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We consider a model-averaged forecast-based estimate of the output gap to measure
economic slack in 10 industrialized economies. Our measure takes changes in the
long-run growth rate into account and, by addressing model uncertainty using equal
weights on different forecast-based estimates, is robust to different assumptions about the
underlying structure of the economy. For all 10 countries in the sample, we find that the
estimated output gap has much larger negative movements during recessions than positive
movements in expansions, suggesting business cycle asymmetry is an intrinsic
characteristic of industrialized economies. Furthermore, the estimated output gap is
always strongly negatively correlated with future output growth and unemployment and
positively correlated with capacity utilization. It also implies a convex Phillips Curve in
many cases. The model-averaged output gap is reliable in real time in the sense of being
subject to relatively small revisions.
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1. INTRODUCTION

There is relatively little consensus in macroeconomics about how best to mea-
sure economic slack. Even settling on the output gap (i.e., the difference between
actual and potential log real GDP for an economy) as the preferred measure,
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there remains the challenge of defining and calculating “potential.” Common
decomposition methods that assume a linear structure for the economy, such as
the widely used Hodrick–Prescott (1997) (HP) filter, an unobserved components
(UC) model with uncorrelated components [Clark (1987)], and a UC model with
correlated components [Morley et al. (2003)], can lead to very different estimates
of the output gap, as shown by, for example, Morley et al. (2003) or Perron and
Wada (2016). A recent study by Hamilton (Forthcoming) also highlights several
drawbacks of the HP filter, in particular the fact that it can generate cycles with
spurious dynamics. Furthermore, there is a vast literature that documents a possi-
ble nonlinear structure for the economy [see, e.g., Hamilton (1989), Kim (1994),
Kim and Nelson (1999), Kim et al. (2005), and Sinclair (2010)]. However, as we
show in our analysis, formal hypothesis tests provide only mixed evidence that
nonlinear models of aggregate output are preferable to linear models. Given a lack
of strong evidence for a single empirical specification of the economy that out-
performs all other models, we propose a model-averaged forecast-based estimate
of the output gap as the appropriate measure of economic slack.

In terms of the forecast-based approach adopted in this paper, it is based on the
idea that the presence or absence of economic slack directly implies whether an
economy can or cannot grow faster than its long-run average growth rate without
necessarily leading to subpar growth in the future. In particular, if the optimal
forecast of future output growth is above average, then output will be estimated
to be below potential and vice versa. This approach implicitly defines “potential”
as the stochastic trend of log real GDP and has its origins in the influential study
by Beveridge and Nelson (1981, BN hereafter).

Given a forecast-based approach to estimating the output gap, it is necessary
to confront the question of how best to construct a reasonable forecast of future
output growth. BN consider low-order ARMA models, which result in small out-
put gaps, often with counterintuitive sign (e.g., the estimated gap is often positive
during recessions). Motivated by the different results and mixed evidence for dif-
ferent models discussed above, as well as the forecasting literature and recent
studies on estimating the output gap by Garratt et al. (2014) and Morley and Piger
(2012), we consider model-averaged forecasts instead of relying on one particu-
lar time series model or class of models. Importantly, we follow Morley and Piger
(2012) by including nonlinear time series models in the model set under consid-
eration. Notably, this approach will not necessarily result in output gap estimates
of counterintuitive sign as long as the model-averaged forecasts imply negative
serial correlation in economic growth at longer horizons.

For our analysis, we measure economic slack in 10 industrialized economies,
taking structural breaks in long-run growth into account.1 Our measure of
economic slack is a modified version of the model-averaged estimate of the
output gap used by Morley and Piger (2012) for US real GDP. In particular, while
we consider the same broad set of both linear and nonlinear models from Morley
and Piger (2012) with the addition of Hamilton’s (Forthcoming) model, we place
equal weights on all models considered and we incorporate prior beliefs from
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previous analysis when conducting Bayesian estimation of model parameters.
Given the diverse set of linear and nonlinear models, our simplified approach of
using equal weights produces similar results to estimating optimal weights for
the USA. However, equal weights and Bayesian estimation are much easier to
implement for a broad range of economies than the more complicated approach
to model averaging and maximum likelihood estimation (MLE) of the nonlinear
models taken in Morley and Piger (2012).2

We have three main goals in this paper. First, we seek to demonstrate that
a simpler version of the methods in Morley and Piger (2012) can replicate the
results for US data, but is more broadly applicable to data for other countries and
appears to work better than estimating model weights in many cases, especially
for countries that have more limited data availability and shorter data samples.
Second, we check whether the output gaps we obtain for a set of 10 industrial-
ized economies exhibit the expected patterns in terms of correlations with future
output growth, inflation, and narrower measures of slack while comparing these
patterns with those for output gaps obtained from other methods. Third, we con-
sider whether the asymmetry in terms of much larger negative movements during
recessions than positive movements in expansions found for the US data is an
intrinsic characteristic of business cycles for other industrialized economies.

Our model-averaged estimate of the output gap produces a consistent picture
of the business cycle across all 10 industrialized economies under consideration.
In particular, despite the fact that tests for nonlinearity give mixed statistical evi-
dence in favor of nonlinearity, there is clear empirical support for the idea that
output gaps are subject to much larger negative movements during recessions
than positive movements in expansions for all 10 countries in the sample. This is
an important finding because it suggests this form of business cycle asymmetry
is not just a characteristic of the US economy, but is intrinsic in industrialized
economies more generally. We perform a simulation to demonstrate that this find-
ing of asymmetry is not driven by the fact that we include nonlinear models in
our set of models. In the case where the true data-generating process (DGP) is lin-
ear, the estimated output gap using our approach is symmetric. Furthermore, our
estimated output gaps have strong negative forecasting relationships with future
output growth in all cases and are closely related to narrower measures of slack
given by the unemployment rate and capacity utilization. These results support
the accuracy of the model-averaged estimates in comparison with other estimates
of the output gap. Results for a Phillips Curve relationship with inflation are more
mixed, but there is evidence in favor of a convex relationship for a number of
economies, arguing against the imposition of a linear relationship when estimat-
ing output gaps, such as is done by Kuttner (1994) and in many other studies.
Finally, using real-time data for the USA, we show that the model-averaged out-
put gap (MAOG) also produces reliable estimates in real time in the sense of being
subject to relatively small revisions.

The rest of this paper is organized as follows. Section 2 discusses the data,
including the possible presence of structural breaks in long-run growth for each
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TABLE 1. Structural breaks in long-run growth rates of real GDP

Sample Period Break Dates Sequence of Growth Regimes

United States 1947Q2–2016Q1 1973Q1, 2000Q3 H, M, L
Australia 1959Q4–2015Q4 – –
Canada 1960Q2–2015Q4 1974Q2 H, L
France 1949Q2–2016Q1 1974Q2 H, L
Germany 1960Q2–2016Q1 1973Q1, 1991Q2 H, M, L
Italy 1960Q2–2016Q1 1974Q1 H, L
Japan 1955Q2–2016Q1 1973Q1, 1991Q3 H, M, L
Korea 1970Q2–2016Q1 1997Q3 H, L
New Zealand 1977Q2–2016Q1 – –
United Kingdom 1955Q2–2016Q1 1973Q2 H, L

Notes: Estimated break dates are based on Bai and Perron’s (1998, 2003) sequential procedure. Breaks are significant
at least at 10% level. “H,” “M,” and “L” denote high, medium, and low mean growth regimes, respectively.

economy. Section 3 motivates the model-averaging approach by demonstrating
the sensitivity of the estimate of the output gap to the time series model under
consideration. Section 4 presents the empirical models and methods used in the
analysis. Section 5 reports the results first for the benchmark US case and then for
a group of other industrialized economies. Section 6 discusses the performance
of the MAOG in real time. Section 7 concludes.

2. DATA

We consider macroeconomic data for the United States (USA) and nine other
industrialized economies: Australia (AU), Canada (CA), France (FRA), Germany
(DEU), Italy (IT), Japan (JP), Korea (KR), New Zealand (NZ), and the United
Kingdom (UK). Our sample was selected with the intention of examining a rep-
resentative set of industrialized economies. In particular, we include the large- to
medium-sized G7 economies, an additional medium-sized economy with many
similar characteristics to the G7 economies (i.e., Australia), a somewhat smaller
economy that also has many similar characteristics to the G7 economies (i.e.,
New Zealand), and an emergent medium-sized industrialized economy that has
undergone several structural changes, but has reliable data (i.e., Korea). Data
series for real GDP, the price level, the unemployment rate, and capacity utiliza-
tion were sourced from OECD databases and from relevant national data sources.
See Table A.1 in the supplemental online Appendix 1 for full details.

For quarterly real GDP, we use the seasonally adjusted series and construct
quarterly growth rates by taking first differences of 100 times the natural logs of
the levels. The sample periods for quarterly growth rates are listed in Table 1 and
real GDP (100 times the natural log) for all countries is plotted in Figure 1.

For the price level, we use the core Personal Consumption Expenditures (PCE)
deflator for the USA, core Consumer Price Index (CPI) for Canada, Germany,
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Notes: From the top left and by row, the economies are USA, Australia, Canada, Germany, France,
Italy, Japan, Korea, New Zealand, and the UK. See Table 1 for details of the sample period for each
economy.

FIGURE 1. Log real GDP.
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France, and the UK, and headline CPI for the remaining economies. These choices
were determined by a general preference for core measures, but only when they
are available for a relatively long sample period in comparison to real GDP. We
calculate inflation as the year-on-year percentage change in the price level and
then construct 4-quarter-ahead changes in inflation. The relevant sample periods
based on common availability of both real GDP, price level data, the unemploy-
ment rate data, and capacity utilization are listed in Table 3 in the next section.

In addition to sample periods for the real GDP growth rate data, Table 1 reports
estimated structural break dates for long-run growth rates—that is, expected
growth in the absence of shocks. Perron and Wada (2009) argue that it is cru-
cial to account for a structural break in the long-run growth rate of US real GDP
when measuring economic slack for the US economy using UC models. They
impose a break date of 1973Q1 based on the notion of a productivity growth
slowdown at that time. Similarly, Perron and Wada (2016) show that the popular
HP filter is sensitive to the treatment of structural breaks and to outliers. In par-
ticular, they show that accounting for structural breaks can lead to very different
inference about the output cycle in G7 economies. Thus, we allow for structural
breaks in long-run growth rates. The full structural break test results are presented
in Table A.2 in the supplemental online Appendix 1.

When applying Bai and Perron’s (1998, 2003) sequential testing procedure for
structural breaks in the mean growth rate of US real GDP, we do not detect any
break in the early 1970s. Instead, we find the estimated break date is 2000Q3. This
break is significant at the 1% level and corresponds to a reduction in the mean
growth rate. There is only weak evidence in favor of a second structural break in
1973Q1 (p-value is 0.13). However, following much of the literature, including
Perron and Wada (2009, 2016), and acknowledging the possibility of weak power
in finite samples, we also allow for a second structural break in 1973Q1.3 We dis-
cuss the consequences of imposing different break dates and demonstrate that our
results are robust to using a more agnostic approach based on dynamic demeaning
rather than imposing structural breaks in the supplemental online Appendix 2.

It also turns out also to be important to account for structural breaks in long-run
growth for the other economies as well. With the exception of Australia and
New Zealand, we find structural breaks for all other economies. The estimated
break dates and the corresponding sequence of mean growth regimes are reported
in Table 1. We find evidence of one structural break for Canada, France, Italy,
Korea, and the UK and evidence in favor of two structural breaks for Germany
and Japan.4 To account for structural breaks in subsequent analysis, the output
growth series are mean-adjusted based on the estimated average growth rate in
each regime until there is no remaining evidence of additional breaks.5

3. MOTIVATION

We motivate the model-averaging approach to measuring economic slack
described in the next section by first considering forecast-based estimates of the
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output gap based on two commonly used models and a very recent approach pro-
posed by Hamilton (Forthcoming). In particular, we consider an AR(1) model,
Harvey and Jaeger’s (1993) UC model that corresponds to the commonly used
HP filter with a smoothing parameter of 1600 (denoted UC-HP hereafter), and
Hamilton’s (Forthcoming) regression-based filter. The AR(1) model is estimated
for quarterly real GDP growth and the output gap is estimated using the BN
decomposition for an AR(1) model. The UC-HP model is estimated for 100 times
the natural logs of quarterly real GDP and the output gap is estimated using the
Kalman filter, while Hamilton’s (Forthcoming) model is estimated using a lin-
ear regression for 100 times the natural log of quarterly real GDP. Although it
is specified in terms of log levels, the UC-HP model provides an implicit fore-
cast of future output growth, with the Kalman filter calculating the long-horizon
conditional forecast of future output at each point of time.

Figure 2 plots the estimated output gaps based on the AR(1), the UC-HP,
and the Hamilton models for real GDP. The top panel presents the results
for US real GDP. As discussed in Morley and Piger (2012) for US data, the
AR(1) and UC-HP estimates are very different from each other, with the output
gap based on the AR(1) model being of small amplitude and positive during
NBER-dated recessions, while the output gap based on the UC-HP being of
much larger amplitude and negative during NBER-dated recessions. At first
sight, it might seem obvious that the UC-HP output gap would be preferable,
especially given its more intuitive relationship with recessions and ease of
implementation. However, multiple studies [e.g., Cogley and Nason (1995), De
Jong and Sakarya (2016), Perron and Wada (2016), and Hamilton (Forthcoming)]
find that the HP filter can create large spurious cycles when no actual cycle is
present in the underlying DGP. Hamilton (Forthcoming) proposes an alternative
regression-based approach that entails a regression of the variable at date t + h
(where h = 8 for quarterly data) on the four most recent values as of date t as a
robust approach to detrending that achieves the objectives sought by the HP filter
without its drawbacks. However, the AR(1) model fits the data much better than
the UC-HP and the Hamilton regression gap model by any standard metric used
for model comparison, including AIC and SIC.6,7

Furthermore, as pointed out by Nelson (2008), the notion of an output gap as
a measure of economic slack directly implies that it should have a negative fore-
casting relationship with future output growth. Specifically, when the economy is
above trend and the output gap is positive, future growth should be below aver-
age as the economy returns to trend and vice versa. Motivated by the analysis in
Nelson (2008), we calculate the correlation between a given estimate of the output
gap and the subsequent 4-quarter output growth.8 Table 2 reports these correla-
tions and, consistent with the findings in Nelson (2008), the correlation for the
US output gap based on the AR(1) model is negative, while the correlation for the
UC-HP model is positive. This result directly suggests that the output gap based
on the AR(1) model provides a more accurate measure of economic slack than a
UC-HP model, even if its relationship with recessions seems counterintuitive.
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Note: The output gap for an AR(1) model is in blue (solid line, left axis) the output gap for a UC-
HP model is in red (dashed line, right axis) and the output gap obtained using Hamilton’s regression
approach is in green (dotted line, right axis). Top row is the US (NBER recessions shaded) and then
from second row left, the plots are for Australia, Canada, Germany, France, Italy, Japan, Korea, New
Zealand, and the UK, respectively. The horizontal axis runs from 1947Q2 to 2016Q1. See Table 1 for
details of the available sample period for each economy.

FIGURE 2. Output gaps based on competing models of real GDP.
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TABLE 2. Correlation with subsequent 4-quarter output growth

Sample Period AR(1) Model UC-HP Model Hamilton MAOG
Output Gap Output Gap Filter

United States 1947Q2–2015Q1 −0.15 0.08 −0.26 −0.33
Australia 1959Q1–2014Q4 −0.04 −0.01 −0.03 −0.27
Canada 1960Q1–2014Q4 −0.16 −0.18 −0.18 −0.27
Germany 1960Q1–2015Q1 −0.07 −0.001 −0.17 −0.22
France 1949Q1–2015Q1 −0.11 0.13 0.01 −0.16
Italy 1960Q1–2015Q1 −0.18 0.03 −0.15 −0.34
Japan 1955Q2–2015Q1 0.02 0.05 −0.02 −0.11
Korea 1970Q2–2015Q1 −0.04 −0.03 −0.15 −0.20
New Zealand 1977Q3–2015Q1 0.03 0.04 0.12 −0.21
United Kingdom 1955Q2–2015Q1 0.21 −0.22 −0.26 −0.35

Note: Bold denotes the most negative correlation for each economy.

The remaining panels of Figure 2 plot the estimated output gaps based on the
AR(1), UC-HP, and Hamilton gaps for real GDP data for the other nine industrial-
ized economies in our sample. The estimates make it clear that the very different
implications of the different models for the estimated output gap are not just a
quirk of the US data. As in the US case, the output gap based on the AR(1)
model is always smaller in amplitude than the output gap based on the UC-HP
and Hamilton models and often of the opposite sign. The correlation results for
these other economies in Table 2 are a bit more mixed, but the correlation with
future output growth is still negative for more of the AR(1) and Hamilton model
output gaps than for the UC-HP model output gaps. While the correlation of the
Hamilton gap with future output growth is also negative, formal model compar-
isons, including comparisons based on AIC or SIC, still favor the AR(1) model.

More favorable to the UC-HP model is the forecasting relationship between the
competing model-based output gaps and future inflation. Table 3 reports correla-
tions between output gap estimates and other macroeconomic variables, including
the subsequent 4-quarter changes in inflation. Consistent with most conceptions
of the Phillips Curve, the correlation is always positive for the UC-HP model
output gap, larger than the correlation for the Hamilton gap for 6 out of the 10
economies, and very close in magnitude to the correlations of the Hamilton gap
for the remaining 4 cases. By contrast, it is negative for 8 out of 10 economies
when considering the AR(1) model output gap.

Taken together, these results in Tables 2 and 3 suggest that the empirical evi-
dence that a single forecast-based or regression-based estimate of the output gap
provides a particularly accurate measure of economic slack is mixed at best. Put
another way, even if we restrict ourselves only to three widely used linear mod-
els, there is considerable uncertainty about the appropriate measure of economic
slack. The AR(1) model fits the data better and its corresponding output gaps gen-
erally provide better forecasts of future real GDP growth. But the UC-HP model
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TABLE 3. Correlation with other macroeconomic variables

Correlation with subsequent 4-quarter change in inflation

Sample Period AR(1) Model UC-HP Model Hamilton MAOG
Output Gap Output Gap Filter

United States 1960Q1–2015Q1 −0.11 0.32 0.44 0.49
Australia 1959Q4–2014Q4 0.20 0.35 0.30 0.38
Canada 1960Q1–2014Q4 −0.25 0.44 0.41 0.35
Germany 1963Q1–2015Q1 −0.21 0.49 0.09 0.12
France 1971Q1–2015Q1 −0.17 0.11 0.20 −0.08
Italy 1961Q1–2015Q1 −0.26 0.19 0.08 −0.29
Japan 1961Q2–2015Q1 0.22 0.29 0.32 0.37
Korea 1970Q2–2015Q1 −0.12 0.31 0.27 0.40
New Zealand 1977Q3–2015Q1 −0.32 0.39 0.02 0.25
United Kingdom 1957Q4–2015Q1 −0.14 0.22 0.26 0.17

Note: Bold denotes the most positive correlation for each economy.

Correlation with the unemployment rate

Sample Period AR(1) Model UC-HP Model Hamilton MAOG
Output Gap Output Gap Filter

United States 1948Q1–2016Q1 0.05 −0.14 −0.57 −0.68
Australia 1978Q1–2015Q4 0.06 −0.01 −0.36 −0.43
Canada 1960Q1–2015Q4 −0.01 −0.02 −0.19 −0.34
Germany 1991Q1–2016Q1 −0.03 −0.11 −0.27 −0.33
France 1978Q1–2016Q1 −0.01 0.05 −0.14 −0.36
Italy 1983Q1–2016Q1 −0.07 0.27 −0.11 −0.22
Japan 1955Q3–2016Q1 0.02 −0.05 −0.11 −0.22
Korea 1990Q1–2016Q1 −0.21 0.08 −0.69 −0.72
New Zealand 1977Q3–2016Q1 0.00 0.19 0.40 −0.47
United Kingdom 1983Q1–2016Q1 −0.16 0.20 −0.13 −0.42

Note: Bold denotes the most negative correlation for each economy.

Correlation with capacity utilization

Sample Period AR(1) Model UC-HP Model Hamilton MAOG
Output Gap Output Gap Filter

United States 1967Q1–2016Q1 −0.08 0.27 0.62 0.52
Australia 1989Q3–2016Q4 0.14 0.39 0.61 0.65
Canada 1987Q1–2015Q4 −0.47 0.54 0.74 0.76
Germany 1960Q1–2016Q1 −0.19 0.64 0.82 0.37
France 1976Q1–2016Q1 −0.20 0.33 0.71 0.75
Italy 1968Q4–2016Q1 −0.21 0.47 0.79 0.16
Japan 1978Q1–2016Q1 0.17 0.39 0.65 0.58
Korea 1980Q1–2016Q1 −0.26 0.37 0.57 0.74
New Zealand 1977Q3–2016Q1 −0.25 0.28 −0.09 0.57
United Kingdom 1985Q1–2015Q1 −0.26 0.56 0.60 0.66

Note: Bold denotes the most positive correlation for each economy.
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and the Hamilton output gaps are more consistent with widely held beliefs about
the relationship between economic slack and recessions and generally provide a
better forecast of future changes in inflation.

Given the fact that the AR(1), the UC-HP model, and the Hamilton gap model
are linear, a natural question that arises is whether accounting for any potential
nonlinearities would provide a better measure of the business cycle and economic
slack. While nonlinear models are more highly parameterized, there is some evi-
dence that nonlinear models fit US output growth better than the corresponding
linear AR(p) models [see, e.g., Hamilton (1989) or Kim et al. (2005)]. Table A.3
in the supplemental online Appendix 1 presents the results of the Carrasco et al.
(2014) test for a for the Hamilton (1989) and bounceback (BB) Markov-switching
models with normal and t-distributed errors versus a linear AR(2) model and a
Monte-Carlo-based likelihood ratio (LR) test for a depth-based BB model versus
an AR(2) model (these models are discussed in more detail in the next section).
Again, the results are inconclusive in many cases, with the test statistics being
right around the threshold critical values in many cases and the results being
sensitive to the assumptions about the distribution of the disturbances.

These mixed results for different models motivate the methods outlined in the
next section. In particular, drawing from an insight going back at least to Bates and
Granger (1969) that combined forecasts can outperform even the best individual
forecast, we follow and simplify the approach in Morley and Piger (2012) by
constructing a model-averaged estimate of the output gap with equal weights over
a range of linear and nonlinear forecasting models.

4. METHODS

Our methods build on the approach to estimating an MAOG developed in Morley
and Piger (2012) for US real GDP. Relative to the earlier study, we consider a
few important modifications that make the approach easier to consider for data
for other economies, and that, in some cases as discussed below, lead to improved
estimates of the output gap when it comes to coherence with other measures of
economic slack.

As background for our approach, we define the output gap, ct, as the devia-
tion of log real GDP, yt, from its stochastic trend, τt, as implied by the following
trend/cycle process:

yt = τt + ct, (1)

τt = τt−1 + η∗
t , (2)

ct =
∞∑

j=0

ψjω
∗
t−j, (3)

where ψ0 = 1, η∗
t =μ+ ηt and, ω∗

t = ω̄+ωt, with ηt and ωt following martin-
gale difference sequences. The trend, τt, is the permanent component of yt in the
sense that the effects of the realized trend innovations, η∗

t , on the level of the time
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series are not expected to be reversed. By contrast, the cycle, ct, which captures
the output gap, is the transitory component of yt in the sense that the Wold coef-
ficients, ψj, are assumed to be absolutely summable such that the realized cycle
innovations, ω∗

t , have finite memory. The parameter μ allows for non-zero drift in
the trend, while the parameter ω̄ allows for a non-zero mean in the cycle, although
the mean of the cycle is not identified from the behavior of the time series alone,
as different values for ω̄ all imply the same reduced-form dynamics for �yt, with
the standard identification assumption being that ω̄= 0.

The optimal estimate (in a minimum mean-squared-error sense) of trend
for a range of trend/cycle processes as in equations (1)–(3), including those
with regime-switching parameters, can be calculated using the regime-dependent
steady-state (RDSS) approach developed in Morley and Piger (2008). The RDSS
approach involves constructing long-horizon forecasts using a given time series
model to capture the dynamics of the process. Importantly, the long-horizon fore-
casts are conditional on sequences of regimes and then marginalized over the
distribution of the unknown regimes. Specifically, the RDSS measure of trend is

τ̂ RDSS
t ≡

∑

S̃t

{
τ̂ RDSS

t

(
S̃t

)∗pM
(

S̃t|�t

)}
, (4)

τ̂RDSS
t

(
S̃t

) = lim
{

EM
[
yt + j

∣∣∣ {
St+k = i∗

}j

k=1, S̃t,�t

]
−j ∗ EM

[
�yt

∣∣∣ {
St = i∗

}∞
−∞

)}
,

(5)

where S̃t = {St, . . . , St−m}′ is a vector of relevant current and past regimes for
forecasting a time series, pM(∗) is the probability distribution with respect to the
forecasting model, St is an unobserved state variable that takes on N discrete val-
ues according to a fixed transition matrix, and i∗ is the “normal” regime in which
the mean of the transitory component is assumed to be zero. The choice of “nor-
mal” regime i∗ is necessary for identification. Meanwhile, for a given forecasting
model with Markov-switching parameters, the probability weights in equation (4),
pM(S̃t|�t), can be obtained from the filter given in Hamilton (1989). Note that the
RDSS trend simplifies to the BN trend in the absence of regime switching.

In practice, the correct model for the dynamics of the time series process is
unknown. Thus, we consider a range of models. Like Morley and Piger (2012),
we focus on univariate models of real GDP, which in our case include the
AR(1), UC-HP, and Hamilton (Forthcoming) models discussed in the previous
section. As is evident from Figure 2, these univariate models capture a range of
possibilities about the nature of the output gap. Also, univariate analysis allows
us to test multivariate relationships rather than assume the answer a priori. The
benefits of this approach for the relationship with inflation in particular will
become evident when the results are presented below.

All of the models we consider allow for a stochastic trend in real GDP, which
is motivated by standard unit root and stationarity tests, even when allowing
for structural breaks in long-run growth. The results for all of the countries for
pre-tests that entail standard unit root tests (Augmented Dickey Fuller, (1979),
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and Elliott et al. (1996) point-optimal Dickey Fuller), the standard station-
arity tests [Leybourne and McCabe (1992), and the KPSS test proposed by
Kwiatkowski et al. (1992)], and the unobserved-components-based stationarity
test from Morley et al. (2017) are presented in Table A.4 in the supplemen-
tal online Appendix 1.9 Allowing for a stochastic trend is important because
many off-the-shelf methods such as linear detrending, traditional HP filtering,
and Bandpass filtering produce large spurious cycles when applied to time series
with stochastic trends [see Nelson and Kang (1981), Cogley and Nason (1995),
Murray (2003), and Hamilton (Forthcoming)]. By contrast, as long as the models
under consideration avoid overfitting the data, the forecast-based approach will
not produce large spurious cycles.

We consider linear AR(p) models of orders p = 1, 2, 4, 8, and 12, the linear
UC-HP model due to Harvey and Jaeger (1993), the Hamilton (Forthcoming)
model, linear UC0 and UCUR models with AR(2) cycles from Morley et al.
(2003), the nonlinear BB models from Kim et al. (2005) with BBU, BBV, and
BBD specifications and AR(0) or AR(2) dynamics, the nonlinear UC0-FP model
with an AR(2) cycle from Kim and Nelson (1999), and the nonlinear UCUR-FP
model with an AR(2) cycle from Sinclair (2010).10

The linear and nonlinear AR(p) models are specified as follows:

φ(L)(�yt−μt) = et, (6)

μt =μ(St, . . . , St−m), (7)

where φ(L) is pth order. We consider versions of the AR(p) models with Gaussian
errors (i.e., et ∼ N(0, σ 2

e ) or Student t errors (i.e., et ∼ t(ν, 0, σ 2
e ). For the nonlinear

AR(p) models, St = {0, 1} is a Markov state variable with fixed continuation prob-
abilities Pr

[
St = 0 | St−1 = 0

] = p00 and Pr
[
St = 1 | St−1 = 1

] = p11. In the linear
case, μt =μ, while there are three different specifications of μt in the nonlinear
case that correspond to the BB models developed by Kim et al. (2005):

1. “U”-Shaped Recessions (BBU)

μt = γ0 + γ1St + λ

m∑
j=1

γ1St−j, (8)

2. “V”-Shaped Recessions (BBV)

μt = γ0 + γ1St + (1−St)λ
m∑

j=1

γ1St−j, (9)

3. Recovery based on “Depth” (BBD)

μt = γ0 + γ1St + λ

m∑
j=1

(γ 1 +�yt−j)St−j, (10)

where the state St = 1 is labeled as the low-growth regime by assuming γ1 < 0.
Following Kim et al. (2005), we assume m = 6. See the original study for the full
motivation of these specifications.
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The linear and nonlinear UC models are based on equations (1)–(3), with the
following parametric specification of the transitory component in equation (3):

φ(L)ct =ω∗
t , (11)

where ω̄= 0 for the linear UC0 and UCUR models and ω̄= τSt for the nonlin-
ear UC0-FP and UCUR-FP models, with the state St = 1 labeled by assuming
τ < 0. The shocks to the trend and cycle are Gaussian (i.e., ηt ∼ N

(
0, σ 2

η

)
,ωt ∼

N(0, σ 2
ω)) for the UC0 and UC0-FP models and (ηt, ωt)

′ ∼ N(0, ηω) for the
UCUR and UCUR-FP models). Given an AR(2) cycle, the covariance for the
UCUR and UCUR-FP models is identified [see Morley et al. (2003)].

Bayesian estimates for these models are based on the posterior mode.
Importantly, the prior for BB coefficient has zero mean, implying a prior mean
of zero for the output gap. The prior for the mean of the transitory shock for the
UC-FP models has a negative mean, but this has very little impact on the prior
mean of the MAOG given the small weight on any given model. The prior on
the AR coefficients keeps them in the stationary region. Finally, the prior for the
continuation probabilities is centered at 0.95 for the expansion regime and 0.75
for the other regime. This is calibrated based on the results for US data in Morley
and Piger (2012). The details of the priors for the various model parameters are
set out in Table A.5 in the supplemental online Appendix 1.

In practice, given parameter estimates, we use the BN decomposition or, in
the case of the UC models, the Kalman filter to estimate the output gap for the
linear models. We use a linear regression for the Hamilton (Forthcoming) model.
Note that the filtered inferences from the Kalman filter are equivalent to the BN
decomposition using the corresponding reduced form of the UC model, while the
BN decomposition is equivalent to the RDSS approach in equations (4) and (5)
in the absence of regime-switching parameters. To estimate the output gap for the
nonlinear forecasting models, we use the RDSS approach or, in the case of the
nonlinear UC models, the Kim (1994) filter, which combines the Kalman filter
with Hamilton’s (1989) filter for Markov-switching models. For the nonlinear
models, we follow Kim and Nelson (1999) and Sinclair (2010) by assuming the
“normal” regime i∗ = 0, which corresponds to an assumption that the cycle is
mean zero in expansions.

Finally, the MAOG is calculated as follows:

ct =
N∑

i=1

ci,t ∗ Pr(Mi), (12)

where i indexes the N models under consideration, ci,t is the estimated output
gap for model i, Mi is an indicator for model i, and Pr(Mi) denotes the weight
placed on model i. In contrast to Morley and Piger (2012), who consider weights
based on SIC to approximate Bayesian model averaging (BMA), we place equal
weight on all models with cit = 1

N , where N is the total number of models under
consideration. Given 14 linear models (five linear AR models with two types of
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errors, three linear UC models, and Hamilton’s regression model) and 14 nonlin-
ear models (two nonlinear AR models with three BB specifications and two types
of errors and two nonlinear UC models), the weight on each model is 3.57%.

Although a number of models receive nontrivial weight based on the SIC
approximation of BMA when considering the US data in Morley and Piger
(2012), this is not always the case for other economies. For example, a simple
AR(0) (i.e., random walk model for levels) model would receive all weight for
Australian real GDP both based on SIC and on log scores if it were included in the
model set. However, such a model implies the output gap is always exactly zero
by construction (not just zero on average), which clearly runs contrary to widely
and strongly held beliefs. In the case of Japan, an AR(1) model would receive all
weight for Japanese real GDP based on SIC and on log scores weights, and it also
received all the weight at all points in time when we considered a more general
specification where the weights were selected optimally using the SIC approxima-
tion and allowed to vary over time. As shown in Figure 2, this would imply that the
largest deviation of Japanese output from its long-run trend over the last 60 years
was about 0.02 percentage points and that the output gap in Japan was increasing
during the Asian financial crisis. Similarly, BMA places all of the weight on an
AR(1) model for Italy, which would imply that the Italian economy was substan-
tially above potential during the Global Financial Crisis. As shown in detail in
Tables 2 and 3, the simple model with fixed equal weights performs well for all
economies, and in many cases we found it outperformed models with statistically
optimal weights both when it comes to matching more narrow measures of slack,
and much more importantly, when it comes to the link with future output growth.

The problem of BMA putting too much weight (from a forecasting perspec-
tive) on one model has been highlighted by Geweke and Amisano (2011). They
find that linear pooling of models produces better density forecasts than BMA
and discuss the calculation of optimal weights for linear pooling of models.
However, as long as the model set is relatively diverse, applying equal weights
to models works almost as well as optimal weights and is much easier to imple-
ment in practice. Thus, we take this simple approach of using equal weights for
the reasonably diverse set of linear and nonlinear models discussed above.11 In
general, even though in this study we focus on industrialized economies, being
aware of potential problems when BMA puts too much weight on one model and
leads to counterintuitive estimates could be particularly important in cases when
researchers are estimating output gaps for countries where the previous literature
is relatively scarce and the researchers do not have additional information about
the shape of the business cycle or do not have additional data or only have limited
data about unemployment rates or other measures of economic activity.

The other major modification from Morley and Piger (2012) mentioned above
is that models are estimated using Bayesian methods instead of MLE. This allows
incorporation of informative priors in the estimation. The priors we used here are
not particularly strong, with estimates based on the posterior mode virtually iden-
tical to MLE for many of the models.12 However, for economies with relatively
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short samples for real GDP or other quirks in the data such as large outliers,
there appears to be some tendency for MLE of the UC models and the nonlinear
models to overfit the data. By incorporating more informative priors about the per-
sistence of the autoregressive dynamics or the persistence of Markov-switching
regimes based on US estimates from Morley and Piger (2012), we are able to
avoid problems associated with shorter samples and outliers, while obviating the
need to undertake a long, protracted search for the best model specifications for
each economy.13

5. RESULTS

We first consider the USA as a benchmark case in order to provide perspective
on the impact of the modifications to Morley and Piger (2012) described in the
previous section, as well as providing context for the results for other countries.

To begin, we compare the updated MAOG based on the US real GDP data
described in Section 2, equal weights, and Bayesian estimation to the original
MAOG reported in Morley and Piger (2012) based on a shorter sample period, a
different vintage of data, BMA weights, and MLE. We also consider an updated
MAOG based on BMA weights and MLE for the full sample. Figure 3 plots these
three MAOGs together. The most noticeable thing is their similarity, with the
major finding in Morley and Piger (2012) of a highly asymmetric shape holding
for the updated MAOGs. The correlation between the updated MAOG based on
BMA weights and MLE and the updated MAOG based on equal weights and
Bayesian estimation is 0.95.

The impact of incorporating prior information about parameters may be
obscured in Figure 3 given that the priors were calibrated in part based on previous
estimates for US data. However, it is important to emphasize that the asymmetric
shape of the output gap is in no way driven by the priors on the nonlinear models.
As already discussed, because the nonlinear models nest linear dynamics in their
parameter space, there is still more implicit prior weight on linear than nonlin-
ear dynamics. Furthermore, the priors for the Markov-switching parameters favor
regime shifts in the mean growth rate corresponding to business cycle phases,
along the lines of Hamilton (1989), but there is no prior that shocks have more
temporary effects in recessions than in expansions. However, to further illustrate
that our estimation approach does not lead to spurious findings of nonlinearity,
we perform a simulation experiment where we use a linear DGP calibrated to US
data, and we apply our approach to estimating the output gap as deviations from
the long-run trend. Figure 4 makes this clear by applying the modified approach
to data simulated from a simple random walk with drift.14 For this data, the true
output gap is always zero. The estimated average MAOG is not always zero, but,
unlike what would be the case for the HP filter given a random walk, the spuri-
ous cycle is quite small in magnitude relative to the US MAOG, and it is smaller
on average than the Hamilton regression-based cycle. The main thing to note,
however, is that the fluctuations are symmetric around zero. Thus, any finding
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Note: The MAOG for the 1947Q2–2016Q1 sample based on equal weights and Bayesian estimation is
in blue (solid line), the MAOG for the 1947–2016Q1 sample based on BMA weights and MLE is red
(dashed line), and the MAOG for the vintage 1947Q2–2006Q4 sample from Morley and Piger (2012)
based on BMA weights and MLE is in green (dotted line).

FIGURE 3. MAOG for US real GDP for different weighting schemes, estimation methods,
and sample periods (NBER recessions shaded).

Note: The MAOG for a simulated random walk of a sample length corresponding to the length of the
observed sample for US GDP is in black (dashed line with triangles). The output gap for a UC-HP
model for the same simulated random walk is in red (dashed line), the output gap obtained using
Hamilton’s regression based approach is in green (dotted line), and the output gap obtained using an
AR(1) model is in blue (solid line, right axis).

FIGURE 4. MAOGs for a simulated random walk.
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Note: The trend estimate is calculated as the difference between 100 times log US real GDP and the
US MAOG for 1947Q2–2016Q1.

FIGURE 5. Estimated trend in US real GDP based on MAOG adjusted for breaks in mean
(NBER recessions shaded).

of asymmetry for the MAOGs reflects the data, not the incorporation of prior
information in estimating model parameters.15

As displayed in Figure 3, our results indicate that there is little remaining eco-
nomic slack for the US economy at the end of the sample. This result is consistent
with the Federal Reserve’s views [see, e.g., Yellen (2015)]. These results, how-
ever, turn out to be sensitive to allowing for a structural break in long-run growth
in 2000Q3. As discussed in detail and illustrated in Figure A.S.1 in the supple-
mental online Appendix 2, assuming no change in the long-run growth, the US
economy appears to still be below trend at the end of the sample. Given uncer-
tainty about the structural break, it could make sense to average across these two
scenarios, which would still imply the economy remains slightly below trend at
the end of the sample, although not by as much as in the no break case. If we
assume that the US economy was at trend at the end of the sample, this would
clearly imply that recessions can permanently shift the trend path of output down-
wards, which is the implication of many forecasting models for US real GDP,
including low-order AR(p) models, Hamilton’s (1989) Markov-switching model,
and, to some extent, the BB models of Kim et al. (2005). In a recent paper, Huang
et al. (2016) find that recessions prior to 1984 can be described as U-shaped, but
recessions after 1984 can be better described using Hamilton’s (1989) L-shaped
model, where recessions are driven by permanent negative shocks. Figure 5 plots
the estimated trend in US real GDP based on the MAOG. A permanent negative
effect of the Great Recession of the trend path is quite evident for this estimate of
trend and is much larger than for previous recessions.16

One way to judge the plausibility of the US economy being at trend at the end
of the sample is to compare the US MAOG to other narrower measures of slack.
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Notes: In the top panel, the MAOG for US real GDP for 1948Q1–2016Q1 is in blue (solid line)
and the unemployment rate for the corresponding sample period is in red (dashed line). The model-
averaged gap is on the right axis, the unemployment rate is on the left axis. In the bottom panel, the
MAOG for US real GDP for 1967Q1–2016Q1 is in blue (solid line) and capacity utilization for the
corresponding sample period is in red (dashed line). The model-averaged gap is on the right axis,
the capacity utilization rate is on the left axis.

FIGURE 6. MAOG for US real GDP and other measures of economic slack (NBER
recessions shaded).

Figure 6 plots the US MAOG against the US unemployment rate and US capacity
utilization. Similar to the findings in Morley and Piger (2012), there is a clear rela-
tionship between the MAOG and these variables. More supportive of relatively
little remaining slack at the end of the sample is the simple fact that the MAOG
in the no break case would imply relatively fast growth and downward pressure
on inflation in the period immediately after the Great Recession. In particular,
returning to Tables 2 and 3, the US MAOG has a negative correlation of −0.33
with future output growth and positive correlation of 0.49 with future changes in
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inflation. These results are much stronger than those for the output gaps based on
the AR(1) and UC-HP models and stronger than those for the Hamilton gap and
support the MAOG as a highly relevant measure of economic slack. But, given
lackluster growth and stable inflation after the Great Recession, these results also
support the MAOG allowing for a structural break and the idea that the US econ-
omy is actually close to trend at the end of the sample, noting that the trend path
is lower than before the recession, as suggested in Figure 5.

In principle, additional information from capacity utilization, the unemploy-
ment rate, or inflation could be used in the construction of output gaps. However,
the estimates of the output gap obtained from multivariate models depend cru-
cially on the assumptions about the relationship between the output gap and,
for example, the labor market cycle, and on the assumptions about the stability
of these relationships over time. For example, Basistha and Nelson (2007) and
Gonzalez-Astudillo and Roberts (2018) estimate models where the unemploy-
ment cycle directly depends on the output cycle (and on inflation in Basistha and
Nelson’s model). In both cases the estimated output cycles have large amplitude
and large persistence. On the other hand, Sinclair (2009) estimates a bivariate UC
model for output and unemployment where the shocks to the trend and the cycle
for output and the unemployment rate are allowed to be correlated, but does not
impose other links, and finds that most of the movements in output are driven by
shocks to the permanent component.

There is also substantial evidence in favor of time variability in the link between
the narrower measures of slack and the output cycle. Panovska (2017) finds strong
evidence that link between the output cycle and the labor market cycle changed
abruptly in the mid 1980s. Berger et al. (2016) also find substantial time variation
in the link between the unemployment cycle and the output cycle when using an
UC model. Similarly, the literature about whether one should impose a restriction
that positive shocks to the output trend (productivity shocks) affect labor markets
positively or negatively is also very large [see, e.g., Barnichnon (2010)].

Given the fact that we report the correlations with the more narrow measures
of slack to simply assess whether the measure of slack is reasonable and the fact
that the empirical evidence on the stability in the links between the output gaps
and other variables is quite conflicting, using a wide set of univariate models is
a more agnostic approach than using a multivariate model that directly imposes
a strong link between output and another variable, especially because our sample
includes countries with various degrees of labor market rigidities, approaches to
monetary policy conduct, and industrial compositions.

Having demonstrated how the modified approach works in the benchmark US
case, at least when allowing for structural breaks in long-run growth, we now
calculate MAOGs for the remaining G7 economies, Australia, New Zealand, and
Korea.

Figure 7 plots the estimated output gaps for the nine other economies. For
all cases considered, the output gaps are highly asymmetric, similar to the US
results. Specifically, they take on much larger negative values than positive ones.
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Notes: From the top left and by row, the economies are Australia, Canada, Germany, France, Italy, Japan, Korea, New Zealand, and the UK. The horizontal axis runs
from 1947Q2 to 2016Q1. See Table 1 for details of the available sample period for each economy.

FIGURE 7. MAOGs for real GDP from selected industrialized economies.
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Notes: From the top left and by row, the economies are USA, Australia, Canada, Germany, France,
Italy, Japan, Korea, New Zealand, and the UK. See Table 1 for details of the sample period for each
economy.

FIGURE 8. Phillips Curves based on MAOGs.
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FIGURE 8. Continued.

The only possible exception is Italy, where the output fluctuations are relatively
more symmetric, but there is still strong evidence that the contractions in 1969 and
2008–2009 caused highly asymmetric movements. The ubiquity of this form of
business cycle asymmetry across the 10 economies under consideration strongly
suggests that it is an intrinsic characteristic in industrialized economies, not just
a feature of the US economy in particular. This is a potentially important result
for theory-based modeling of the business cycle, which tends to focus on linear
dynamics for convenience, although there are many exceptions.17

How plausible are the MAOGs as measures of economic slack? As with the
US benchmark, we compare the MAOGs to other narrower measures of slack.
The middle panel of Table 3 reports the correlation of each MAOG with the cor-
responding unemployment rate. For comparison, we also report correlations for
output gaps based on AR(1), UC-HP, and the Hamilton model. Corresponding
to an Okun’s Law relationship, the MAOG has the most negative correlation
with the unemployment rate in all 10 cases (including the US benchmark), with
many of the correlations being quite large in magnitude. Meanwhile, the bottom
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panel of Table 3 reports the corresponding correlations with capacity utilization.
The MAOG has the most positive correlation with capacity utilization in 6 out of
10 cases and has positive correlations in all of the other cases.

Overall, the strong coherence with other measures of slack lends credence to
the MAOGs. The coherence is particularly notable given that the MAOGs are esti-
mated using only univariate models of real GDP. At the same time, the MAOGs
provide a broad and useful measure of slack, even when unemployment rate
or capacity utilization data are distorted as pure measures of slack by long-run
structural factors.

Much more importantly, revisiting Table 2, the MAOGs provide a stronger sig-
nal about future economic growth than the three other output gap estimates for
all of the countries in our sample. This result provides the most direct support of
the MAOGs as measures of economic slack based on the definition considered
in this paper. It also confirms the possibility that output growth can be somewhat
predictable even when standard model comparison metrics would select a random
walk model, as the SIC would in the case of Australia.

Looking back at Table 3, the results for the MAOGs in terms of correlation
with future changes in inflation are more mixed. The MAOGs provide a stronger
signal than the UC-HP or Hamilton model output gap in only 4 of the 10 cases
(including the US benchmark) and the Hamilton gap provides stronger signal than
the other models for France and the UK. However, a correlation coefficient may
be too simplistic as a measure of the relationship between the output gap and
inflation. Figure 8 displays a scatterplot of the MAOG (x-axis) against the sub-
sequent 4-quarter change in inflation (y-axis). For many of the countries there
is a clear nonlinear, convex Phillips Curve relationship between the output gap
and future changes in inflation that would only be partially captured by a corre-
lation coefficient. The same convex relationship as for the US data is evident for
Australia, France, Japan, and Korea. For some of the other cases, such as Canada
and New Zealand, the Phillips Curve relationships look more linear. However, a
clear implication of Figure 8 is that it is important not to impose a linear (or any
other) specification for the Phillips Curve relationship a priori, as is done in some
other approaches to estimating output gaps [e.g., Kuttner (1994)]. In particular,
if the imposed relationship were incorrectly specified, then the resulting output
gap estimate would necessarily be distorted and could not be used to determine a
better specification of a Phillips Curve relationship. The convexity of the Phillips
Curve in some cases argues against imposing a linear specification. Also, there
is some evidence that the relationship between the output gap and the inflation
has evolved over time, with many of the observations of stable inflation following
large negative output gaps corresponding to the recent Global Financial Crisis.
Consistent with Lucas’s (1976) famous critique that reduced-form Phillips Curve
relationships should change with policy regimes, this apparent breakdown in the
previous pattern near the end of the sample could be due to an anchoring of infla-
tion expectations [see IMF (2013)] and argues strongly against imposing a fixed
relationship with inflation when estimating the output gap.
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6. ROBUSTNESS: REVISION PROPERTIES AND COMPARISON WITH
OTHER OUTPUT GAPS

6.1. Revision Properties

Given our key question of whether business cycles exhibit asymmetric behav-
ior, we believe the best approach to evaluation is based on the full information
set. Therefore, our benchmark analysis made use of the longest available samples
with revised data. However, output gaps are very frequently used for policy anal-
ysis and it is important to evaluate the performance of estimates in real time. This
is particularly important in light of the studies by Orphanides and van Norden
(2002) and Nikolsko-Rzhevskyy (2011), which show that popular methods of
estimating the output gap are unreliable in real time both for the USA and for
other economies, respectively.

To evaluate the real-time performance of the MAOG, we compare it to the
three other benchmark models considered in the previous subsections. In partic-
ular, we compare estimates obtained using real-time data for the US case, for
which real-time series are readily available. We use the real-time data set from
the Federal Reserve Bank of Philadelphia and extract real GDP from the Core
Variables/ Quarterly Observations/ Quarterly Vintages subset.

We note that it would be difficult to detect structural breaks in real time and
allowing for breaks as done in our benchmark example was only feasible from
an ex-post basis. To address this, we use dynamic demeaning as in Kamber
et al. (2018). In particular, we demean the data using a backward-looking rolling
40-quarter average growth rate. The deviations from the mean were constructed
as follows:

�ỹt =�yt − 1

40

39∑
i=0

�yt−i. (13)

We use 40 quarters to smooth over the effects of business cycle fluctuations
on average growth. As shown in the supplemental online Appendix 2 in Figure
A.S.2, the MAOG estimates from the model with imposed breaks and from the
model with dynamic demeaning have virtually identical patterns, extremely sim-
ilar magnitude, and are very highly correlated, with the correlation coefficient
being 0.997.

Figure 9 plots the real-time and the revised estimate of the AR(1) output gap,
the UC-HP output gap, the Hamilton gap, and the MAOG. Table 4 reports the
correlation between the revised and real-time estimate for each of the four bench-
mark gaps, the standard deviation of the revision, and the standard deviation of the
revision scaled by the standard deviation of the output gap estimate. In short, the
MAOG performs quite well in real time. The MAOG calculated using real-time
data is highly correlated with the MAOG calculated using revised data (correla-
tion 0.97). This correlation is much higher than the correlation between the HP
gap calculated using real-time data and revised data (0.61) and slightly higher than
the correlation between the real time and the revised version of the Hamilton gap
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FIGURE 9. MAOG for US real GDP with dynamic demeaning (NBER recessions shaded).
Top left: MAOG. Top Right: AR(1). Bottom left HP filter. Bottom right: Hamilton Gap.
The revised gaps are plotted in blue (solid line) the real time gaps are plotted in red (dashed
line).

(0.94). Likewise, as also shown in Table 4, the standard deviation of the revisions
is smaller for the MAOG than for the other output gap estimates. Notably, the
MAOG captures the NBER recessions and turning points remarkably well both
when using revised data and when using real-time data.

6.2. Comparison with Official Output Gap Estimates

Given the wide use of non-statistical estimates of the output gap, such as, for
example, the production-function-based CBO and OECD output gaps, it is of
interest to examine how the MAOG behaves in comparison with these estimates.

Different official production-function-based estimates (e.g., the CBO vs. the
OECD estimates) of the output gap can display very different patterns both
in terms of amplitude and persistence of the output gap and when it comes to
exhibiting asymmetry, and the patterns depend on the assumptions used to specify
the production function. Figure 10 plots the OECD estimate for the US output
gap, the CBO estimate for the output gap, and the MAOG. As shown in the figure,
the CBO estimate has much larger amplitude than the other two gaps and does
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TABLE 4. Summary statistics: gaps estimated using real-time data

AR(1) Model UC-HP Model Hamilton MAOG
Output Gap Output Gap Filter

Correlation with Revised Gap 0.85 0.61 0.94 0.97
SD Revision 0.34 1.31 1.02 0.43
SD Scaled Revision 0.63 1.02 0.49 0.42

Notes: Bold denotes the most positive correlation between the revised and the real-time estimate for each output gap,
and the smallest value when comparing the standard deviations of the revisions. The scaled standard deviations were
obtained by dividing by the standard deviation of the corresponding output gap. The sample period for calculation
of revision statistics is 1970Q1–2016Q1.

FIGURE 10. OECD estimate of the US output gap (Blue dashed), CBO estimate of the
output gap (Red dotted), and MAOG for US real GDP with dynamic demeaning (Green
solid). NBER recessions shaded.

not exhibit any significant degree of asymmetry, with the correlation between the
CBO gap and our MAOG estimate being 0.6. By contrast, the OECD estimate,
which is also estimated using a production function approach, has a smaller
amplitude and exhibits asymmetry that is similar to the asymmetric pattern in the
MAOG (the correlation between the OECD gap and the MAOG is 0.8).18

It is important to note too that both the CBO and the OECD gaps are subject
to very heavy revisions. For example, Gonzalez-Astudillo (2017) points out that
the CBO estimate of the output gap during the Great Recession got revised by
as much as 2 percentage points. Of course, the CBO is only allowed to make
projections under current law, with the projections usually using constant trend
growth rates. A recent study by Coibion et al. (2017) also highlights that official
cyclical estimates of output gaps are very sensitive to assumptions about changes
in the trend growth and the nature of permanent shocks.
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7. CONCLUSIONS

There is more uncertainty about the degree of economic slack than is commonly
acknowledged in academic and policy discussions, which often treat the output
gap as if were directly observed. Canova (1998) argues that this uncertainty has
huge implications in terms of “stylized facts” about the business cycle used to
motivate theoretical analysis.

In light of this uncertainty about the degree of economic slack, we propose a
model-averaged forecast-based estimate of the output gap. For all of the indus-
trialized economies considered in our analysis, the model-averaged estimate is
closely related to narrower measures of slack and, consistent with the notion of
an output gap as a measure economic slack, has a strong negative forecasting
relationship with future output growth. Most importantly, the MAOG estimates
are all highly asymmetric. A simulation experiment where we estimate output
gaps for linear models confirms that our findings of nonlinearity are not spurious
or driven by the fact that we include nonlinear models in our set of models. In
simulations where the true DGP is symmetric, our estimates are symmetric. This
directly suggests that this particular form of business cycle asymmetry observed
in the data is intrinsic in industrialized economies and should be addressed in
theoretical models of the economy.19

Evidence for a Phillips Curve relationship between the MAOG and the inflation
is more mixed. But the overall results strongly argue against imposing a linear
relationship in estimating output gaps. As an example of why imposing a fixed
relationship is so problematic, consider Stock and Watson (2009, 2010). Their
analysis suggests that inflation is difficult to forecast using standard measures of
economic slack, except when the estimated output gap (or unemployment gap) is
large in magnitude. This directly suggests possible mismeasurement due to impo-
sition of symmetry and/or a nonlinear Phillips Curve relationship [see Dupasquier
and Ricketts (1998) and Meier (2010)]. Our measure of economic slack allows for
a full investigation of the nature of the relationship between the output gap and
inflation, including the possibility of nonlinearity.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://doi.org/
10.1017/S1365100518000913.

NOTES

1. We are motivated to consider industrialized economies to determine whether there are any
intrinsic characteristics for their output gaps, much like Levin and Piger (2006) investigated intrinsic
characteristics for inflation rates in industrialized economies.

2. GAUSS code for calculation of the model-averaged estimate of the output gap is available at
https://sites.google.com/site/jamescmorley/research/code.

3. Following much of the applied literature, we consider trimming of 15% of the sample from its
end points and between breaks for admissible break dates. But even when using 5% trimming, we
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find no evidence of an additional structural break for the USA in the mid-1970s at the 10% level. As
discussed in more detail in the supplemental online Appendix 1 not allowing for a second break in
1973 leads to estimates of output slack that are very strongly at odds with measures of slack from the
previous literature and with more narrowly defined measures of slack, such as the unemployment rate.
Given the broad evidence in favor of a break in 1973 from the previous literature, we impose a second
break in 1973Q1. In general, we find that it is more problematic to underestimate than to overestimate
the number of structural breaks when calculating forecast-based output gaps. Specifically, forecast-
based output gaps can display permanent movements that proxy for large structural breaks in growth
rates when these are not directly accounted for, while accounting for smaller or possibly misspecified
structural breaks tends to have little impact on forecast-based output gaps. Furthermore, as shown in
the supplemental online Appendix 2, our results are robust when we use a more agnostic approach
where the growth rates are calculated using rolling window averages rather than imposed break dates.

4. The regression model for testing structural breaks includes only a constant. The evidence for
structural breaks is generally weaker when allowing for serial correlation. In addition, the p-value for
the test statistics for the second structural break in Germany in 1991Q2 was only significant at the 0.11
level. Similarly, the test statistics for the structural break in the UK in 1973Q1 was only significant
at the 0.15 level. The OEDC series for German real GDP is adjusted for the reunification level shift,
but there is still evidence, albeit somewhat weak, in favor of a slope shift. However, previous studies
for Germany that use a different set of empirical models [see, inter alia, Klinger and Weber (2016)
and Perron and Wada (2016)] find evidence of a break in the early 1990s following the reunification.
In addition, when using year-on-year growth rates, we find stronger evidence in favor of a structural
break in the UK and of second structural break in Germany. For the UK, when the 1973Q2 break is
not taken into account, almost all measures of slack considered here imply that the UK output gap was
below trend from 1973Q1 throughout 2016Q1. We therefore impose a structural break in the UK in
1973Q1 and a second structural break in 1991Q2 for Germany. All other breaks reported in Table 1
were significant at the 10% level. Allowing for additional structural breaks led to model-averaged
estimates of the output gap that are very similar to those reported in the paper.

5. Of course, in this paper the timing of the structural breaks is determined ex-post. If a structural
break occurred toward the end of the sample, and one was concerned with obtaining forecasts for
future values of the output gaps estimates, a structural break at the end of the sample would make real-
time forecasts imprecise and potentially incorrect. However, this is not something that is unique to our
approach. All common estimates of the output gap would be affected by a structural break toward the
end of the sample [see, e.g., De Jong and Sakarya (2016)]. Including models where the output trend
is specified as a random walk partially mitigates this problem because the breaks in trend could be
proxied as large negative shocks to the trend. Given our key question of whether the business cycles
exhibit asymmetric behavior, we believe the best approach to fully evaluate the asymmetric behavior is
based on the full information set, and therefore our benchmark specification is one that uses the revised
data with imposed breaks. However, as shown in Section 6 and in the supplemental online Appendix 2,
our estimates are robust to using a more agnostic approach that uses rolling window averages for the
average growth rates, and the MAOG estimates are reliable when using real-time data.

6. We follow the approach in Morley and Piger (2012) to ensure the adjusted sample periods
are equivalent for all models under consideration. For the linear and nonlinear AR models discussed
below, this involves backcasting sufficient observations based on the long-run growth rate to condition
on in estimation. For the UC models discussed below, it involves placing a highly diffuse prior on the
initial level of the stochastic trend and evaluating the likelihood for the same observations as for the
models of growth rates. In the case of the USA when comparing the models, for example, the AIC
for the AR(1) model is −357.207 and the AIC for the UC-HP model is −599.478, where the AIC is
rescaled as in Davidson and MacKinnon (2004) such that larger values are preferred. Similarly, the
HPD log-likelihoods for the AR(1) model is −414.01, whereas the HPD log-likelihood for the UC-HP
model is −679.67.

7. The Hamilton model is not directly comparable to the AR(1) models as the left-hand-side vari-
able is the level of output rather than the growth rate. However, if the true model is an AR(1) process,
yt − yt−1 = c + φ (yt−1 − yt−2)+ εt which implies that yt =μ+ (1 + φ) yt−1 − φyt−2 + εt. Iterating
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backwards recursively for yt+h, we get yt+h = μ̃+ 1−φh

1−φ yt − φ 1−φh

1−φ yt−1 + c̃t , where μ̃ is a compound
term for the mean. The log-likelihood for the unrestricted model is −698.749 and the (conventional)
BIC is 5.389, and the AIC is 5.349. If we estimate a restricted version of the Hamilton model where
the coefficients on yt, yt−1 are restricted using the estimated φ̂ = 0.34 for an AR(1) model for �yt,
the log-likelihood is −705.76, and the (conventional unscaled) BIC and AIC are 5.378 and 5.311,
respectively, indicating that the information criteria would again prefer an AR(1) model, albeit not
as strongly as in the HP filter case. Furthermore, for the unrestricted Hamilton model, we could not
reject the null that the coefficients were equal to the coefficients implied by the AR(1) model (p-value
0.493).

8. Nelson (2008) considers regressions that capture the correlation between a given estimate of the
output gap and 1-quarter-ahead US output growth. Our results for the US are qualitatively similar to
his even though we consider 4-quarter-ahead output growth, which arguably provides a better sense of
forecasting ability at a policy-relevant horizon. Also, Nelson (2008) conducts a pseudo out-of-sample
forecasting analysis by estimating models and output gaps using data only up to when the forecast
is made [it is a pseudo out-of-sample forecast because the data are revised, although Orphanides and
van Norden (2002) and Orphanides (2002) find that using revised or real-time data matters much less
than incorporating future data in estimation of the output gap at any point in time]. However, even
though we use the whole sample to estimate models, we are implicitly using data only up to when
the forecast is made to estimate output gaps. This is straightforward for the Harvey and Jaeger (1993)
UC-HP model, which directly allows for filtered inferences, as opposed to the traditional HP filter,
which is a two-sided filter, explaining why Nelson (2008) considers the out-of-sample forecasting
analysis when evaluating the forecasting properties of the output gap based on the traditional HP filter.

9. Based on the Monte Carlo analysis in Morley et al. (2017), we consider the bootstrapped
p-values for all stationarity tests to correct for potential size distortions in finite samples.

10. As a minor modification from Morley and Piger (2012), we drop the linear AR(0) models and
nonlinear Markov-switching model from Hamilton (1989) with AR(0) and AR(2) dynamics. In the
former case, the output gap is always zero by construction, so its inclusion merely serves to shrink the
MAOGs toward zero. In the latter case, the output gap is linear by construction, so its inclusion as a
nonlinear model puts additional prior weight on a linear output gap. As demonstrated below, dropping
these models has very little practical impact on the model-averaged estimate of the output gap for US
real GDP. If the Hamilton (1989) model is included in the set of models, the correlation between the
MAOG computed using equal weights that includes the Hamilton model and the MAOG that does not
include the Hamilton (1989) model is 0.99. Furthermore, as shown in Table A.4, the Carrasco et al.
(2014) bootstrap test for Markov-switching parameters cannot reject the null of no switching for all
economies except New Zealand, Italy, and Australia, with p-values higher than 10% in all cases except
for Italy. However, the null of linearity can be strongly rejected in favor of the BBD model for those
three economies. The null of linearity can also be rejected in favor of the BBU model for Germany,
Japan, Korea, New Zealand, and the UK, and in favor of the BBD model for all economies except
Italy and New Zealand. Therefore, our set of models does not lose empirical relevance by excluding
the Hamilton (1989) model.

11. To be specific, we place equal weights on all models used here. Because the nonlinear models
nest linear dynamics in their parameter space, there is still more implicit prior weight on linear than
nonlinear dynamics, although this is addressed somewhat by the somewhat informative priors for
parameters in the nonlinear models.

12. The AR(1) and UC-HP models discussed in previous section were estimated using the pos-
terior mode. But the estimated output gaps for these models are indistinguishable from those based
on MLE. For example, for the US data, the correlation between the Bayesian and MLE output gaps
is >0.999999.

13. In principle, this setup would also make it possible to apply the approach outlined in this paper
even given severe data limitations or a desire to impose tighter priors based on strongly held beliefs.
For example, in an earlier version of this study, Morley (2014) estimated the output gap for a set of
13 economies in the Asia and Pacific, many with very short sample periods and extreme outliers. In
terms of imposing tighter priors on characteristics such as the smoothness of trend, see the approaches
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outlined in Harvey et al. (2007) for UC models and Kamber et al. (2018) for AR models. However,
given the strong evidence for a volatile stochastic trend in Morley et al. (2017) and in Table A.4 in the
supplemental online Appendix 1, we avoid imposing smoothness priors as it could potentially lead to
spurious cycles.

14. The drift and standard deviation of shocks are both set to 1, which is a surprisingly reasonable
calibration for 100 times the natural logs of quarterly US real GDP.

15. In the simulation, when we use BMA weights, almost all of the weight is correctly assigned on
the AR(1) model with very small amplitude and persistence (consistent with the true DGP that has
no cycle). However, the average MAOG cycle has a small amplitude and persistence and it does not
create a spurious cycle with a large amplitude or spurious evidence of nonlinearity.

16. Allowing for one structural break in 1973Q1 leads to similar results. Similarly, allowing for a
structural break in 2000Q3 but not in 1973Q1 leads to an estimated MAOG that is large and negative
during the 1990–1991 recession and very deep during 2001 recession, which is at odds with previous
estimates of output slack, and with more narrow measures of slack, such as unemployment and capac-
ity utilization, where both the 1990 and 2001 recession were relatively shallow. This further motivates
our inclusion of a structural break in 1973Q1. We discuss these results in detail in the supplemental
online Appendix 2.

17. For example, Diebold et al. (2017) find that incorporating nonlinearities in the exogenous
driving processes and allowing for stochastic volatility in a dynamic stochastic general equilibrium
(DSGE) model markedly improves the density forecast performance of the model. Auroba et al. (2017)
highlight the fact that asymmetric wage and price adjustments lead to inherent nonlinearity in DSGE
models and argue in favor of using a nonlinear time-series model to evaluate the performance and
predictive ability of DSGE models. Guerrieri and Iacoviello (2017) find that collateral constraints in a
DSGE model lead to macroeconomic asymmetries—in particular, when constraints are slack, expand-
ing wealth makes small contribution to consumption growth, but tightened constraints can sharply
exacerbate recessions.

18. Similarly, the OECD estimates of the output gap for the other G7 economies, for which data are
readily available at quarterly frequency, tend to exhibit quite a bit of asymmetry, with negative move-
ments being larger in magnitude but less persistent than positive movements. Our MAOG estimates
also appear to match the turning points in the OECD estimates quite well. The correlations of these
estimates with our MAOG estimates range from 0.6 for Italy to 0.8 for the USA, with the UK being
the only outlier with the correlation of only 0.4. The full set of results is available from the authors
upon request.

19. As emphasized in Kiley (2013) and noted by many others, theory-oriented DSGE models imply
reduced-form VAR, VECM, or VARMA models. Thus, forecast-based output gap estimates provide
robust measures of economic slack across a wide range of different economic assumptions used to
identify a structural model, at least as long as the reduced-form model or models used to calculate the
optimal forecast capture the dynamics in the data [this point relates back to Sims (1980)—also see
Fernandez-Villaverde et al. (2007)].
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