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Helically invariant reductions due to a reduced set of independent variables (t, r, ξ)
with ξ = az+bϕ emerging from a cylindrical coordinate system of viscous and inviscid
time-dependent fluid flow equations, with all three velocity components generally non-
zero, are considered in primitive variables and in the vorticity formulation. Full sets
of equations are derived. Local conservation laws of helically invariant systems are
systematically sought through the direct construction method. Various new sets of
conservation laws for both inviscid and viscous flows, including families that involve
arbitrary functions, are derived. For both Euler and Navier–Stokes flows, infinite sets
of vorticity-related conservation laws are derived. In particular, for Euler flows, we
obtain a family of conserved quantities that generalize helicity. The special case of
two-component flows, with zero velocity component in the invariant direction, is
additionally considered, and special conserved quantities that hold for such flows are
computed. In particular, it is shown that the well-known infinite set of generalized
enstrophy conservation laws that holds for plane flows also holds for the general
two-component helically invariant flows and for axisymmetric two-component flows.
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1. Introduction
Flows that exhibit helically symmetric behaviour appear in a wide range of natural

phenomena and fluid mechanics applications. Some basic examples include helical
vortex structures that arise as unstable modes as a result of vortex breakdown in
swirling jets (Sarpkaya 1971). Helical vortices are experimentally observed in various
technological devices with swirling, in particular, cyclones (Gupta & Kumar 2007)
and tubular burners (Satoru 1989), in the wake of windmills (Vermeer, Sorensen
& Crespo 2003) or as wing tip vortices, in particular, on delta wings (Mitchell,
Morton & Forsythe 1997). A number of different helical vortex structures emerge
in vortex chambers under different boundary conditions and have been described by
Alekseenko et al. (1999). Experiments involving viscous liquid jets discharged from a
long vertical rotating tube demonstrating fast development of helical flow downstream
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of the rotating tube are described by Kubitschek & Weidman (2008). Interestingly,
helical instabilities in swirl flows appear not only in laminar, but also in turbulent
flows. For example, double helical structures have been observed in a number of
settings (Chandrsuda et al. 1978; Alekseenko et al. 1999). A review of swirl flow with
helical structure in technical applications is given by Alekseenko & Okulov (1996).

For rotating pipe flows, stable helical waves analogous to the two-dimensional
nonlinear waves in plane Poiseuille flows have been observed in numerical simulations
by Toplosky & Akylas (1988), while time-dependent helical waves for the full
Navier–Stokes equations in rotating pipe flow were computed by Landman (1990b).
Similar helical structures are also known to arise in stationary pipes with swirl in the
inlet flow (Landman 1990a).

Helically symmetric flows and equilibrium configurations are also of interest
in magnetohydrodynamics (Dritschel 1991). In plasma physics they naturally arise
both in laboratory plasma applications (kink instabilities in the ‘straight tokamak’
approximations, e.g. Johnson et al. (1958) and Schnack, Caramana & Nebel (1985))
and astrophysical phenomena such as astrophysical jets (Bogoyavlenskij 2000).

In the last few decades, various authors have contributed to the theoretical
description of helical flows. In the most straightforward approach, the helical
symmetry is imposed by assuming the spatial dependence of all physical variables
on the cylindrical radius r and the helical variable ξ = az + bϕ, a, b = const. 6= 0. In
this ansatz, both the system of static plasma equilibrium equations and the system of
steady Euler equations of incompressible fluid dynamics collapse to a single equation:
the well-known JFKO equation (Johnson et al. 1958). In a more general setting,
twisted pipes following a given spatial curve have been considered in a number of
works (Wang 1981; Germano 1982, 1989; Tuttle 1990). In particular, effects of pipe
curvature and torsion on the flow were studied using suitable (non-orthogonal and
locally orthogonal) coordinate systems. Analytical solutions describing helical flows
have appeared in a number of works although they have emerged from different
settings. In particular, steady flow solutions in helically symmetric pipes were obtained
by Zabielski & Mestel (1998). Helical static plasma equilibria modelling isotropic and
anisotropic astrophysical jets were derived in Bogoyavlenskij (2000) and Cheviakov &
Bogoyavlenskij (2004).

The question of existence and uniqueness of time-dependent helically invariant
inviscid flows was addressed by Ettinger & Titi (2009), where uniqueness and
existence of the weak solutions of Euler equations were proved under the physical
geometric constraint of no vorticity stretching, which, as will be seen subsequently,
is a consequence of a zero velocity component in the invariant direction. In contrast,
existence and uniqueness of the helically symmetric Navier–Stokes equations without
further constraints were proven by Mahalov, Titi & Leibovich (1990).

The main goal of the current paper is the derivation and analysis of the full
three-dimensional system of incompressible constant-density Euler and Navier–Stokes
equations under the assumption of helical symmetry, and in particular the derivation of
the conservation laws admitted by this system. In the general helically symmetric
setting, all three velocity components and pressure are generally non-zero. They
depend on time t, and, employing a cylindrical coordinate system, the cylindrical
radius r, and the helical variable

ξ = az+ bϕ. (1.1)

The considered helically symmetrical setting is thus purely based on the independence
on the third spatial variable (measured along each helix), and no restrictive
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assumptions whatsoever are made about the form of velocity components or pressure.
The flow therefore has two spatial dimensions and is naturally referred to as (2 + 1)-
dimensional in space–time. Since independent space dimensions are reduced to two
and the flow has three independent components of the velocity vector, it is often
referred to as 2(1/2)-dimensional flow. As commonly accepted in turbulence research,
a flow is referred to as a two-component flow when one of the velocity components is
set to zero.

Helical coordinates that employ the above form of the helical variable ξ provide
a natural transition between Cartesian and cylindrical coordinates, and let one
impose helical invariance, which generalizes both the axial symmetry (achieved at
a = 1, b = 0) and the translational symmetry (a = 0, b = 1). In § 2 we derive the
general helically symmetric Navier–Stokes equations in the primitive variables as
well as in the vorticity formulation. These formulae generalize the helically invariant
inviscid model discussed by Alekseenko et al. (1999). Important special cases of
planar and axially symmetric flows in a helically symmetric setting are also analysed.
The vorticity formulation is employed to derive multiple additional conservation laws
of the helically invariant Euler and Navier–Stokes equations.

We note that a helically symmetric stream function formulation of the Euler and
Navier–Stokes equations may also be derived in a straightforward manner. However,
we do not explicitly consider the stream function formulation in the current paper
since it yields no additional conservation laws compared with those obtained from
primitive or vorticity variables.

In the current contribution, we systematically construct local conservation laws for
helically invariant Navier–Stokes and Euler equations. A local conservation law is a
divergence expression

∂Θ

∂t
+∇ ·Φ = 0, (1.2)

where Θ is the density and components of Φ are spatial fluxes. In particular, if
the original equations include viscous terms, such terms must be included into the
divergence expression.

Conservation laws (1.2) have multiple applications. In particular, it follows from the
Gauss theorem that if the fluxes Φ vanish on the boundary of the fluid domain D or at
infinity, each conservation law (1.2) yields a globally conserved quantity

R=
∫∫∫

D
Θ dV,

∂R

∂t
= 0. (1.3)

Moreover, the knowledge of local conservation laws (1.2) admitted by systems of
fluid dynamics equations is important both from the point of view of numerical
modelling. Indeed, multiple modern finite-element methods, such as discontinuous
Galerkin methods, are based on divergence forms of the given equations. Conservation
laws are also useful in partial differential equation (PDE) analysis, in particular,
studies of existence, uniqueness and stability of solutions of nonlinear PDEs, as well
as for the construction of linearizations and exact solutions through non-locally related
PDE systems (e.g. Lax 1968; Benjamin 1972; Knops & Stuart 1984; Anco, Bluman &
Wolf 2008; Bluman, Cheviakov & Ganghoffer 2008).
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An important class of conservation laws in fluid dynamics are the material
conservation laws given by vanishing material derivatives

dΘ
dt
≡ ∂Θ
∂t
+ u ·∇Θ = 0, (1.4)

where u is a flow velocity vector. If (1.4) holds, the total amount of the quantity
Θ initially assigned to any fluid parcel is conserved. For incompressible flows where
∇ · u = 0, each material conservation law (1.4) is equivalent to a local conservation
law (1.2) with Φ = uΘ . A classical example of material conservation laws is the
well-known family of vorticity conservation laws for plane flows (Bowman (2009); see
also § 6.1 and formula (6.22) below). However, it is clear that not every conservation
law (1.2) is equivalent to some material conservation law. In the papers by Moiseev
et al. (1982), Tur & Yanovsky (1993), Volkov, Tur & Yanovsky (1995) and references
therein, material conservation laws (1.4) are referred to as Lagrange invariants, and
other types of invariants are considered for various hydrodynamic settings. Moiseev
et al. (1982) used invariants to construct exact vortex-like solutions of a two-fluid
hydrodynamics model.

The actual algorithmic construction of local conservation laws for complex models
became feasible with an introduction of the direct construction method (Anco
& Bluman 2002a,b; Anco, Bluman & Cheviakov 2010). The method is briefly
reviewed in § 3. It stems from ideas related to Noether’s theorem but is free from
restrictive assumptions related to the existence of a variational formulation. The direct
construction method is directly applicable to the vast majority of physical models.

Well-known classical conservation laws of three-dimensional time-dependent
inviscid fluid dynamics include the conservation of mass, momentum, angular
momentum, energy, vorticity, helicity and the so-called centre-of-mass theorem (see,
e.g., Moffatt 1969; Caviglia & Morro 1989; Batchelor 2000). Section 4 is concerned
with finding additional conservation laws of the helically invariant Euler system, both
in primitive variables and in vorticity formulation. For helical flows, the above list
can be substantially extended: helical Euler equations are shown to admit infinite sets
of generalized momentum/angular momentum conservation laws and families of new
vorticity conservation laws involving arbitrary functions. In particular, one such family
corresponds to conservation of generalized helicity-type expressions.

In § 5, conservation laws of helically symmetric Navier–Stokes equations are studied.
Owing to the essentially dissipative structure of the Navier–Stokes model, one might
not expect to find many conservation laws for it. However, it is shown in § 5 that
the helically symmetric Navier–Stokes dynamics conserves one component of the
momentum, one component of the angular momentum, and an infinite number of
additional vorticity-dependent expressions.

Finally, in § 6, we study the special case of two-component helically invariant
inviscid flows. For such flows, the velocity component in the invariant direction, uη,
is identically zero. As is well known, inviscid plane flows possess an infinite number
of vorticity-related conservation laws, one of them being the enstrophy ω2. Often they
are referred to as Casimirs (Bowman 2009). We are able to generalize this result
onto helically symmetric inviscid flows with vanishing velocity component uη in the
invariant direction. Moreover, several new sets of conservation laws are found for
the specific cases of plane and axisymmetric flows with vanishing transverse velocity
components, in both viscous and inviscid settings, in primitive and vorticity variables
(§§ 6.2 and 6.3). Some of these new sets generalize previously known results, whereas
other conservation laws are totally new.
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FIGURE 1. An illustration of the helix ξ = const. for a= 1, b=−h/2π, where h is the z-step
over one helical turn. Basis unit vectors in the helical coordinates.

2. Helically invariant Navier–Stokes equations
2.1. Helical coordinates: notation

Let (r, ϕ, z) denote the usual cylindrical coordinates in the three-dimensional space.
The helical coordinates (r, η, ξ) are given by

ξ = az+ bϕ, η = aϕ − bz/r2, (2.1)

where a, b = const., a2 + b2 > 0. On each cylinder r = const., lines of ξ = const.
and η = const. correspond to two mutually orthogonal families of helices on that
cylinder. The choice of the constants a, b prescribes a specific helical frame. In the
limiting case when a = 1, b = 0, helical coordinates become cylindrical coordinates
with η = ϕ, ξ = z.

It should be noted that helical coordinates by (r, η, ξ) are not orthogonal. In fact, it
can be shown that although the coordinates r, ξ are orthogonal, there exists no third
coordinate orthogonal to both r and ξ that can be consistently introduced in any open
ball B ∈ R3. However, an orthogonal basis is readily constructed at any point except
for the origin, as follows (see figure 1):

er = ∇r

|∇r| , eξ = ∇ξ|∇ξ | , e⊥η = ∇⊥η|∇⊥η| = eξ × er. (2.2)

The scaling (Lamé) factors for helical coordinates are given by Hr = 1, Hη = r and
Hξ = B(r), where we use the notation

B(r)= r√
a2r2 + b2

. (2.3)

In the following, for brevity, we will write B(r)= B and dB(r)/dr = B′.
Any helically invariant function of time and spatial variables is a function

independent of η, and has the form F(t, r, ξ). Since our goal is to examine helically
symmetric flows, the physical variables will be assumed η-independent. It is worth
noting that the limiting case a = 1, b = 0, the helical symmetry reduces to the axial
symmetry; in the opposite case a = 0, b = 1, the helical symmetry corresponds to the
planar symmetry, i.e. symmetry with respect to translations in the z-direction.
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Throughout the paper, upper indices will refer to the corresponding components of
vector fields (vorticity, velocity, etc.), and lower indices will denote partial derivatives.
For example,

(uη)ξ ≡
∂

∂ξ
uη(t, r, ξ). (2.4)

We also assume summation in all repeated indices.

2.2. The Navier–Stokes equations in primitive variables
The Navier–Stokes equations of incompressible viscous fluid flow without external
forces in three dimensions are given by

∇ ·u= 0, (2.5a)
ut + (u ·∇)u+∇p− ν∇2u= 0 (2.5b)

where the fluid velocity vector u= u1ex+ u2ey+ u3ez and fluid pressure p are functions
of x, y, z, t. The viscosity is ν = const.; the inviscid case ν = 0 yields the Euler
equations.

In order to rewrite the equations (2.5) in a helically symmetric setting, one starts by
writing the velocity vector in the helical basis:

u= urer + uϕeϕ + uzez = urer + uηe⊥η + uξeξ . (2.6)

The helical velocity components are related to the cylindrical velocity components by

uη = u · e⊥η = B

(
auϕ − b

r
uz

)
, uξ = u · eξ = B

(
b

r
uϕ + auz

)
. (2.7)

The backward relations are given by

uϕ = B

(
auη + b

r
uξ
)
, uz = B

(
−b

r
uη + auξ

)
. (2.8)

Upon a transformation from cylindrical to helical coordinates and imposing the
helical invariance ∂/∂η ≡ 0, the continuity equation (2.5a) and the three components
of the momentum equation yield the following four equations constituting the helically
invariant Navier–Stokes system in primitive variables:

1
r

ur + (ur)r+
1
B
(uξ )ξ = 0, (2.9a)

(ur)t+ur (ur)r+
1
B

uξ (ur)ξ −
B2

r

(
b

r
uξ + auη

)2

=−prν

[
1
r
(r (ur)r)r+

1
B2
(ur)ξξ −

1
r2

ur − 2bB

r2

(
a (uη)ξ +

b

r
(uξ )ξ

)]
, (2.9b)

(uη)t+ur (uη)r+
1
B

uξ (uη)ξ +
a2B2

r
uruη

= ν
[

1
r
(r (uη)r)r+

1
B2
(uη)ξξ +

a2B2(a2B2 − 2)
r2

uη + 2abB

r2

(
(ur)ξ −

(
Buξ
)

r

)]
, (2.9c)

(uξ )t+ur (uξ )r+
1
B

uξ (uξ )ξ +
2abB2

r2
uruη + b2B2

r3
uruξ =− 1

B
pξ

+ ν
[

1
r
(r (uξ )r)r+

1
B2
(uξ )ξξ +

a4B4 − 1
r2

uξ + 2bB

r

(
b

r2
(ur)ξ +

(
aB

r
uη
)

r

)]
, (2.9d)

where the velocity components ur, uη, uξ and the pressure p are functions of r, ξ and t.
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Note that the JFKO equation (Johnson et al. 1958) readily follows from the
formulae (2.9) in the case of time-independent inviscid flows (see also Frewer,
Oberlack & Guenther 2007).

2.2.1. Rotationally symmetric and axisymmetric flows
By ‘rotationally symmetric flows’ we will mean flows with all parameters

independent of the polar angle ϕ, where all three velocity components are still non-
zero. Equations governing such flows are obtained by setting

a= 1, b= 0, B= 1, ξ = z (2.10)

in the equations (2.9). Observing that

uξ ≡ uz, uη ≡ uϕ, (2.11)

one obtains a system of rotationally symmetric Navier–Stokes equations. A further
reduction, referred to as ‘axisymmetric flows’, corresponds to the absence of flow in
the polar direction: uϕ = 0, and is given by

1
r

ur + (ur)r+ (uz)z = 0, (2.12a)

(ur)t+ur (ur)r+uz (ur)z =−pr + ν
[

1
r
(r (ur)r)r+ (ur)zz−

1
r2

ur

]
, (2.12b)

(uz)t+ur (uz)r+uz (uz)z =−pz + ν
[

1
r
(r (uz)r)r+ (uz)zz

]
. (2.12c)

2.2.2. Plane flows
The general (non-classical) plane flow formulation is obtained by assuming planar

symmetry, i.e. z-independence, of all physical parameters, while keeping all velocity
components generally non-zero. The equations describing general Navier–Stokes plane
flows follow from the formulae (2.9) by choosing the parameters

a= 0, b= 1, B= r, ξ = ϕ, uξ ≡ uϕ, uη ≡ uz, (2.13)

in terms of cylindrical coordinates (r, ϕ, z).
The classical (two-component) plane flow equations additionally assume no flow in

the invariant direction, i.e. uz = 0. In this setting, the equation for the z-projection of
the momentum vanishes. It is more customary to present the resulting equations in
Cartesian coordinates, where they take the form

(ux)x+ (uy)y = 0, (2.14a)
(ux)t+ux (ux)x+uy (ux)y =−px + ν[(ux)xx+ (ux)yy], (2.14b)
(uy)t+ux (uy)x+uy (uy)y =−py + ν[(uy)xx+ (uy)yy]. (2.14c)

2.3. Helically invariant vorticity formulation
The vorticity formulation of the Navier–Stokes equations (2.5) consists of the
continuity equation, the definition of vorticity, and the vorticity dynamics equation
obtained by taking the curl of the momentum equation (2.5b). It has the form

∇ ·u= 0, (2.15a)
ω =∇ × u, (2.15b)

ωt +∇ × (ω × u)− ν∇2ω = 0. (2.15c)
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In the helical basis, the vorticity vector ω is given by

ω = ωrer + ωηe⊥η + ωξeξ . (2.16)

Under the assumption of helical invariance, the respective components of ω are given
by

ωr =− 1
B
(uη)ξ , (2.17a)

ωη = 1
B
(ur)ξ −

1
r

(
ruξ
)

r
− 2abB2

r2
uη + a2B2

r
uξ , (2.17b)

ωξ = (uη)r+
a2B2

r
uη. (2.17c)

The helically invariant reduction of the three projections of the vorticity equation
(2.15c) yields the three PDEs

(ωr)t+ur (ω
r)r+

1
B

uξ (ωr)ξ = ωr (ur)r+
1
B
ωξ (ur)ξ

+ ν
[

1
r
(r (ωr)r)r+

1
B2
(ωr)ξξ −

1
r2
ωr − 2bB

r2

(
a (ωη)ξ +

b

r
(ωξ )ξ

)]
, (2.17d)

(ωη)t+ur (ωη)r+
1
B

uξ (ωη)ξ −
a2B2

r
(urωη − uηωr)+ 2abB2

r2
(uξωr − urωξ )

= ωr (uη)r+
1
B
ωξ (uη)ξ +ν

[
1
r
(r (ωη)r)r+

1
B2
(ωη)ξξ

+ a2B2(a2B2 − 2)
r2

ωη + 2abB

r2

(
(ωr)ξ −

(
Bωξ

)
r

)]
, (2.17e)

(ωξ )t+ur (ωξ )r+
1
B

uξ (ωξ )ξ +
1− a2B2

r
(uξωr − urωξ )

= ωr (uξ )r+
1
B
ωξ (uξ )ξ +ν

[
1
r
(r (ωξ )r)r+

1
B2
(ωξ )ξξ

+ a4B4 − 1
r2

ωξ + 2bB

r

(
b

r2
(ωr)ξ +

(
aB

r
ωη
)

r

)]
. (2.17f )

The first two terms on the right-hand side of each equation in (2.17d)–(2.17f )
correspond to vortex stretching.

At this point it is worth noting that in three dimensions, the vorticity vector ω
is a locally conserved quantity, since all three components of the vorticity equation
(2.15c) are indeed divergence expressions, with components of ω being the conserved
densities. However, it is not a material conservation law, due to the vortex stretching.
To the best of the authors’ knowledge, a vorticity-related material conservation law
was only known for plane flows with zero transverse velocity component. In § 6, we
derive new material conservation laws for two-component inviscid helically symmetric
flows that essentially involve vorticity.

In the presentation of local conservation laws involving vorticity, in order to simplify
expressions, we will sometimes use the cylindrical vorticity components given by

ωϕ = B

(
aωη + b

r
ωξ
)
, ωz = B

(
−b

r
ωη + aωξ

)
. (2.18)
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3. Direct construction of conservation laws
For any given system of partial differential equations, one can seek its divergence-

type conservation laws (1.2), where the conserved density Θ and spatial fluxes Φ i,
i= 1, 2, 3 may depend on independent and dependent variables of the given equations,
on partial derivatives of dependent variables, and perhaps also on non-local (integral)
quantities. We now provide a brief overview of the algorithm of the method of direct
construction of local conservation laws. For further details, see, e.g., Anco et al.
(2010).

The direct method consists of essentially two key ideas. Consider a PDE system

Rσ = 0, σ = 1, . . . ,N, (3.1)

of N partial differential equations, with n independent variables z = (z1, . . . , zn) (one
of which can be time), and m dependent variables u = (u1, . . . , um). The direct
construction method seeks conservation laws in the form

∂Γ i

∂zi
= 0, (3.2)

which is equivalent to (1.2). Let

Eu j = ∂

∂uj
− Di

∂

∂uj
i

+ · · · + (−1)s Di1 . . .Dis

∂

∂uj
i1...is

+ · · · (3.3)

denote an Euler differential operator with respect to each dependent variable uj, where
Di is a total derivative operator with respect to zi defined as

Di = ∂

∂zi
+ u j

i

∂

∂uj
+ u j

ii1

∂

∂uj
i1

+ u j
ii1i2

∂

∂u j
i1i2

+ · · · , (3.4)

and uj
i1...is
≡ ∂ suj/∂zi1 . . . ∂zis is a partial derivative of order s. It is known that an

expression F depending on z, u, and derivatives of u, is annihilated by an Euler
operator with respect to each uj,

Euj(F)≡ 0, j= 1, . . . ,m, (3.5)

if and only if F is in divergence form such as the left-hand side of (3.2) (Anco et al.
2010). This is in fact the first essential idea of the construction scheme. Note that
in (3.5), functions uj are arbitrary, and are not restricted to be solutions of the given
equations (3.1).

The second main idea relies on the fact that the direct construction method searches
for conservation laws as linear combinations of given equations Rσ from (3.1) with
unknown multipliers Λσ :

ΛσRσ ≡ ∂Γ
i

∂zi
= 0. (3.6)

The multipliers may be chosen to depend on independent and dependent variables and
partial derivatives of dependent variables, up to some prescribed order. From (3.5) it
follows that the multipliers must satisfy the multiplier determining equations

Euj(ΛσRσ )= 0, j= 1, . . . ,m. (3.7)

After the linear determining equations (3.7) are solved and multipliers Λσ are found,
one proceeds to finding conservation law density and fluxes Γ i, using (3.6). For further
details, see, e.g., Anco et al. (2010).
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It is important to note that the majority of PDE systems arising in applications,
such as Euler equations, can be written in a solved form with respect to some leading
derivatives. It has been proven that for such systems, all of their local conservation
laws can be found in the form (3.6). Moreover, for Cauchy–Kovalevskaya PDE
systems (systems solved with respect to highest derivatives of all dependent variables
with respect to some independent variable), there is a one-to-one correspondence
between sets of conservation law multipliers and conservation laws themselves (Anco
et al. 2010). It is evident that the helically invariant Euler equations, i.e. (2.9) with
ν = 0, can be written in a Cauchy–Kovalevskaya form with respect to r, whereas the
helically invariant Navier–Stokes equations (2.9) do not have a Cauchy–Kovalevskaya
form.

In the computations that employ the direct construction method, one naturally
avoids trivial conservation laws, which can arise as differential identities such as
∇ · (∇ × (·)) ≡ 0, or alternatively as ‘0 = 0’ conservation laws, whose density and all
fluxes vanish identically on solutions of the given system.

For complicated PDE systems, such as equations of fluid dynamics considered in
the current paper, multiplier determining equations (3.7) lead to a system containing
thousands of overdetermined linear PDEs on {Λσ }. In order to perform these
computations, a symbolic software package GeM for Maple (Cheviakov 2007) and
the powerful Maple rifsimp routine for differential polynomial system reduction
are intensively used. (We note that after a specific conservation law is obtained, its
correctness can be verified directly by hand, without any specialized software.)

As noted above, the direct construction method is used to discover families of
conservation laws of the helical reductions of Euler and Navier–Stokes equations in
primitive variables as well as in alternative formulations.

We note that we seek conservation laws in the canonical form (1.2), which in the
helically symmetric setting becomes

∂Θ

∂t
+∇ ·Φ ≡ ∂Θ

∂t
+ 1

r

∂

∂r
(rΦr)+ 1

B

∂Φξ

∂ξ
= 0. (3.8)

The direct construction method yields divergence expressions (3.2), which can be
converted to the canonical form (3.8) by the transformation

∂Γ 1

∂t
+ ∂Γ

2

∂r
+ ∂Γ

3

∂ξ
= r

[
∂

∂t

(
Γ 1

r

)
+ 1

r

∂

∂r

(
r
Γ 2

r

)
+ 1

B

∂

∂ξ

(
B

r
Γ 3

)]
= 0, (3.9)

that is,

Θ ≡ Γ
1

r
, Φr ≡ Γ

2

r
, Φξ ≡ B

r
Γ 3. (3.10)

In the presentation below, conservation laws (3.8) that can be identified with
material conservation laws (1.4) will be pointed out.

4. Conservation laws of the helically invariant Euler system
We now apply the direct construction method to seek local conservation laws

of the helically invariant Euler equations in primitive variables and in vorticity
formulation. In primitive variables, the conservation law multipliers Λσ in (3.6) and
(3.7) were chosen to depend on all independent and dependent variables and first
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partial derivatives of the dependent variables of the system:

Λσ =Λσ (t, r, ξ, ur, uη, uξ , p, (ur)ξ , (u
η)r, (u

η)ξ , (u
ξ )r, (u

ξ )ξ , pt, pr, pξ ). (4.1)

In the vorticity formulation, multipliers were restricted to depend on all independent
and dependent variables of the vorticity system:

Λσ =Λσ (t, r, ξ, ur, uη, uξ , p, ωr, ωη, ωξ ). (4.2)

More complicated forms of multipliers resulted in untractable multiplier determining
equations even with the aid of the computer algebra software.

In the current section, we list the density Θ and the fluxes Φr, Φξ of
the conservation laws in the form (3.8). For the simplicity and compactness of
presentation, we will freely use both the helical and the cylindrical notation for
velocity components, as per (2.6).

The two obvious conservation laws ∇ · (G(t)u)= 0 and ∇ · (G(t)ω)= 0 that hold for
an arbitrary function G(t) and reflect the obvious scaling properties of the continuity
equations ∇ ·u= 0, ∇ ·ω = 0 will not be explicitly listed.

Results for the stream function formulation are not presented below, since no
additional conservation laws have been found that arise from it.

4.1. Primitive variables
The helically invariant Euler system in primitive variables is given by formulae (2.9)
with ν = 0. The conservation laws obtained from this system are denoted by the prefix
‘EP’. Conservation laws arising from the Euler vorticity system (equations (2.17) with
ν = 0) are denoted by the prefix ‘EV’.

EP1. Conservation of kinetic energy. The conservation law is given by

Θ = K, Φr = ur(K + p), Φξ = uξ (K + p), (4.3)

where K is the kinetic energy density given by

K = 1
2 |u|2 = 1

2((u
r)2+ (uη)2+ (uξ )2). (4.4)

EP2. Conservation of the z-projection of momentum. It is well known that for Euler
equations, every projection of momentum in Cartesian coordinates is conserved,
however, this is generally not the case for momentum projections in curvilinear
coordinates. In helical coordinates with imposed helical invariance, the z-projection
of momentum is the only locally conserved quantity. The density and the fluxes of the
corresponding conservation law are given by

Θ = B

(
−b

r
uη + auξ

)
= uz, Φr = uruz, Φξ = uξuz + aBp. (4.5)

The conservation law (4.5) yields a material conservation law

duz

dt
= 0 (4.6)

when ∂p/∂ξ = 0, i.e. when p= p(r, t).

EP3. Conservation of the z-projection of the angular momentum. In a similar fashion,
the z-projection of the angular momentum is conserved:

Θ = rB

(
auη + b

r
uξ
)
= ruϕ, Φr = ruruϕ, Φξ = ruξuϕ + bBp. (4.7)
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It also yields a material conservation law

d(ruϕ)

dt
= 0 (4.8)

for ∂p/∂ξ = 0.

EP4. Conservation of the generalized momenta/angular momenta. In helical
coordinates, neither momentum nor the angular momentum in the directions η or ξ
is conserved; however, the helically invariant Euler equations possess an infinite family
of conservation laws given by

Θ = F
( r

B
uη
)
, Φr = urF

( r

B
uη
)
, Φξ = uξF

( r

B
uη
)
, (4.9)

where F(·) is an arbitrary function.
In order to give a physical interpretation to the conservation laws (4.9), we use (2.7)

to get

ζ = r

B
uη = aruϕ − buz. (4.10)

The quantity ζ may be looked at as a ‘blend’ of momentum and angular momentum
density in the η-direction. Indeed, in the limiting case of planar symmetry when a= 0,
one has ζ ∼ uz, which is proportional to the linear momentum density in z-direction. In
the rotationally symmetric case when b = 0, one gets ζ ∼ ruϕ , which is proportional
to the angular momentum density in the z-direction. (The dimensional consistency is
provided through the physical dimensions of constants a, b.) Consequently, in a special
case F(ζ ) = ζ , the ‘momentum blend’ ζ is the conserved quantity; in the case of
the general F(ζ ), one has an infinite set of ‘generalized momenta/angular momenta’
conservation laws.

It should be noted that all conservation laws (4.9) are material conservation laws:

d
dt

F
( r

B
uη
)
= 0. (4.11)

The existence of the present family of material conservation laws for inviscid flows,
involving a free function, is related to the fact that the momentum equation in the
direction of invariance decouples from the system, and the pressure gradient in the
respective directions vanishes. As a result the equation becomes a first-order PDE
linear in ζ . Such equations admit a relabelling symmetry, which here takes the form

r

B
uη→ F

( r

B
uη
)

(4.12)

which follows from multiplying the mentioned linear equation by F′((r/B)uη) to
obtain the conservation law (4.9). (A similar property is well known for the vorticity
conservation of planar two-component flows; it is discussed in detail below.)

4.2. The vorticity formulation
In this section we consider the conservation laws derived from continuity and
momentum equations (2.9) extended by the vorticity transport equations and the
definition of the vorticity given by (2.17) with ν = 0. From this extended system
additional families of conservation laws are to be expected. Similar to the momentum
equation, only a part of the vorticity conservation itself will be retained but further
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we observe generalized helicity which is an entanglement of velocity and vorticity and
various new vorticity related conservation laws are derived.

Note that similarly to the velocities in (2.6), for the vorticity we have

ωϕ = B

(
aωη + b

r
ωξ
)
, ωz = B

(
−b

r
ωη + aωξ

)
. (4.13)

Further, it is trivially clear that all previously derived conservation laws derived in
§ 4.1 carry over to the presently extended system.

EV1. Conservation of helicity. Most naturally we expect the conservation of helicity

h= u ·ω = urωr + uηωη + uξωξ (4.14)

which also in three dimensions follows from the Euler system extended by the
vorticity formulation. The conservation law is given by

Θ = h, (4.15a)

Φr = ωr(E − (uη)2− (uξ )2)+ ur(h− urωr), (4.15b)

Φξ = ωξ (E − (ur)2− (uη)2)+ uξ (h− uξωξ ), (4.15c)

where

E = 1
2 |u |2+p= 1

2((u
r)2+ (uη)2+ (uξ )2)+ p (4.16)

is the total energy density.
In vector notation, the helicity conservation law (4.15) can be written as

∂

∂t
h+∇ · (u×∇E + (ω × u)× u)= 0. (4.17)

EV2. An infinite family of generalized helicity conservation laws. Interestingly, for
helically invariant inviscid flows, it was found that the conservation of helicity (4.15)
can be vastly generalized. The following family of conservation laws holds, involving
an arbitrary function H = H((r/B)uη):

∂

∂t

(
hH
( r

B
uη
))
+∇ ·

[
H
( r

B
uη
)
[u×∇E + (ω × u)× u]

+ Euηe⊥η ×∇H
( r

B
uη
)]
= 0. (4.18)

For H = 1, (4.18) reduces to the conservation of helicity (4.17).
It is evident that the arbitrary functions in the formula (4.18) the generalized

momentum conservation laws (4.9) have the same argument r/Buη. An important
difference however is that unlike the generalized momentum conservation laws (4.9),
the generalized helicity conservation laws (4.18) essentially involve all three velocity
and vorticity components.

Unlike the generalized momentum case (4.9), the free function H in formulae (4.18)
does not arise due to a relabelling symmetry (4.12), even though the expression (4.18)
is linear in H. Moreover, the generalized helicity conservation laws (4.18) do not
correspond to a material conservation law.

It follows that from a physical point of view, the present family of conservation
laws is clearly distinguished from all other known types of conservation laws known
in fluid dynamics where free functions depend on the dependent variables.
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Material conservation laws such as the generalized momentum laws (4.9), which
involve arbitrary functions due to a relabelling symmetry, do not really describe
a different physical quantity for different choices of the form of the arbitrary
functions; instead, they in some sense are ‘different sides of the same dice’, describing
conservation of the same infinitesimal quantity related to a fluid parcel. For the
generalized helicity conservation laws (4.18), the situation is intrinsically different,
since every different choice of the free function H brings up a different physical flow
quantity with its individual flow dynamics. The fact that helically symmetric inviscid
flows admit an infinite number of independent conservation laws is fundamentally
unique; their existence can be interpreted as a manifestation of the simplified flow
geometry, in which they are only known to arise.

EV3. A family of vorticity conservation laws involving ωϕ . A family of conservation
laws is given by

Θ = Q(t)

r
ωϕ, (4.19a)

Φr = 1
r

(
Q(t)[urωϕ − ωruϕ] + Q′(t)uz

)
, (4.19b)

Φξ =−aB

r
(Q(t)[uηωξ − uξωη] + Q′(t)ur), (4.19c)

where Q(t) is an arbitrary function.
The following two conservation laws are specific to the helical geometry of the flow

and do not correspond to material conservation laws. It turns out they hold both for
the Euler equations and the Navier–Stokes equations, as it will be seen in § 5.

EV4. Vorticity conservation law (i). The conservation law is given by

Θ =−rB

(
a3ωη − b3

r3
ωξ
)
, (4.20a)

Φr =−2a2uruz − a3Br(urωη − uηωr)+ Bb3

r2
(urωξ − uξωr), (4.20b)

Φξ = a3B[(ur)2+ (uη)2− (uξ )2+r(uηωξ − uξωη)] + 2a2bB

r
uηuξ . (4.20c)

In both the rotationally symmetric setting a= 1, b= 0 and the plane symmetry setting
a = 0, b = 1, the conserved quantity Θ is related to the polar vorticity component. In
the plane case, it reduces to Θ = ωϕ/r and becomes a part of the family (4.19); in the
rotationally symmetric case, one has Θ =−rωϕ . For problems where the flow velocity
vanishes on the boundary of the flow domain Ω , the quantity rωϕ corresponds to the
conservation of linear momentum in the z-direction, since

1
2

∫∫
Ω

rωϕ dA=
∫∫

Ω

uz dA. (4.21)

In the general helically symmetric setting a, b 6= 0, the conservation law (4.20) is
independent of all other listed conservation laws.
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EV5. Vorticity conservation law (ii). An additional conservation law involving two
vorticity components is given by

Θ =− B

r2

(
b2r2

B2
ωξ + a3r4

(
−b

r
ωη + aωξ

))
=− B

r2

(
b2r2

B2
ωξ + a3r4

B
ωz

)
, (4.22a)

Φr = a3rB

(
2ur

(
auη + b

r
uξ
)
+ b(urωη − uηωr)

)
− a4r4 + a2r2b2 + b4

r
√

a2r2 + b2
(urωξ − uξωr), (4.22b)

Φξ =−a3bB((ur)2+ (uη)2− (uξ )2+r(uηωξ − uξωη))+ 2a4rBuηuξ . (4.22c)

To have some insight into the structure of the conserved density in (4.22), we again
consider the limiting cases. In the rotationally symmetric case a = 1, b = 0, one has
ξ = z, and the conserved quantity in (4.22) reduces to Θ =−r2ωz. For problems where
the flow velocity vanishes on the boundary of the flow domain Ω , the quantity r2ωz

corresponds to the conservation of the angular momentum in z-direction, similarly to
(4.21). In the plane symmetry case a = 0, b = 1, one has ξ = ϕ, with the conserved
density becoming Θ = −ωϕ/r, which is again a part of the family (4.19). In the
general case of helical symmetry with a, b 6= 0, however, the conservation law (4.22) is
independent of all other listed conservation laws.

EV6. Vorticity conservation law (iii). A family of purely spatial divergence expressions
that hold for both Euler and Navier–Stokes helically invariant equations in vorticity
formulation is given by

∇ ·Φ = 0, Φr = Nωr − 1
B

Nξu
η, Φξ = Nωξ , (4.23)

for an arbitrary function N = N(t, ξ). This is a generalization of the obvious
divergence expression ∇ · (G(t)ω)= 0 that holds only for helically invariant flows.

5. Conservation laws of the helically invariant Navier–Stokes system
In the present section, we list the conservation laws derived by applying the direct

construction method to the helically symmetric Navier–Stokes equations in primitive
variables and vorticity formulation, with conservation law multipliers Λ depending on
independent variables t, r, ξ , the physical parameters and their derivatives.

We may generally note that all conservation laws we subsequently derive for the
helically symmetric Navier–Stokes equations are a subset of those admitted by the
helically symmetric Euler equations, in the sense that the density is identical, while
the fluxes are extended with the additional viscous terms. Remarkably, the helical
Navier–Stokes equations share with the helical Euler equations the infinite families of
conservation laws involving arbitrary functions.

The conservation of helicity and helicity-related quantities given by (4.17) and (4.18)
does not hold for the viscous case.

5.1. Primitive variables
NSP1. Conservation of the z-projection of momentum. The following conservation law

Θ = uz, Φr = uruz − ν (uz)r, Φξ = uξuz + aBp− ν
B
(uz)ξ (5.1)
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is merely a spatial truncation of the general momentum conservation in z-direction,
and it generalizes the conservation of momentum for the helical Euler system, given
by (4.5).

NSP2. Conservation of a generalized momentum. The following conservation law is a
viscous extension of the conservation laws (4.9)

Θ = r

B
uη, (5.2a)

Φr = r

B
uruη − ν

[
−2aB

(
auη + 2

b

r
uξ
)
+
( r

B
uη
)

r

]
= r

B
uruη − ν

[
−2auϕ +

( r

B
uη
)

r

]
, (5.2b)

Φξ = r

B
uηuξ − ν 1

B

[
2abB2

r
ur +

( r

B
uη
)
ξ

]
, (5.2c)

where instead of an infinite ‘generalized momentum’ family, only one conservation law
holds. It corresponds to the extension of the ‘generalized momentum’ conservation law
(4.9) with F((r/B)uη)= r/Buη onto the viscous case.

5.2. The vorticity formulation
NSV1. An infinite family of vorticity conservation laws (i). The family of conservation

laws (4.19) in the inviscid case is carried over to the viscous case, as follows:

Θ = Q(t)

r
B

(
aωη + b

r
ωξ
)
= Q(t)

r
ωϕ, (5.3a)

Φr = 1
r

{
Q(t)

[
urB

(
aωη + b

r
ωξ
)
− ωrB

(
auη + b

r
uξ
)]
+ Q′(t)B

(
−b

r
uη + auξ

)

−Q(t)ν

[
aB

r
ωη + b2B

r(a2r2 + b2)

(
aωη + b

r
ωξ
)
+ B

(
aωηr +

b

r
ωξr

)]}
, (5.3b)

Φξ =−B

r

{
aQ(t)[uηωξ − uξωη] + aQ′(t)ur + Q(t)

r3
ν

[
r3

B

(
aωηξ +

b

r
ω
ξ
ξ

)
+ 2brωr

]}
,

(5.3c)

where Q(t) is an arbitrary function.

NSV2. Vorticity conservation law (ii). Likewise, the conservation law (4.20) for the
inviscid case extends to its viscous form

Θ =−rB

(
a3ωη − b3

r3
ωξ
)
, (5.4a)

Φr =− B

r2

(
a3r3 (urωη − uηωr)− b3

(
urωξ − uξωr

))− 2a2Bur

(
−b

r
uη + auξ

)

− B

r2
ν

[
r2

B2

(
aωη + b

r
ωξ
)
− r3

(
a3ωηr −

b3

r3
ωξr

)
+ abB2r

(
b3

r3
ωη + a3ωξ

)]
, (5.4b)
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Φξ = a3B
(
(ur)2+ (uη)2− (uξ )2+r

(
uηωξ − uξωη

))+ 2a2bB

r
uηuξ

+ 2a2bB

r
ν

[(
1− b2

a2r2

)
ωr + r2

2a2bB

(
a3ω

η
ξ −

b3

r3
ω
ξ
ξ

)]
. (5.4c)

NSV3. Vorticity conservation law (iii). Similarly, the conservation law (4.22) holds for
the Navier–Stokes formulation, with spatial fluxes modified as follows:

Θ =− B

r2

(
b2r2

B2
ωξ + a3r4

(
−b

r
ωη + aωξ

))
=− B

r2

(
b2r2

B2
ωξ + a3r4

B
ωz

)
, (5.5a)

Φr = a3rB

(
2ur

(
auη + b

r
uξ
)
+ b (urωη − uηωr)

)
− a4r4 + a2r2b2 + b4

r
√

a2r2 + b2

(
urωξ − uξωr

)
+ ν

[
4a3B

(
auη + b

r
uξ
)
− a3brB (ωη)r+

B

r3

(
b4 − a4r4 − a6r6

a2r2 + b2

)
ωξ

+ B

r2
(a4r4 + a2r2b2 + b4) (ωξ )r+

ab

B

(
2+ a4r4

(a2r2 + b2)
2

)
ωη
]
, (5.5b)

Φξ =−a3bB((ur)2+ (uη)2− (uξ )2+r(uηωξ − uξωη))+ 2a4rBuηuξ

+ ν
[

1
r2
(a4r4 + a2r2b2 + b4) (ωξ )ξ −a3br (ωη)ξ −

4a3bB

r
ur + 2b4B

r3
ωr

]
. (5.5c)

NSV4. Vorticity conservation law (iv). The family of spatial divergence expressions
(4.23) corresponding to the generalization of vorticity continuity equation holds in the
viscous case without change.

6. Extended sets of conservation laws for two-component flows
For the cases of a plane and an axisymmetric flow, it is well known that the

vanishing of the velocity in the direction of the invariance leads to an extended set
of conservation laws; moreover, certain conservation laws only exist for this special
ansatz. The most well-known example is that of a plane flow, which in principle
allows velocities in all three spatial directions, while only in the two-component limit
does it admit an infinite number of vorticity conservation laws (Bowman 2009).

We now seek to extend the classes of conservation laws admitted by helically
invariant inviscid and viscous flow equations for the two-component flow, i.e.

uη = 0. (6.1)

An illustration is provided in figure 2.
The helically invariant Navier–Stokes equations (2.9) consequently become

1
r

ur + (ur)r+
1
B
(uξ )ξ = 0, (6.2a)

(ur)t+ur (ur)r+
1
B

uξ (ur)ξ −
b2B2

r3
(uξ )

2+pr

= ν
[

1
r
(r (ur)r)r+

1
B2
(ur)ξξ −

1
r2

ur − 2b2B

r3
(uξ )ξ

]
, (6.2b)

0= ν 2abB

r2
((ur)ξ − (Buξ )r), (6.2c)
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z

x

y

r

FIGURE 2. A schematic of a two-component helically invariant flow, with zero velocity
component in the invariant η-direction: uη = 0. Conversely, the vorticity has only one non-
zero component ωη 6= 0.

(uξ )t+ur (uξ )r+
1
B

uξ (uξ )ξ +
b2B2

r3
uruξ + 1

B
pξ

= ν
[

1
r
(r (uξ )r)r+

1
B2
(uξ )ξξ +

a4B4 − 1
r2

uξ + 2b2B

r3
(ur)ξ

]
. (6.2d)

Note that the equation (6.2c) vanishes when νab = 0, i.e. for inviscid flows, and
for viscous flows with axial or planar symmetry. For other cases when the equation
(6.2c) does not vanish, it imposes an additional differential constraint on the velocity
components ur, uξ . Such a restriction may lead to lack of solution existence for
boundary value problems, and hence below we only consider the inviscid case with
a, b 6= 0 and both viscous and inviscid cases when a= 0 or b= 0.

6.1. Additional conservation laws for general inviscid two-component helically invariant
flows

We now consider two-component helically invariant Euler flows satisfying (6.1). The
three governing equations in primitive variables are given by (6.2a), (6.2b) and (6.2d),
with ν = 0. Employing first-order conservation law multipliers, we find that the energy
conservation law EP1 (4.3) is carried over without change; the conservation laws EP2
(4.5) and EP3 (4.7) collapse to one, given by

Θ = Buξ , Φr = Buruξ , Φξ = B((uξ )
2+p); (6.3)

the conservation law EP4 (4.9) vanishes. No additional conservation laws arise in the
above multiplier ansatz.

In the vorticity formulation, equations in primitive variables are appended with the
definition of vorticity and the vorticity transport equations. For the two-component
case, from (6.1), it follows that ωξ = ωr = 0 (cf. figure 2). The remaining vorticity
component ωη is given by

ωη = 1
B
(ur)ξ −

1
r

∂

∂r
(ruξ )+ a2B2

r
uξ . (6.4)
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The vorticity transport equations in r- and ξ -directions vanish identically, and the
remaining equation reads

(ωη)t+
1
r

∂

∂r
(rurωη)+ 1

B

∂

∂ξ
(uξωη)− a2B2

r
urωη = 0. (6.5)

Physically it is important to note that the reduction due to (6.1) gives rise to the
elimination of the vortex stretching term in (2.17e). Hence, similar to the plane two-
component case, equation (6.5) corresponds to pure helical vorticity convection. This
vanishing of vortex stretching gives rise to an additional infinite family of conservation
laws solely emerging from the vorticity equation (6.5), given by

Θ = T

(
B

r
ωη
)
, Φr = urT

(
B

r
ωη
)
, Φξ = uξT

(
B

r
ωη
)
, (6.6)

where T(·) is an arbitrary function. The family (6.6) corresponds to an infinite family
of material vorticity conservation laws given by

d
dt

T

(
B

r
ωη
)
= 0. (6.7)

The infinite-dimensional family of conservation laws (6.6) corresponds to a family
of Casimir invariants (Bowman 2009); the case T(q) = q2 may be referred to as
‘enstrophy conservation’ in two-component helical flows.

Formulae (6.6) generalize the well-known plane two-component flow conservation
laws listed below (formula (6.22)) and, moreover, give rise to a previously unknown
infinite family of conservation laws for axisymmetric flows which is also given
(formula (6.30)).

Concerning the other conservation laws that were derived in § 4 above for the
three-component helically invariant Euler flows, we note that in the two-component
setting, the helicity conservation law EV1 (4.15) does not arise, since h = u · ω ≡ 0.
Vorticity conservation laws EV2 (4.18) and EV6 (4.23) also vanish identically. The
three conservation laws EV3 (4.19), EV4 (4.20) and EV5 (4.22) yield independent
conserved quantities of the forms

Θ1 = Q(t)B

r
ωη, Θ2 = rBωη. (6.8)

6.2. The classical plane flow
For the two-component plane flow, as noted above, one can generally consider viscous
flows, since the restriction (6.2c) vanishes. We now seek zeroth-order conservation
laws of z-invariant Navier–Stokes equations (2.15) in Cartesian coordinates, with an
additionally imposed condition of vanishing velocity in the z-direction: uz = 0. (Where
possible, we will extend the set of conservation laws admitted for inviscid flows,
ν = 0.)

For the vorticity in planar flows, one has ωx = ωy = 0. The direct construction
method is applied both to the system (2.15) in primitive variables, and to the vorticity
system which involves the equations

ωz + (ux)y− (uy)x = 0, (6.9a)

(ωz)t+ux (ωz)x+uy (ωz)y = ν
[
(ωz)xx+ (ωz)yy

]
. (6.9b)
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We note that in the current section, since all scaling factors in Cartesian coordinates
are ones, local conservation laws (3.8) have the form

∂Θ

∂t
+ ∂Φ

x

∂x
+ ∂Φ

y

∂y
= 0. (6.10)

For the general viscous case, the following conservation laws arise. First, one has
the conservation of angular momentum in the z- direction, given by

Θ = yux − xuy, (6.11a)

Φx = y (ux)2−xuxuy + yp+ ν(x (uy)x−y (ux)x−uy), (6.11b)

Φy = yuxuy − x (uy)2−xp+ ν(x (uy)y−y (ux)y+ux). (6.11c)

(Note that for a general helical setting it only used to hold for inviscid flows, cf. (5.1).)
Further, even in the viscous setting, one readily computes two families of

conservation laws sometimes referred to as the ‘centre of mass theorem’ (Caviglia
& Morro 1989) in x- and y-directions:

Θ = f1(t)u
x, Φx = f1(t)

(
(ux)2+p− ν (ux)x)

)− xf ′1(t)u
x, (6.12a)

Φy = f1(t)
(
uxuy − ν (ux)y

)− xf ′1(t)u
y, (6.12b)

Θ = f2(t)u
y, Φx = f2(t)(u

xuy − ν (uy)x)− yf ′2(t)u
x, (6.13a)

Φy = f2(t)((u
y)2+p− ν (uy)y)− yf ′2(t)u

y (6.13b)

where f1(t), f2(t) are arbitrary functions. The term ‘centre of mass theorem’ is more
appropriate for compressible gas rather than a constant-density unbounded fluid at rest
at infinity. In the setting of the current paper, it seems more appropriate to refer to
formulae (6.12) and (6.13) as the ‘generalized momentum’ conservation laws. If A is
the two-dimensional domain occupied by the fluid, with no-leak boundary conditions
u ·n= 0 on the boundary ∂A, then from (6.12), one has the balance law

d
dt

∫∫
A
f (t)ux dA=

∫
∂A

f (t)[(p, 0) ·n− ν(∇ux) ·n] d` (6.14)

for the generalized x-momentum f (t)ux, where the n is the unit exterior normal to ∂A;
a similar law arising from (6.13) holds for the y-direction.

For inviscid flows, conservation laws (6.12) and (6.13) are known to hold, in
Cartesian coordinates, for the general three-dimensional Euler equations (Caviglia &
Morro 1987, 1989). For viscous flows, these conservation laws are new, to the best of
the authors’ knowledge. Note that these families do not arise for the general helical
Euler or Navier–Stokes system (cf. § 4).

Using the direct method with zeroth-order multiplies for the vorticity formulation,
i.e. taking into account equations (6.9), one can additionally derive the following
conservation laws that hold for viscous two-component planar flows:

Θ = x2 + y2

2
ωz, (6.15a)

Φx = 1
2
(uxωz(x2 + y2)+ y((ux)2− (uy)2))− xuxuy

+ ν
(

xωz − 1
2
(x2 + y2) (ωz)x−2uy

)
, (6.15b)
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Φy = 1
2

(
uyωz(x2 + y2)+ x((ux)2− (uy)2)

)+ yuxuy

+ ν
(

yωz − 1
2
(x2 + y2) (ωz)y+2ux

)
; (6.15c)

Θ = f3(t)ω
z, (6.16a)

Φx = f3(t)(u
xωz − ν (ωz)x)− f ′3(t)u

y, (6.16b)

Φy = f3(t)(u
yωz − ν (ωz)y)+ f ′3(t)u

x; (6.16c)

Θ = f4(t)xω
z, (6.17a)

Φx = f4(t)(xuxωz − uxuy + ν(ωz − x (ωz)x))+ f ′4(t)(yux − xuy), (6.17b)

Φy = f4(t)(xuyωz + 1
2 (u

x)2− 1
2 (u

y)2−νx (ωz)y)+ f ′4(t)(xux + yuy); (6.17c)

Θ = f5(t)yω
z, (6.18a)

Φx = f5(t)(yuxωz + 1
2 (u

x)2− 1
2 (u

y)2−νy (ωz)x)− f ′5(t)(xux + yuy), (6.18b)

Φy = f5(t)(yuyωz + uxuy + ν(ωz − x (ωz)y))+ f ′5(t)(yux − xuy) (6.18c)

where f3(t), f4(t) and f5(t) are arbitrary functions.
The conservation law (6.15) and the particular cases of the families (6.16), (6.17)

and (6.18) for f3(t), f4(t), f5(t)= const. are known in the literature for the inviscid case
(e.g. Batchelor 2000).

To the best of the authors’ knowledge, the conservation laws (6.15)–(6.18) have not
been known in the viscous setting and for general forms of f3(t), f4(t), f5(t).

For the constant values of the arbitrary functions, formula (6.16) describes the
conservation of the z-component of the vorticity vector. In particular, for an unbounded
fluid at rest at infinity,

d
dt

∫∫
ωz dA= 0. (6.19)

Similarly, formulae (6.17) and (6.18) represent the conservation of the first two
moments

d
dt

∫∫
xωz dA= d

dt

∫∫
yωz dA= 0, (6.20)

and the quantities

X =

∫∫
xωz dA∫∫
ωz dA

, Y =

∫∫
yωz dA∫∫
ωz dA

(6.21)

are naturally interpreted as the coordinates of the ‘centre of vorticity’ (Batchelor
2000).

Taking non-constant f3(t), f4(t), f5(t) in formulae (6.16), (6.17) and (6.18)
corresponds to non-homogeneous time rescaling in the evolution of

∫
ωz dA,

∫
xωz dA,

and
∫

yωz dA in boundary value problems for which the corresponding integrals are not
conserved.
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The conservation law (6.15) is a second radial moment of ωz, and is related to the
vorticity dispersion, as discussed by Batchelor (2000).

For inviscid two-component flows, one additionally has a well-known family of
vorticity conservation laws (Bowman 2009) given by

Θ = N(ωz), Φx = uxN(ωz), Φy = uyN(ωz) (6.22)

which are readily obtained as a reduction of our general formulae (6.6) onto the plane
case. The conservation laws (6.22) are clearly of the material form

d
dt

N(ωz)= 0. (6.23)

The case when N(ωz)= (ωz)2 corresponds to the conservation of enstrophy. In general,
conserved quantities N(ωz) are referred to as Casimirs by Bowman (2009). The family
(6.22) does not admit a viscous extension.

6.3. The axisymmetric case
We now seek local conservation laws of two-component axisymmetric flows, i.e. flows
satisfying

uϕ = 0. (6.24)

in both the viscous and the inviscid setting, and compare them with the conservation
laws obtained for general helically invariant viscous flows (§ 5) and for the two-
component helically invariant inviscid flows (§ 6).

For flows satisfying (6.24), one has ωr = ωz = 0, and the remaining vorticity
equations read

ωϕ + (uz)r− (ur)z = 0, (6.25a)

(ωϕ)t+ur

(
(ωϕ)r−

1
r
ωϕ
)
+ uz (ωϕ)z = ν

[
(ωϕ)rr+

1
r
(ωϕ)r−

1
r2
ωϕ + (ωϕ)zz

]
. (6.25b)

Similarly to the planar two-component case, for axisymmetric flows, various
previously known conservation laws carry over or vanish, but also new conservation
laws arise that have no direct counterpart for the general helically symmetric setting.
In the current section, the conservation laws are listed in cylindrical coordinates, and
have the form

∂Θ

∂t
+ 1

r

∂

∂r
(rΦr)+ ∂Φ

z

∂z
= 0. (6.26)

Starting from the general rotationally symmetric Navier–Stokes equations in
primitive variables (2.12a)–(2.12c), one readily obtains an infinite-dimensional set of
conservation laws given by the density and the fluxes

Θ = g1(t)u
z, Φr = g1(t)(u

ruz − ν (uz)r))− zg′1(t)u
r, (6.27a)

Φz = g1(t)((u
z)2+p− ν (uz)z)− zg′1(t)u

z, (6.27b)

holding for an arbitrary function g1(t). The conservation law (6.27) corresponds to the
conservation of the ‘generalized momentum’ in the z-direction, and similarly to the
conservation laws (6.12) and (6.13) for plane flows, holds in both viscous and inviscid
settings.

In the vorticity formulation, taking into account equations (6.25) and using
zeroth-order multiplies in the direct method, one additionally finds two families of
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conservation laws, given by

Θ = 1
r

g2(t)ω
ϕ, (6.28a)

Φr = 1
r

(
g2(t)

[
urωϕ − ν

(
(ωϕ)r+

1
r
ωϕ
)]
+ g′2(t)u

z

)
, (6.28b)

Φz = 1
r
(g2(t)[uzωϕ − ν (ωϕ)z] − g′2(t)u

r), (6.28c)

and

Θ = g3(t)rω
ϕ, (6.29a)

Φr = g3(t)[rurωϕ + 2uruz + ν(ωϕ − r (ωϕ)r)] + g′3(t)(ruz − 2zur), (6.29b)

Φz = g3(t)[(uz)2− (ur)2+ruzωϕ − νr (ωϕ)z] − g′3(t)(rur + 2zuz), (6.29c)

for arbitrary g2(t) and g3(t). The family (6.28) is an axially symmetric restriction of
the conservation laws NSV2 (5.3) found above. The family (6.29) is new; it is specific
for two-component axially symmetric flows, and does not hold in a general helical
setting. The families (6.28) and (6.29) describe the conservation of two different
generalized r-moments of the fluid vorticity. As discussed in the remark after the
formula (4.20), for some flows, the conservation law (6.29) may also be interpreted as
generalized conservation of linear momentum in the z-direction.

For inviscid flows, the set of admitted conservation laws is extended by a family of
Casimir invariants (6.7), which in an axially symmetric setting take the form

Θ = S

(
1
r
ωϕ
)
, Φr = urS

(
1
r
ωϕ
)
, Φz = uzS

(
1
r
ωϕ
)

(6.30)

where S(·) is an arbitrary function of its argument. To the best of the authors’
knowledge, the family of conservation laws (6.30) has not appeared in the literature
before.

7. Summary and conclusions
Incompressible helically symmetric flows that play an important role in various

natural, applied and laboratory settings have been considered in the present paper. In
cylindrical coordinates (r, ϕ, z), a helical variable is given by ξ = az+ bϕ; with curves
ξ = const. describing helices. In a helically invariant setting, all physical quantities are
restricted depend only on time t, the cylindrical radius r and the helical variable ξ .

In the current paper, the full set of helically invariant Navier–Stokes equations was
derived both in primitive variables (formulae (2.9)) and in the vorticity formulation
(formulae (2.17)). Important special cases of rotational and plane symmetry arise in
the limiting cases of helical parameters a = 1, b = 0 and a = 0, b = 1, respectively.
The corresponding reductions of the Navier–Stokes equations were derived in §§ 2.2.1
and 2.2.2.

In general, helically symmetric, rotationally symmetric and plane-symmetric flows
have all three velocity components non-zero, and hence are often called ‘2(1/2)-
dimensional flows’. Many applications use two-component flows, where the velocity
component in the invariant direction vanishes. Such flows were also considered in the
current paper.
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The direct construction method was applied to systematically seek local conserved
quantities and the corresponding fluxes of conservation laws that hold for the models
listed above. Well-known conservation laws, such as conservation of momentum,
angular momentum, energy and helicity for inviscid flows, were reproduced. In
addition, several new families of conservation laws were derived, which are specific to
helically invariant setting, both in the viscous and in the inviscid case, as follows.

(a) For helically invariant Euler equations in primitive variables (§ 4.1), conservation
laws of kinetic energy and z-projections of momentum and angular momentum
hold (formulae (4.3), (4.5) and (4.7)). In addition, a new infinite family of
generalized momentum/angular momentum conservation laws (4.9) was discovered.
All conservation laws in this family are material conservation laws (1.4),
corresponding to the conservation of the quantity F((r/B)uη) initially assigned
to any moving fluid parcel, for an arbitrary function F(·).

(b) For helically invariant Euler equations in the vorticity formulation (§ 4.2), the
conservation of helicity h (4.15) is readily obtained. In the current contribution,
we derived a new family of generalized helicity conservation laws (4.18), with
the conserved quantity given by hH((r/B)uη) for an arbitrary function H(·). These
non-material conservation laws have not been observed before in any setting.

Moreover, a new infinite family of vorticity-related conserved quantities (4.19)
was found, as well as three additional conservation laws given by (4.20), (4.22)
and (4.23), involving combinations of vorticity components and spatial variables.
These conservation laws hold in the inviscid case, as well as in the viscous case
after an appropriate extension.

(c) Conserved quantities for the helically invariant viscous flows were considered in
§ 5. Remarkably, a z-projection of momentum, and an additional momentum-like
quantity (r/B)uη are preserved even by a viscous flow (formulae (5.1) and (5.2)).

(d) In the vorticity formulation (§ 5.2), the helically invariant viscous flow equations
were found to possess a remarkable set of vorticity-related conservation laws,
including the family (5.3) and single conservation laws (5.4) and (5.5), that directly
generalize the corresponding inviscid ones onto the case ν > 0.

An important ansatz that is often considered in literature in various settings is
the case of two-component flows, where one of the velocity components vanishes
identically. In § 6 of the current paper, we considered two-component helically
invariant flows, with the velocity component in the invariant direction uη ≡ 0. In
such an ansatz, the governing equations in primitive variables (2.9) and in the vorticity
formulation (2.17) significantly simplify; in particular, two vorticity components vanish
identically: ωr = ωξ ≡ 0. Conservation laws for this setting were computed as follows.

(e(i)) Owing to the differential constraint (6.2c), only inviscid flows have been
considered in the general helically invariant setting with a, b 6= 0. For such
flows, an infinite set of enstrophy-related vorticity conservation laws (6.6) was
discovered. For the plane flow equations, the family reduces to (6.22), which
is already known in literature. However, its full helical form (6.6) and the
axially symmetric reduction (6.30) first appear in the new results of the current
contribution.

(e(ii)) For classical two-component plane flows (§ 6.2), both in viscous and inviscid
settings, one obtains additional conservation laws that do not hold for a general
helical setting. In particular, in primitive variables, one has the conservation
of angular momentum in the z-direction given by (6.11), and two families
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of conservation laws (6.12) and (6.13) corresponding to the ‘centre of mass
theorem’ and involving arbitrary functions of time. The latter families have
been previously known to hold only in the inviscid setting. In the vorticity
formulation, one additionally has a conservation law (6.15), and three families
of conservation laws (6.16), (6.17) and (6.18), involving arbitrary functions of
time. The latter three families have been previously known to hold only for
special values of the arbitrary functions, and only in the inviscid setting.

(e(iii)) For axisymmetric two-component flows (§ 6.3), in both viscous and inviscid
settings, three new families of conservation laws were derived: equation
(6.27) in primitive variables and equations (6.28) and (6.29) in the vorticity
formulation.

In summary, the assumption of helical invariance gives rise to additional infinite new
families of conservation laws of fluid flow equations, in a variety of settings, including
cases with non-zero viscosity. Many of the new conservation laws are vorticity related.
(No additional conservation laws were found using the stream function formulation.)
These results make the helical invariance property seem to be a particularly important
ansatz for solution of fluid dynamics equations. Based on the findings presented
in the current paper, one may argue that the fact that helically invariant flows
occur frequently in observed phenomena may be related to their special structure,
which mathematically reveals itself through additional infinite families of conserved
quantities.

It remains an objective of future research to employ the newly found conservation
laws in computational fluid dynamics codes.
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