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Wall turbulence is a ubiquitous phenomenon in nature and engineering applications,
yet predicting such turbulence is difficult due to its complexity. High-Reynolds-number
turbulence arises in most practical flows, and is particularly complicated because of its
wide range of scales. Although the attached-eddy hypothesis postulated by Townsend
can be used to predict turbulence intensities and serves as a unified theory for
the asymptotic behaviours of turbulence, the presence of coherent structures that
contribute to the logarithmic behaviours has not been observed in instantaneous flow
fields. Here, we demonstrate the logarithmic region of the turbulence intensity by
identifying wall-attached structures of the velocity fluctuations (ui) through the direct
numerical simulation of a moderate-Reynolds-number boundary layer (Reτ ≈ 1000).
The wall-attached structures are self-similar with respect to their heights (ly), and in
particular the population density of the streamwise component (u) scales inversely
with ly, reminiscent of the hierarchy of attached eddies. The turbulence intensities
contained within the wall-parallel components (u and w) exhibit the logarithmic
behaviour. The tall attached structures (l+y > 100) of u are composed of multiple
uniform momentum zones (UMZs) with long streamwise extents, whereas those
of the cross-stream components (v and w) are relatively short with a comparable
width, suggesting the presence of tall vortical structures associated with multiple
UMZs. The magnitude of the near-wall peak observed in the streamwise turbulent
intensity increases with increasing ly, reflecting the nested hierarchies of the attached
u structures. These findings suggest that the identified structures are prime candidates
for Townsend’s attached-eddy hypothesis and that they can serve as cornerstones for
understanding the multiscale phenomena of high-Reynolds-number boundary layers.

Key words: turbulent boundary layers, turbulence simulation, turbulent flows

1. Introduction

Understanding wall-bounded turbulent flows is a long-standing challenge because
of their complex and chaotic nature. The presence of a wall not only induces the
formation of a thin shear layer close to the wall, known as the turbulent boundary
layer (TBL), where most of the energy consumption occurs in modern vehicles and
pipelines, but also separates the TBL into different layers composed of multiscale fluid
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motions. These multiscale phenomena can be characterized in terms of the friction
Reynolds number (Reτ = δuτ/ν), which is the ratio of the viscous length scale ν/uτ
(ν is the kinematic viscosity, and uτ is the friction velocity) and the flow thickness δ.
Although much progress has been achieved in characterizing the onset of turbulence
(Hof et al. 2004; Avila et al. 2011) and fully turbulent flows at low Reτ (Kawahara,
Uhlmann & Van Veen 2012), high Reτ turbulence that arises in engineering devices
and atmospheric winds (Reτ =O(104–6)) is an open challenge due to the wide range
of scales that govern the transport of mass, momentum and heat (Smits, McKeon &
Marusic 2011; Jiménez 2012; Barkley et al. 2015).

One approach to the characterization of these multiscale phenomena of TBLs is
to examine the organized motions that retain their spatial coherence for relatively
long periods, known as eddies or coherent structures, because these structures are
responsible for the dynamical mechanisms and turbulence statistics (Robinson 1991;
Adrian 2007). The dominant coherent structures in the buffer layer are low-speed
streaks and quasi-streamwise vortices (Kline et al. 1967) that are generated via a
self-sustaining cycle (Hamilton, Kim & Waleffe 1995). Above the buffer layer, the
coherent structures are larger and more complex due to the presence of various scales.
In this region, the mean streamwise velocity (U) follows a logarithmic profile along
the wall-normal distance y (Millikan 1938):

U+ = κ−1 ln(y+)+ A, (1.1)

where U+ = U/uτ , y+ = uτy/ν, κ is the von Kármán constant, A is an additive
constant and the overbar indicates an ensemble average. The logarithmic profile
in (1.1) represents that the only relevant scales in this region are y and uτ (i.e.
∂U/∂y∼ uτ/y). At high Reynolds numbers, most of the bulk production and velocity
drop originate from the logarithmic layer (Smits et al. 2011; Jiménez 2012). Townsend
(1976) deduced a model for energy-containing eddies in the logarithmic layer whose
sizes scale with y; these structures are attached to the wall and are self-similar. By
assuming that the logarithmic layer consists of the superposition of the attached
eddies and that the variation of the Reynolds shear stress across the layer is small
compared to the viscous stress, the turbulence intensities (u2

i ) can be expressed as

u2+ = B1 − A1 ln(y/δ), (1.2a)

w2+ = B2 − A2 ln(y/δ), (1.2b)

v2+ = B3, (1.2c)

where u (= u1), v (= u2) and w (= u3) are the streamwise, spanwise and wall-normal
velocity fluctuations, respectively, and Aj ( j = 1, 2) and Bi are constants; Aj is the
Townsend–Perry constant, which is expected to be universal (Marusic et al. 2013).
Here, the wall-parallel components follow the logarithmic variation, whereas the wall-
normal component is constant. The inviscid assumption for self-similar eddies leads
to the logarithmic behaviour in (1.2a) and (1.2b) and the impermeable condition for
the wall-normal component gives rise to (1.2c). Perry & Chong (1982) extended this
hypothesis by proposing that there are hierarchies of geometrically similar eddies with
a probability distribution function (PDF) that is inversely proportional to their height.
Based on this approach, they derived the logarithmic variation of U (1.1) and u2

i (1.2a)
and (1.2b) simultaneously in the context of the attached-eddy hypothesis. Additionally,
they predicted the emergence of a k−1

x (kx is the streamwise wavenumber) region in
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the spectrum that is the spectral signature of the attached eddies. In this regard, the
attached-eddy hypothesis is a unified theory that links the asymptotic behaviours of
the turbulence statistics of high-Reynolds-number flows.

Subsequently, several studies (Perry, Henbest & Chong 1986; Perry & Marusic
1995; Marusic & Kunkel 2003) have refined the model of Perry & Chong (1982) in
order to test Townsend’s hypothesis, but their Reynolds numbers are not sufficiently
high to establish the logarithmic region. Nickels et al. (2005) demonstrated the
presence of the k−1

x region in the streamwise velocity spectrum (Φuu). The coexistence
of the logarithmic regions for U and u2 was observed at Reτ = O(104–5) (Hultmark
et al. 2012; Marusic et al. 2013). Through a spectral analysis over the same range
of Reτ , Vallikivi, Ganapathisubramani & Smits (2015) observed a plateau region (i.e.
kxΦuu/u2

τ ≈ const.) in the vicinity of the outer peak, which can contribute to the
logarithmic variation in u2. For the spanwise component, Jiménez & Hoyas (2008)
observed the logarithmic variation at Reτ ≈ 2000. Recently, Marusic & Monty (2018)
has reviewed Townsend’s hypothesis by focusing on attached-eddy modelling for high
Reτ . Nevertheless, the central question that has not been resolved is as follows: what
is the actual structure in the fully turbulent flow that corresponds to an attached eddy
and forms the logarithmic region? Although Townsend (1976) and Perry & Chong
(1982) proposed a particular shape of eddies based on the flow visualization, these
structures were modelled to formulate the inverse power-law PDF and the constant
shear stress. Additionally, the presence of the k−1

x region does not necessarily indicate
the presence of an attached structure, because a coherent motion can carry energy
with a broad range of wavenumbers (Nickels & Marusic 2001) and the wavenumber
at a given y does not reflect whether that motion is attached to the wall or is a part
of detached one (Jiménez 2013).

To overcome these limitations, clusters of vortices (del Álamo et al. 2006) and
three-dimensional sweeps/ejections (Lozano-Durán, Flores & Jiménez 2012) were
identified in direct numerical simulation (DNS) data of channel flows. These structures
can be classified as either wall-attached or wall-detached based on their minimum
distances from the wall. The former are self-similar and statistically dominant
structures in the logarithmic layer. Morrill-Winter, Philip & Klewicki (2017) and
Fiscaletti, de Kat & Ganapathisubramani (2018) found that the size of the structures
associated with the intense Reynolds shear stress increases with y. Hwang (2015)
found self-similar statistical motions with respect to y in a large-eddy simulation
that restricted the spanwise length scale of motions. By using a proper orthogonal
decomposition, Hellström, Marusic & Smits (2016) found that the azimuthal length
scales of the energetic modes are proportional to the distance from the wall. In
addition, Baars, Hutchins & Marusic (2017) reported a self-similar region in the
linear coherence spectrum, in which the coherence magnitude can be quantified
in terms of a single streamwise/wall-normal aspect ratio. Although these identified
coherent motions are reminiscent of Townsend’s attached eddies in the sense of
self-similarity, it has not yet been shown how they contribute to the formation of the
logarithmic behaviour in u2 and w2.

The objective of the present study is to identify the self-similar coherent
structures satisfying the attached-eddy hypothesis by examining the DNS data of
zero-pressure-gradient TBL at Reτ ≈ 1000. In this approach, we extracted the clusters
of the velocity fluctuations (ui) in order to identify a group of ui clusters over a wide
range of scales that are attached to the wall and are self-similar. In particular, the
population density of the attached u clusters is inversely proportional to their height.
We then reconstruct the turbulence intensities by performing the superposition of
the identified structures. The logarithmic behaviours of the wall-parallel components
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are then verified by using the indicator function, which has not been achieved
experimentally. Further, we focus on the u clusters in order to explore the hierarchical
nature of the structures. The wall-normal distribution of the instantaneous streamwise
velocity contained in the objects shows step-like jumps, representing the zones of
roughly constant uniform momentum. In addition, we observe that the magnitude
of the near-wall peak in the streamwise turbulence intensity carried by the attached
clusters of u increases logarithmically with increasing their heights. The present
results not only support the attached-eddy hypothesis but also provide direct evidence
regarding the presence of the attached structures in instantaneous flow fields, even at
the moderate-Reynolds-number TBL.

2. Computational details
The DNS data of the TBL (Hwang & Sung 2017a; Yoon, Hwang & Sung 2018) are

used in the present study. The DNS was performed using the fractional step method of
Kim, Baek & Sung (2002) to solve the Navier–Stokes equations for incompressible
flow. The computational domain is 2300δ0 × 100δ0 × 100δ0, where δ0 is the inlet
boundary layer thickness, in the streamwise (x), wall-normal (y) and spanwise (z)
directions, respectively, and the associated components of the velocity fluctuations are
u, v and w; details of the DNS and its validation are provided in Hwang & Sung
(2017a). We used a total of 2430 instantaneous flow fields at Reτ = 980 with the
streamwise length (Lx) of 11.7δ; the spanwise length (Lz) is 3.2δ and δ is the 99 %
boundary layer thickness. Here, the instantaneous flow fields are collected in the time
step interval of 2.54 viscous time units (0.065δ/U∞); the total averaging time to
compute identified structures is 6170 viscous time units (157.95δ/U∞). Across the
domain, the Reynolds-number effect is negligible because Reτ ranges from 913 to
1039.

In the present study, the fluctuating velocity components are defined by considering
the height of the turbulent/non-turbulent interface (TNTI) (Kwon, Hutchins & Monty
2016). The wall-normal distance of the instantaneous TNTI δt(x, z) is defined using
the kinetic energy criteria proposed by Chauhan et al. (2014). Here, we used all the
velocity components to obtain the local turbulent kinetic energy (k̃) in a frame of
reference moving with U∞ over a 3 × 3 × 3 grid. We employed the threshold of
k̃= 0.09, which is slightly lower than that of Chauhan et al. (2014). As a result, the
mean of the TNTI height is δt=0.88δ, which is close to that reported in Jiménez et al.
(2010) who defined the TNTI height in terms of the enstrophy. Note that the results in
the present work remained qualitatively unchanged regardless of the TNTI threshold
because we focus on the structures within the turbulent region only (Hwang & Sung
2017b). The streamwise velocity fluctuations based on the Reynolds decomposition are
positive when δt is lower than δ. In other words, although these positive-u regions are
located in the free-stream region (the non-turbulent region), they are regarded as the
turbulent regions. We define the velocity fluctuations ui=Ui−Ui(y, δt) to prevent this
contamination. Here, Ui(y, δt) is the conditional mean velocity, which is a function of
the wall-normal distance and the local TNTI height (Kwon et al. 2016).

The clusters of positive or negative fluctuations are the groups of connected points
satisfying

ui(x) > αurms,i(y, δt) or ui(x) <−αurms,i(y, δt), (2.1a,b)

where urms,i is the root mean square of the corresponding ui and α is the threshold.
Figure 1 shows the isosurfaces of u, w and v in the instantaneous flow field. As
seen, the shapes of these structures are complex: some of them are attached to the
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FIGURE 1. (Colour online) Clusters of velocity fluctuations (ui) at Reτ = 980. The red and
blue isosurfaces indicate the positive and negative fluctuations, ui(x) = ±1.5urms,i(y, δt),
respectively, in the instantaneous flow field: (a) u, (b) w and (c) v. The brightness of
the colour indicates the distance from the wall. Here, clusters that cross the edges of the
streamwise and spanwise domains were excluded in order to show the full size of each
cluster.

wall whereas others are distributed far above the wall and have a small volume.
In particular, the structures of the cross-stream components are pronounced at the
edge of the boundary layer; the lighter colour denotes structures with a wall-normal
distance close to δt. In addition, in contrast to figure 1(b,c) there are long meandering
structures of u (the darker red or blue isosurfaces) in figure 1(a), which are discussed
further in § 3. To characterize the irregular shapes of the ui clusters (figure 1), the
connectivity of ui was defined based on the six orthogonal neighbours of each node in
Cartesian coordinates (Moisy & Jiménez 2004; del Álamo et al. 2006; Lozano-Durán
et al. 2012). Using the connectivity rule, the contiguous points can be determined at
a given node. Thus, we could measure the sizes of clusters and obtain the velocity
information over a bounded volume for each object without making an a priori
assumption or applying a filter. However, the detection of the structure depends on
the threshold value α. When α is low, new contiguous points are detected and some
of them merge with the previously identified regions. Figure 2(a) shows the variation
with α in the ratio of the maximum volume of the cluster (Vm) to the total volume
of the clusters (Vt). Here, Vm and Vt are the sum of the corresponding clusters for
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FIGURE 2. (Colour online) (a) Percolation behaviour of the identified clusters; the
variation of the volume of the largest cluster (Vm) normalized by the total volume of the
clusters Vt, Vm/Vt, and the ratio of the total number of the clusters (N) to the maximum
N over α (Nm), N/Nm. (b) The number of clusters per unit wall-parallel area as a function
of ymin and ymax. The colour contour indicates the distribution of the u clusters, and the
red and orange line contours represent the w and v clusters, respectively, with a contour
level of 0.003.

negative and positive fluctuations. The black line indicates the total number of the
clusters (N) normalized by its maximum (Nm), which appears at αm ≈ 1.4 for u and
αm ≈ 1.6 for v and w. At α > 1.7, the clusters of intense ui with very small volume
are identified. The volume ratios of v and w clusters converge to 0.05 and 0.07,
respectively, representing that the intense structures for the cross-stream component
have very small volumes: Vm/Vt ≈ 0.13 for u. As α decreases, Vm/Vt increases
significantly and converges to 1. Many new clusters are generated and amalgamated
simultaneously, and the amalgamation of the clusters becomes dominant at α < αm,
which leads to the decrease in N/Nm. This result is consistent with the percolation
transition in turbulence structures, such as arises for vortical structures (Moisy &
Jiménez 2004; del Álamo et al. 2006) and ejection/sweep structures (Lozano-Durán
et al. 2012). The threshold α = 1.5 (vertical dashed line) was chosen based on the
percolation transition of the clusters; the results remain qualitatively unchanged in the
vicinity of the threshold (see appendix A).

In order to identify the wall-attached structures, the minimum and maximum y
(ymin and ymax) for each cluster are measured from the wall. Figure 2(b) shows the
number of clusters per unit wall-parallel area (Lx × Lz) according to ymin and ymax.
Here, the colour contour indicates the distribution of the u clusters and the inserted
line contours represent the distributions of the w (red) and v (orange) clusters. There
are two distinct regions, yielding that the clusters are classified into two groups:
wall-attached structures with y+min ≈ 0 and the detached structures with y+min > 0. The
minimum wall-normal distance of the wall-attached group is located at y+min = 0.08,
which is the grid point closest to the wall in the present DNS data. Although previous
studies (del Álamo et al. 2006; Lozano-Durán et al. 2012) classified the clusters of
the vortex and Reynolds shear stress into wall-attached and wall-detached groups
based on y+min ≈ 20, we defined the attached structures of the velocity fluctuations
with y+min ≈ 0 because most of the clusters within y+min < 20 are at y+min ≈ 0 (88 %,
76 % and 78 % for u, w and v, respectively). In addition, we can obtain the turbulent
intensity carried by the attached structures according to their height (ly) without any
interpolation since ly = ymax rather than ly = ymax − ymin. In other words, the attached
structures identified in the present study are physically adhered to the wall. As a
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Total number Number fraction Volume fraction

Attached u 8 24 396 0.20 0.67
Detached u 32 15 270 0.80 0.33
Attached w 13 44 597 0.19 0.58
Detached w 56 63 332 0.81 0.42
Attached v 23 53 495 0.24 0.58
Detached v 75 75 383 0.76 0.42

TABLE 1. The number and volume fractions with respect to the total number and total
volume of all the identified ui clusters.

result, these structures show the characteristics of the logarithmic layer as well as of
the buffer layer; this point is discussed further in §§ 4 and 5.

Before addressing the characteristics of the attached structures, it is worthwhile
discussing the term ‘attached’ used in the attached-eddy hypothesis (Townsend 1976).
Townsend conjectured that the main energy-containing motions in the constant shear
stress layer (i.e. at an extremely high Reynolds number) are attached to the wall and
thus the eddies are inviscid. As a result, the slip boundary condition can be assumed
for the wall-parallel velocity components (i.e. u and w) since the hypothesis is valid
far above the region where the viscosity is dominant. For the wall-parallel component,
Hwang (2016) showed that the energy-containing motions in the form of Townsend’s
attached eddies penetrate into the region close to the wall (i.e. these are the footprints
reported in Hutchins & Marusic 2007a,b) and that the near-wall penetration of these
motions exhibits the inner-scaling behaviour. In this respect, the present definition
of the attached clusters does not contradict the attached-eddy hypothesis but rather
their near-wall parts could contain the viscous effect, which is not considered in the
attached-eddy hypothesis (see further § 5).

Although the wall-normal velocity is affected by the impermeable condition, which
leads to an absence of the logarithmic variation of its intensity profile in a sense
of the attached-eddy hypothesis, we can observe the attached structures of v in
figure 2(b). However, this is not so surprising, given the identification criteria of the
present approach (2.1). We used the root mean square of the velocity fluctuations
(urms,i), which varies with y. Hence, urms,i reaches zero at the wall, and in particular
the value of the wall-normal component is much less than that of the wall-parallel
components in the near-wall region. This behaviour is also related to the presence
of the attached clusters of ejections/sweeps (Lozano-Durán et al. 2012) since the
Reynolds shear stress is the product of u and v.

In contrast to the cross-stream component, there is a weak peak at y+min ≈ 7 and
y+max ≈ 50 for the u clusters in figure 2(b). These structures can be the fragments of
large attached structures or an object that is developing into a larger one; their number
of occurrence is less than 0.011 per unit wall-parallel area. In the present work, we
focus on the attached structures with heights that vary from the near-wall region to
δ. The number and volume fractions of the identified clusters are summarized in
table 1. Here, we only consider the ui clusters with volume larger than 303 wall units
(del Álamo et al. 2006; Lozano-Durán et al. 2012). Note that more than 90 % of the
discarded clusters are detached structures and the rest are attached structures. Although
the number fraction of attached objects is approximately 20 %, they contribute more
than half of the total volume of all the clusters. In particular, the attached u structures
account for 67 % of the volume, representing that these structures are more likely
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FIGURE 3. (Colour online) Isosurfaces of wall-attached structures extracted from figure 1:
(a) u, (b) w and (c) v.

to be present as large attached clusters than the other structures. Figure 3 illustrates
the wall-attached structures of ui extracted from figure 1. As seen, there are small
attached objects close to the wall and very large objects with streamwise elongation
that extend to the edge of the boundary layer.

3. Self-similarity of the attached structures
This section explores the self-similarity of the attached structures with respect to

the distance from the wall. The self-similar nature of attached eddies is one of the
assumptions of the attached-eddy hypothesis (Townsend 1976). In addition, these
eddies are in the form of hierarchies that are geometrically similar and the PDF of
hierarchies is inversely proportional to the hierarchical length scale (Perry & Chong
1982). Hence, the sizes of the identified attached structures and their population
density are elucidated to provide evidence for the presence of these structures in the
instantaneous flow fields.

3.1. Scaling of the attached structures
Figures 4 and 5 represent the distributions of the length (lx) and width (lz) of the
attached structures with respect to ly, respectively. Here, lx and lz are determined based
on the bounding box for each structure. There are two distinct growth rates: for the
buffer-layer structures (l+y < 60), lx and lz increase gradually whereas those of the tall
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FIGURE 4. (Colour online) Joint PDFs of the logarithms of the length (lx) of the attached
structures and of their height (ly): (a) u, (b) w and (c) v. The inserted dots indicate the
mean lx with respect to ly. The orange solid lines are the best fit, l+x ∼ (l

+

y )
γ of the data

for 100< l+y < 550; l+x = 17.98(l+y )
0.74 in (a), l+x = 12.10(l+y )

0.74 in (b) and l+x = 11.34(l+y )
0.69

in (c). In (b) and (c), the red contour line represents the contour level of 0.004 in (a)
and the red dashed line is consistent with the orange line in (a). The white dashed line
(l+x = 3l+y ) indicates the scaling of the vortex and Reynolds shear stress clusters (del Álamo
et al. 2006; Lozano-Durán et al. 2012). The horizontal dashed line indicates l+y = δ

+. The
contour levels are logarithmically distributed.
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FIGURE 5. (Colour online) Joint PDFs of the logarithms of the width (lz) of the attached
structures and of their height (ly): (a) u, (b) w and (c) v. The inserted dots indicate the
mean lz with respect to ly. The orange solid lines are l+z = l+y in (a), l+z = 1.5l+y in (b) and
l+z = l+y in (c). In (b) and (c), the red contour line represents the contour level of 0.004 in
(a). The red dashed line in (b) is consistent with the orange line in (a). The horizontal
dashed line indicates l+y = δ

+. The contour levels are logarithmically distributed.

structures (l+y > 100) grow rapidly until ly is bounded by δ. For l+y > 100, the mean
lx and lz (circles) scale with ly, representing that the structures are characterized in
terms of ly over a broad range, although there is some dispersion at a given ly. Since
the mean lx and lz indicate the sizes of representative structures, this dispersion is
associated with attached structures at different stages of stretching (Perry & Chong
1982). Although the mean lx is not linearly proportional to ly, the mean lz especially
follows a linear law l+z ≈ 1–1.5l+y (orange lines in figures 4 and 5), indicating that the
spanwise length scale of the structures is proportional to the distance from the wall,
reminiscent of the attached-eddy hypothesis. This point is discussed further below.

As shown in figure 4, the slope of the mean lx is 0.74 for the wall-parallel
components whereas that of the mean lx is 0.69 for the wall-normal component
(orange lines) over 100 < l+y < 550. In figure 4(b,c), the red solid line indicates
the distribution of the attached u structures and the red dashed line corresponds to
the orange line in figure 4(a). As ly increases, the lengths of the attached u and w
structures grow at a similar rate beyond that of the attached v structures: for v, the
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Wall-attached structures of velocity fluctuations in a turbulent boundary layer 967

mean lx is only 860 wall units at l+y = 550 (ly/δ ≈ 0.55). In addition, the attached
u structure is longer than the transverse components. Given that the widths of the
attached u structures are comparable with those of the attached v and w (figure 5), the
streamwise organization of the u structures contributes to their high volume fraction,
0.67, as indicated in table 1, which is also observed in the instantaneous flow fields
(figure 3). To further examine the length distribution, we plot lx = 3ly (white dashed
line in figure 4) which represents the length distribution of the tall attached clusters
(l+y > 100) of vortex (del Álamo et al. 2006) and of ejection/sweep (Lozano-Durán
et al. 2012). Note that these structures are closely associated with the velocity
clusters identified in the present work. Although these works showed the linear
relationship between lx and ly, it should be emphasized that they roughly obtained
such a relationship by connecting the ridges of the low contour level. Furthermore,
Lozano-Durán et al. (2012) pointed out the nonlinear relationship between lx and
lz at a given ly (i.e. lxly ∝ l2

z ), as first observed in two-dimensional spectra of the
streamwise velocity (del Álamo et al. 2004), even lx and lz vary linearly with respect
to ly. However, the attached clusters of u follow lxly ∝ l1.7

z , which is approximately
quadratic, representing that the power law observed in the attached u structures is
suitable for describing the energy-containing motions of the streamwise component.
It is also worth highlighting that the distributions of the transverse components are
also approximately aligned along lxly ∝ l2

z , which is not evident in the corresponding
energy spectra (del Álamo et al. 2004). Recently, Hwang (2015) showed that the
energy-containing motions exhibit bimodal behaviour (i.e. the long streaky motions of
u and the relatively short vortical structures containing all the velocity components)
and that the scaling of these motions satisfies the quadratic distribution of the energy
spectra reported in del Álamo et al. (2004). In this respect, the attached structures
of v and w correspond to the short and tall vortical structures described in Hwang
(2015), which are in turn associated with hierarchies of hairpin packets (Adrian,
Meinhart & Tomkins 2000) or tall attached vortex clusters (del Álamo et al. 2006).

The absence of the linear relationship between lx and ly could be attributed to
(i) the preferred azimuthal (or spanwise) inclination of the structures or (ii) the
meandering nature of the structures or (iii) the low Reynolds number of the present
data (Reτ ≈ 1000). Baltzer, Adrian & Wu (2013) suggested that the relatively shorter
u structures are aligned with the preferred azimuthal offset in the turbulent pipe flow,
which is consistent with the helix angle of roll cells, and form very long structures.
Since the long structures possess roll cells (Hutchins & Marusic 2007b; Hwang et al.
2016b; Krug et al. 2017), the absence of the linear relationship between lx and ly
may arise from the preferred offset of the organized motions. Another possibility is
the meandering nature of u regions. In the near-wall region, Jiménez, del Álamo and
Flores (2004) showed a power-law relationship between the length and width of the u
regions by considering the meandering of the near-wall streaks. Given the meandering
of long negative u in the logarithmic region (Hutchins & Marusic 2007a), the attached
u structure beyond the buffer layer may follow a power-law relationship between lx
and lz. Finally, the Reynolds number of the present TBL could be insufficient to
establish the linear relationship (lx ∝ ly) in the self-similar range. Recently, Chandra
et al. (2017) found the linear relationship in the two-dimensional spectra of the
streamwise velocity at Reτ ≈ 26 000, whereas the shape of the spectra is aligned along
the quadratic form (lxly ∝ l2

z ) at Reτ = 2400. In the spectra at high Reynolds number,
the lower range of large scales follows a quadratic relationship. On the other hand,
the larger scales break away from this relationship and are aligned along lx ∝ lz. The
linear growth of the streamwise length scale was also reported in Baars et al. (2017)
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at Reτ = O(106) using a spectral coherence analysis. In figure 4(a), the mean lx of
the structures in 550< l+y < 750 follows lx = 3.8ly, representing that the larger scales
tend towards the linear behaviour. If we assume that these tall structures exist within
the upper limit of the logarithmic region (y= 0.15δ), then the low-Reynolds-number
limit for the linear relationship is Reτ = 750/0.15 = 5000. Thus, at Reτ > 5000, we
may observe the attached structures of u that follow lx ∝ ly in the self-similar range
consistent with the distribution of their width. Note that we used lx, lz and ly instead
of the wavelengths and the wall-normal location for convenience because the sizes of
the identified objects can approximately represent the latter (del Álamo et al. 2006).

Next, we further examine the linear relationship between lz and ly (figure 5). In
contrast to the length distributions (figure 4), the attached structures of ui with l+y >

100 have a comparable lz in figure 5. Moreover, the mean lz of these structures is
linearly proportional to ly up to l+y = δ

+ (horizontal dashed line). In particular, the
mean lz of the streamwise and wall-normal components is aligned along lz = ly and
that of the spanwise component behaves in lz= 1.5ly, which is slightly wider than the
others. The tall attached clusters of the Reynolds shear stress (Lozano-Durán et al.
2012) follow lz = ly in a manner similar to that in figure 5(a,c) since the Reynolds
shear stress is the product of u and v. The widths of the tall vortex clusters (del
Álamo et al. 2006) are aligned along lz = 1.5ly, consistent with those of the attached
w, representing that the spanwise scale of large-scale vortical structures is governed
by the attached structures of w with a similar ly. In addition, it is worth mentioning
that there is a linear ridge, which connects the inner and outer peaks in the spanwise
spectra of the streamwise velocity (Hwang 2015). Since the linear ridge represents
the self-similarity of the energy-containing motions over a broad range, Hwang (2015)
found that the energy distributions in the spanwise spectra of all the velocities, which
resolve turbulent motions at a given spanwise length scale, are characterized by the
spanwise length scale. Similar behaviour was also found in Hellström et al. (2016)
by examining the spanwise scale of the energetic modes obtained from a proper
orthogonal decomposition. It should be emphasized that the self-similar motions
found in the previous studies are statistical structures, which only partially satisfy
the concept of self-similar representative eddies originally proposed by Townsend,
who tried to describe the correlation statistics of wall turbulence (Marusic, Baars
& Hutchins 2017). However, the present result does demonstrate the presence of
self-similar structures in instantaneous flow fields. Further evidence for the nature of
the identified attached structures in the context of the attached-eddy hypothesis is
explored by examining their population density and the associated turbulence intensity
profiles in the remaining part of the present work.

Before proceeding with this analysis, we note that the protrusions of the distributions
(ly > δ) in figures 4 and 5 were also observed in Lozano-Durán et al. (2012). Note
that we discarded the structures that cross the streamwise domain (Lx = 11.7δ),
whereas the objects that cut through the spanwise domain (Lx = 3.2δ) were included.
The attached structures of u within the protrusions exhibit lx = 7–11δ and lz= 1.5–2δ
and those of the cross-stream components are lx = 4–6δ and lz = 2–3δ, i.e. they are
shorter but wider than the former. These features are consistent with the bimodal
behaviour of the energy-containing motions at the largest spanwise length scale
(Hwang 2015). However, it should be stressed that the largest structures in figures 4
and 5 are not aligned along the orange line (i.e. there is scaling failure with respect
to ly), although Hwang (2015) described that these motions are self-similar based on
their spanwise length scale. Interestingly, Perry et al. (1986) conjectured the presence
of such large-scale eddies with heights of the order of δ and also noted that these
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eddies need not be self-similar to the smaller-scale eddies. In this respect, the tallest
structures (ly ≈ δ) within the scaling failure region are the large-scale eddies, which
are not geometrically self-similar with ly. Here, Perry et al. (1986) described the
tall motions as large scale since large-scale motions such as bulges at the TNTI
were defined originally by their heights (Kovasznay, Kibens & Blackwelder 1970;
Falco 1977). Recently, the streamwise length has been used to characterize large-scale
structures and in this sense very long attached structures of u are associated with
superstructures in TBL (Hutchins & Marusic 2007a); very-large-scale motions (Kim
& Adrian 1999) or global modes (del Álamo et al. 2004) in internal flows. Hence,
a better nomenclature for the attached structures of u with ly ≈ δ and with relatively
shorter ly(100< l+y < 550) could be superstructures (or very-large-scale motions) and
large-scale motions, respectively, but we prefer to use the classical description; i.e. we
shall describe the structures with ly ≈ δ as large-scale eddies based on their heights
for our purpose.

3.2. Population density of the attached structures
The population density of the attached structures (ns) versus ly is examined to
determine whether the attached structures are associated with the hierarchy length
scales (Perry & Chong 1982; Perry et al. 1986). Here, ns,i (ly) is defined as

ns,i(ly)=
Ni(ly)

mLxLz
, (3.1)

where Ni(ly) is the number of the attached structure at a given ly, and m is the number
of instantaneous flow fields. Note that ns can be obtained by integrating the joint
PDFs in figures 4 or 5 along the abscissa. Hence, ns is equivalent to the PDF of
the hierarchy scales (Perry & Chong 1982). In figure 6, the distributions decay with
ly beyond the buffer layer. In particular, the distribution of the attached u structure
(blue) is inversely proportional to ly while that of the cross-stream components follows
ns ∝ l−1.3

y for 290 < l+y < 550. Given the inverse power-law PDF of the hierarchy
scales (Perry & Chong 1982), the structures of u in this region are hierarchies of self-
similar eddies in the context of the attached-eddy hypothesis (see further discussion
in § 5). The onset of the self-similar region for the attached u structures is l+y ≈ 100
in figures 4 and 5 which is lower than that of the inverse power-law distribution,
representing that not all the self-similar structures follow ns ∝ l−1

y . In addition, the
lower and upper limits of the self-similar range (100 < l+y < 550) in figure 4 are
consistent with the onset of the logarithmic region (see figure 8) and with the end of
the inverse power-law distribution in figure 6, respectively. The population densities
of v and w are larger than that of u over a broad range, which is consistent with the
numbers of the attached clusters in table 1. The cross-stream components have the
same slope and decrease rapidly compared to u, indicating that the attached structures
of u exist with larger clusters in instantaneous flow fields. Given that the attached
structures of v and w are associated with the tall vortical structures discussed in § 3.1,
this result also reveals that the attached structures of the cross-stream components
and of u have different characteristics. Furthermore, we can observe a peak at ly ≈

0.7–0.8δ for u and at ly ≈ 0.9δ for v and w, indicating the additional weighting for
the large-scale structures. As discussed in § 3.1, these large-scale structures are not
geometrically self-similar, as is evident in the protrusions around ly ≈ δ in figures 4
and 5. This behaviour is consistent with the modified PDF of hierarchy scales (Perry
et al. 1986), which was proposed to enable the more accurate prediction of the mean
velocity defect and the low-wavenumber peak in energy spectra.
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FIGURE 6. (Colour online) Population density of the attached clusters (ns) with respect
to their height ly. The dashed line is ns ∝ l−1

y for u and ns ∝ l−1.3
y for v and w. The inset

shows a magnified view of the region in 290< l+y < 550.

4. Turbulence intensities
The attached structures of ui identified in the present study demonstrate the

self-similar behaviour for the objects with their height ly. In addition, their population
densities are characterized by ly, and in particular the u structures exhibit the inverse
power-law distribution reminiscent of hierarchies of attached eddies (Perry & Chong
1982). The question then arises: do these attached structures actually produce the
logarithmic variation of u2 as predicted by Townsend (1976)? To answer this question,
the turbulence intensities carried by attached structures with different heights u2

a,i(y, ly)
are defined as

u2
a,i(y, ly)=

〈
1

Sa,i(y, ly)

∫
Sa,i

ui(x)ui(x) dx dz
〉
, (4.1)

where Sa,i(y, ly) is the wall-parallel area of the structures with ly at a given y and the
angle brackets 〈·〉 denote an ensemble average. In other words, the profiles of (4.1)
represent the turbulence intensities carried by representative attached structures at a
given ly whose size distributions are denoted by grey circles in figures 4 and 5. Note
that u2

a,i indicates the conditionally averaged statistics for ui within the structures, not
the total turbulence intensities u2

i . As a result, the magnitude of u2
a,i is larger than

that of u2
i because we conditionally average over only the intense ui of the extracted

structures (i.e. |ui|>αurms,i).
Figure 7 shows the wall-normal variations of u2

a,i(y, ly) for various ly. The inserted
dashed lines in figure 7(a,b) represent the logarithmic variation. As ly increases, the
profiles of u2

a and w2
a move closer to the dashed lines with the emergence of the

logarithmic variation. This result is remarkable considering the Reynolds number of
the present TBL (Reτ ≈1000); the logarithmic behaviour of u2 and of w2 was observed
at Reτ =O(104–5) in experiments (Hultmark et al. 2012; Marusic et al. 2013) and at
Reτ = 2000 in DNS (Jiménez & Hoyas 2008), respectively. On the other hand, the
profiles of v2

a (figure 7c) show the plateau and its range extends with increasing ly
consistent with the wall-normal turbulence intensity predicted by Townsend (1976).
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FIGURE 7. (Colour online) Wall-normal variations of the conditionally averaged turbulence
intensity within the attached structures for various ly: (a) u2

a, (b) w2
a and (c) v2

a . The dashed
lines in (a,b) correspond to the logarithmic variation as a guide for the eye. Here, the
slopes of the logarithmic variation are consistent with those obtained in figure 8.
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FIGURE 8. (Colour online) Superposition of the conditionally averaged turbulence intensity
carried by the attached structures in 290 < l+y < 550: (a) u2

as, (b) w2
as and (c) v2

as. The
blue circles in (a) and (b) indicate Ξ1 = y∂u2

as/∂y and Ξ3 = y∂w2
as/∂yu2

as, which are the
indicator functions of the logarithmic law, respectively. The inset shows a magnified view
of the region where there is a plateau in the range 100 < y+ < 0.18δ+ (shaded region).
The red dashed lines in (a) and (b) correspond to u2

as
+

= 7.3 − 3.010 ln(y/δ) and w2
as =

4.2− 1.722 ln(y/δ), respectively.

In addition, the magnitudes of v2
a (figure 7c) are very close to zero at y/δ < 0.03

whereas those of the wall-parallel components (figure 7a,b) are non-negligible at the
same range. This behaviour is similar to the eddy intensity function of Townsend
(1976) and Perry & Chong (1982). However, it should not be confused with the eddy
intensity function given that the magnitudes of u2

a and w2
a increase with increasing

ly along y and that there is the near-wall peak (see further discussion in § 5.2). As
seen in figure 7(a,b), the profiles of u2

a and w2
a do not collapse over a broad range.

As ly increases, the profiles in the region where the logarithmic variation appears
shift upwards and the magnitudes of the near-wall peak increase (see figure 10 for
details). In contrast to the wall-parallel components, the profiles of v2

a collapse well at
y/δ < 0.02. In other words, the structures of v with ymin≈ 0 do not carry the Reynolds
stress and they are topologically attached to the wall due to the criterion (2.1), as
discussed in § 2. In this sense, these results do not contradict the idea of Townsend
(1976).

As mentioned earlier, it is worth highlighting that (4.1) does not correspond to the
eddy intensity function at a given height of individual eddy. As shown in figure 7(a),
the profiles of u2

a(y, ly) exhibit the near-wall peak at y+ ≈ 15 and their magnitudes
increase with increasing ly. The eddy intensity functions proposed by Townsend (1976)
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and Perry & Chong (1982) have no near-wall peak because the attached-eddy
hypothesis assumed that the flow is inviscid (i.e. asymptotically high Reτ ). Hence, the
intensity functions are valid above the viscous dominant region and the near-wall peak
is absent (see figure 21(a) in Perry & Chong (1982)). In addition, the magnitude
of the eddy intensity function is constant regardless of hierarchical length scales.
The value of their summation increases with the range of the length scales and
thus the profile of the summation shows a logarithmic variation which is similar to
the trend observed in y+ > 100 in figure 7; see also figure 10(b) which shows the
differences between u2

a
+

and the logarithmic variation. In other words, the profile of
u2

a
+

represents the collective contribution of the attached u structures with heights
less than a given ly. One might think that this physical interpretation contradicts the
inverse power-law PDF, since ly is consistent with the hierarchical length scale. Since
the jitter and randomness of the discrete system or the continuous distribution of
hierarchies lead to the inverse power-law PDF as discussed in Perry & Chong (1982),
it is not surprising that the present attached structures follow 1/ly; this concept is
also related to the percolation behaviour of turbulent structures (§ 2).

To further examine the logarithmic behaviour in figure 7, we reconstruct the
turbulence intensity through the superposition of over 290 < l+y < 550 where the
population density (ns) scales with ly in figure 6. Especially, ns of the attached u
is inversely proportional to ly. Here, the wall-normal profile of the reconstructed
turbulence intensity (u2

as,i) was computed by weighting the relative probability of the
structures to the corresponding u2

a,i:

u2
as,i =

∑
ly ns,i(ly)u2

a,i(y, ly)∑
ly ns,i(ly)

. (4.2)

Since u2
a,i (4.1) indicates the turbulence intensities carried by representative

structures at a given ly, their superposition (4.2) represents the turbulence intensities
of the flow composed of these representative structures. The black dot in figure 8
shows the wall-normal variation of u2

as,i. To confirm the logarithmic variations of u2
as

and w2
as, the indicator function

Ξi(y)= y∂u2
as,i
+

/∂y, (4.3)

which is constant in the logarithmic region, is also plotted in figure 8(a,b). For the
wall-parallel components, a plateau appears over the same range 100 < y+ < 0.18δ+
(see shaded region in the inset), verifying the presence of the logarithmic region
formed by the attached structures. On the other hand, there is no clear constant region
over 100< y+ < 0.18δ+ in the profile of v2

as (figure 8c). It is worth highlighting that
we verify the logarithmic behaviour using the indicator function, which was absent in
the experiments (Hultmark et al. 2012; Marusic et al. 2013) on high-Reynolds-number
flows due to the experimental uncertainty of the measurements. In addition, although
the profile of the spanwise turbulence intensity exhibits the logarithmic variation, this
behaviour is absent in the streamwise component at Reτ = 2000 in Jiménez & Hoyas
(2008). They noted that the absence of the logarithmic variation is not only due to the
viscous effect but is also due to the very long and wide motions (i.e. global modes or
very-large-scale motions) since the behaviour of the streamwise turbulence intensity
is much closer to the logarithmic variation after the removal of these motions. Given
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the fact that the profile of u2
as is obtained among the structures with 290< l+y < 550

(i.e. u2
as does not include the large-scale structures in the protrusions in figures 4

and 5), the present result supports this argument. Overall, the present results not only
aid the attached-eddy hypothesis but also provide direct evidence for the presence of
the attached structures, even in the moderate-Reynolds-number TBL.

5. Hierarchies of the attached structures
This section further explores the hierarchical nature of the attached structures,

especially for the streamwise velocity fluctuations that exhibit the inverse power-law
distribution (figure 6) as well as the self-similarity (figures 4 and 5) with respect to
ly. In addition, long u structures play an important role in wall turbulence because
long negative-u regions are associated with the net Reynolds shear force (Hwang,
Lee and Sung 2016a), and because the outer negative-u structures extend to the wall
and interact with near-wall streaks during the merging of the outer structures (Hwang
et al. 2016b).

5.1. Uniform momentum zones in the attached structures
As conjectured by Perry & Chong (1982), the attached eddies are in the form of
hierarchies. Each hierarchy is composed of the eddies whose height grows from their
initial roll-up height (O(ν/uτ )) to the height of the hierarchy (l). Here, the height
of the hierarchy corresponds to the height of the highest eddy within the hierarchy.
In other words, there are several eddies whose heights are less than l at a given
hierarchy height l and consequently the number of eddies or hierarchies increases
with increasing l. In addition, if we assume that the height of the highest hierarchy is
the boundary layer thickness δ, the friction Reynolds number (Reτ = δuτ/ν) indicates
the ratio of the highest hierarchy to the initial roll-up height. As a result, the number
of eddies or hierarchies can be expected to increase with increasing Reτ . In this
regard, De Silva, Hutchins & Marusic (2016) argued that a log–linear increase in
the number of uniform momentum zones (UMZs) with increasing Reτ indicates
a hierarchical length scale distribution. This interpretation was further supported
by synthesizing the flow field using the attached-eddy model of Marusic (2001).
UMZs that contain roughly uniform streamwise velocity were first observed in the
x–y plane of instantaneous flow fields by Meinhart & Adrian (1995). In addition,
UMZs commonly exist in multiple zones along the wall-normal direction (Adrian
et al. 2000), implying the hierarchical nature. To further examine the hierarchical
characteristics of the attached u structures, we examine the instantaneous streamwise
velocity (U) within these objects.

Figure 9(a) shows an attached structure of negative u (that enclosed by the black
box in figure 3a) and a streamwise slice at z/δ= 2.86 is illustrated in figure 9(b). This
structure extends from the wall to y≈ 0.8δ and in particular, the profile of U at x/δ=
9.77 (see the inset in figure 9b) shows several jumps in velocity across the structure
(as indicated by the dotted horizontal lines), separating zones of roughly uniform U;
low ∂U/∂y (orange line) also appears within the UMZs. Given that the UMZs produce
the local maxima in the histogram of U (Adrian et al. 2000), we plot the histogram
of U in the cross-stream plane of the identified structures at x/δ= 9.77 in figure 9(c).
Although there are several local maxima, the two at U/U∞ ≈ 0.5 and 0.6, which are
the consequence of UMZs, are preserved when the data are accumulated over the
entire structure (grey line). To further examine the number of UMZs in the attached
structures, the joint PDF of the height (ly) and the number of local maxima (Np) is
shown in the inset of figure 9(c). Here, the inserted dots indicate the mean Np at a
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FIGURE 9. (Colour online) (a) A sample attached structure of negative u (that enclosed by
the black box in figure 3a). (b) Contour of the instantaneous streamwise velocity (U) in
the x–y plane at z/δ= 2.86. The blue line is a slice of the object shown in (a). The black
line indicates the instantaneous TNTI. The inset shows a comparison of the instantaneous
(orange line) and mean (dashed line) streamwise velocity profiles at x/δ= 9.77 (indicated
by the vertical dashed line in the contour). The grey line represents ∂U/∂y, except the
region for y+ < 50 due to the strong shear close to the wall. The horizontal dotted lines
indicate step-like jumps of U across the structure, which separate the zones of roughly
constant U. (c) Histogram of U in the cross-stream plane of the identified object at x/δ=
9.77, which contains the two distinct local maxima (at U/U∞ ≈ 0.5 and 0.6) that are
associated with possible uniform momentum zones (UMZs). The grey line shows the PDF
of U within the identified object and the orange circles denote the local maxima. The inset
shows the joint PDF of the height (ly) and the number of UMZs (Np). The inserted dots
indicate the mean Np with respect to ly. The contour levels are logarithmically distributed.

given ly. The number of UMZs in each structure increases with increasing ly, which
confirms the hierarchical nature of the identified structures (De Silva et al. 2016). In
other words, ly could be consistent with the hierarchy length scale in connection with
the results in § 3.

In this work, we analyse the number of UMZs within the attached structures of
u. At a single Reynolds number (i.e. Reτ = 980), the number of UMZs increases
logarithmically with increasing ly (figure 9), which directly indicates the relationship
between the multiple UMZ phenomena (Meinhart & Adrian 1995; Adrian et al. 2000)
and the hierarchical distribution of the attached structures of u. Hence, one attached
structure of u might be consistent with multiple hairpin packets of various ages and
sizes since small packets can be covered by larger packets that convect faster than the
smaller ones (Adrian et al. 2000); note that the inclination angle of the u structures
ranges from 8.8◦ to 16◦, which is similar to that of hairpin packets. In addition,
given that the wake of attached vortex clusters identified in del Álamo et al. (2006)
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FIGURE 10. (Colour online) (a) Variation of the near peak magnitude of u2
a
+

(u2
a,max

+

) with

respect to l+y . The orange line shows u2
a,max

+

∼ 0.66 ln(l+y ) over 100< l+y < 550. (b) u2
a
+

−

{−3.010 ln(y/δ)} for the attached u structures within 100< l+y < 750. ly are logarithmically
distributed. The solid lines indicate the structures with l+y = 150, 190, 240, 300 and 400
and the vertical dashed lines represent the logarithmic region (100< y+ < 0.18δ+).

is associated with multiple UMZs, the attached structures of u might be shrouded in
the vortex clusters. However, we need to perform a more extensive examination of
the three-dimensional vortices surrounding the u structures.

One could question our method for the detection of UMZs within the u structures:
are the local maxima observed in the histogram (figure 9c) due to the conditional
sampling of U in a selective volume? As first observed by Meinhart & Adrian
(1995), the phenomenon of roughly constant uniform momentum in the x–y plane of
instantaneous flow fields is a local event that is random and time-varying. In order
to quantify the UMZs, Adrian et al. (2000) analysed the histogram of U with a
streamwise domain length of 2000 wall units. De Silva et al. (2016) also used the
similar length to detect the UMZs. In other words, these previous studies sampled
U selectively in the short streamwise domain at a certain spanwise location. As
discussed in Adrian et al. (2000), the local maxima in the histogram depend on the
time averaging and the streamwise length of the data. This behaviour was discussed
in Kwon et al. (2014), who examined the variation in the local maxima as a function
of the streamwise domain length; when the streamwise domain increases up to 6h
(where h is the channel half-height), several peaks disappear and only one peak
survives. To overcome this limitation, the edges of the UMZs must be carefully
identified. In the present work, we defined the boundary of the UMZs by examining
the three-dimensional u structures. As a result, the histogram of U obtained as a
function of the height of each u structure shows several maxima even when the
streamwise length of the structures increases (figure 9c). The negative-u regions
in the two-dimensional plane represent the UMZs induced by surrounding vortices
(Ganapathisubramani, Longmire & Marusic 2003; Tomkins & Adrian 2003; Hutchins,
Hambleton & Marusic 2005). Retrograde vortices can exist on the shear layer of
positive-u structures (Ganapathisubramani et al. 2012), which may induce the roughly
uniform momentum greater than the mean velocity. In this respect, sampling the
streamwise velocity within the u structures is an appropriate method for the detection
of UMZs in three-dimensional flow fields.

It is worth highlighting the importance of UMZs in the context of the attached-eddy
hypothesis. The work of Meinhart & Adrian (1995) not only demonstrated the general
existence of UMZs but also contained that UMZs are connections between the discrete
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system and the continuous system (Perry & Chong 1982). Meinhart & Adrian (1995)
used the term ‘zones’ to emphasize that the step-like jumps in U are instantaneous
phenomena, in contrast to ‘layers’ such as the buffer layer and logarithmic layer,
which are defined in terms of the mean quantities (Adrian et al. 2000, § 5.3),
and concluded that ‘The zonal structure reported here offers some new ways of
conceptualizing the structure of wall turbulence. The conventional decomposition of
the boundary layer into a wall layer, a logarithmic layer and a wake region is based
on time-averaged properties of regions of fixed vertical dimension. The zones, in
contrast, are instantaneous, time-evolving entities, whose characteristics contribute to
the mean properties of each of the convection layers.’ In this regard, UMZs are strong
evidence for describing the continuous system (Perry & Chong 1982), which is a
result of the randomness in the discrete system. Perry & Chong (1982) assumed that
quantum-jump phenomena in the discrete system are smoothed by the randomness
and jitter of turbulence, which leads to the inverse power-law PDF of the hierarchy
length scale in the continuous system. The present findings show directly that the
attached u structures composed of multiple UMZs follow the hierarchical length
scale distribution (figure 9) and contribute to the formation of the logarithmic region
(figure 8).

5.2. Near-wall peaks of the streamwise turbulence intensity
The logarithmic variation of the streamwise turbulence intensity (1.2) implies that
the magnitude of u2+ at a fixed y+ is proportional to ln(Reτ ) (Jiménez & Hoyas
2008; Jiménez 2012; Marusic et al. 2017); the near-wall peak u2

max
+

, which appears
at y+ ≈ 15, exhibits u2

max
+

∼ ln(Reτ ). This behaviour was first reported experimentally
in DeGraaff & Eaton (2000) and they suggested a mixed scaling (i.e. uτ and U∞)
for u2

max
+

in the context of the attached-eddy hypothesis. Subsequently, several
experimental and numerical works reported the logarithmic increase of u2

max
+

(Marusic
& Kunkel 2003; Hoyas and Jiménez 2006; Sillero, Jiménez & Moser 2013; Lee &
Moser 2015; Ahn et al. 2015, Örlü et al. 2017). At extremely high Reynolds numbers
(Reτ > 30 000), some studies (Hultmark et al. 2012; Vallikivi et al. 2015) found that
the growth of inner peak is absent, but these results might be due to spatial and
temporal resolution issues (Sillero et al. 2013; Marusic et al. 2017). Given that
the behaviour u2

max
+

∼ ln(Reτ ) can be explained with Townsend’s attached-eddy
hypothesis, we further examine the variation in the near-wall peak of u2

a
+

with ly

(figure 7) because ly is associated with the hierarchy length scale.
As pointed out in figure 7, the profiles of u2

a
+

have a near-wall peak and its
magnitude increases with increasing ly. Figure 10(a) shows the variations of the peak
u2

a
+

according to l+y . As seen, there is a logarithmic increase in the magnitude of the

peak u2
a
+

with increasing l+y in 100 < l+y < 550 with a slope of 0.66. This result is
in good agreement with the results for the slope of the increase in the magnitude
of the peak u2 versus Reτ obtained in recent DNSs 0.65 (Sillero et al. 2013) and
in experiments 0.63 (Marusic et al. 2017); for the DNS dataset of turbulent channel
flows up to Reτ = 5200, the slope is 0.642 (Lee & Moser 2015). Sillero et al. (2013)
and Marusic et al. (2017) noted that this value is approximately half of A1 (i.e. the
slope of the logarithmic term in 1.2a) since the lower bound of the logarithmic region
scales with Re0.5

τ in contrast to the classical scaling (e.g. O(100ν/uτ )) in Perry &
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Chong (1982). As discussed in § 4, the profile of u2
a
+

is the result of the conditional
averaging of the intense u within the identified structures (|u|>αurms), leading to the
difference in A1; the magnitude of A1 for u2

a
+

is larger than that for u2 (A1 = 1.26 in
Marusic et al. 2013. However, the slope of the variation in the magnitude of the peak
u2

a
+

is similar to that of the variation in the total turbulence intensity, representing that
the attached structures of u could play a dominant role in the increase of the near-wall
peak for the total turbulence intensity. At the present Reynolds number, the attached
structures contribute 20–35 % of u2 at y < 0.3δ, while the contribution of the other
components (i.e. detached structures and weak turbulence (|u| < αurms)) is 75–80 %
leading to the absence of the logarithmic behaviour in u2 over 100< y+ < 0.18δ+. In
addition, it would be instructive to examine the Reynolds-number dependence of the
lower bound of the logarithmic region for u2

a, which is consistent with the onset of
the self-similarity in figures 4 and 5 (i.e. l+y = 100≈ 3Re0.5

τ in the present data), but
this task is beyond the scope of the present work.

To further support the upward shift of the profiles in figure 7(a), we subtract
the logarithmic function (i.e. −3.010 ln(y/δ)) from (4.1) in figure 10(b). As seen,
there is a region where the difference between u2

a and −3.010 ln(y/δ) is constant
and the difference increases with increasing ly. This trend also reflects the collective
contribution of the attached u structures with heights less than a given ly. The results
in figure 10(b) indicate that the slope of each u2

a is close to −3.010 and their
logarithmic variations shift upwards with increasing ly, representing that the additive
constant in (1.2) would depend on the Reynolds number; similar behaviour was also
reported in Jiménez & Hoyas (2008) by assessing the turbulence intensity data over
a wide range of Reτ . Note that the range of the logarithmic behaviour is small in
the present work due to the Reynolds number (Reτ ≈ 103). It would be valuable to
examine this trend at high Reτ (i.e. increase the range of ly).

5.3. Nested hierarchies
As discussed earlier, attached u structures with a given ly represent the collective
contributions of the structures with heights less than ly. In addition, these structures are
composed of multiple uniform momentum zones (UMZs). The combination of these
two results demonstrates the concept of nested hierarchies proposed by Adrian et al.
(2000). They suggested that small packets (or UMZs) exist within larger packets due
to the difference in their convection velocities. The smaller packet contained within
the larger one induces the lower streamwise momentum (i.e. strong retardation of
U). Adrian et al. (2000) described such flow patterns as a nested hierarchy which
leads to the presence multiple UMZs; see Adrian et al. (2000, figure 22). Interestingly,
the regions of different streamwise momentum are depicted in a closed loop even
though a certain level of U (i.e. interfaces of UMZs) extends from the left edge to the
right edge of the flow field. This schematic representation resembles the flow patterns
associated with attached u structures.

Figure 11(a,d) shows a side view of sample attached u structures with ly = 0.33δ
and ly = 0.12δ, respectively. As seen, the streamwise length of the shorter structure
in figure 11(d) is lx = 0.8δ which is approximately half of the larger structure in
figure 11(a). As α increases, the size of the structure in figure 11(a) shrinks and
is split into smaller structures that are attached and detached objects with intense
u in figure 11(b,c). The structures in figure 11(c) are nested within the region of
−2.2urms < u < −1.5urms. In other words, a larger structure (or a higher hierarchy)
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contains several smaller structures (or shorter hierarchies less than a given ly) with
intense u. In particular, the split structure close to the wall (0< lx/δ < 0.8) is similar
to the shorter structure identified at α = 1.5 in figure 11(d). This is evident when
we compare the wall-normal variations of U. Figure 11(e,f ) shows the wall-normal
profiles of U at the positions (lx/δ = 0.5 and lz/δ = 0.5) denoted by the vertical
dashed lines in (a) and (d). As seen, the profile of the larger structure (figure 11e)
exhibits several velocity jumps (at least more than two UMZs) across the wall-normal
direction whereas that of the shorter one (figure 11f ) shows one UMZ. In addition,
the velocity deficit is more evident in figure 11(e); the dashed line indicates the
wall-normal profiles of the mean streamwise velocity. At y/δ < 0.03, in particular,
the magnitude of U in figure 11( f ) is similar to that of the mean streamwise
velocity whereas U in figure 11(e) shows the larger velocity deficit. This behaviour
indicates that one attached structure of u with ly is the collective contributions of the
shorter structures (<ly) since intense u regions (figure 11b,c) belong to the taller one
(figure 11a). Recently, Laskari et al. (2018) showed that the increase in the number
of UMZs results in a strong retardation of U close to the wall because additional
UMZs (i.e. additional momentum deficit) are observed in the near-wall region. This
is similar to the result in the present work that taller structures of u have strong
momentum deficit close to the wall leading to the increase of the near-wall peak of
u2

a with ly. Based on the mean streamwise and wall-normal velocities associated with
UMZs, Laskari et al. (2018) reported that a high number of UMZs is associated with
large-scale structures of ejections. Given that the attached structures of negative u can
contain the ejection event (u< 0 and v > 0), this phenomenon can be explained in the
context of nested hierarchies. Note that a low number of UMZs exhibits the sweep
event (u > 0 and v < 0) which is associated with the attached structures of positive u
in the present work. This may indicate that the number of UMZs is relatively small
in the positive-u structures compared to that in the negative-u objects at a given ly.
In future efforts, it would be valuable to explore the attached structures of negative
and positive u and examine their hierarchical nature related to multiple UMZs.

6. Conclusions
We have demonstrated for the first time that the wall-attached structures of u are

energy-containing motions satisfying the attached-eddy hypothesis (Townsend 1976),
not only because they are self-similar to ly, but also because there are two strong
pieces of evidence: (i) the inverse power-law PDF, and (ii) the logarithmic variation
of the streamwise turbulence intensity (u2

a) carried by the identified structures. In
particular, we show the presence of the logarithmic region by reconstructing the
intensity profile from the superposition of the wall-attached structures in spite of
the absence of the logarithmic behaviour in the total turbulence intensity at the
present Reynolds number (Reτ ≈ 1000). In addition, the wall-attached structures of
the cross-stream components (w and v) exhibit the self-similarity with respect to ly.
Although their lengths are relatively shorter than that of u, the widths of all the ui
structures are comparable and linearly proportional to ly over a broad range, indicating
the presence of tall vortical structures. In addition, the spanwise turbulence intensity
contained within the attached structures of w follows the logarithmic variation over
the same range of the streamwise component (100< y+< 0.18δ+). We further explore
the hierarchical nature of the attached u structures that exhibit the hierarchical length
scale distribution (PDF l−1

y ). The wall-normal profile of the instantaneous streamwise
velocity within the attached u structures shows step-like jumps, reminiscent of UMZs;
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FIGURE 11. (Colour online) (a–d) Side view of isosurfaces of the attached u structures
(u = −αurms). (a) A sample attached structure of u (α = 1.5) with ly = 0.33δ. (b,c)
Isosurfaces of the structure in (a) at higher thresholds; α = 1.9 (b) and 2.2 (c). (d) A
sample attached structure of u (α = 1.5) with ly = 0.12δ. (e,f ) Wall-normal profiles of U
for the structures in (a) and (d) obtained at lx/δ= 0.5 and lz/δ= 0.5 (denoted by vertical
dashed lines in (a,d). The dashed line represents the mean streamwise velocity.

in particular the number of UMZs within the objects increases with increasing ly,
representing that the structures of u are composed of multiple UMZs (or nested
hierarchies in a sense of hairpin packet paradigm). Furthermore, the magnitudes of u2

a
increase with increasing ly, and especially those of the near-wall peak are proportional
to ln(l+y ). These results indicate that u2

a is made up of the collective contribution of
the attached u structures with heights less than a given ly. Although we have identified
the attached structures in a TBL for only a single Reynolds number, their hierarchical
features ensure that they will also be present in high-Reynolds-number flows. We
anticipate that examining the Reynolds-number effects on attached structures will
improve the predictive model (Marusic, Mathis & Hutchins 2010) and that exploring
their dynamics will facilitate deeper insights into the multiscale energy cascade of
wall turbulence.
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Appendix A. Effects of the structure-identification threshold
To address the influence of the threshold value α, we plot the population density,

size distributions and reconstructed turbulence intensity over a range of thresholds
from 1.4 to 1.7 where the percolation transition occurs (figure 2a). Here, we only
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FIGURE 12. (Colour online) The percolation threshold effect on the number of u clusters
per unit wall-parallel area as a function of ymin and ymax. The colour contour is consistent
with that in figure 2(b). The line contour is 0.0016 when α = 1.3 (orange), 1.4 (brown),
1.5 (black), 1.6 (blue) and 1.7 (green).
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FIGURE 13. (Colour online) (a,b) Joint PDFs of the logarithms of the sizes (lx and lz) of
the attached structures and of the height (ly). The colour contour is consistent with that in
figures 4 and 5. The line contour is 0.004, 0.04 and 0.4 with varying α. (c) Wall-normal
variation of u2

as
+

with varying α: α = 1.3 (orange), 1.4 (brown), 1.5 (black), 1.6 (blue)
and 1.7 (green). The red dashed line indicates the logarithmic variation. The inset shows
the corresponding indicator function Ξ1.

include the results of the u clusters to avoid any repetition. Figure 12 shows the
threshold effect on the population density of clusters according to ymin and ymax.
Regardless of α, two distinct regions are observed: the wall-attached and detached
groups. As discussed in § 2, there is a weak peak at y+min ≈ 7 and y+max ≈ 50. The
structures in the vicinity of this peak can be the fragments of large attached structures
or objects that are developing into larger objects. Figure 13(a,b) illustrates the
distribution of the sizes of the attached structures by varying α. The contour lines
collapse well, indicating that the self-similarity of the structures with respect to their
height (ly) is conserved. Figure 13(c) represents the threshold effect on the logarithmic
behaviour of the reconstructed streamwise turbulence intensity u2

as
+

. Although the
profile of u2

as
+

shifts upwards with increasing α, the logarithmic variation is observed
with a similar slope at each α. In the inset, it is evident that the indicator function
(Ξ1) has a constant value over the region 100< y+ < 0.18δ+ (shaded region).
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