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Two efficient localization algorithms for
multilateration

MAURO LEONARDIl, ADOLF MATHIAS® AND GASPARE GALATI'

Two localization algorithms for multilateration systems are derived and analyzed. Instead of the classical time difference of
arrival (TDOA), a direct use of the time of arrival (TOA) is made. The algorithms work for arbitrary spatial dimensions and
overdetermined systems. These derivations are tested in a real-case implementation with simulated data (in particular, the
multilateration (MLAT) system installed on the Malpensa Airport in Milan was considered for the MLAT simulation and its
possible extension to wide area multilateration (WAM) system was considered for WAM trials). The results are also compared
with the present-day algorithms performance, mostly based on TDOA.
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I. INTRODUCTION

Multilateration (MLAT) of mode S squitters/replies is an
important location and identification system for surface
traffic surveillance in large airports (such as, in Europe,
Heatrow, Frankfurt, Fiumicino, etc). The system exploits the
secondary surveillance radar (SSR) mode S and mode A/C
signals in order to locate and identify transponder-equipped
aircraft and vehicles without the need for additional, non-
standard on-board facilities.

A typical MLAT system is made up of a number (e.g. 10-
15) of measurement stations capable of receiving, time
tagging, and transmitting to a central processing subsystem
(CPS) the SSR replies (or, also, the spontaneously emitted
replies, called squitters) emitted from the aircraft. The
MLAT algorithms (running in real time in the CPS) locate air-
craft and other vehicles usually using time difference of arrival
(TDOA) concepts, i.e. a hyperbolic technique. Location is also
possible for approach area surveillance, i.e. in the case of wide
area multilateration (WAM).

Due to the evolution toward WAM, it is important to
extend the MLAT coverage, with ad-hoc algorithms that
also have high performance in case of targets far away from
the airport.

Two localization algorithms for MLAT and WAM systems
that operate on TOA measurements (instead of TDOA
measurements) will be proposed in this paper. These algor-
ithms do not have to resort to expensive hyperbola intersec-
tion algorithms; instead, they rely on a simple and efficient
least-square method and on the solution of a single quadratic
equation. A theoretical discussion between TOA and TDOA is
given by Shin and Sung [1].
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The proposed methods set themselves apart from the well-
known efficient methods [2-7] and use a derivation that is
quite similar to the Bancroft’s one used in global navigation
satellite system (GNSS) applications [8]. These algorithms
deliver simple formulas that easily generalize to arbitrary
spatial dimensions as well as to over- and under-determined
cases.

Il. THE PROPOSED MLAT
ALGORITHMS

We consider the situation where a target with unknown
position p=(p,---ps) € R? emits an SSR reply at the
unknown time instant ¢ that is detected, after propagation
through a medium with speed ¢, by a set K of receiving
units. Each receiver k € K is located at a well-known position
Pk = (P,:- - -Pra) and receives the reply at the time instant f.
Under the assumption that the time measurements are distrib-
uted with N(#, o), the following probability density function
results for the target position:
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where x, is the real target position, and o, = co is the standard
deviation of the range measurements p = ct;, (that is Gaussian
distributed: N(cty, ;) by hypothesis).

For the whole set of squared distances between each receiv-
ing station and the target, it is possible to write a set of K
equations:

Ipy —pI* = (& — 1),
Ip> +Ipl* —2pip =t — 1) withk=1...K, (2)

2pip — CHit) = Ipl* — ¢ + Ipl* — 1,
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Defining the space-time vectors q = (p,...ps t)'s qu=
(Prr- - -Prd tk)T and the [K + 1, K + 1] matrix:

1 0 0 o
0 1 o0 0

s=|o o o |, 3)
0 0 O —c*

equation (2) can be arranged into the following equations
system,

2 Col(q{)Sq = Col(q,{qu + qTSq) (4)

(where we make use of the Col(-) operator that stacks up its
vector or matrix arguments x; for all k in the index set K
into a vector or matrix, respectively), and it is possible to
introduce the scalar quantity v = q”Sq, obtaining

2 Col(q})Sq = Col(q} Sq; + v). (5)

Two direct approaches to solve this equation system in
both the fully determined case, using the matrix inverse, and
the overdetermined case, using the pseudo-inverse, can be
used. Both cases will be denoted by the pseudo-inverse (the
pseudo-inverse is a proper generalization of the inverse).
Note that the pseudo-inverse provides a technique for linear
least-square solutions in the face of additive white Gaussian
noise that disturbs the time measurements t; [9], and that
we omit the notational burden of an error term in the
equations below. Further note that, in reality, biases e.g. due
to multipath propagation may be important cause of errors,
which invalidates the assumption about the normally distrib-
uted error with zero mean.

A) Constant-v approach

System (5) can be solved for q (using the pseudo-inverse
matrix (-)" and forgetting hereafter that v depends on q):

q = X(Col(g])$)" - Col(qf Sq; + v)
= Y(Col(q])$)" - Col(q] Sq;)

a (6)
+v1(Col(q])S)" - Colx
—_— —
b

Introducing the vectors a and b that entirely depend on
given values and expanding we obtain:

v=alSa+ va'Sb + vb’Sa + v*b’Sb (7)
that becomes

o=a’Sa+ v(2a’Sb — 1) + +*b’Sb (8)
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which is a quadratic equation for v with the solutions

~ (1/2) —a’Sh + /((1/2) — a’Sb)* — a’Sab’ Sb

vTSh (9)

1,2

Plugging either of these solutions into equation (6), the full
solution for q, with the target position and emission time, is
obtained. The solution can be found if the number of stations
(measurements) K is larger than the spatial dimension d of the
problem (e.g. four stations for three dimensional problem).

The choice of the appropriate value for v is the a challen-
ging part of the algorithm and several ways can be followed:

- solution that leads to a positive target height can be
chosen;

— the radicand (1/2 — a”Sb)> — a’Sab”Sb may be negative
due to the measurement noise; in this case only the real part
of v can be taken into account.

In any case, all the real-world considerations should be
taken into account when choosing the optimal solution.

REFERENCE SYSTEM SHIFT

A possible trick to simplify the problem can be the following
one. If we introduce a reference system shift, choosing one
station py as coordinate origin and its timestamp #; as the
time origin, we will have

—pI* =<t — 1),
Pk p|2 2(2k ) (10)
lpl* =t
under the assumption that the reception time f; is undis-

turbed. Consequently,
v=q'Sq=p* -t =o (11)
and the problem of the choice of v vanishes.
Note that this is only a mathematical trick that works only

under the assumption of no noise on the reception time #, this
means that it will not necessarily produce better results.

B) Variable-v approach

The second way to solve equation (5) is shown in the
following.
It is possible to introduce the vectors:

P
r=1|1t |,
Y (12)
R= Col(p,{ -t —2),
which allows us to arrange equation (5) as follows:
2 Col(qZ)Sq = Col(qZqu +v),
(13)

2 Col(q,qu — g) = 2Rr = Col(q} Sq;),

where we have used the property Col (q,{) Sq = Col (qZ Sq)
and we have reminded ourselves that q{ Sq = pi p — c*tit.
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Solving for r (in the minimum mean square error sense) we
have
r = IR" Col(q{ Sqy). (14)
In this way the position of the target, the emission time of the
reply, and v are calculated. The variable-v method does not take
care of the relationship between p and v, but the v component of
the solution r can be used to detect inconsistent solutions. In
fact for |K| <d + 2 and non-degenerate p;, we obtain fully
determined solutions for the variable-v approach, and
e=pP—-c—v=@p-—-ct—1)r (15)
is the least-square approximation error. When it is zero (or
near to zero considering the measurement noise), the solution
can be considered consistent (which does not necessarily
mean that it is correct). The quantity & may be used to
quickly detect and reject false individual time measurement
(integrity monitoring or multipath monitoring) using the
coding theory (see [10] for more details).

. SIMULATION

The two algorithms (i.e. constant and variable v) are tested for
both MLAT and WAM Malpensa airport scenarios.

A) MLAT scenario

For the simulated scenario that reproduces the Malpensa
airport situation as it is in 2008, where 10 receiver stations
are installed on the airport surface, the receiver positions are
shown in Table 1. All the quantities are expressed in meters,
the height is expressed above the ground level (AGL) and
the x-axis is parallel to the runway center line.

Not that all stations are visible from every point of the
airport due to the blockage of line of sight by buildings. The
visibility map (number of visible stations for each position
on the airport) is shown in Fig. 1. This visibility information
is taken into account to select which receiver stations must
be used in the localization algorithms. All the simulations
are referred to the runway center line displayed in Fig. 1.
The measurement error (in m) for each station is imposed
independent of the SNR (i.e. independent of the target-
receiver distance) and equal to 0.3 m RMS. The error is cal-
culated on 1000 simulation trials.

The two algorithms proposed here are compared with the one
well known in the literature, i.e. the Chan-Ho algorithm [7].

In Fig. 2 resulting RMS horizontal error for the simulated
algorithms is plotted. The performance of the proposed
methods is quite similar to the algorithms proposed in [7]
but they are easier to implement and require less compu-
tational effort.

TWO EFFICIENT LOCALIZATION ALGORITHMS FOR MLAT

Fig. 1. Number of visible stations from each point of the airport (the line
shows the path used in the simulations).

The importance of closed-form MLAT algorithms is their
ability to produce an initial guess for an iterative position esti-
mation process (using Taylor expansion around the guess,
very accurate results are obtained if the guess is near the
real position of the target). The MLAT position estimation
capability with an iterative method is very much dependent
on the initial guess and it is possible, using a wrong or too
far guess, to have a divergence of the results. Therefore, here
the usefulness of the proposed algorithms for initial guesses
is compared to the other methods (Fig. 3).

A Taylor-based linearization of the localization problem with
the initial guess as computed by own proposed (closed-form)

225

Table 1. MLAT receiver station positions (in m).

1 2 3 4 5 6 7 8 9 10
X 1120 1296 1760 3208 5960 8936 5672 8072 7048 2920
y 14 208 12 184 11 192 7936 3680 5840 12 336 16 416 18 512 19 512
z 49 42 44 21 52 18 24 3 3 7
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Fig. 2. MLAT 2D position error. Only closed-form algorithms.
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Fig. 3. MLAT 2D position error. Closed form + iterative algorithms.

algorithms is performed. In this case, for comparison, only the
first approximation solution computed with the Chan-Ho
algorithm is used (formula (14a) in [7]) as the precision solution
is obtained by Taylor linearization in order to reduce the com-
putational load for the CPS. Also for this context we have high
performance in relation to the complexity of the algorithms: the
location error for a target on an airport surface is, nearly every-
where, less than 4 m RMS (3 m using the iterative algorithms),
i.e. well below the common 7.5 m requirements.

The error step between 3.6 and 3.8 km is due to the pres-
ence of the fire-brigade building between the two Malpensa
runways that blocks the line of sight of the target from some
stations, reducing the number of usable stations and increas-
ing the geometric dilution of precision.

B) WAM Scenario

In the case of a wide area multilateration (WAM) scenario the
typical condition changes are as follows: less stations, bigger
measurement errors, and critical geometry. In this case a poss-
ible Malpensa Airport Wide Area Multilateration scenario was
created and simulated.
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The possible receiver stations positions are reported in
Table 2 as referred to the center of the airport. All the stations
are imposed to be visible from the target position that run
from o to 35 km ahead the runway (i.e. x axis) with a vertical
angle of 3° simulating an aircraft landing. The measurement
error for each station is imposed independent of the SNR
and is equal to 0.5 m.

Figure 4 shows the 2D position error (RMS on 1000 trials)
for the novel algorithms as compared with the Schau-
Robinson [2], commonly used in the case of target far from
the receiver station and in a WAM scenario.

The peak error for the Schau-Robinson algorithms and
the variable-v algorithm depends on the geometry that leads
to the pseudo-inversion of an ill-conditioned matrix. In
Fig. 5 the calculated position scatter plots for the constant-v
(circle marker) and the Schau-Robinson (cross marker)

Table 2. WAM RX simulated stations positions (m).

Station 1 2 3 4 5
X —1100 8600 22 000 —1800 [}
y 7200 7000 300 —800 o
4 40 —25 —70 10 o



https://doi.org/10.1017/S1759078709000245

100~

90

80

70~

L LT T PPN A

RMS error (meters)

40

30

20

TWO EFFICIENT LOCALIZATION ALGORITHMS FOR MLAT

RMS 2D eror -1000 Trials

e CRLEB

—s— Constant v
= = =\ariable v :
----- Schau Robinson | -

A
W
v
’
1
l:'".
o'
"
JE
-
: o
: l
II H "\Il'
,l

'
'
]
I
1
'
1
i
1
1
1.
1l
1
[
i
[
'
'
'
'
I L ’
'
1
'
H

Fig. 4. WAM 2D position error.
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Fig. 5. Constant v (0) and Schau-Robinson (+) calculated position: scatter plot.

algorithms on 50 simulation trials for each target position are
also shown. The variable-v approach produces the best results
for target positions near the airport but the performances are
worse at long range. Results coming from the constant-v
approach are much closer to the Cramer-Rao lower bound
(CRLB, in particular, for targets far from the airport) and
high error peaks are absent (for CRLB computation in case
of MLAT please see [11]).

Moreover, the target position error is always below 10% of the
airport distance. The error peak in the case of constant-v algor-
ithms appears in proximity of a point in which the choice of sol-
ution for v change. This means that a proper rule to choose v is
fundamental for this algorithm. It is also important to note that
at about 22 ooo m from the origin there is the last receiver
station, after that the target is outside of the polygon that encloses
the stations. This means that the constant-v algorithm works
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x(meters)

better for targets far from the receivers, while the variable-v
algorithm works better for targets near the receivers.

This can also be seen in Fig. 6 where a case study, in which
the ‘ideal’ best solution between v,, v, is always chosen (this is
possible because in the simulation we know the real target
position and we can choose the solution that produces the
lower error), is reported. In this case study, we have main-
tained all the hypotheses of the previous case but we have
extended the coverage area up to 70 km. The constant-v
best solution line show the maximum performance for this
method. The constant-v line shows the performance obtain-
able with the choosing rule as described in this paper (the
positive one or the closest to the origin). Also the version is
implemented here, this trick gives results identical to the
variable-v. Finally, it is important to note that the perform-
ances of constant-v algorithms are very close to the CRLB.
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Fig. 6. Comparison between the constant v ‘ideal’ best solution, the constant v approach and the constant-v with reference shift.

V. CONCLUSION

Two MLAT/WAM localization algorithms are designed and
tested in a realist environment scenario simulation
(Malpensa installation in Milan). The results show that
these simple-to-implement and low-computational-load
algorithms produce very competitive results, in particular if
used as a first step to produce an initial guess for an iterative
algorithm in case of MLAT scenario.

For the WAM scenario, the constant-v algorithm leads to
promising performance that may also be improved by devel-
oping new decision rules for the v value, or implementing
multiple hypothesis tracking algorithms. Another possible
improvement can be the use of the constant-v algorithm for
remote targets and variable-v algorithms for nearby targets.
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