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Abstract

Effect of relativistic nonlinearity on stimulated Raman scattering (SRS) of laser beam propagating carrying null intensity in
center [hollow Gaussian beam (HGB)] is studied in collisionless plasma. The construction of the equations is done
employing the fluid theory which is developed with partial differential equation and Maxwell’s equations. The
phenomenon of SRS is shown along with the excitation of seed plasma wave considering relativistic nonlinearity. The
power of plasma wave is observed for higher order of HGB. The Raman back reflectivity is studied numerically for
various orders of hollow Gaussian laser beam (HGLB) and the numerical analysis shows that these parameters play
vital role on reflectivity characteristics. It is observed that the Raman back reflectivity is less for the higher order of HGLB.
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1. INTRODUCTION

The field of relativistic laser plasma interaction has branched
out in two main directions first, motivated by laser fusion and
fast ignition and second driven by particle acceleration (Hora
et al., 2013). In addition to that the studies of laser matter in-
teractions have much relevance to basic plasma physics, ad-
vanced radiation sources, relativistic nonlinear optics and
high density physics. All these applications need an efficient
coupling between laser and plasma, which is governed by
nonlinear processes during the interaction. The interaction
of high power laser pulse with plasmas leads to various pro-
cesses like, stimulated Raman scattering (SRS) (Kruer, 1974;
Paknezhad & Dorranian 2011; Paknezhad, 2013b), stimulat-
ed Brillouin scattering (Kruer, 1974; Sharma et al., 2009;
Gao et al., 2010; Paknezhad, 2013a), filamentation (Kruer,
1974), and harmonic generation (Milchberg et al., 1995;
Sharma & Sharma 2009a; 2009b; Gupta et al., 2007), which
affects the laser–plasma coupling. In the context of efficient
laser–plasma coupling the scattering instabilities is of partic-
ular significance. These instabilities can modify the intensity
distribution, affecting the uniformity of energy deposition.
They reduce the laser–plasma coupling efficiency and pro-
duce energetic electrons. The SRS has largely been studied
by many investigators. SRS of beat wave of two counter-

propagating X-mode lasers in a magnetized plasma has
been studied by Verma et al. (2014). Sharma et al. (2013)
have studied the effect of laser beam filamentation on coex-
isting stimulated Raman and Brillouin scattering. Suppres-
sion of SRS due to localization of electron plasma wave
(EPW) in laser beam filaments has been studied by Sharma
and Sharma (2009a; 2009b). Purohit et al. (2012) have inves-
tigated the filamentation of laser beam and suppression of
SRS due to localization of EPW. Recently, experimental
work related to Raman plasma amplifiers has been performed
by researchers (Turnbull et al., 2012a; 2012b) in which SRS
and SBS have been studied simultaneously.

Besides, several phenomena of the laser–plasma interaction
have been studied considering various spatial profile of laser
beam such as; Gaussian beam (Akhmanov et al., 1968),
super Gaussian beam (Grow et al., 2006), dark hollow Gauss-
ian beams (HGBs) (Sodha et al., 2009a; 2009b). The self-
focusing of HGBs or hollow Gaussian laser beams (HGLBs)
(Sodha et al., 2009a; 2009b; Gill et al., 2010) and cross focus-
ing of HGLBs (Gupta et al., 2011a; 2011b) has been investi-
gated theoretically in plasmas. Moreover, investigations
related to HGLB have received much attention theoretically
as well as experimentally due to its scope in wide area of
science and technology. Numerous work has been done for
the study of various laser plasma phenomena using dark
HGB. Stimulated Raman backscattering of filamented
HGLBs has been studied by Singh and Sharma (2013).
Stimulated Brillouin backscattering of filamented HGLB
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has been observed by Sharma & Singh (2013). Sodha et al.
(2009a; 2009b) have studied the focusing of dark hollow
Gaussian electromagnetic beams in a plasma. Focusing of a
dark hollow Gaussian electromagnetic beam in a magneto-
plasma has been investigated by Sodha et al. (2009a;
2009b). Relativistic and ponderomotive effects on evolution
of dark hollow Gaussian electromagnetic beams in a
plasma has been studied by Gill et al. (2010). Effect of
relativistic self-focusing on plasma wave excitation by a
hollow Gaussian beam has been investigated by Gupta
et al. (2011b). Cross-focusing of two HGLBs in plasmas is
observed by Gupta et al. (2011a). Singh et al. (2013) studied
the THz generation by cosh-Gaussian lasers in a rippled
density plasma. Saini and Gill (2006) have studied the self-
focusing and self-phase modulation of an elliptic Gaussian
laser beam in collisionless magnetoplasma.
Further, it is very well known that the nonlinearity in the

refractive index governs the propagation of laser beam in
the plasma through distinct mechanisms like thermal, relativ-
istic, and ponderomotive etc. When the laser propagates in
the plasma the generated nonlinearity depends upon laser
pulse duration and electron and ion plasma period. In the sit-
uation when the laser beam follows the time regime τ< τpe
relativistic nonlinearity is created. Here τ is laser pulse dura-
tion and τpe is the electron plasma period. This nonlinearity is
setup almost immediately. The relativistic dependence of
electronic mass on the quiver speed of electrons in the field
of the beams causes a modification in the plasma frequency
ωp. It is the change of the plasma frequency which is respon-
sible for the attraction or repulsion of the beams. The theoret-
ical work related to the relativistic nonlinearity was first
started by Max et al. (1974) and Sun et al. (1987). The exper-
imental observation on relativistic self-focusing of a laser
beam was reported by Borisov et al. (1992). Growth of
laser ripple and its influence on plasma wave have been in-
vestigated by Purohit et al. (2004) taking into account the rel-
ativistic nonlinearity. In their work the radially symmetrical
ripple is considered to be superimposed on an intense laser
beam in collisionless unmagnetized plasma. Effect of relativ-
istic mutual interaction of two laser beams on the growth of
laser ripple in plasma is studied by Purohit et al. (2005). They
have shown that one laser beam affects the dynamics of the
second beam and a mutual nonlinear interaction has shown
to be take place. Relativistic Landau damping of electron
plasma waves has been studied by Bers et al. (2009). The for-
mulation of the collisionless EPW damping rate in a relativ-
istic thermal equilibrium plasma is presented, and evaluated
for such waves in both forward and backward SRS. Excita-
tion of an upper hybrid wave by a high power laser beam
in plasma has been studied by Purohit et al. (2008). The am-
plitude of the upper hybrid wave is shown to be nonlinearly
coupled with the relativistic laser beam propagating perpen-
dicular to the static magnetic field and having its electric
vector polarized along the direction of the static magnetic
field. Relativistic self-focusing and its effect on stimulated
Raman and stimulated Brillion scattering has been studied

by Mahmoud & Sharma (2001). The effect of finite laser
beam size and that of scattered beam and relativistic self-
focusing of the pump laser beam on Raman and Brillion re-
flectivity have also been studied, including pump depletion.
Filamentation of a relativistic short pulse laser in a plasma is
studied by Kumar et al. (2006). They have studied the fila-
mentation instability under the combined effect of both rela-
tivistic and ponderomotive nonlinearity. SRS in laser–plasma
interaction has been studied by Sharma and Gupta (2006)
considering both relativistic and ponderomotive nonlineari-
ties simultaneously. The effect of filamentation on SRS
back reflectivity has been shown in their work. All the
above mentioned works deal the laser beam propagation
with relativistic nonlinearity and treated plasma wave excita-
tion, upper hybrid wave excitation, Raman and Brillion scat-
tering, etc. but none of these works treated Raman scattering
of HGB considering relativistic nonlinearity.
In the present work, we study the effect of relativistic non-

linearity on the SRS of dark cylindrical HGBs, in which the
irradiance along the axis is zero, and the maximum is away
from the axis. The motivation of this study is the work
done by Singh and Sharma (2013). The central focus here
is to observe the effect of relativistic nonlinearity on the
stimulated back Raman scattering process from HGB. In
the present work, we have used a paraxial like approach; sim-
ilar to one set by Akhmanov et al. (1968) and further estab-
lished by Sodha et al. (1976) has been used in the present
analysis. The relativistic change in the mass of electron
causes a redistribution of the plasma density. The plasma
channel, thus produced, guides the HGLB. However, the
EPW excitation is studied and SRS has been explored in
the presence of relativistic nonlinearity. Raman back reflec-
tivity for the different orders of self-focused HGLBs in col-
lisionless plasma, considering relativistic nonlinearity has
been numerically calculated.
The paper is organized as follows: Section 2 is devoted to

the basic equations for general propagation of HGLB with
relativistic nonlinearity and excitation of EPW has been pre-
sented. In Section 3, the equations governing the dynamics of
SRS process has been given. The discussions of numerical
results are presented in Section 4. A brief conclusion of in-
vestigation is presented in Section 5.

2. EXCITATION OF PLASMAWAVE IN PRESENCE
OF HGLB

To study Raman scattering of a HGLB propagating in colli-
sionless plasma, first the excitation process of EPW through
the same is to be studied, since the amount of scattered light
is proportional to the plasma wave’s amplitude. Therefore, in
this section first the propagation of high power HGLB
through the plasma is being studied and hence the excitation
process of plasma wave is presented considering relativistic
nonlinearity. For this purpose, a high power HGLB of fre-
quency ω0 and the wave vector k0 is considered to be propa-
gating in hot, collisionless, and homogeneous plasma in the
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z-direction. The irradiance distribution (z= 0) of the incident
beam is

E0·E∗
0 z=0

∣∣ = E2
00(r2/2r20)2m exp(−r2/r20) (1)

where the direction of propagation has been assumed to be
along the z-axis and r refers to radial coordinate of the cylin-
drical coordinate system, r0 is the spot size of the beam, re-
spectively, E0 is a real constant characterizing the amplitude
of the HGLB, respectively, E00 refers to the complex ampli-
tude of the beam which denotes the electric field maximum at
rmax = r0

����
2m

√
, corresponding to z= 0. The positive integer

number m decides order of HGLB which characterizes the
shape of the HGLB and position of its irradiance maximum.
Equation (1) represents fundamental Gaussian beam of
width r0 for m= 0. We can write the following equation for
the field inside the plasma

∇2E0 + ω2
0

c2
1− ω2

p

ω2
0

( )
E0 = 0 (2)

where ωp is the plasma frequency. The wave equation govern-
ing the electric vector of the HGLB in plasma can bewritten as
assuming the variation of electric field in terms of vector po-
tential as

E0 = A0(x, y, z) e−ik0z. (3)

For the considered HGLB (in a steady state) the vector poten-
tial A0 satisfies the wave equation as

2ik0
∂A0

∂z
+ iA0

∂k0
∂z

= ∂2A0

∂r2
+ 1

r

∂A0

∂r

( )
+ ω2

0

k0c2
(ε− ε0) (4)

where k0(z) = (ω0/c)
�����
ε0(z)

√
is the wave number of the

system, c is the speed of light in vacuum, and ε0 is the linear
part of the plasma dielectric constant given by

ε0 = 1− ω2
pe

ω2
0

(5)

where, ωpe= (4πnN0e
2/mc)

1/2 is the plasma frequency. Here
N0 is the electron density in absence of laser beam; e and mc

are the charge and relativistic mass of the electron, respective-
ly. Substituting the relativistic mass (mc= γm0) where m0 is
the electron rest mass, and ωp= (4πN0e

2/m0)
1/2 we have,

ε = 1− ω2
p

γω2
0

(6)

where the relativistic factor γ is given by,

γ = 1+ e2

c2m2
0ω

2
0

E0·E∗
0

[ ]1/2
(7)

Further, the complex amplitude A0(r, z) may be expressed as,
A0(r, z)=A0(r, z)exp[−ik0(z)S0(r, z)] where S0(r, z) is the ei-
konal associated with the HGLB. Now putting A0 in Eq. (4)
and segregating the real and imaginary parts from the resulting
equation, we get the following set of equations as

2
∂S0
∂z

+ ∂S0
∂z

( )2

= ω2
0ε

c2k20
+ 1

k20A0

∂2A0

∂r2
+ 1

r

∂A0

∂r

( )
(8)

∂A2
0

∂z
+ ∂S0

∂r
∂A2

0

∂r
+ A2

0
∂2S0
∂r2

+ 1
r

∂S0
∂r

( )
= 0 (9)

Moreover, in Gaussian beams, we expand all the parameters
around central point where the intensity is maximum that is,
r= 0. However, in case of HGLB, the irradiance is not max-
imum at the center, thus it is better to define a point along the
radial distance of the beam at which all the power of the beam
is supposed to be concentrated, let say r = r0 f0(z)

����
2m

√
which

indeed justified in the paraxial like approximation, where f0(z)
is the beam width parameter for the HGLB. We expand all the
parameters around this point and define this point η as

η =
[
(r/r0 f0) −

����
2m

√ ]
(10)

Here, the condition η≪
����
2m

√
is appropriate like the case of

paraxial theory. The conversion indicates as

∂
∂z

= ∂
∂z

−
( ����

2m
√ + η

)
f0

d f0
dη

∂
∂η

(11)

∂
∂r

= 1
r0 f0

∂
∂η

(12)

The appropriate parameters like eikonal, ε, and irradiance may
be expanded around the maximum of the HGLB. So,

ε(η, z) = ε0(z) + f(E.E∗) (13)

where ε0(z) is given by Eq. (5) and f(E.E
∗
) is given as

f(E.E∗) = ω2
p

ω2
0

1− 1

1+ e2/c2m2
0ω

2
0

( )
E0.E∗

0

[ ]
{ }

(14)

Moreover, expanding the effective dielectric function using
Taylor series around the irradiance maximum η= 0 of the
HGLB as

ε(η, z) = εf (η = 0) + η2ε2(η = 0) (15)

where ε2 is defined as ∂ε/∂η2. The expressions for these
coefficients εf and ε2 have been derived later. Substitution
for ε(η, z) from Eq. (15) in real and imaginary part equations
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that is, Eqs. (8) and (9) leads to

1

r20 f
2
0

∂S0
∂η

( )2

+ 2∂S0
∂z

= 1

k20A0r20 f
2
0

1

( ����
2m

√ + η)
∂A0

∂η
+ ∂2A0

∂η2

[ ]

+ η2
ω2
0(ε2)
c2k20

(16)

∂A2
0

∂z
+ A2

0

r20 f
2
0

∂2S0
∂η2

+ 1

( ����
2m

√ + η)
∂S0
∂η

[ ]
+ 1

r20 f
2
0

∂A2
0

∂η
∂S0
∂η

= 0 (17)

One can express solution of Eq. (16), with the paraxial approx-
imation η≪

����
2m

√
as

A2
0 =

E2
0

22mf 20

( ����
2m

√
+ η

)4m
exp

(
−

( ����
2m

√
+ η

)2)
(18)

with

S0(η, z) =
( ����

2m
√ + η

)2
2

β(z) + φ(z)

where

β z( ) = r20 f0
d f0
d z

(19)

Here φ(z) is an arbitrary function of z. As we assumed that
nearly all the power of the beam is concentrated in the
region around η= 0, there is certainly some power of the
beam beyond this limitation, which is accounted for in an ap-
proximate manner by Eq. (18).
Further, the present study considers a plasma, character-

ized by relativistic nonlinearity caused by the relativistic
change in the mass of electron. To derive the value of the co-
efficients εf and ε2 given in Eq. (15), it is convenient to
expand the solution for A2

0 as a polynomial in η2; for further
algebraic analysis,

A2
0 = d0 + d2η

2 (20)

where d0 and d2 are expressed as

d20 =
E2
0

f 20
m2m exp(−2m) (21)

d22 = 2E2
0

f 20
m2m exp(−2m) (22)

Following the paraxial like approximation one can expand
the dielectric function in axial and radial parts around the
maximum of the HGLB. Thus, from the set of Eqs. (6, 7)
and (20–22), one finds

εf (η = 0) = 1− ω2
p

ω2
0

1

(1+ d0)1/2
(23)

ε2(η = 0) = − ω2
p

2ω2
0

d2
(1+ d0)3/2

(24)

The dimensionless beam width parameter f0 can be obtained
using the boundary conditions at z= 0 as f0= 1 and df0/
dz= 0 (Akhmanov et al., 1968) as

∂2 f0
∂ξ2

= 4

f 30
− R2

d0ω
2
pd2

2ω2
0k

2
0ε0 f0(1+ d0)3/2

(25)

where Rd0 = k0r20, ξ= z/Rd0. The above Eq. (25) gives the
variation of beam width parameter with the normalized dis-
tance and Eq. (18) provides the intensity profile of the laser
beam in the plasma along with the radial direction when rela-
tivistic nonlinearity is operative. We perform numerical com-
putation of Eqs. (18) with (25). The equation has been solved
for an initial plain wave front and the boundary conditions for
HGB, and the results are presented in Section 4.
Further, the propagation of the laser beam through the

plasma leads the variation of density of the plasma channel.
The relativistic mass change of electron is responsible for the
change in the density of the plasma and hence changes in the
refractive index of the medium. As a result the laser beam self
focuses in the plasma. Here, it is important to mention that
the seed EPW exists in the plasma nonlinearly interacts
with the propagating laser beam and as a result the plasma
wave gets excited. The excitation process of EPW in the pres-
ence of relativistic nonlinearity can be described with the
equations presented as follows.

(a) Momentum equation

mc
∂V
∂t

+ (V·∇)V
[ ]

= −eE − e

c
V × B− 2ΓemcV

− 3K0Te
N

∇N (26)

where the Landau damping factor is

2Γe ≃

��
π

8

√
ωp

k3λ3d
exp − 3

2
− 1

2k2λ2d

( )
(27)

where λd= (kβT0/4πN0e
2)1/2 is the Debye length V is the

velocity of electron fluid, N is the instantaneous electron
density, E the electric and B the magnetic field vectors,
and k is the wave number of the electrostatic wave.

(b) Equation of continuity

∂N
∂t

+∇.(NV) = 0, (28)

(c) Poisson’s equation for electric field

∇·E = −4πeN. (29)
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Using the customary techniques (Akhmanov et al., 1968)
and factorizing the density into equilibrium and perturbed
part as N= N0e+ ne0 the equation describing the electron
density variation as

∂2ne0
∂t2

− v2th∇
2ne0 + 2Γe

∂ne0
∂t

+ ω2
p

γ
ne0 = 0 (30)

The solution of the form ne0= ne00(r, z)exp(iωt− ikz) satis-
fies the dispersion relation

ω2 = ω2
p

γ
+ k2v2th (31)

Further, assuming ne00(r, z) in the form of exp(−ikS) in Eq.
(8) and splitting the real and imaginary quantities, we get the
real part equation as

2
∂S
∂z

( )
+ ∂S

∂r

( )2

= 1
k2ne00

∂2ne00
∂r2

+ 1
r

∂ne00
∂r

( )
+ ω2

p

k2v2th
1− 1

γ

( )
(32)

and imaginary part equation as

∂n2e00
∂z

+ ∂S
∂r

∂n2e00
∂r

+ n2e00
k2

∂2S
∂r2

+ 1
r

∂S
∂r

( )
+ 2Γe

ω n2e00
kv2th

= 0 (33)

The term S describes the eikonal for plasma wave. Here, to
deal the HGLB the transformation of (r, z) coordinate into
(η, z) coordinate is required. So, using the Eq. (10) we
made the transformation. However, using paraxial like ap-
proximation Eqs. (32) and (33) can be solved and for that
we assume the initial radial variation of density perturbation
and the solution as

n2e00 =
N2
e00

22mf 2e

( ����
2m

√
+ η

)4m r0 f0
a fe

( )4m

exp
[
−

( ����
2m

√
+ η

)2]
× exp[−ki(z)] (34)

S(η, z) =
( ����

2m
√ + η

)2
2

r20 f
2
0 β(z) + f(z), β(z) = 1

fe

d fe
dz

(35)

where fe is a dimensionless parameter of the electron
plasma wave, a is the initial beam width of plasma wave, ki=
2Γeω/kV2

th is the damping factor and N2
e00 is the magnitude of

the excited plasma wave. Further, we have used the following
boundary conditions (for an initially plane wave front): At
dfe/dz= 0 and fe= 1 and S= 0 z= 0. Substituting, Eqs.
(34) and (35) in Eq. (32) and equating the coefficients of
η2 on both sides, we get the equation for fe as

∂2 fe
∂ξ2

= R2
d0 fe
f 20

1

k2r40 f
2
0

3+ r0 f0
a fe

( )4
[ ]{ }

− R2
d0 fe

2ω2
0f

2
0

ω4
p

k2V2
th

d2
(1+ d0)3/2

(36)

where Rd= ka2, Further, the amplitude of the density pertur-
bation at finite z is to be obtained, for that purpose, Eq. (34)
has to be solved numerically with Eq. (36) and results are
given in Section 4.

3. SRS

SRS governs the amount of laser energy that can be propagat-
ed over long distances through plasma without being lost to
scattering and electron heating. SRS is the process in which
light from an incident pump pulse is scattered by the electron
density perturbations of a plasma wave. If the wave has fre-
quency ω2

p = 4πn0e2/m, with electron charge e, mass m
and number density n0 and the incident light’s frequency is
ω0, then light will be scattered from noise to frequencies
ω1= ω0− ωp and ω1= ω0+ ωp, which are called the
Stokes and anti-Stokes lines. The beating between the ω0

light and that scattered to ω1 resonantly drive a plasma
wave, which creates a feedback loop, as the amount of scat-
tered energy is proportional to the amplitude of excited
plasma wave. To study the scattering of HGLB, first we
split the total electric field of the pump wave into two parts
scattered and remaining, and further only the scattered part
of the laser beam is treated to observe the beam width param-
eter and reflectivity of the same. Thus, the high frequency
pump wave is propagating through the plasma is considered
to have total electric field ET as

ET = E0 exp (iω0t) + Es exp (iωst) (37)

where E0 is the electric field of the pump laser beam and ES,
electric field of the scattered wave. The electric field ES orig-
inates owing to scattering of the pump beam off the plasma
wave. Thus, the wave equation

∇2ET −∇
(
∇·ET

)
= 1

c2
∂2ET

∂t2
+ 4π

c2
∂JT
∂t

(38)

where JT is the total current density vector corresponding toET.
Comparing the zeroth order terms in above equation, one gets
Eq. (2) and equating the terms at scattered frequency. Further,
separating the terms at different frequencies, one obtains

∇2Es + ω2
s

c2
1− ω2

p

ω2
s

1
γ

( )
Es = 1

2

ω2
p

c2
ωs

ω0

n∗

N0
E0 (39)

Further substituting Es as

Es = Es0(r, z) exp(iks0t) + Es1(r, z) exp(−iks1t) (40)

where

k2s0 =
ω2
s

c2
1− ω2

p

ω2
s

( )1/2

= ω2
s

c2
���
εs0

√
(41)
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and ks1 and ωs follows

ωs = ω0 − ω, ks1 = k0 − k

Substituting Eq. (40) in (39), one gets

−k2s0Es0 + 2iks0
∂Es0

∂z
+ ∂2

∂r2
+ 1

r

∂
∂r

( )
Es0

+ω2
s

c2
εs0 +

ω2
p

ω2
s

1− 1
γ

( )[ ]
Es0 = 0

(42)

−k2s1Es1 − 2iks1
∂Es1

∂z
+ ∂2

∂r2
+ 1

r

∂
∂r

( )
Es1

+ ω2
s

c2
εs0 +

ω2
p

ω2
s

1− 1
γ

( ){ }

Es1 =
ω2
pωsn∗E0

2c2ω0N0
e(−ik0S0)

(43)

Moreover, using Es0 = Es00(r, z) e+ikSc in Eq. (42) and sepa-
rating the real and imaginary parts, we get the two equations as

2∂Sc
∂z

+ ∂Sc
∂r

( )2

= 1

k2s0Es00

∂2

∂r2
+ 1

r

∂
∂r

( )
Es00 +

ω2
p

εs0ω2
s

1− 1
γ

( )
(44)

∂E2
s00

∂z
+ E2

s00
∂2Sc
∂r2

+ 1
r

∂Sc
∂r

( )
+ ∂Sc

∂r
∂E2
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The solution of these equations can be written as

E2
s00 =

B2
1

22mf 2s

( ����
2m

√
+ η

)4m r0 f0
b0 fs

( )4m

exp
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− (
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√
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]
(46)

Sc(η, z) =
( ���

2n
√ + η

)2
2

r20 f
2
0 β(z) + f(z), β(z) = 1

fs

d fs
dz

(47)

where B1 is the constant determined by the boundary condi-
tions, fs is a dimensionless parameter of the backscattered
beam, Sc is the eikonal of the scattered beam and b0 is the ini-
tial beam width of scattered beam. In the presence of relativis-
tic nonlinearity the dielectric constant at scattered frequency

εs(η, z) = ε fs (η = 0) + η2ε2s(η = 0) (48)

Next, using the paraxial like approximation the dielectric func-
tion can be expanded around the maximum of the HGLB.
Thus, we get

ε fs (η = 0) = 1− ω2
p

ω2
s

1

(1+ d0)1/2
(49)

ε2(η = 0) = − ω2
p

2ω2
s

d2
(1+ d0)3/2

(50)

The boundary conditions dfs/dz= 0, fs= 1 and Sc= 0 at z= 0
is used for initially plane wave front. Using Eq. (44) and com-
paring the coefficients of η2 one gets

∂2 fs
∂ξ2

= R2
d0 fs
f 20

1

k2s0r
4
0 f

2
0

3+ r0 f0
b0 fe
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{ }[ ]
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2ω2
s f

2
0

ω4
p

k2s0c
2

d2
(1+ d0)3/2

(51)

where R2
ds = k2s0 b

2
0 is the diffraction length of the scattered ra-

diation. It is clear from Eq. (34) that the plasma wave is
damped as it propagates along the z-axis. Consequently the scat-
tered wave amplitude should also decrease with increasing z.
Thus, the appropriate boundary condition would be

ES = ES0(r, z)e+iks0z + ES1(r, z)e−iks1z = 0 at Z = Zc (52)

If L is the interaction length then length Zc is chosen (Zc=
L− z) sufficiently large such that ne00 is nearly zero. Substi-
tuting Zc in Eq. (40), one gets

1
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= 1

r20 f
2
0 (Zc)

+ 1
a2f 2e (Zc)

(53)

and
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(54)

The back reflectivity R= |ES|
2/|E00|

2 is calculated by using
the above set of equations

R =
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The above equation expresses the reflectivity of back scattered
beam. The SRS reflectivity can be calculated numerically using
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the relevant above set of equations. It is clear from the above
equation that the reflectivity R depends upon the beam width
parameter of incident pump wave, EPW, and scattered wave.

4. NUMERICAL RESULTS AND DISCUSSION

In the present work, the phenomena of SRS of HGLB have
been studied considering relativistic nonlinearity in collision-
less plasma. In the process the weak EPW propagating in the
z-direction is observed to be nonlinearly coupled with the
laser beam. The nonlinear coupling between these two waves
leads to excitation of the EPW. This pump beam scattered by
the EPW and back reflectivity has been calculated. In this pro-
cess, first we see the propagation of HGLB and the focusing of
beams depends upon dielectric function corresponding to the
relativistic nonlinearity. The dielectric function is modified
due to the presence of high power HGLB in the plasma. In
the analysis all the relevant parameters have been expanded
around the axis of maximum irradiance of the HGLB in para-
xial like approach. Equations (18) and (19) show the intensity
profile of HGLB in plasma along the radial direction in the
presence of relativistic nonlinearity, while Eq. (25) determines
the focusing/defocusing of the HGBs, along the distance of
propagation in the plasma. The numerical calculation have
been done with using following typical laser beam parameters:
The HGLB power flux (1022 W cm−2), r0= 15 μm, ω0=
1.776 × 1014 rad s−1, and plasma density n= 0.35 ncr., the
electron thermal speed vth= 0.05c. The boundary condition
used here for an initial plane wave front of the laser beams,
f0= 1, df0/dξ= 0, and S0= 0 at ξ= 0.

Further, Eq. (25) explains the beam dynamics in plasma
with relativistic nonlinearity taken into account and decides
the propagation behavior of HGLB inside the plasma. Equa-
tion (25) is nonlinear second order differential equations
governing the normalized beam width parameter f0 in the
plasma. The first term on the right-hand side of Eq. (25)
represents spatial dispersion and is responsible for diffrac-
tional divergence. On the other hand, second term is nonlin-
ear in nature leading to self-focusing of the beam.
Analytical solutions to these equations are not possible.
Thus, we go for the numerical computational techniques
to study beam dynamics. The variation of initial intensity
of the HGLB for the order m= 2, has been shown in
Figure 1a at ξ= 0. It is obvious from the figure that in para-
xial regime the intensity of laser beam is maximum at η= 0.
Similarly the laser profile has also been shown to the first
focal point for ξ= 0 and the results is shown in the form
of Figure 1b. Figure 2a illustrates the focusing of HGLB
for the purely Gaussian mode (m= 0) of HGLB when rela-
tivistic nonlinearity is operative in the system. Figure 2a
clearly displays the oscillatory self-focusing in the presence
of relativistic nonlinearity, while Figure 2b gives the effect
of relativistic nonlinearity on the propagation of HGLB
for m= 1 mode. Figure 2c depicts the dynamics of laser
beam for m= 2 mode and Figure 2d give the same for
m= 3 mode of propagation of HGLB.

To observe the consequences of the propagation of laser
beam and numerical appreciation of them, the excitation of
EPW has been studied. It is clearly seen that the EPW excited
due to the coupling between seed plasma wave and pump
beam. Since the propagation of high power HGLB leads to

Fig. 1. Normalized intensity of HGLB for laser power αE2
00 = 1.6 when only relativistic nonlinearity is operative; (a) at ξ= 0, (b) at the

first focal point.
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the modification of electron density in the plasma. In the pre-
sent formulation the density profile of the EPW is governed
by Eq. (34) with Eq. (35). The variation of initial intensity of
the HGLB for the orderm= 2 has been shown in Figure 3a at
ξ= 0. It is obvious from the figure that in paraxial regime the
intensity of laser beam is maximum at η= 0. Figure 3b ex-
presses the EPW at first focal point. It is clear from Eq.
(36) that the dynamics of EPW is influenced by the coupling
term. The beam width parameter of EPW controls the

intensity profile of the excited EPW. Therefore, Eq. (36)
has been numerically calculated to observe the dynamics of
the EPW for various orders of HGLB for the same chosen
parameters as previously. The beam width parameter fe of
the EPW as a function of dimensionless distance of propaga-
tion has been computed with relativistic nonlinearity and the
results has been presented in the form of Figure 4.
Figure 4b–4d depicts the excited EPW for m= 1, 2, 3
modes of HGLB, respectively.

Fig. 2. Normalized intensity of HGLB with normalized distance (ξ= z/Rd0) for various order of propagation for laser power αE2
00 = 1.6

when only relativistic nonlinearity is operative; (a) m= 0, (b) m= 1, (c) m= 2, and (d) m= 3.

Fig. 3. Normalized intensity of EPW when relativistic nonlinearity is operative; (a) at ξ= 0, (b) at the first focal point.
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In addition, Eq. (51) shows that the beam width parameter
of scattered HGLB depends upon the beam width parameter
of EPW and incident HGLB. The beam width parameter fs of
the scattered beam as a function of dimensionless distance of
propagation have been shown with relativistic nonlinearity
by Eq. (51). Moreover, Eq. (55) gives the reflectivity against
the distance of propagation. We have numerically solved Eq.
(55) and the results are given in the form of Figure 5. Figure 5
clearly depicts the change in the back reflectivity with nor-
malized distance for different modes of propagation of
HGLB. The back reflectivity is displayed with normalized

distance ξ for different order of HGLB. It is found that the
reflectivity is higher at the points where the HGLB focuses.
It is also shown that as we increase the order of the HGLBs
the reflectivity decreases because the focusing of HGLBs de-
creases with increasing order of the beam.

In conclusion, the SRS of HGLB has been presented in the
present work. It is shown that all the modes of propagation of
HGLB contribute to the reflectivity of the propagating pump
HGLB. In the scattering process of HGLB when the relativistic
nonlinearity is taken into consideration the intensity profile is
modified due to the presence of higher modes of propagation.
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