = [x, λx + a(x)] if λ> 1 and [λx + a(x), x] if λ≤ 1. In either case we have

T(x) ≤ δ
∣∣∣∣log

x

λx + a(x)

∣∣∣∣,
so limx→+∞ T(x) ≤ δ| log λ|. As δ > 0 is arbitrary, limx→+∞ T(x) = 0. �
Corollary 1. Let f ∈ RV(α), a(x) be such that

lim
x→+∞

a(x)

x
= 0,

and b, c> 0. Then

lim
x→+∞

f (bx + a(x))

f (cx)
=

(
b

c

)α
.

Proof. As f ∈ RV(α), f (x) = xαL(x) for some slowly varying function L(x), so the conclusion
follows immediately from the definition and Lemma 1. �
Theorem 5. Let f ∈ RPV(+∞) be monotone, and let φ and ψ be real functions satisfying

lim inf
x→+∞

φ(x)

ψ(x)
> 1 and lim

x→+∞ψ(x) = +∞.

Then

lim
x→+∞

f (φ(x))

f (ψ(x))
= +∞.

Proof. For every ε > 0 sufficiently small and x large enough, we have φ(x) ≥ (1 + ε)ψ(x).
The conclusion follows from the monotonicity of f . �

To prove non-comparability results with respect to the convex transform order, the class
RPV(−∞) does not seem to be strong enough (see Remark 1 for counterexamples). We need
to introduce a suitable subclass of functions.

Definition 4. A measurable function f : (0,∞) −→ (0,∞) is said to be exponentially rapidly
varying of index +∞, denoted f ∈ ERPV(+∞), if f ∈ RPV(+∞) and verifies(

lim
x→+∞

φ(x)

x
= 1 and lim

x→+∞ φ(x) − x �= 0

)
⇒ lim

x→+∞
f (φ(x))

f (x)
�= 1.

We say the function f is exponentially rapidly varying of index −∞, denoted f ∈ ERPV(−∞),
if 1/f ∈ ERPV(+∞). As before, the random variable X is said to be exponentially rapidly
varying if FX ∈ ERPV(−∞).
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We note that the inclusion ERPV(+∞) ⊂ RPV(+∞) is strict: choosing f (x) = elog2 (x+1),
we have f ∈ RPV(+∞), but f �∈ ERPV(+∞).

Theorem 6. Let F,G ∈ ERPV(−∞) be two tail functions. If there exists c> 0 such that

lim
x→+∞

F(x)

G(cx)
= 1,

then
lim

x→+∞ (G
−1

(F(x)) − cx) = 0.

Proof. Assume that limx→+∞ (G
−1

(F(x)) − cx) �= 0. Then, for x large enough, we may write

G
−1

(F(x)) = cx + a(x), where limx→+∞ a(x) �= 0. We consider the following three cases.

(i) Suppose that

lim
x→+∞

a(x)

x
= 0.

In this case, as G ∈ ERPV(−∞),

lim
x→+∞

cx + a(x)

cx
= 1,

and
lim

x→+∞ (cx + a(x) − cx) = lim
x→+∞ a(x) �= 0,

it follows that

lim
x→+∞

F(x)

G(cx)
= lim

x→+∞
G(cx + a(x))

G(cx)
�= 1.

(ii) Suppose now that for some finite b1

lim
x→+∞

a(x)

x
= b1.

Then

lim
x→+∞

cx + a(x)

cx
= c + b1

c
,

and, taking into account Theorem 5, it follows that

lim
x→+∞

F(x)

G(cx)
= lim

x→+∞
G(cx + a(x))

G(cx)
=

⎧⎨
⎩

+∞ if b1 < 0,

0 if b1 > 0.

(iii) Finally, suppose that

lim
x→+∞

a(x)

x
= +∞.

In this case we have

lim
x→+∞

cx + a(x)

cx
= +∞,

and, again taking into account Theorem 5, it follows that

lim
x→+∞

F(x)

G(cx)
= lim

x→+∞
G(cx + a(x))

G(cx)
= 0. �
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Remark 1. Although G ∈ ERPV(−∞) is only used to prove the first case in Theorem 6, we
cannot relax this to any of the larger classes introduced. Indeed, it follows from Lemma 1 and
Corollary 1 that if G ∈ RV(α), for any real α, and F(x) = G(x + a(x)), where

lim
x→+∞

a(x)

x
= 0 and lim

x→+∞ a(x) �= 0,

then

lim
x→+∞

F(x)

G(x)
= 1 and lim

x→+∞(G
−1

(F(x)) − bx) �= 0 for every b> 0.

We exhibit a few concrete examples of the above, and also show that if we assume only that
G ∈ RPV(−∞), the conclusion of Theorem 6 may fail.

(i) Take

G(x) = 1

ln (x + 1) + 1
and Fd(x) = G(dx + √

x).

Then Fd and G are slowly varying,

lim
x→+∞

F(x)

G(x)
= 1,

and

lim
x→+∞ (G

−1
(Fd(x)) − bx) = lim

x→+∞ ((d − b)x + √
x) =

{+∞ if d ≥ b,

−∞ if d< b.

(ii) Consider

G(x) = 1

x2 + 1
and F(x) = G(x + √

x),

so F,G ∈ RV(−2). Then

lim
x→+∞

F(x)

G(x)
= 1,

and

lim
x→+∞ (G

−1
(F(x)) − bx) = lim

x→+∞ ((1 − b)x + √
x) =

{+∞ if b ≤ 1,

−∞ if b> 1.

(iii) We show that G ∈ RPV(−∞) does not imply the approximation to linearity. Take
G(x) = e− log2 (x+1) and F(x) = G(x + log (x + 1)). Therefore F,G ∈ RPV(−∞). Simple
calculus shows that

lim
x→+∞

F(x)

G(x)
= 1,

and

lim
x→+∞ (G

−1
(F(x)) − bx) = lim

x→+∞ ((1 − b)x + log (x + 1)) =
{+∞ if b ≤ 1,

−∞ if b> 1.

A version of Theorem 6 with an assumption on density functions is immediate.
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Corollary 2. Let X and Y be two exponentially rapidly varying random variables with
corresponding densities f and g. If

lim
x→+∞

f (x)

cg(cx)
= 1,

then X and Y are not comparable with respect to the convex transform order.

Example 1. The previous corollary provides an easy alternative proof for the result stated in
Theorem 3. Indeed, with the notation introduced for the proof of Theorem 3, it follows easily,
again choosing c = λ1/θ1, that

lim
x→+∞

fk(x)

cgm(cx)
= 1,

and hence G
−1
m (Fk(x)) is neither convex nor concave.

4. Applications

We use the previous results to derive the non-comparability of parallel systems, comple-
menting Theorem 3. Note that using Corollary 2 to obtain an extension of Theorem 3 for
shape parameters smaller than 1 is beyond our scope, as Weibull distributions with this shape
parameter are not in ERPV(−∞).

We first extend the non-comparability to Farlie–Gumbel–Morgenstern (FGM) dependent
exponentially distributed components (for details see [10]).

Proposition 2. Let X1, . . . , Xn be independent exponentially distributed random variables
with hazard rates 0<λ1 ≤ · · · ≤ λn and let Y1, . . . , Yn be exponentially distributed random
variables with hazard rates 0< θ1 ≤ · · · ≤ θn such that their joint distribution is described by
the FGM system

FY1,...,Yn (x1, . . . , xn) =
n∏

i=1

(1 − e−θixi)

(
1 +

∑
1≤i<j≤n

cij e−(θixi+θjxj)
)
,

where
∑

1≤i<j≤k |cij| ≤ 1. Assuming that the number of occurrences of λ1 and θ1 is the same,
then for any given integers m, k ≤ n, the random variables Xk:k and Ym:m are not comparable
with respect to the convex transform order.

Proof. The distribution functions of Xk:k and Ym:m are

Fk(x) =
k∏

i=1

(1 − e−λix) and Gm(x) =
m∏

i=1

(1 − e−θix)

(
1 +

∑
1≤i<j≤m

cij e−(θi+θj)x
)
,

respectively. Therefore the tail functions are represented by Fk(x) = N e−λ1x + o(e−λ1x) and
Gm(x) = N e−θ1x + o(e−θ1x), where N is the number of occurrences of λ1 and θ1. It is simple
to verify that Fk,Gm ∈ ERPV(−∞). Choosing c = λ1/θ1, we have that

lim
x→+∞

Fk(x)

Gm(cx)
= 1,

so the conclusion follows, taking into account Theorems 6 and 1. �
A similar statement holds for Weibull distributed components.
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Proposition 3. Let X1, . . . , Xn be independent random variables with gamma distributions
with integer shape parameters 0<α1 ≤ · · · ≤ αn and scale parameters 0<λ1 <λ2 ≤ · · ·
≤ λn. Analogously, let Y1, . . . , Yn be independent random variables with gamma distributions
with integer shape parameters 0<β1 ≤ · · · ≤ βn and scale parameters 0< θ1 < θ2 ≤ · · · ≤ θn.
Given integers m and k, if αk = βm and λk = θm, then Xk:k and Ym:m are not comparable.

Proof. The distribution functions of the partial maxima Xk:k and Ym:m are

Fk(x) =
k∏
�=1

(1 − e−λ�xPα�,λ� (x)) and Gm(x) =
m∏
�=1

(1 − e−θ�xPβ�,θ� (x)),

respectively, where

Pa,b(x) = 1 +
a−1∑
�=1

b�x�

�! .

It is easily verified that Fk,Gm ∈ ERPV(−∞), and Corollary 2 is satisfied with c = 1. �
Considering partial minima and remembering the right-skewed comparison according to

van Zwet’s [13] interpretation, one would expect comparability. The result below shows that
this is not necessarily true.

Proposition 4. Let Xi with distribution function (1 − eλix)αi , αi, λi > 0, i = 1, . . . , n, be inde-
pendent and let Yi with distribution function (1 − eθix)βi , βi, θi > 0, i = 1, . . . , n, be inde-
pendent. Assume that 0<α1 <α2 < · · ·<αn and 0<β1 <β2 < · · ·<βn. Given integers
m, k ≤ n, if

k∏
�=1

α� =
m∏
�=1

β�,

then the random variables X1:k and Y1:m are not comparable.

Proof. X1:k and Y1:m have tail functions

Fk(x) =
k∏
�=1

(1 − (1 − e−λ�x)α� ) 

k∏
�=1

α� e− ∑k
j=1 λjx

and

Gm(x) =
m∏
�=1

(1 − (1 − e−θ�x)β� ) 

m∏
�=1

β� e− ∑m
j=1 θjx,

the approximations holding for x large enough. So Fk,Gm ∈ ERPV(−∞). Choosing

c =
∑k

j=1 λj∑m
j=1 θj

,

it follows that

lim
x→+∞

Fk(x)

Gm(cx)
=

∏k
�=1 α�∏m
�=1 β�

= 1. �

A similar conclusion holds for the comparison of partial maxima.
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Proposition 5. Take X1, . . . , Xn and Y1, . . . , Yn as in Proposition 4. If α1 = β1, then the
variables Xk:k and Ym:m are not comparable.

Proof. Note that, as x −→ +∞,

Fk(x) = α1e−λ1x + o(e−λ1x) and Gm(x) = β1 e−θ1x + o(e−θ1x),

and choose c = λ1/θ1. �
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