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We have carried out wall-resolved unstructured fully compressible Navier–Stokes
simulations of a complete standing-wave thermoacoustic–piezoelectric engine model
inspired by the experimental work of Smoker et al. (J. Appl. Phys., vol. 111 (10),
2012, 104901). The model is axisymmetric and comprises a 51 cm long resonator
divided into two sections: a small-diameter section enclosing a thermoacoustic stack
and a larger-diameter section capped by a piezoelectric diaphragm tuned to the
thermoacoustically amplified mode (388 Hz). The diaphragm is modelled with
multi-oscillator broadband time-domain impedance boundary conditions (TDIBCs),
providing higher fidelity over single-oscillator approximations. Simulations are first
carried out to the limit cycle without energy extraction. The observed growth rates are
shown to be grid convergent and are verified against a numerical dynamical model
based on Rott’s theory. The latter is based on a staggered grid approach and allows
jump conditions in the derivatives of pressure and velocity in sections of abrupt area
change and the inclusion of linearized minor losses. The stack geometry maximizing
the growth rate is also found. At the limit cycle, thermoacoustic heat leakage and
frequency shifts are observed, consistent with experiments. Upon activation of the
piezoelectric diaphragm, steady acoustic energy extraction and a reduced pressure
amplitude limit cycle are obtained. A heuristic closure of the limit cycle acoustic
energy budget is presented, supported by the linear dynamical model and the nonlinear
simulations. The developed high-fidelity simulation framework provides accurate
predictions of thermal-to-acoustic and acoustic-to-mechanical energy conversion (via
TDIBCs), enabling a new paradigm for the design and optimization of advanced
thermoacoustic engines.

Key words: acoustics, computational methods, nonlinear dynamical systems

1. Introduction

Thermoacoustic engines (TAEs) are devices capable of converting external heat
sources into acoustic power, which in turn can be converted to mechanical or electrical
power. TAEs do not require moving parts and are inherently thermoacoustically

† Email address for correspondence: linjef@stanford.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:linjef@stanford.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2016.609&domain=pdf
https://doi.org/10.1017/jfm.2016.609


20 J. Lin, C. Scalo and L. Hesselink

unstable if supplied with a critical heat input – past which, an initial perturbation is
sufficient to start generating acoustic power. The acoustic nature of the wave energy
propagation in TAEs guarantees close-to-isentropic stages in the overall energy
conversion process, promoting high efficiencies. One of the most advanced TAE
reported in the available literature achieves a thermal-to-acoustic energy conversion
efficiency of 32 %, corresponding to 49 % of Carnot’s theoretical limit (Tijani &
Spoelstra 2011). There are a variety of TAEs in use, with varying sizes, heat sources
and energy-extraction strategies (Swift 1988).

In any TAE, two key energy conversion processes are involved: thermal-to-acoustic
and acoustic-to-electric. Thermal-to-acoustic conversion mechanisms are fluid dynamic
in nature and are well understood and predictable at various levels of fidelity, from
quasi one-dimensional linear acoustics (Rott 1980) to fully compressible three-
dimensional Navier–Stokes models (Scalo, Lele & Hesselink 2015b). High-fidelity
modelling of acoustic energy extraction in the context of Navier–Stokes simulations
has received limited attention. In the following, we demonstrate a computational
modelling strategy to simulate both processes concurrently with high fidelity.

Sondhauss (1850) was the first to experimentally investigate the spontaneous
generation of sound in the process of glass blowing. Rijke (1859) showed that sound
is produced when heating a wire gauze within a vertically oriented tube open at
both ends. Rayleigh (1878) qualitatively reasoned the criterion for the thermoacoustic
production of sound to explain both the Sondhauss tube and the Rijke tube. Building
upon Rayleigh’s seminal intuition, it can be stated that an appropriate phasing between
fluctuations of velocity, pressure and heat release is at the core of thermoacoustic
instability (and hence energy conversion): velocity oscillations, in the presence of
a background mean temperature gradient (typically sustained by an external heat
source), create fluctuations in heat release that, if in phase with pressure oscillations,
lead to thermoacoustic energy production via a work-producing thermodynamic cycle.

Sondhauss and Rijke’s work inspired research efforts aimed at the technological
application of thermoacoustic energy conversion. Hartley (1951) patented a thermo-
acoustic generator using a telephone receiver as an energy extractor. In particular,
the adoption of a piezoelectric element was suggested together with electric timing
to maintain the desired thermoacoustic phasing. Marrison (1958) developed a TAE
aimed at increasing the effectiveness of telephone repeaters. Feldman Jr. (1968) was
the first to introduce the thermoacoustic stack, noting that it simultaneously serves
as a thermal regenerator, an insulator and an acoustic impedance, helping obtain the
optimal phasing between pressure and velocity oscillations for thermoacoustic energy
production.

Modern research has been focused on achieving conversion efficiencies comparable
to theoretical expectations. Ceperley (1979) realized that the thermodynamic cycle
induced by purely travelling waves is composed of clearly separated stages of
compression, heating, expansion and cooling, which are instead partly overlapped in
standing waves, leading in the latter case to a lower energy conversion efficiency.
However, Ceperley was unsuccessful in developing a working travelling-wave TAE;
the first practical realisation can be attributed to Yazaki et al. (1998). TAEs can
therefore largely be classified into standing-wave and travelling-wave configurations,
the latter being typically more efficient but more complicated to build. Hybrid
configurations are also possible, with the two concepts combined in a cascaded
system (Gardner & Swift 2003).

A theoretical breakthrough was made possible by Rott and co-workers, who
developed a comprehensive analytical predictive framework based on linear acoustics
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(Rott 1969, 1973, 1974, 1975, 1976; Rott & Zouzoulas 1976; Zouzoulas & Rott
1976; Rott 1980; Müller & Rott 1983; Rott 1984), improving upon pre-existing
theories by Kramers (1949) and Kirchhoff (1868). This theoretical framework,
augmented with experimentally derived heuristics, is at the core of engineering
software tools such as DELTAEC (Ward, Clark & Swift 2012) and Sage (Gedeon
2014), which provide reliable predictions at the limit cycle for large, traditional TAEs
operating in a low-acoustic-amplitude regime. Natural limitations of this approach
include not accounting for effects of complex geometries, start-up transient behaviour
and hydrodynamic nonlinearities such as turbulence and unsteady boundary layer
separation. High-fidelity simulations, while requiring a much greater computational
cost, can very accurately model all of the aforementioned phenomena, allowing the
computational study, design and optimization of a new generation of TAEs – as well
as informing more advanced, companion low-order models.

Previous high-fidelity efforts by Scalo et al. (2015b) demonstrated a full-scale
three-dimensional simulation of a large TAE, revealing the presence of transitional
turbulence and providing support for direct low-order modelling of acoustic nonline-
arities such as Gedeon streaming. However, the complex porous geometry of the
heat exchangers and regenerator was not resolved but instead modelled with highly
parametrized source terms in the momentum and energy equations. Furthermore, no
explicit energy extraction was considered. The present work improves upon both
shortcomings while abandoning a three-dimensional configuration (i.e. not accounting
for transitional turbulence). To aid the design of a realistic electricity-producing engine,
accurate modelling of the electric power output within the context of high-fidelity
prediction capabilities needs to be developed.

The conversion from acoustic power to electrical power is a severe efficiency
bottleneck and a technological challenge. One option is that of linear alternators,
which often have high impedances and suffer from seal losses in the gaps between
the cylinder and the piston (Yu, Jaworski & Backhaus 2012). Furthermore, linear
alternators are by nature bulky and heavy. An alternative strategy is to couple a
piezoelectric diaphragm to a TAE, providing a hermetic seal and reducing losses.
Piezoelectric energy extraction is particularly attractive for small-scale TAEs; the
maximal power output of a typical piezoelectric generator scales cubically with
the operating frequency, which is inversely proportional to the wavelength of the
thermoacoustically amplified mode. On the other hand, piezoelectric materials
constructed by microelectromechanical systems can be sensitive to high-frequency
vibrations (Anton & Sodano 2007; Priya 2007; Chen, Xu, Yao & Shi 2010). Early
suggestions of using piezoelectric energy extraction date back to Hartley’s (1951)
proposed electric power source, with more recent theoretical and experimental
investigations by Matveev et al. (2007) and Smoker et al. (2012).

In this paper we present a high-fidelity fully compressible Navier–Stokes simulation
of a thermoacoustic heat engine with a piezoelectric energy-extraction device. Previous
modelling efforts of piezoelectric energy extraction have been limited to linear
acoustic solvers with impedance boundary conditions in the frequency domain. In
the present work, the piezoelectric diaphragm is modelled with a multi-oscillator
time-domain impedance boundary condition (TDIBC), building upon Fung & Ju
(2001, 2004) and following the implementation by Scalo, Bodart & Lele (2015a).
This approach guarantees physical admissibility and numerical stability of the solution
by enforcing constraints such as causality and representation of the boundary as a
passive element. The TAE model is inspired by the standing-wave thermoacoustic
piezoelectric (TAP) engine experimentally investigated by Smoker et al. (2012). This
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engine was chosen due to its simple design and the availability of experimentally
measured electromechanical admittances of the piezoelectric diaphragm. This is a
key stepping stone for the development of computational tools to better predict and
optimize energy generation and extraction of high-performance, realistic TAEs.

In the following, the adopted theoretical TAP engine model is first introduced,
together with the governing equations and computational set-up (§ 2). A linear
thermoacoustic model predicting the onset and growth of oscillations is presented,
supporting and complementing the results from the Navier–Stokes simulations (§§ 3
and 4). The effects of acoustic nonlinearities at the limit cycle are then analysed (§ 5).
Finally, the modelling of the piezoelectric diaphragm with multi-oscillator TDIBCs is
described (§ 6) and results from the Navier–Stokes simulations with energy extraction
are discussed (§ 7).

2. Problem description
2.1. Engine model design

The TAP engine model (figure 1) is 510 mm in length and is divided into two
cylindrical, constant-area sections: one of 19.5 mm in diameter, enclosing an
axisymmetric thermoacoustic stack (table 1) and the other of 71 mm in diameter,
capped by a piezoelectric diaphragm tuned to the thermoacoustically amplified mode
(388 Hz) for maximization of acoustic energy extraction. The TAP engine design is
inspired by the design and experimental work of Smoker et al. (2012).

An axisymmetric model cannot account for three-dimensional flow effects. The
scope of this study is instead focused on the accurate modelling of thermoacoustic
acoustic energy production (§ § 3 and 4), nonlinear thermoacoustic transport (§ 5)
and energy extraction (§ 7), for which three-dimensional flow effects are secondary.
Moreover, at the highest acoustic amplitude achieved in the present computations
('6000 Pa), the Stokes Reynolds numbers based on the maximum centreline velocity
amplitude in the device (at approximately x = 245 mm) is Reδν < 100, where δν
is the Stokes boundary layer thickness (3.4), falling well within the fully laminar
regime of oscillatory boundary layers (Jensen, Sumer & Fredsøe 1989). Even at
significantly higher Reynolds numbers and acoustic amplitudes, such as the ones
achieved in the three-dimensional calculations of a large travelling-wave engine
by Scalo et al. (2015b), hydrodynamic nonlinearities – such as Reynolds stresses
associated with transition turbulence – were found to be negligible with respect to
acoustic nonlinearities such as streaming and thermoacoustic transport.

In the experiments by Smoker et al. (2012), a square-weave mesh-screen regenerator
is used with porosity and hydraulic radius of φ= 0.25 and rh= 0.34 mm, respectively.
The regenerator is heated on one side (in the hot cavity) by a resistive filament
sustaining a hot temperature of Th = 790 K, without a cold heat exchanger on
the opposing side (Nouh, personal communication). As a result, the mean axial
temperature gradient weakens throughout the course of the experiment due to
conduction in the metal and thermoacoustic transport in the pore volume.

The thermoacoustic stack in our theoretical axisymmetric TAP engine model is
composed of coaxial cylindrical annuli (table 1) with a linear axial wall temperature
profile (from Th to Tc) imposed via isothermal boundary conditions. This choice
allows for the direct application of Rott’s theory for verification of growth rates
and frequencies observed during the start-up phase of the Navier–Stokes simulations,
along with a clear definition of the geometrical parameter space for the exploration
of the optimal stack design.
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Hot cavity

Thermoacoustic
stack

Piezoelectric
diaphragm

41.52

x

60 37.5 147.5

19.5

71

265

FIGURE 1. Illustration of the axisymmetric TAP engine model (not to scale) inspired
by the experimental work of Smoker et al. (2012). All lengths are given in millimetres.
The dashed lines in the hot cavity indicate the original experimental design. The axial
distribution of mean temperature, T0(x), is qualitatively sketched. Different stack designs
(table 1) and temperature settings (table 3) have been considered in the simulations.

Three stack configurations have been investigated (table 1) and were obtained by
varying two parameters: (i) the number of coaxial solid annuli, ns, surrounding a
central solid rod of hs/2 in radius; and (ii) the ratio of the solid annulus thickness
to the annular gap width, hs/hg. Following the geometrical constraint

Rstk = (ns + 1)hg +
(

1
2 + ns

)
hs, (2.1)

where Rstk= 19.5 mm (radius of the small-diameter section enclosing the thermoacou-
stic stack), unique values for hs and hg were determined for given values of ns and
hs/hg. Volume porosity, φ, and hydraulic radius, rh, are calculated as

φ = Ag

Ag + As
, rh = Vg

Sheat
, (2.2a,b)

where Vg is the total gas-filled volume in the stack, Sheat is the gas–solid contact
surface through which wall-heat transfer occurs, Ag is the cross-sectional area available
to the gas and Ag+As=Astk =πR2

stk where As is the cross-sectional area occupied by
the solid.

Stack I has been designed by selecting a combination of ns and hs/hg resulting
in a porosity and hydraulic radius close to the values of the mesh-wire regenerator
of Smoker et al. (2012). Stack II is characterized by a higher porosity with respect
to Stack I, without significant differences in the hydraulic radius. Stack III has been
designed by imposing hs = hg and ns = 3, resulting in a more porous and regularly
spaced stack, and allowing for the formation of an inviscid acoustic core in the annular
gap (missing in Stack I and II, see table 1), at the expense of thermal contact (see
discussion in § 4.3).

Five different temperature settings have been considered in the Navier–Stokes
simulations (table 3), bracketing values observed in the experiments (Smoker et al.
2012; Nouh, Aldraihem & Baz 2014), ranging from a close-to-critical (case 1) to a
very strong thermoacoustic response (case 5), the latter corresponding to a temperature
gradient that might be challenging to sustain experimentally. A linear temperature
profile, ranging from hot, Th, to cold, Tc, is imposed on the thermoacoustic stack
walls; no-slip isothermal boundary conditions corresponding to ambient conditions
Ta= 300 K are imposed everywhere else, with the exception of the left and right end
(including the piezoelectric diaphragm, if applicable), which are kept adiabatic.
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r

TABLE 1. Geometrical parameters for stack types I, II and III used in the Navier–Stokes
simulations. Values of porosity, φ, hydraulic radius, rh, solid annuli thickness, hs, and gap
width, hg, are calculated based on (2.2) for a given ratio hs/hg and a given number of solid
annuli, ns, surrounding a central rod of radius hs/2. Experimental values of porosity and
hydraulic radius used by Smoker et al. (2012) are φ= 0.25, and rh= 0.34 mm. Profiles of
axial velocity magnitude as predicted by Rott’s theory (3.5) normalized with their inviscid
acoustic counterpart are plotted for reference values of density and viscosity.

2.2. Governing equations
The conservation equations for mass, momentum and total energy, solved in the fully
compressible Navier–Stokes simulations of the TAP engine model are, respectively,

∂

∂t
(ρ)+ ∂

∂xj

(
ρuj
)= 0 (2.3a)

∂

∂t
(ρui)+ ∂

∂xj

(
ρuiuj

)=− ∂

∂xi
p+ ∂

∂xj
τij (2.3b)

∂

∂t
(ρ E)+ ∂

∂xj

[
uj (ρ E+ p)

]= ∂

∂xj

(
uiτij − qj

)
, (2.3c)

where x1, x2 and x3 (equivalently, x, y and z) are axial and cross-sectional coordinates,
ui are the velocity components in each of those directions and p, ρ and E are
respectively pressure, density and total energy per unit mass. The gas is assumed
to be ideal, with equation of state p = ρ Rgas T and a constant ratio of specific
heats, γ . The gas constant is fixed and calculated as Rgas = pref (Tref ρref )

−1, based
on the reference thermodynamic density, pressure and temperature, ρref , pref and Tref ,
respectively. The viscous and conductive heat fluxes are:

τij = 2µ
[

Sij − 1
3
∂uk

∂xk
δij

]
(2.4a)

qj =−µCp

Pr
∂

∂xj
T, (2.4b)
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where Sij is the strain-rate tensor, given by Sij = (1/2)(∂uj/∂xi + ∂ui/∂xj); Pr is the
Prandtl number; and µ is the dynamic viscosity, given by µ=µref (T/Tref )

n, where n
is the viscosity power-law exponent and µref is the reference viscosity. Simulations
have been carried out with the following gas properties: γ = 1.4, ρref = 1.2 kg m−3,
pref = 101 325 Pa, Tref = 300 K, µref = 1.98 × 10−5 kg m−1 s−1, Pr = 0.72, and
n= 0.76, valid for air (De-Yi & Bu-Xuan 1990).

No-slip and isothermal boundary conditions are used on all axial boundaries in
the model. Direct acoustic energy extraction is only allowed from the piezoelectric
diaphragm (figure 1), modelled with impedance boundary conditions

p̂(ω)= Z(ω)û(ω) (2.5)

formulated in the time domain following the numerical implementation by Scalo et al.
(2015a), summarized in appendix B. The broadband (dimensional) impedance Z(ω)
is derived by collapsing the experimentally determined two-port electromechanical
admittance matrix for the piezoelectric element and fitting the resulting impedance
with a multi-oscillator approach (Fung & Ju 2001) as discussed in detail in § 6. In
the present work, the characteristic specific acoustic impedance

Z0 = ρ0 a0 (2.6)

is absorbed within the value of the impedance in (2.5); hence, (2.5) is treated as
dimensional in implementing both single- and multi-oscillator impedance boundary
conditions (§ 6). As described in appendix B, the impedance boundary conditions

(2.5) are implemented via imposition of the complex wall softness coefficient, ̂̃Wω,
defined as ̂̃Wω(ω)≡ 2Z0

Z0 + Z(ω)
, (2.7)

which is related to the complex reflection coefficient, Ŵω, via

Ŵω(ω)≡ Z0 − Z(ω)
Z0 + Z(ω)

= ̂̃Wω(ω)− 1. (2.8)

Hard-wall (purely reflective) conditions correspond to the limit of infinite impedance

magnitude |Z| →∞ and therefore can be imposed by setting ̂̃Wω = 0. The subscript
ω is introduced to avoid ambiguity when (2.7) and (2.8) are extended to the Laplace
space, via the transformation s= iω, yielding

̂̃Wω(ω)= ̂̃Wω (−is)= ̂̃Ws(s). (2.9)

It is important to stress that ̂̃Wω(·) and ̂̃Ws(·) are different functional forms, and the
latter is convenient for the implementation of the TDIBC, as in § 6.

2.3. Computational set-up
The three different stack types (I, II and III) required different computational grids.
For stack type I (figure 2), three different levels of grid resolution were considered
(A, B and C, from coarse to fine). Stack types II and III were only meshed at the
highest grid resolution level (table 2). Simulations with temperature settings 1–4
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x
r

FIGURE 2. Computational grid for resolution/stack-type A/I (see tables 2 and 3).

Grid resolution

Ncv A B C

Stack I 16 000 32 000 66 000
Stack II — — 102 000
Stack III — — 93 000

1rw (mm) 0.06 0.04 0.02

TABLE 2. Number of control volumes, Ncv , for available combinations of stack geometry
types (I, II and III) and grid resolution levels (A, B and C). The wall-normal grid spacing
at the wall, 1rw, has been chosen independently from the stack type and is a function of
the grid resolution level only.

Case 1T (K) Tc (K) Th (K) Grid resolution/stack type

1 340.0 450.0 790 C/I
2 377.5 412.5 790 C/I
3 415.0 375.0 790 C/I
4 452.5 337.5 790 C/I
5 490.0 300.0 790 A/I, B/I, C/I, C/II, C/III

TABLE 3. Combinations of temperature settings (1, 2, 3, 4 and 5), stack geometry types
(I, II and III, illustrated in table 1), and grid resolution levels (A, B and C) adopted in
the Navier–Stokes simulations.

(table 3) have been performed on the finest grid resolution level C and only for stack
type I. The viscous and thermal Stokes thicknesses at 300 K and 388 Hz (frequency
of the thermoacoustically amplified mode) are δν ∼ 0.12 mm and δκ ∼ 0.14 mm,
respectively, and are resolved on all grids considered. The coarsest near-wall grid
resolution considered is 1rw = 0.06 mm (table 2). While the full three-dimensional
Navier–Stokes equations are solved, azimuthal gradients are not captured on the
adopted computational grid (figure 2), which is extruded azimuthally with 1◦
increments for a total of 5 cells, with rotational periodicity imposed on the lateral
faces. The results from the numerical computations are, in practice, axisymmetric.

The governing equations are solved using CharLESX , a control-volume-based, finite-
volume solver for the fully compressible Navier–Stokes equations on unstructured
grids, developed as a joint effort among researchers at Stanford University. CharLESX

employs a three-stage, third-order Runge–Kutta time discretization and a grid-adaptive
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Hot cavity Pulse tube

Stack
Resonator

x

x

r

FIGURE 3. Partitioning of TAP engine model into constituent control volumes – hot cavity,
stack, pulse tube and resonator – for the formulation of the system-wide linear model (§ 3).
Illustration of staggered grid variable arrangement at the interface between adjacent control
volumes where conditions (3.14) are imposed.

reconstruction strategy, blending a high-order polynomial interpolation with low-order
upwind fluxes (Ham et al. 2007). The code is parallelized using the message
passing interface protocol and highly scalable on a large number of processors
(Bermejo-Moreno et al. 2013).

3. System-wide linear thermoacoustic model
A system-wide linear dynamic model has been developed based on Rott’s theory, to

support the analysis of both the start-up phase (see § 4) and the low-acoustic-amplitude
limit cycle (§ 7). While the validity of Rott’s theory is strictly limited to the former
case, it is discussed later (§ 7.2) how an extension to the limit cycle can inform the
closure of acoustic energy budgets.

The engine is divided into four Eulerian control volumes (figure 3): the hot cavity,
the gas-filled volume of the stack and two constant-area sections. The governing
equations have been linearized about the thermodynamic state {ρ0, T0, P0}. The base
pressure, P0, is assumed to be uniform and the mean density and temperature vary
with the axial coordinate according to P0 = ρ0(x)Rgas T0(x). The base speed of sound
is calculated as a0=

√
γRgasT0. All fluctuating quantities are assumed to be harmonic.

The e+iσ t convention is adopted where σ =−iα+ω, with α and ω being the growth
rate and angular frequency, respectively.

3.1. Hot cavity, pulse tube and resonator
In the hot cavity, pulse tube and resonator, a constant axial mean temperature
distribution is assumed (figure 1), yielding the linearized equations

iσ p̂=− 1
1+ (γ − 1) fκ

ρ0a2
0

A
dÛ
dx

(3.1a)

iσ Û =− (1− fν)
A
ρ0

dp̂
dx

(3.1b)

enforcing the (combined) conservation of mass and energy (3.1a) and momentum
(3.1b), respectively. In these sections, the total cross-sectional area corresponds to the
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area available to the gas, A= Ag. The complex thermoviscous functions fν and fκ in
(3.1) are

fν = 2
iηw

J1(iηw)

J0(iηw)
, fκ = 2

iηw

√
Pr

J1(iηw

√
Pr)

J0(iηw

√
Pr)

, (3.2a,b)

where Jn(·) are Bessel functions of the first kind and η is the dimensionless complex
radial coordinate

η≡
√

iω
ν0

r=√2i
r
δν
, (3.3)

where ν0 =µ(T0)/ρ0 is the kinematic viscosity based on mean values of density and
temperature, and ηw in (3.2) is the dimensionless coordinate (3.3) calculated at the
radial location of the isothermal, no-slip wall. The viscous, δν , and thermal, δκ , Stokes
thicknesses are

δν =
√

2ν0

ω
, δκ =

√
2k
ωρ0cp

(3.4a,b)

and are related via the Prandtl number, δν =
√

Pr δκ . The effective laminar boundary
layer thickness is approximately three times the Stokes thickness. For a Prandtl
number below unity, Pr < 1, the thermal boundary layer is thicker than the viscous
layer.

3.2. Thermoacoustic stack
The analytical expression for the radial profile of the complex axial velocity amplitude
within the mth annular gap of the stack (table 1) has been derived for a generic
axial location x by neglecting radial variations of pressure, i.e. p̂(m)(x, r) = p̂(m)(x)
(appendix A), yielding

û(m)(η)= û(m)i

[
1−

(
J0(iη)

J0(iη
(m)
top )
+ H(1)

0 (iη)

H(1)
0 (iη

(m)
bot )

)]
, (3.5)

where

û(m)i =
i
ωρ0

dp̂
dx

(3.6)

is the inviscid acoustic velocity, which varies with the axial direction x; H(1)
n (·) are

Hankel functions of the first kind; and

η
(m)
top/bot =

√
iω
ν0

r(m)top/bot =
√

2i
r(m)top/bot

δν
. (3.7)

Rott’s wave equations can be written for the mth annular flow passage of cross-
sectional area A(m)g (where m ∈ {1, . . . , ns + 1}), in the diagonalized form:

iσ p̂(m) =
ρ0a2

0

A(m)g

1

1+ (γ − 1) f (m)κ

 (
f (m)κ − f (m)ν

)(
1− f (m)ν

)
(1− Pr)

1
T0

dT0

dx
− d

dx

 Û(m) (3.8a)

iσ Û(m) =−
[(

1− f (m)ν

)
A(m)g

ρ0

d
dx

]
p̂(m), (3.8b)
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where the complex thermoviscous functions, f (m)ν and f (m)κ , are, in this case (appendix A)

f (m)ν = −πδ2
ν

A(m)g

{
1

J0(i η
(m)
top )

[
η(m)top J1(iη(m)top )− η(m)bot J1(iη

(m)
bot )
]

+ 1

H(1)
0 (i η

(m)
bot )

[
η(m)top H(1)

1 (iη
(m)
top )− η(m)bot H(1)

1 (iη
(m)
bot )
] }

(3.9a)

f (m)κ = −πδ2
κ

√
Pr

A(m)g

{
1

J0(i η
(m)
top
√

Pr)

[
η(m)top J1(iη(m)top

√
Pr)− η(m)bot J1(iη

(m)
bot

√
Pr)
]

+ 1

H(1)
0 (i η

(m)
bot

√
Pr)

[
η(m)top H(1)

1 (iη
(m)
top

√
Pr)− η(m)bot H(1)

1 (iη
(m)
bot

√
Pr)
] }

. (3.9b)

Assuming that all annular flow passages share the same instantaneous pressure field,
p̂(m)(x) = p̂(x), and mean density and temperature axial distribution, and considering
that the thermoviscous functions f (m)ν and f (m)κ differ at most by 2 % over all values of
m, it is possible to collapse the ns+ 1 equations in (3.8a) via area-weighted averaging
and to take the arithmetic sum of (3.8b) over m, yielding a new set of approximate
wave equations for the thermoacoustic stack,

iσ p̂'
ns+1∑
m=1

A(m)g

Ag

ρ0a2
0

Ag

1

1+ (γ − 1) f (m)κ

 (
f (m)κ − f (m)ν

)(
1− f (m)ν

)
(1− Pr)

1
T0

dT0

dx
− d

dx

 Û (3.10a)

iσ Û =−
ns+1∑
m=1

[(
1− f (m)ν

)
A(m)g

ρ0

d
dx

]
p̂, (3.10b)

where the total cross-sectional area available to the gas, Ag, and flow rate, Û, are

Ag =
ns+1∑
m=1

A(m)g , A(m)g =
∫ r(m)top

r(m)bot

2πr dr (3.11a,b)

Û =
ns+1∑
m=1

Û(m), Û(m) =
∫ r(m)top

r(m)bot

2πrû(r) dr (3.12a,b)

and an area-weighted equipartitioning of the flow rates, Û(m) = A(m)g /Ag Û, has been
assumed in (3.10a).

3.3. Discretization, boundary and inter-segment conditions
Isolated-component eigenvalue problems for the cavity (c), thermoacoustic stack (s),
pulse tube (t) and resonator (r) control volumes (figure 3) are first assembled in the
form iσ I −

Bc 0 0 0
0 Bs 0 0
0 0 Bt 0
0 0 0 Br


 v= 0, (3.13)
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with v = {uc, us, ut, ur} where ul = {p̂l, Ûl} is the collection of the discrete complex
amplitudes of pressure and flow rate for the lth segment where l ∈ {c, s, t, r}, I is the
identity matrix and B is an operator discretizing the equations (3.1) for the hot cavity,
pulse tube and resonator, and (3.10) for the thermoacoustic stack.

Equations for each segment are discretized on a staggered, uniform grid (figure 3).
The mass and energy equation is written at each pressure node while the one for
momentum is written at each flow rate location, both with a second-order central
discretization scheme. Inter-segment conditions are

−p̂−2 + 3p̂−1 = 3p̂+1 − p̂+2 + 21p̂ml (3.14a)

Û−1 = Û1, (3.14b)

where subscripts −2 and −1 indicate the second last and last point of a segment,
subscripts +1 and +2 indicate the first and second point of the following one and
1p̂ml is the pressure drop due to minor losses (7.8), if applied. The extrapolation
(3.14a) does not constrain the axial derivative of pressure to be continuous. The
continuity and jumps in the acoustic power are correctly captured. Zero flow-rate
conditions (hard walls), Û = 0, are imposed on both ends of the device. The
corresponding zero-Neumann condition for pressure dp̂/dx = 0 does not need to
be explicitly enforced numerically, as it is a natural outcome of the solution of the
eigenvalue problem. Inter-segment and boundary conditions are inserted into (3.13),
yielding the complete eigenvalue problem. Several analytical results for variable-area
duct acoustic systems have been reproduced to machine-precision accuracy (Dowling
& Williams 1983) and excellent agreement with the Navier–Stokes calculations of the
TAP engine model is found in both the linear and low-acoustic-amplitude nonlinear
regime (as discussed later).

4. Transient response
In this section, several aspects of the transient response of the TAP engine model

are discussed. A comparison between the onset of instability as predicted by the linear
thermoacoustic model derived in § 3 and the Navier–Stokes simulations is first carried
out (§ 4.1). A grid sensitivity study is then carried out, focusing on the effects of grid
resolution on growth rates extracted from the Navier–Stokes simulations (§ 4.2). The
performance of the three stack configurations in table 1 are compared and, with the aid
of the linear thermoacoustic model, the criteria for the optimal stack design is inferred
(§ 4.3). Finally, the natural (thermoacoustically unexcited) modes of the TAP engine
model are briefly discussed (§ 4.4) in the context of physical admissibility issues of
time-domain impedance boundary conditions (TDIBCs) used to model piezoelectric
energy absorption (discussed later in § 7).

4.1. Engine start-up
Navier–Stokes simulations are carried out first without piezoelectric energy absorption
(i.e. with hard-wall boundary conditions on the right end of the resonator) for all
cases in table 3. Initial conditions are that of zero velocity, ambient pressure and
temperature matching the expected mean axial distribution at equilibrium (figure 1).
No initial velocity or pressure perturbations are prescribed. As also observed in
Scalo et al. (2015b), for a sufficiently large background temperature gradient, the
simple activation of the heat source triggers a disturbance that is thermoacoustically
amplified, initiating a transient exponential growth, followed by a saturation of the
pressure amplitude (figure 4). During the late stages of energy growth the pressure
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FIGURE 4. Time series of pressure amplitudes in the hot cavity for grid resolution/stack-
type C/I, for temperature settings 1 to 5 (table 3), corresponding to increasing growth rates
and limit cycle pressure amplitudes.
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FIGURE 5. Frequency (a) and growth rate (b) versus temperature difference, 1T=Th−Tc,
for grid resolution/stack-type C/I. Predictions from linear model (– – –) and Navier–Stokes
simulations at start-up (E); limit cycle frequencies ( ); square-root fit (4.1) (——) of limit
cycle pressure amplitudes (s) in the hot cavity versus temperature difference; and linear
fit of growth rates from Navier–Stokes calculations (——).

amplitude overshoots its limit cycle value, especially for close-to-critical values of the
temperature gradient. This behaviour was not observed in the travelling-wave engine
investigated by Scalo et al. (2015b).

Growth rates and frequencies predicted by the linear model developed in § 3 are
in good agreement with the nonlinear simulations (figure 5). A linear fit of the
growth rates extracted from the Navier–Stokes simulations against the temperature
difference, 1T , yields a critical temperature difference of 1Tcr= 305 K. Linear theory
predicts 1Tcr = 315.7 K, while fitting the limit cycle pressure amplitude, plc, with
the equilibrium solution from a supercritical Hopf bifurcation model with dissipation
term scaling as p2

lc,

plc ∝
√
1T −1Tcr

Th
(4.1)
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FIGURE 6. Axial distribution of pressure (a) and flow-rate (b) amplitudes of the
thermoacoustically unstable mode for temperature setting 5 and grid resolution/stack-type
C/I, as predicted by linear theory (——), rescaled to match amplitudes extracted from
Navier–Stokes simulations (E) during the start-up phase. The frequency predicted by linear
theory is f = 378.9 Hz, while the frequency extracted from the Navier–Stokes calculations
yields f = 381.8 Hz (see figure 5). Vertical dashed lines indicate locations of abrupt area
change (figure 1).

yields 1Tcr = 332.7 K. While small discrepancies between linear theory and
Navier–Stokes simulations are expected, a difference of 30 K between the 1Tcr

calculated from the growth rates and the limit cycle pressures suggests that hysteresis
effects associated with subcritical bifurcation may be present. This phenomenon was
not observed in the numerical simulations of a travelling-wave engine by Scalo et al.
(2015b).

Very good agreement is also found between pressure and flow rate eigenfunctions,
and pressure and flow-rate amplitudes extracted from the Navier–Stokes calculations
via least squares fitting during the start-up phase (figure 6). Results were confirmed
with peak finding and windowed short-time Fourier transform (STFT). Minor
discrepancies are present at locations of abrupt area change, where assumptions
of quasi-one-dimensionality break down. Amplitude and phase detection were applied
to time series of cross-sectionally averaged pressure and cross-sectionally integrated
axial flow velocity components.

While good agreement is also retained in the nonlinear regime, and used to extract
the axial distribution of acoustic power at the limit cycle with piezoelectric energy
extraction (discussed later, figure 19 in § 7), a frequency shift in the range 5–20 Hz,
from high to low temperature settings, is observed in the transient leading to the limit
cycle (figures 5, 11). This frequency change, as discussed in § 7, is enough to alter
significantly the rate of energy extraction from a piezoelectric diaphragm – indicating
that, especially for complex geometries, its fine tuning should be performed based
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FIGURE 7. Time series of pressure amplitudes within the hot cavity (◦) with
semi-logarithmic fit (– – –) over initial start-up phase (a) and growth rates (b) for
grid resolution levels A, B and C, temperature setting 5 and stack type I (tables 1, 2
and 3). An estimate of the growth rate (@) at zero-grid spacing is derived via Richardson
extrapolation.

on actual measurements or nonlinear calculations, and not by solely relying on linear
theory. The observed frequency shift is also discussed in § 5 in the context of acoustic
streaming.

4.2. Grid sensitivity study
Nonlinear calculations for stack type I and temperature setting 5 have been carried out
at all three available grid resolution levels – A, B and C (table 3) – with a successive

linear grid refinement factor of approximately r=
√

N(C)
cv /N(B)

cv '
√

N(B)
cv /N(A)

cv '
√

2. The
order of grid convergence estimated from the growth rates extracted from the Navier–
Stokes calculations (figure 7b) is

p=
log
[
αA − αB

αB − αC

]
log(r)

' 1.2, (4.2)

where αA, αB and αC are the growth rates associated with the grid resolution levels A,
B and C, respectively (table 3). Using Richardson extrapolation, the predicted growth
rate in the limit of zero-grid spacing is αh=0= 75.64 s−1 with an error band of 5.6 %.

Grid-convergent values of the growth rate show that the amount of acoustic energy
lost to the numerical scheme is related to its truncation error. The estimated order
of grid convergence (4.2) is, however, only slightly above first order, lower than the
nominal order of spatial accuracy of the solver. This result demonstrates the inherent
difficulties associated with the extraction of the growth rates from Navier–Stokes
simulations of full-scale thermoacoustic devices on unstructured grids. Issues include:
the arbitrary choice of the time window used for the semi-logarithmic fit of the
pressure amplitude time series (figure 7a); defining a systematic grid refinement
criteria for complex unstructured grids (figure 2) that compensates for changes in
the effective order of the numerical discretization scheme due to regions of intense
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FIGURE 8. Frequency (a) and growth rate (b) versus stack porosity during start-up
phase. Results from the nonlinear Navier–Stokes simulations (◦) for temperature setting 5
and grid resolution/stack-type C/I, C/II and C/III; predictions from linear theory for
ns = 3, 5, 7, 9 and 11 (——). Vertical arrows denote the difference between the linear
theory prediction and Navier–Stokes simulations.

skewness and stretching; and the nature of the growth rate itself, which is an
accumulation over several cycles of relatively small amounts of energy per cycle
– modelling and/or numerical errors, which would otherwise be deemed negligible,
accumulate in the same way.

Despite the aforementioned technical and conceptual issues related to the exact
definition of the growth rate, results from Navier–Stokes simulations on the highest
grid resolution level (grid C) are in very good agreement with linear theory (figures 5,
6, 8 and 9) and thus will be used for the remainder of the manuscript.

4.3. Optimal stack design
The frequency of the thermoacoustically amplified mode decreases with increasing
porosity (figure 8a), i.e. as a larger fraction of the cross-sectional area in the stack is
made available to gas flow (Ag=φ Astk). For example, only by adopting stack I, which
matches the porosity of the regenerator adopted in Smoker et al.’s (2012) experiments,
and by carrying out the simulations to a limit cycle (figure 11), is it possible for
the TAP engine model to operate close to the experimentally observed frequency of
388 Hz, at which the piezoelectric diaphragm was tuned.

The growth rate is dramatically affected by the stack porosity (figure 8b). For any
given number of solid annuli ns, decreasing the porosity reduces the volume of gas
available to thermoacoustic energy production (Vg → 0), while increasing viscous
blockage ( fν→ 1) leads to negative growth rates in the limit of φ→ 0. For example,
for ns = 11, reducing the porosity from φ = 0.42 to 0.2 reduces the growth rate
from αmax = 174.4 s−1 to zero. On the other hand, increasing the porosity increases
the cross-sectional area available to the gas (Ag → A) at the expense of thermal
contact, ultimately leading to an attenuation of the growth rate. For example, for
ns = 5, a maximum growth rate of αmax = 117.73 s−1 is obtained at φ = 0.308; this
declines to α = 90.24 s−1 for φ = 0.443 and to α = 50 s−1 for φ = 0.6. Negative
growth rates for φ > 0.9 are reached for ns = 3. The degree of thermal contact
of the mth annular flow passage is accounted for by the thermoacoustic gain term
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FIGURE 9. Axial distribution of pressure (a) and flow rate (b) amplitudes for the second
(natural) resonant mode predicted by linear theory (——) rescaled to match pressure and
flow-rate amplitudes extracted from Navier–Stokes simulations in figure 10 (E) at 30
cycles. Vertical dashed lines indicate locations of abrupt area change (figure 1).

( f (m)k − f (m)ν )/(1 − f (m)ν ) in (3.10a) multiplying the mean temperature gradient, which
is the driver of thermoacoustic instability. This term decays to a very small (but
non-zero) value for φ → 1 (Swift 2002, p. 95). The optimal value of porosity,
0 < φopt < 1, is therefore the result of a trade-off between thermal contact and
available pore volume for thermoacoustic energy production.

Increasing the growth rate for fixed values of porosity is possible by increasing
ns. This results in an increased solid-to-gas contact surface Sheat and greater thermal
contact without increasing flow obstruction. A higher stack density, however, requires
a higher porosity to maintain the optimal growth rate, αmax, to compensate for
the increased viscous blockage. Moreover, the achievable αmax increases with
ns, demonstrating the importance of available surface area Sheat: for ns = 3, the
maximum growth rate achievable is αmax = 89.1 s−1, while for ns = 11 it increases to
αmax = 174.4 s−1.

Higher growth rates lead to higher limit cycle acoustic amplitudes (figure 4); for
example, limit cycle pressure amplitudes of approximately 6000 Pa are obtained for
stack type I and temperature setting 5, while stack type II reaches Pamp ' 11 500 Pa
(not shown) for the same imposed temperature gradient. This result reflects the
increased thermal contact in stack II, which has almost twice the available solid-to-gas
contact surface area of stack I. Stack III exhibits the lowest growth rate due to
poor thermal contact, as suggested by the presence of an inviscid core (table 1).
Higher growth rates, however, may not straightforwardly be associated with higher
thermal-to-acoustic efficiencies; in the case of increased Sheat, a higher external
thermal energy input will be required.
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FIGURE 10. Time series of pressure in the hot cavity for grid-resolution/stack-type C/I
at 1T = 0 with initial quarter-wavelength pressure distribution of 6000 Pa in amplitude.
Time is expressed in cycles of mode 2 with frequency f = 633.9 Hz, in agreement with
linear theory (table 4).
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FIGURE 11. Temporal evolution of frequency of thermoacoustically amplified mode for
temperature settings 1–5 and grid resolution/stack-type C/I (table 3). Frequency is obtained
via peak finding and windowed over two acoustic periods. Higher temperature differences
correspond to lower limit cycle frequencies, as shown by the arrow.

Mode 1 Mode 2
α f α f

1T = 0 −103.1 s−1 335.4 Hz −42.8 s−1 633.6 Hz
1T = 490 K 88.0 s−1 377.0 Hz −23.6 s−1 647.5 Hz

TABLE 4. Growth rates and frequencies predicted by linear theory for first and second
modes at 1T = 0 and 1T = 490 K for stack type I.

4.4. Unexcited acoustic modes

Deactivating the temperature gradient in the stack allows for the analysis of the
natural, unexcited acoustic modes of the TAP engine. Initiating the Navier–Stokes
calculations with a large-amplitude quarter-wavelength pressure distribution allows
the observation of the simultaneous decay of the first two resonant modes (figure 10).
The second mode (633.0 Hz) decays slower than the first mode (335.4 Hz), which
is thermoacoustically amplified for 1T > 1Tcr. This is due to the structure of the
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FIGURE 12. Velocity streamlines, with orientation of circulation (shown with white
arrow heads), and temperature contours obtained by averaging over two acoustic
cycles under limit cycle conditions for temperature setting 5, grid resolution/stack-type
C/I. Supplementary material available online (https://doi.org/10.1017/jfm.2016.609) shows
visualizations of instantaneous fluid temperature.

second mode (figure 9), which exhibits relatively low flow-rate amplitudes in the
stack, where the most intense viscous losses are concentrated.

The second mode is weakly thermoacoustically sustained by the temperature
gradient, as shown by the increase in the growth rate with respect to the unexcited
case (table 4). The persistence of a negative growth rate indicates that the associated
thermoacoustic energy production (made inefficient by a pressure amplitude minima
in the stack), is insufficient to overcome viscous dissipation.

In preliminary numerical trials at piezoelectric energy extraction, mode switching
from the first mode to the second mode was mistakenly triggered. This was due to the
erroneous application of a physically inadmissible impedance with negative resistance
(Re(Z) < 0) at frequencies close to 633 Hz. While the second mode is not prone
to being thermoacoustically amplified, the erroneously assigned impedance forced
the device to operate at a frequency different from the fundamental one, effectively
controlling the thermoacoustic response. Admissibility issues arise, in particular, due
to the fact that an impedance with negative resistance represents an active boundary
element, i.e. it injects acoustic power into the system (Rienstra 2006).

5. Thermoacoustic transport and streaming
During the transient evolution from the start-up phase to the limit cycle without

acoustic energy absorption (figure 4), a gradual shift of the operating frequency of the
engine is observed (figure 11). After an adjustment phase during the initial stages of
acoustic energy growth, the frequency monotonically rises. In the case of temperature
setting 5 and stack type I, the frequency approaches the experimentally reported value
of 388 Hz, at which the piezoelectric diaphragm is tuned. In the case of (near-to-
critical) temperature setting 1 and stack type I, a very long adjustment phase of the
frequency is observed.

As the pressure amplitude rises, acoustic nonlinearities become important, as shown
by the cycle-averaged temperature and velocity fields in figure 12. Periodic flow
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separation occurring at each location of abrupt area change creates wave-induced
Reynolds stresses, as also analysed by Scalo et al. (2015b), driving recirculations
in the streaming velocity. At the edges of the thermoacoustic stack in particular,
small-scale flow separations (of the order of hs, see table 1) associated with entrance
effects alter the effective porosity and lead to vena contracta, lowering the effective
stack porosity at limit cycle and increasing the frequency, consistent with the results
in figure 8(a).

In the present configuration, without an opposing ambient heat exchanger,
thermoacoustic transport and streaming, typically a concern for travelling-wave
engines, are expected to directly affect the thermal-to-acoustic efficiency. The
streaming velocity near the centreline follows the direction of the acoustic power
(discussed in § 7) along the positive axial direction, from the stack to the resonator,
where it is collected and partly absorbed in the presence of piezoelectric energy
extraction. This qualitatively explains temperature observations in the experiments,
which show heat leakage downstream of the stack and a slow relaxation of the mean
temperature gradient in the regenerator.

6. Modelling of piezoelectric acoustic energy extraction via TDIBC
In this section, the general steps required for a causal multi-oscillator fit of a given

impedance are outlined. The specific goal of modelling a piezoelectric diaphragm as
a purely acoustically absorbing element in time-domain Navier–Stokes calculations
does not affect the generality of the procedure. A simple one-port model, derived
by collapsing the experimentally measured two-port model for the piezoelectric
diaphragm in the form of p̂(ω)= Zexp(ω)û(ω) is first discussed (§ 6.1). Derivation of
single-oscillator (§ 6.2) and multi-oscillator (§ 6.3) approximations to Zexp(ω) are then
presented. Since values of Zexp above 450 Hz are deemed unphysical, an additional
constraint to the multi-oscillator fitting strategy has been introduced and is discussed
below.

6.1. One-port electromechanical impedance model
The experimental characterization of the electromechanical frequency response of a
PZT-5A (lead zirconate titanate) piezoelectric diaphragm has been carried out by
Smoker et al. (2012), resulting in the system of equations{

x̂c (iω)
q̂ (iω)

}
=
[

T11 (iω) T12 (iω)
T21 (iω) T22 (iω)

] {
p̂ (iω)
V̂ (iω)

}
, (6.1)

where x̂c [m], q̂ [C], p̂ [Pa] and V̂ [V] are, respectively, the complex amplitudes of
the fluctuating centreline displacement (positive along the x direction), electric charge,
pressure and voltage. The electromechanical admittances, Tmn, in (6.1) have been
measured for a broadband range of frequencies and fitted with the rational function

Tmn (iω)= amn,10 (iω)10 + · · · + amn,1 (iω)+ amn,0

bmn,10 (iω)10 + · · · + bmn,1 (iω)+ bmn,0
, (6.2)

where the fitting coefficients amn and bmn are reported in appendix C. Expressing the
centreline displacement, x̂c, and charge, q̂, in terms of velocity, ûc, and current, Î,
respectively, yields{

ûc (iω)
Î (iω)

}
=
[

iω T11 (iω) iω T12 (iω)
iω T21 (iω) iω T22 (iω)

] {
p̂ (iω)
V̂ (iω)

}
. (6.3)
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In the experiments, the piezoelectric diaphragm drives a load of resistance
RL = 3170 �, relating voltage and current via V̂ = RLÎ. This allows (6.3) to be
collapsed into a one-port model

ûc =
[

iωT11 + iωT12
iωT21

1− iωT22 RL
RL

]
p̂, (6.4)

which corresponds to the (purely mechanical) impedance

Zexp(ω)=
[

iωT11 + iωT12
iωT21

1− iωT22RL
RL

]−1

(6.5)

and wall softness ̂̃Wω,exp(ω)= 2 Z0

Z0 + Zexp(ω)
, (6.6)

where Z0=ρ0a0 is the characteristic specific acoustic impedance of the gas. While the
impedance (6.5) is based on experimental measurements of the broadband frequency
response of the diaphragm (measured at the centreline only), it is not necessarily
computationally stable and/or physically admissible (as discussed below) and therefore
cannot be applied directly in time-domain nonlinear Navier–Stokes simulations.

The Navier–Stokes calculations were carried out with a computationally and
physically admissible impedance approximating (6.5) (approximations derived below),
uniformly applied over a circular area scaled in size to preserve the surface-averaged
displacement amplitude of the experimentally measured deflection profile by Smoker
et al. (2012). This technique allows the matching of overall acoustic power output
for the same pressure amplitude levels (figure 13). Impedance boundary conditions
impose a specific relationship between the Fourier transforms of velocity and pressure
at a stationary boundary and should not be confused with the imposition of a moving
boundary. The nature of the resulting power extraction is an acoustic-to-mechanical
energy conversion, since it is associated with a mechanical deflection of a membrane
driven by acoustic excitation. Mechanical-to-electric energy conversion is not directly
accounted for.

6.2. Single-oscillator approximation
A simple approach towards constructing a computationally admissible impedance
approximating the experimental value (6.5) is to use a damped Helmholtz oscillator
model (Tam & Auriault 1996), expressed as the three-parameter impedance

Z(ω)= Z0
[
R+ i (ωX+1 − X−1/ω)

]
, (6.7)

where R, X+1 and X−1 are the resistance, acoustic mass and stiffness, respectively.
Only one undamped resonant frequency,

ω0 = 2πf0 =
√

X−1

X+1
(6.8)

is associated with (6.7), with corresponding wall softness, expressed in the Laplace
domain, ̂̃Ws(s)= 2 s

s2X+1 + s (1+ R)+ X−1
, (6.9)

where s = iω, with ω here being extended to the complex domain (via an abuse of
notation). Computational admissibility requires the time-domain equivalent of (6.9) to
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Aluminium
substrate

Equivalent uniform
impedance path

PZT-5A
piezodiaphragm

PZT-5A
deflection

profile
41

.5
2

63
.5

71

Tuning
weight

FIGURE 13. Illustration of the PZT-5A piezoelectric diaphragm installation by Smoker
et al. (2012) capping the resonator of the TAP engine (see figure 1). All lengths are
given in millimetres. An aluminium substrate backs the piezoelectric diaphragm with
an added weight at the centreline used for tuning. Rational polynomial fit of impulse
response measurements of the electromechanical admittances (6.1) has been performed
solely based on centreline measurements. To model the piezoelectric diaphragm in the
Navier–Stokes simulations, a patch of uniformly distributed impedance is used, with size
scaled to match the acoustic power output of the actual PZT-5A diaphragm for the same
pressure amplitude levels.

be causal, that is, the poles of the wall softness must lie in the left half of the s-plane
(negative real part) or, equivalently, in the upper half of the complex ω-plane (positive

imaginary part). Poles of ̂̃Ws(s) in the s-domain are in biunivocal correspondence with

the poles of ̂̃Wω(ω) in the complex ω-domain.
The wall softness of a generic oscillator with a single resonant frequency can be

expressed via a decomposition in partial fractions in the Laplace domain,̂̃Ws(s)= µ

s− p
+ µ∗

s− p∗
(6.10a)

= 2 (as−C)
s2 + (−2c) s+ (c2 + d2

) , (6.10b)

with one set of complex conjugate residues (µ,µ∗) and poles (p,p∗), where µ=a+ ib
and p= c+ id with a, b, c, d ∈R.

In order for (µ, µ∗) and (p, p∗) to represent a single damped Helmholtz oscillator
in the form of the three-parameter model (6.7), the following conditions, derived by
comparing (6.10b) with (6.9), must be satisfied:

C= 0 (6.11a)

1+ R= −2c
a

(6.11b)

X+1 = 1
a

(6.11c)

X−1 = c2 + d2

a
, (6.11d)
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R X+1 (rad−1 s) X−1 (rad s−1)
0.8909 0.001842 9703.2390

a (rad s−1) b (rad s−1) c (rad s−1) d (rad s−1)
542.9859 124.5988 −513.3750 2237.2233

f0 (Hz) ᾱ A1 (rad s−1) B1 (rad2 s−2)
365.3194 0.2237 1085.9718 0

TABLE 5. Parameters for (6.7) (first row), (6.10b) (second row) and (6.12b) (third row),
all corresponding to the same single-oscillator impedance used to approximate the target
measured impedance (6.5) – both of which are plotted in figure 14.

where C = bd + ac is the phase parameter. Physical admissibility (boundary is
a passive acoustic absorber) and causality require R = −(1 + 2 c/a) > 0 and
c = Re(p) < 0, respectively. It is important to stress that a generic oscillator of
the form (6.10b) cannot be equivalent to the single damped Helmholtz oscillator (6.9)
unless its phase parameter is zero (6.11a). Scalo et al. (2015a) have demonstrated
that it is possible to perform turbulent flow simulations with imposed wall impedance
of type (6.9) without encountering numerical stability issues, confirming that (6.9) is
in fact physically and computationally admissible.

Fung & Ju (2001) have suggested that it is not necessary for a single-oscillator
model such as (6.10) to have a zero phase parameter for its use in time-domain
computations. However, in preliminary numerical trials, it was found that leaving the
phase parameter unconstrained (C 6= 0) leads to unstable numerical simulations and
causing, in our case, spurious mode switching and near-DC (near zero-frequency)
acoustic power extraction.

As seen from (6.10b), the phase parameter is dominant in the low-frequency
limit (s→ 0), thus influencing the phase of Z(ω) over a broad range of near-DC
frequencies. A non-zero phase parameter yields a purely real, non-zero and finite
Z(ω) at zero frequency. Because the experimentally measured wall softness (6.6)
has a zero magnitude (infinite impedance magnitude) in the DC limit, a zero phase
parameter C = 0 is necessary in both the single- and multi-oscillator impedance
approximations to (6.6) (the latter discussed below) to retain physical admissibility.

Following the aforementioned considerations, the impedance (6.5) was first
approximated by the three-parameter impedance model (6.7) (guaranteeing a zero
phase parameter) with R, X+1 and X−1 determined directly via least squares fitting
of Re(Zexp) and Im(Zexp), where Zexp is the impedance corresponding to the collapsed
two-port model (6.5). The fitting window used is f = 388 Hz± 10 Hz with resulting
parameters reported in table 5. As expected, good agreement is found only for
frequencies close to f = 388 Hz (figure 14). The largest discrepancies are in the
values of resistance R (not constant in the experiments), which is responsible for
differences in the location of the minima of |Z|. The latter is an attractor for the
thermoacoustically unstable mode at the limit cycle. Negative values of resistance in
the experimentally measured impedance are observed for frequencies above 450 Hz,
which is unphysical for a passive acoustic element and therefore are a challenge in
the context of deriving a multi-oscillator impedance approximation.

6.3. Multi-oscillator approximation
In order to fit (6.6) over a broader frequency range, a linear superposition of the wall
softness coefficients of no oscillators, each decomposed in partial fractions with one
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FIGURE 14. Magnitude (a), phase (b), real part (c) and imaginary part (d) of the
experimentally measured impedance (6.5) (E), single-oscillator impedance model (6.7),
(6.9) (– – –) and multi-oscillator impedance fit (6.12b) with ᾱ = 0.06 and no = 18
oscillators (——). The single-oscillator model is fitted in the range 388 ± 10 Hz while
the multi-oscillator model is fitted over the entire frequency range and with wall softnesŝ̃W constrained to have a positive real part, resulting in Re(Z)>−Z0 (see text). The shaded
area highlights the frequency interval f > 450 Hz of negative resistance Re{Zexp(ω)} < 0
for the experimentally determined impedance (6.5), deemed unphysical.

conjugate pair of residues (µk, µ
∗
k) and poles (pk, p∗k), is used, yielding

̂̃Ws,exp(s)'
no∑

k=1

̂̃Ws,k(s)=
no∑

k=1

[
µk

s− pk
+ µ∗k

s− p∗k

]
(6.12a)

=
no∑

k=1

Ak (iω)+ Bk(
iω+ ᾱω0,k

)2 +ω2
0,k

(
1− ᾱ2

) , (6.12b)

where (6.12b) is an alternative form to (6.10b) adopted by Fung & Ju (2004),
where ω0,k is the resonant (or basis) frequency (6.8) of the kth oscillator, ᾱ is a
damping parameter (common to all oscillators) and Ak and Bk are fitting coefficients
corresponding to 2a and −2 C in the single-oscillator model in (6.10b). The
experimentally measured wall softness is expected to approach zero for ω → ∞
and ω → 0 (with implications on Bk = 0, discussed below), making its functional
form better suited for fitting than the impedance itself, which, in the case of a
damped Helmholtz resonator, diverges for the same extremes. Moreover, fitting the
wall softness as a linear superposition of oscillators is consistent with the numerical
implementation in the time domain, whereas linearly superimposing impedances is
not. Note that the linear superimposition of wall softnesses (as in (6.12a)), which is
the approach used in the present work, is not equal to the wall softness resulting from
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ᾱ = 0.12 ᾱ = 0.10 ᾱ = 0.08 ᾱ = 0.06
(no = 4) (no = 6) (no = 13) (no = 18)

k f0,k (Hz) Ak f0,k (Hz) Ak f0,k (Hz) Ak f0,k (Hz) Ak

1 238.8950 62.3875 212.9031 42.1921 185.8443 24.7860 153.2085 11.4054
2 283.3134 69.2957 246.4396 18.3780 215.1331 13.2845 171.8258 6.7512
3 342.9779 230.9998 266.9725 28.7000 220.0557 2.8828 187.2862 8.1940
4 391.7290 458.0321 302.2977 90.2265 234.1201 11.1785 203.0648 9.5276
5 351.9786 238.5549 245.2838 11.1954 219.2944 11.5028
6 397.4895 365.0711 256.5088 9.2693 235.5885 13.4362
7 268.4031 21.1408 250.6609 12.7558
8 287.4474 28.9818 260.5702 9.9235
9 301.5441 16.2862 271.8029 15.1965

10 315.1012 52.7308 278.7214 5.1049
11 345.6765 142.7597 287.4075 20.2923
12 370.8757 144.4980 299.8438 0.0241
13 404.7628 271.5407 302.9752 35.5632
14 324.9863 67.7324
15 349.9786 100.3191
16 367.5093 84.2461
17 385.6369 110.2340
18 412.6176 189.4710

Fitting error 99.51 84.96 71.93 57.33
(residual)

TABLE 6. Collection of basis frequencies used in figure 15, f0,k=ω0,k/2π for each number
of oscillators no and damping parameter ᾱ and fitting coefficients Ak. In all cases, values
of the phase parameter are set to zero, Bk = 0.

the linear superposition of the corresponding single-oscillator impedances, that is
no∑

k=1

̂̃Wω,k(ω) 6= 2Z0

Z0 +
no∑

k=1

Zk(ω)

, (6.13)

where

Zk(ω)= Z0

(
2̂̃Wω,k(ω)

− 1

)
. (6.14)

The damping parameter ᾱ in (6.12b) – common to all no oscillators – controls
the bandwidth of the frequency response of each oscillator centred about its basis
frequency; for low (high) values of ᾱ, each oscillator will exhibit a narrowband
(broadband) response. Therefore, for a given fitting frequency window, a low (high)
value of ᾱ will require a larger (smaller) number of oscillators to approximate a given
wall softness. A large number of narrowband oscillators results in a more accurate fit
– requiring, however, a closer spacing of basis frequencies.

The impedance Zexp has been fitted with the following numbers of oscillators: no=1,
no = 4, no = 6, no = 13, no = 18 (see (6.12b) and figure 15). For the single-oscillator
case, values of f0,1(= ω0,1/2π), ᾱ, A1, corresponding to the single-oscillator model
in (6.9), are reported in the third row of table 5. For the multi-oscillator case,
no > 1, values of f0,k(= ω0,k/2π), ᾱ, Ak are reported in table 6. For a given ᾱ, basis
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FIGURE 15. Magnitude of experimentally measured impedance (6.5) (a) and (b) wall
softness magnitude (E) compared with multi-oscillator model for ᾱ = 0.2237 (no = 1)
(— —), ᾱ = 0.12 (no = 4) (– –), ᾱ = 0.10 (no = 6) (- - -), ᾱ = 0.08 (no = 13) ( ),
to 0.06 (no = 18) (——). The shaded area highlights the frequency interval f > 450 Hz
of negative resistance Re{Zexp(ω)}< 0 for the experimentally determined impedance (6.5),
deemed unphysical.

frequencies were selected through a gradient descent-based iterative method such that
the approximate impedance Zfit is the least squares minimizer of log

∣∣Zexp

∣∣− log |Zfit|
and arg Zexp − arg Zfit.

As no increases, the basis frequencies are more closely spaced, corresponding to
a decrease in ᾱ and an increase in the accuracy of the fit in the frequency domain
(figure 15). For each ᾱ and thus for a particular no, the impedance, as a function
of frequency and basis frequencies, is fitted with least squares over frequencies
f ∈ [1, 440] Hz, with 5.5-fold weighting on f ∈ [360, 440] Hz and 22-fold weighting
on f ∈ [378, 398] Hz.

As seen in figure 14, at higher frequencies, the real component of the experimentally
measured impedance becomes negative, which is not consistent with a passive
acoustic element and may be the spurious result of the sampling rate used for
the eigensystem realization algorithm as reported by Smoker et al. (2012) or simply
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FIGURE 16. Time series of pressure in the hot cavity for temperature setting 5 and
grid resolution/stack-type C/I from start-up to limit cycle, without (t< 0.544 s) and with
(t > 0.544 s) piezoelectric energy absorption, as modelled by the multi-oscillator
impedance model (6.12b) with no = 18 (table 6).

the extrapolation of the rational polynomial fit beyond the tuned frequency of the
piezoelectric diaphragm. To avoid unphysical values of the reconstructed impedance
at high frequencies, Ak in (6.12b) is constrained to be positive, since negative Ak can
lead to unbounded negative resistance. By combining the constraints

Ak > 0 (6.15a)
Bk = 0, (6.15b)

where Bk is the phase parameter (see discussion in § 6.2), with (6.6) and (6.12b), the
real part of the resulting impedance Z has a lower bound, i.e. Re(Z) >−Z0. Without
such a constraint, a multi-oscillator impedance model could fit, with arbitrary accuracy,
the given experimentally measured impedance (6.5), but would cause the impedance
to inject energy into the system for f > 450 Hz, hence exciting its second mode
(at '640 Hz, where Re(Zexp) is large and negative). This causes unphysical mode
switching (see § 4.4), with the piezoelectric diaphragm no longer acting as a passive
element but a (spurious) driver of oscillations.

In the following, results from Navier–Stokes calculations with piezoelectric energy
absorption with the multi-oscillator model with no= 18 and ᾱ= 0.06 are shown, since
this model provides the highest level of fidelity over the frequency range of interest.

7. Acoustic energy extraction at limit cycle
7.1. Thermal-to-mechanical efficiency

Acoustic energy extraction, modelled via the TDIBCs designed in § 6, is applied
once a limit cycle without energy absorption is achieved, and only for the TAP
engine model with stack type I. The latter most closely matches the porosity and
hydraulic radius of the regenerator used in the experiments (table 1) and, as a result,
the operating frequency at which the piezoelectric diaphragm is tuned (∼388 Hz).

The imposition of the impedance boundary conditions designed in § 6 results in
a decrease in the pressure amplitude (figure 16), corresponding to an extraction
of acoustic energy (figure 17), following an initial assessment phase with spurious
high-frequency oscillations due to the abrupt initialization of the convolution integral
(B 5). A new limit cycle is rapidly obtained with a slight frequency shift due to the
resonance tuning of the piezoelectric diaphragm.

For temperature setting 5, acoustic energy absorption results in a pressure amplitude
decrease of 10 %. The same acoustic energy absorption with temperature setting 1 (the
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FIGURE 17. Time series of instantaneous acoustic power (7.2) (——) extracted at the
limit cycle (left axis), cycle-averaged power (7.1) shown with the shaded area (right axis)
for temperature setting 5, grid resolution/stack-type C/I. The beginning of the time series
in this figure corresponds to the vertical dashed line in figure 16.

Case 1T (K) flc (Hz) plc (Pa) Pout (mW) η (%) Pout,ND P(exp)
out,ND Err. in PND (%)

1 340 388.55 — 0 — — — —
2 377.5 391.13 672.76 2.09 0.1485 0.001407 0.001609 12.5
3 415 391.32 2672.91 36.99 0.4289 0.001578 0.001609 1.9
4 452.5 389.88 3726.58 69.38 0.7577 0.001523 0.001609 5.3
5 490 387.85 4724.45 111.25 1.3134 0.001519 0.001609 5.6

TABLE 7. Limit cycle frequency, flc, pressure amplitude, plc, acoustic energy extracted
Pout and thermal-to-mechanical efficiency η from Navier–Stokes calculations for grid
resolution/stack-type C/I, with piezoelectric energy extraction modelled by the multi-
oscillator impedance model (6.12b) with no = 18 (table 6).

close-to-critical temperature gradient) suppresses the thermoacoustic instability. The
net power output per cycle (figure 17),

Pout(t)=
∫ +∞
−∞

Pout (t+ τ) sin (πfcτ)

πτ
dτ , (7.1)

is extracted via sharp spectral filtering of the instantaneous acoustic power output,

Pout(t)= p′(t)U′(t), (7.2)

where p′ and U′ are the pressure and surface-averaged volumetric flow-rate amplitudes
at the diaphragm location. The convolution integral in (7.1) is, in practice, limited to
±17 acoustic cycles with a cutoff frequency of fc = 22.5 Hz, lower than half that
of the thermoacoustically amplified mode. The power extracted at the boundary is,
at most, 111.25 mW, corresponding to temperature setting 5. Thermal-to-mechanical
efficiency η is calculated for each case as the ratio of Pout and the cycle-averaged heat
transfer rate through the stack walls, and is at most 1.3 % (table 7).

In the experiments, an acoustic power output of 1.32 mW is reported for conditions
nominally meant to match the temperature setting 5 used in the present TAP engine
model (Smoker et al. 2012). However, results in Nouh et al. (2014) from the
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FIGURE 18. Limit cycle frequency, ω/2π, versus temperature difference (a) with active
piezoelectric energy extraction; cycle-averaged power output (7.1) (E) and the square
of limit cycle pressure amplitudes in the hot cavity p2

lc,cav (s) versus temperature
difference (b). Results for grid resolution/stack-type C/I. Note that limit cycle frequency
values reported here differ from the ones in figure 5(a), as the latter are obtained without
imposition of piezoelectric energy extraction.

same engine show that thermoacoustic heat leakage and natural relaxation of the
thermal gradient in the stack leads to unsteady temperature distributions in the stack,
approaching temperature setting 1. Due to differences in the regenerator/stack and
uncertainties in the actual temperature gradient used in the experiments, numerical
simulations with (steady) isothermal conditions cannot reproduce the experimentally
observed limit cycle acoustic pressure amplitude. A normalized power output can be
defined by compensating for the differences in pressure amplitude,

Pout,ND = Z0 Pout

Apiezop2
lc
, P(exp)

out,ND =
Z0 P(exp)

out

Apiezo(p
(exp)
lc )2

, (7.3a,b)

where Apiezo is the area of the equivalent uniform impedance patch used in the
present simulations and the superscript (exp) indicates experimental values. The good
matching observed between the two non-dimensional powers (table 7) confirms that
the impedance boundary conditions are imposing the correct phasing between pressure
and velocity.

After the application of the TDIBC, the limit cycle operating frequency shifts (not
shown) towards the frequency corresponding to the minimum impedance magnitude
(maximum acoustic energy absorption). This is due to the increased compliance of
the piezoelectric diaphragm at higher frequencies, corresponding to a reduction in the
value of the resistance at higher frequencies (as seen in figure 14 and discussed in
§ 6.3). In the case of the single-oscillator impedance model (6.7) with a constant value
of resistance, the limit cycle frequency is controlled exclusively by the reactance. In
all cases, an excessively large shift in frequency would disrupt the thermoacoustic
phasing in the stack, leading to a suppression of the instability.

The linear thermoacoustic model developed in § 3 has been augmented with minor
losses (§ 7.2) and is used here to reconstruct the axial distribution of acoustic power
by applying a (constant) impedance, Z(ω0) where ω0/2π = 388.0 Hz at x = 0.51 m.
The axial distribution of acoustic power Ẇ can then be calculated as

Ẇ(x)= 1
2 Re{p̂(x)Û∗(x)}, (7.4)
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FIGURE 19. For caption see next page.

where p̂ and Û are the eigenvectors predicted by the linear model and rescaled such
that pressure and volume flow-rate amplitudes match the Navier–Stokes calculations
with TDIBCs, at limit cycle. The resulting eigenfunctions and axial power distribution
are shown in figure 19. Results from the Navier–Stokes calculations were collapsed
into axial time series of volume flow rate and pressure via surface integration, and the
resulting quantities of Û(x) and p̂(x) were fitted to complex phasors. Acoustic power
along the axis is then calculated using (7.4). The linear model predicts an acoustic
power extraction of 111.09 mW, in good agreement with the result of 111.25 mW
from the Navier–Stokes calculations, as reported in table 7.

7.2. Acoustic energy budgets
As expected, a positive slope in the acoustic power is present in the stack, while a
negative slope in the pulse tube and the resonator volume indicates acoustic power
dissipation due to viscous dissipation and thermal relaxation. The acoustic power
distribution is consistent with that predicted by engineering design software such
as DELTAEC in other standing-wave engines in literature (Swift 1992; Ward et al.
2012).

The balance of acoustic energy at the limit cycle can be heuristically expressed as

�
��
∂Ea

∂t
+ d

dx
Ẇ = Sta −Dµ −Dm, (7.5)

where the cycle-averaged acoustic energy per unit length, Ea, is assumed to be steady.
The divergence of the acoustic energy flux is balanced by thermoacoustic source terms,
Sta, and viscous dissipation, Dµ, which are accurately predicted by Rott’s theory, as
made evident by the predicted slope matching that of the data extracted from nonlinear
calculations. Hydrodynamic minor losses due to abrupt area changes, Dm, manifest
themselves as jumps in the value of Ẇ and will therefore be formally incorporated in
the budgets above via Dirac functions (table 8a,b).
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FIGURE 19. (cntd). Pressure (a) and flow-rate (b) amplitudes of the thermoacoustically
amplified mode predicted by linear theory (——) rescaled to match amplitudes
extracted from companion Navier–Stokes simulations (E) for temperature setting 5, grid
resolution/stack-type C/I, with active energy extraction at the limit cycle. Minor losses
have been incorporated; however, the exclusion of minor losses (not shown) does not
significantly alter the amplitudes predicted by linear theory. (——). (c) Axial distribution
of acoustic power (7.4) from eigenfunctions predicted by linear theory (§ 3), without
minor losses (– – –), with linearized minor losses ((7.6) and (7.7)) ( ), and with
minor losses calibrated from the Navier–Stokes simulations (——). Also shown are the
acoustic power values extracted from the simulations, using only centreline (E) and using
full cross-sectionally averaged (u) values of axial velocity and pressure. Inter-segment
locations are numbered above, referenced in table 8(b). Results correspond to temperature
setting 5 and grid resolution/stack-type C/I, with active energy extraction. Vertical dashed
lines indicate locations of abrupt area change (figure 1).

Incorporating minor losses is necessary to reproduce first-order features in the limit
cycle acoustic power distribution for the thermoacoustic piezoelectric engine. In the
case of steady flow, minor losses due to abrupt area changes can be parameterized
via the Borda–Carnot formula,

ζe =
(

1− A0

A1

)2

, (7.6)

in the case of expansions or via the formula presented by Idelchik (2003),

ζc = 0.5
(

1− A0

A1

)0.75

, (7.7)

in the case of sudden contractions, where A0 and A1 are the smaller and larger areas.
In the present study, the two losses are combined, ζ = ζe + ζc, and the pressure drop
condition

1p̂ml =− 4
3π
ρζulcû, (7.8)
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(a) Segment Acoustic power
source/sink
(W m−1)
Sta −Dµ

Acoustic power
contribution

(W)
1Ẇ

(b) Inter-segment
location

i

Acoustic power
change
(W)

Ẇ(xi)− Ẇ(xi−1)

Acoustic power,
cumulative

(W)
Ẇ(xi)

Hot cavity −0.637 −0.0382 0 0 0
Stack 13.18 0.494 1 −0.0382 −0.0382
Tube −0.420 −0.0619 2 −0.126 −0.164
Resonator −0.00355 −0.00094 3 0.494 0.330

4 −0.111 0.219
5 −0.0619 0.157
6 −0.0454 0.112
7 −0.00094 0.111

TABLE 8. (a) Cycle-averaged acoustic power contributions by segment and thermoacoustic
source and dissipation sink terms by segment. (b) Changes in and cumulative acoustic
power, for each inter-segment location in figure 19(c). Acoustic power values are extracted
from the simulations, using cross-sectionally averaged values of axial velocity and pressure.
Results correspond to temperature setting 5 and grid resolution/stack-type C/I, with active
energy extraction.

linearized about the limit cycle axial velocity amplitude distribution ulc, is incorporated
in the inter-segment condition (3.14a) in the linear thermoacoustic model in § 3. While
a similar approach to modelling minor losses in oscillatory flows has been adopted
with great success by Ward et al. (2012), a more accurate parameterization of ζ
should be derived with ad hoc numerical or experimental investigations. Despite
the strong assumptions made in deriving and introducing minor losses in the linear
model, the agreement with the Navier–Stokes data is remarkable (figure 19c). Axial
amplitude profiles of pressure and flow rate are, however, not visibly altered by the
addition of minor losses; the condition (7.8) primarily affects the pressure–velocity
phasing in locations of sudden area change.

It is possible, however, to determine the value of ulc in (7.8) a priori by imposing
a zero growth-rate condition in the eigenvalue solver in § 3. This is indirectly done
in modelling software such as DELTAEC, where the limit cycle pressure and velocity
amplitudes are found iteratively by assuming that acoustic energy budgets are balanced
at steady-state conditions.

8. Conclusions
We have presented compressible unstructured Navier–Stokes simulations of a

complete standing-wave thermoacoustic piezoelectric engine model inspired by the
experimental work of Smoker et al. (2012). Thermal and viscous boundary layers
are resolved everywhere in the model and piezoelectric acoustic energy absorption
is introduced and modelled with a multi-oscillator time-domain impedance boundary
condition. The complete numerical model demonstrates the first known attempt, to
the authors’ knowledge, at modelling piezoelectric energy extraction in a high-fidelity
Navier–Stokes simulation of a thermoacoustic engine. The goal is to advance
computational tools for the simulation of realistic thermoacoustic engines, capturing
with high fidelity both acoustic energy production/dissipation mechanisms and direct
power extraction. These two components are crucial for design and optimization of
thermoacoustic engines.
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The TAP engine model is analysed first in the start-up phase without acoustic
energy absorption. Linear growth rate during the start-up phase compares favourably
with Rott’s linear theory. A new set of linearized equations for the axisymmetric
thermoacoustic stack geometry was derived and demonstrated very good matching of
frequencies and growth rates despite inherent limitations and assumptions, such as
the neglect of edge effects due to complex geometrical features and nonlinear effects
such as flow separation.

The linear stability model was used to explore the parameter space of annular
stack geometries. Very strong dependence on the stack geometrical parameters for
both operating frequency and growth rate was found in the linear stability analysis
and congruently verified in high-fidelity Navier–Stokes calculations. For constant stack
layer density, the frequency of the thermoacoustically amplified mode decreases with
increasing porosity; however, an optimal porosity maximizing transient growth rates
exists between the limits of zero and 100 % porosity. The maximal growth rate also
increases as stack layer density increases, implying high thermal contact is favourable
for high-amplitude thermoacoustic engines.

Analysis of the stack has shown that in thermoacoustic excitation, the first mode is
dominant. Issues of growth-rate sensitivity to the grid resolution are analysed, showing
lower than expected order of convergence of the growth rates. This is attributed to grid
stretching and quality and the inherent accumulation of error in measuring the growth
rate. The growth rate extracted on the finest grid adopted, as used for the presented
results, is within the error band of the Richardson extrapolation to zero-grid spacing.

Simulations were carried out with hard-wall boundary conditions until a limit cycle
is obtained. Entrance effects, particularly into the stack, and thermoacoustic streaming
are observed. These effects increase the operating frequency and reduce the effective
temperature gradient in the engine, explaining experimental temperature observations.
TDIBC-based acoustic energy extraction is then introduced, leading to a second,
reduced limit cycle.

The time-domain impedance formulation by Fung & Ju (2004) has been used
to derive an appropriate causal impedance for both a single- and multi-oscillator
impedance model. This approach does not correspond to the time-domain impedance
boundary condition implementation proposed by Tam & Auriault (1996), which
neglects issues of causality. A single-oscillator impedance model was shown to be
insufficient in capturing the experimental value of the impedance. A multi-oscillator
model has shown higher degrees of fidelity. Constraints on the impedance were
discussed, and the increasing fidelity of fitting with a greater number of basis
frequencies was demonstrated.

The adopted numerical model allows for both the evaluation of the nonlinear
effects of scaling and the effect of a fully electromechanically coupled impedance
boundary condition (IBC), representative of a piezoelectric element with variable
resistance and time-variable power production. The construction of a simulation-ready
IBC from experimental data was completed to the best of the authors’ ability and
its limitations and restrictions are reported. Because the experimentally measured
coefficients may not have been fully broadband and because of heat leakage, a
shift in the engine operating frequency in the simulations was found. The shift in
frequency is understood to be partly due to an attraction to a more numerically
compliant domain of the TDIBC. Linear scaling of power input and power output
show congruency with experimentally reported pressure and velocity profiles and
power extraction results. While the numerical stack design was chosen to correspond
to experimentally reported porosity and hydraulic radius, geometrical differences in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

60
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.609


52 J. Lin, C. Scalo and L. Hesselink

the experimental stack and the numerical stack lead to differing critical temperature
ratios and thus different power output to temperature input ratios. The TDIBC,
as constructed, results in acoustic energy output values which are consistent with
experimentally published results by Smoker et al. (2012).

Solution functionals, including growth rate, limit cycle operation and energy
distribution and extraction, are otherwise consistent with experimental results and
are self-consistent between Navier–Stokes simulations and linear theory predictions,
demonstrating the presented models’ predictive capabilities. Optimization of scaling
and the impedance can be simultaneously applied; the Navier–Stokes numerical
technique as demonstrated is suitable for studying high-frequency, reduced-footprint
engines, a regime traditionally difficult to model with linear thermoacoustics. The
present work improves upon Scalo et al. (2015b) by resolving heat transfer and drag
in the thermoacoustic core, allowing for acoustic energy extraction, demonstrating
consistency with experimental results and extending the modelling framework to
standing-wave engines. The presented standing-wave engine model demonstrates
behaviour indicating hysteresis, which was not observed in travelling-wave engine
models. Expected future work include the use of the model for analysing micro-TAEs
and the high-frequency measurement of piezoelectric diaphragm transmittance
coefficients, as the reference electromechanical response is unphysical at high
frequencies.
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Appendix A. Application of Rott’s theory to axisymmetric thermoacoustic stack
Using the convention of Rott (1969), the linearized equations of mass, momentum

and energy are

iωρ̂ + ρ0
∂ û
∂x
+ û

dρ0

dx
+ ρ0

1
r
∂

∂r

(
rv̂
)= 0 (A 1)

iω û+ 1
ρ0

dp̂
dx
= µ0

ρ0

1
r
∂

∂r

(
r
∂ û
∂r

)
(A 2)

ρ0 Cp

(
iωT̂ + û

dT0

dx

)
− iωp̂= µ0 Cp

Pr
1
r
∂

∂r

(
r
∂

∂r
T̂
)
, (A 3)

where the thermal conductivity is given by k=µCp/Pr and Pr is the Prandtl number.
Radial variations are neglected for pressure, p̂= p̂(x); radial variations are retained for
the axial and radial velocity components, û= û(x, r) and v̂= v̂(x, r), respectively, and
temperature, T̂ = T̂(x, r).
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The following constitutive equations are used:

P0 = ρ0 Rgas T0 (A 4)

T̂ = p̂
1

ρ0 Rgas
− ρ̂ T0

ρ0
, (A 5)

where P0, ρ0, T0 correspond respectively to the base and constant pressure, density
and temperature.

In order to derive a local solution to the momentum equation, the application of the
coordinate transformation

ξ = iη, η=
√

iω
ν

r (A 6a,b)

results in a momentum equation of

ξ 2 ∂
2û∗
∂ξ 2
+ ξ ∂ û∗

∂ξ
+ ξ 2û∗ = 0, (A 7)

where

û∗ = û

− 1
iωρ0

dp̂
dx

− 1, (A 8)

assuming that pressure does not vary radially.
Note that since i

√
2i = i − 1, the dimensionless radial coordinate η can also be

written in the form η≡√(iω/ν)r=√2i
√
(ω/2ν) r= [(i− 1)/i](r/δν), which is useful

in the following algebraic manipulations.
The general solution to (A 7) is

û∗(ξ)= aJ0(ξ)+ bY0(ξ), (A 9)

where a and b are constants, and J0(ξ) and Y0(ξ) are Bessel functions of the first
and second kind, respectively evaluating to purely real and imaginary values. Given
the boundary conditions, using the Bessel function of the second kind results in a
computationally singular solution. Without loss of generality, equation (A 9) can be
re-written as

û∗(ξ)= AJ0(ξ)+ BH(1)
0 (ξ), (A 10)

where H(1)
0 (ξ) = J0(ξ) + iY0(ξ) is a Hankel function of the first kind and A and B

are constants. In an annular duct, for which no-slip and isothermal conditions at both
upper and lower walls are imposed, the conditions due to transformation (A 8) are
û∗(ξtop) = û∗(ξbot) = −1. Because J0(ξ) and H(1)

0 (ξ) each diverge quickly for larger
and smaller ξ , respectively, H0(ξtop) and J0(ξbot) may be neglected in comparison with
H0(ξbot) and J0(ξtop), respectively. That is, the Bessel and Hankel functions diverge
very rapidly for given ξ , such that

H0(ξtop)�H0(ξbot) (A 11a)
J0(ξbot)� J0(ξtop). (A 11b)

The solution of (A 10) is then

û∗(ξ)=− J0(ξ)

J0(ξtop)
− H(1)

0 (ξ)

H(1)
0 (ξbot)

, (A 12)
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which yields

û(ξ)= i
ωρ0

dp̂
dx

[
1− J0(ξ)

J0(ξtop)
− H(1)

0 (ξ)

H(1)
0 (ξbot)

]
. (A 13)

To verify that the expression above does indeed satisfy the boundary conditions, refer
to the plotted velocity profiles in table 1, which suggest that the approximations made
in (A 11) are satisfied. The analytical integration in the annular cross-section, where
Ag is the annular area accessible to the gas, yields the relationship for the flow rate

iω Û =−Ag

ρ0

dp̂
dx

[
1− fν

]
, (A 14)

where

fν = iπδ2
ν

Ag

{
1

J0(ξtop)

(
ξtopJ1(ξtop)− ξbot J1(ξbot)

)
+ 1

H(1)
0 (ξbot)

(
ξtopH(1)

1 (ξtop)− ξbot H(1)
1 (ξbot)

)}
. (A 15)

Changing the acoustic variable T̂ in (A 3) to p̂ and ρ̂ using the constitutive
equations (A 5), the energy equation can be written in the following manner (Rott
1969):

iω
[(
ρ̂ − ρ0

)+ γ − 1
a2

0
p̂
]
+ û

dρ0

dx
= ν

Pr
1
r
∂

∂r

(
r
∂

∂r

(
ρ̂ − ρ0

))
. (A 16)

With the dimensionless variable ξ , the above equation can be recast as

∂

∂ξ 2

(
ρ̂ − ρ0

)+ 1
ξ

∂

∂ξ

(
ρ̂ − ρ0

)+ Pr
(
ρ̂ − ρ0

)=−Pr
iω

û
dρ0

dx
− Pr

(
γ − 1

a2
0

)
p̂. (A 17)

Assuming a general solution of the form

ρ̂ − ρ0 = AJ0

(
ξ
√

Pr
)
+ BH(1)

0

(
ξ
√

Pr
)
+Cû (ξ)+D (A 18)

and utilizing the boundary conditions at ξbot and ξtop, the perturbation in density is
given by a similar expression (Rott 1969):

ρ̂ − ρ0 =
(
−γ − 1

a2
0

p̂+ θ

(1− Pr) ω2

dp̂
dx

)[
1− J0(ξ

√
Pr)

J0(ξtop

√
Pr)
− H(1)

0 (ξ
√

Pr)

H(1)
0 (ξbot

√
Pr)

]

− Pr θ
(1− Pr) ω2

dp̂
dx

[
1− J0(ξ)

J0(ξtop)
− H(1)

0 (ξ)

H(1)
0 (ξbot)

]
, (A 19)

where θ = (1/T0) dT0/dx. Starting from (A 16), substituting for the base state density
gradient using the continuity equation and integrating over the annular cross-section
results in

iωp̂+ a2
0ρ0

Ag

dÛ
dx
+ 2πνa2

0

PrAg

[
ξtop

∂ρ̂

∂ξ

∣∣∣∣
ξtop

− ξbot
∂ρ̂

∂ξ

∣∣∣∣
ξbot

]
= 0. (A 20)
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Using the solution for density perturbation, equation (A 19), to link pressure and
velocity disturbances, the radial gradient of density perturbations is then

∂ρ̂

∂ξ
= −√Pr

γ − 1
a2

0

 J1

(
ξ
√

Pr
)

J0

(
ξtop

√
Pr
) + H(1)

1 (ξ
√

Pr)

H(1)
1 (ξbot

√
Pr)


+ θ

(1− Pr)ω2

dp̂
dx


√PrJ1

(
ξ
√

Pr
)

J0

(
ξtop

√
Pr
) + √PrH(1)

1 (ξ
√

Pr)

H(1)
1 (ξbot

√
Pr)


− Pr

 J1 (ξ)

J0
(
ξtop
) + H(1)

1 (ξ)

H(1)
1 (ξbot)

 . (A 21)

Evaluating the radial gradient of density perturbations at the radial boundaries and
substituting in, the final linearized equation is

iωp̂= 1
1+ (γ − 1) fκ

(
ρ0a2

0

Ag

) [
θ ( fκ − fν)

(1− fν)(1− Pr)
− d

dx

]
Û, (A 22)

where

fκ = iπδ2
κ

√
Pr

Ag

{
1

J0(ξtop

√
Pr)

[
ξtopJ1(ξtop

√
Pr)− ξbotJ1(ξbot

√
Pr)
]

+ 1

H(1)
0 (ξbot

√
Pr)

[
ξtopH(1)

1 (ξtop

√
Pr)− ξbotH

(1)
1 (ξbot

√
Pr)
] }

. (A 23)

Appendix B. Implementation of multi-oscillator TDIBCs

For completeness, we continue discussion of the dimensional implementation of the
time-domain impedance boundary condition, as was introduced in § 6.

A TDIBC, of the form proposed by Fung & Ju (2004), was coupled with the
compressible flow solver CharLESX . The coupling strategy used here is proposed and
described by Scalo et al. (2015a), in which the implementation was demonstrated
and validated using an impedance tube with a Helmholtz oscillator. The validation
was performed using an incident broadband pulse; the numerical reflected wave was
compared with the semi-analytical solution for a given impedance. Some concepts
from Scalo et al. (2015a), which used acoustics conventions for normalization with
base density, speed of sound and scaling parameters for channel flow normalization,
are used here for illustration. In this description, for clarity, we are instead reporting
a dimensional derivation and implementation.

A linear acoustic impedance boundary condition relates pressure and velocity at the
boundary as:

p̂= Z(ω)û, (B 1)

where p̂ and û are complex pressure and velocity amplitudes and Z(ω) is the
dimensional/specific acoustic impedance, for which the characteristic specific acoustic
impedance ρ0a0 is a factor.
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Relative to the boundary, incident (+) and reflected (−) travelling waves are:

u± = u′ ± p′

ρ0a0
(B 2a)

u′ = u+ + u−

2
,

p′

ρ0a0
= u+ − u−

2
, (B 2b,c)

where u′ and p′ are fluctuations in wall-normal velocity and pressure. Combining
equations (B 1) and (B 2a) yields

û−(ω)= Ŵω(ω)û+(ω) (B 3a)

Ŵω(ω)= ρ0a0 − Z(ω)
ρ0a0 + Z(ω)

, (B 3b)

which correspond to the reflected wave û−(ω) and the reflection coefficient Ŵω(ω) in
the frequency domain.

The direct term of a partial fraction expansion in the reflection coefficient can be

removed by using the wall softness ̂̃Wω(ω) form to relate the incident wave and
reflected wave:

û−(ω)=−û+(ω)+ ̂̃Wω(ω)û+(ω), (B 4a)

where ̂̃Wω(ω)= Ŵω(ω)+ 1= 2ρ0a0

ρ0a0 + Z(ω)
. (B 4b)

Equation (B 4a) suggests that, provided the poles of ̂̃Wω(ω) are in the upper half of
the complex ω-plane, the reflected wave can be obtained from the causal convolution
of the incident wave:

u−(t)=−u+(t)+
∫ ∞

0
W̃ (τ ) u+ (t− τ) dτ . (B 5)

Extending ̂̃Wω(ω) into the Laplace domain, based on the convention ̂̃Wω(ω) =̂̃Wω (−is) = ̂̃Ws(s), suggests that the softness function can be expanded with partial
fractions and the linearity property of frequency-domain transforms can be used to
obtain a solution for (B 5). Inverting the Laplace transform of

̂̃Ws(s)=
no∑

k=1

[
µk

s− pk
+ µ∗k

s− p∗k

]
(B 6)

and discretizing and evaluating (B 5) yields

u− (t+1t)=−u+ (t+1t)+
no∑

k=1

[
u−k (t+1t)+ u−,∗k (t+1t)

]
(B 7a)

u−k (t+1t)=
∫ ∞

0
µkepkτu+ (t+1t− τ) dτ (B 7b)

u−,∗k (t+1t)=
∫ ∞

0
µ∗kep∗k τu+ (t+1t− τ) dτ , (B 7c)

where u−k (t+1t) and u−,∗k (t+1t) are contributions to the convolution integral, pk and

p∗k are poles of ̂̃Ws(s), and µk =Residue[ ̂̃Ws(s), pk] and similarly for µ∗k .
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The integral of (B 7b) can be recursively solved for a given pk and µk:

u−k (t)=
∫ ∞

0
µkepkτu+ (t− τ) dτ = e−pk1t

∫ ∞
1t
µkepkτu+ (t+1t− τ) dτ (B 8)

∴ u−k (t+1t) =
∫ 1t

0
µkepkτu+ (t+1t− τ) dτ +

∫ ∞
1t
µkepkτu+ (t+1t− τ) dτ

= zku−k (t)+
∫ 1t

0
µkepkτu+ (t+1t− τ) dτ , (B 9)

where zk = epk1t. The integral of (B 7c) follows similarly.
This integral can be evaluated with a trapezoid quadrature rule, resulting in:

u−k (t+1t)= zku−k (t)+µk1t
[
wk0u+ (t+1t)+wk1u+(t)

]
, (B 10)

where

wk0 = zk − 1
p2

k1t2
− 1

pk1t
(B 11a)

wk1 =−zk − 1
p2

k1t2
+ zk

pk1t
. (B 11b)

In order to evaluate (B 7a) and (B 10), u+(t+1t) is required. This is predicted at
the boundary with a one-dimensional approximation, based on the spatial gradient of
pressure and velocity at the boundary:

u+ (t+1t)≈
[

1
ρ0a0

p′ (x, t)+ u′ (x, t)
]
− a01t

∂

∂x

[
1
ρ0a0

p′ (x, t)+ u′ (x, t)
]
. (B 12)

The fluctuation in pressure and wall-normal velocity at time step t + 1t are then
imposed as Dirichlet boundary conditions as

u′ (t+1t)= 1
2

[
u+ (t+1t)+ u− (t+1t)

]
(B 13a)

p′ (t+1t)= ρ0a0

2

[
u+ (t+1t)− u− (t+1t)

]
. (B 13b)

In the Navier–Stokes simulations, adiabatic conditions are imposed for boundary
temperature.

Appendix C. Impedance transfer function coefficients

Transformed coefficients of the transfer functions as measured by Smoker et al.
(2012) are reported in table 9. To be consistent with the convention as used in (6.1),
numerator coefficients of T11 and T12 are negative values of those reported by Smoker
et al. (2012); the resulting transfer functions and impedance are consistent with an
energy-extraction regime in the mode of interest.
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