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Abstract. A modified electron whistler dispersion law is derived in the cold-plasma
approximation for analytical treatment and simplified numerical calculations of
wave propagation in a wide range of ratios ωc/ωp of electron gyro- to plasma
frequencies if the wave frequency is much less than ωp. The net contribution of
ions to the wave dispersion law is expressed through the value of the lower-hybrid
resonance frequency ωlhr only. This approximate dispersion law is valid in a wide
frequency domain, that is, from the range of ωlhr until the domain where the contri-
bution of ions can be neglected. A comparison of geometrical-optics ray trajectories
calculated by the use of modified and total cold-plasma electron whistler disper-
sion laws is presented for the case of the Earth’s plasma environment. Computer
simulations of dynamical spectra of whistler waves excited by lightning discharges
and registered in remote regions of the Earth’s plasmasphere reveal good numerical
stability of the developed ray-tracing code.

1. Introduction
The use of geometrical optics (GO) (Felsen and Marcuvits 1973; Kravtsov and Orlov
1980) is in many cases an effective approach to obtaining approximate relevant
solutions of Maxwell’s equations in space plasma conditions (see e.g. Kimura 1985);
moreover, it can be applied fruitfully to the analysis of wave-plasma interaction in
laboratory devices (Petrov et al. 2000).

In the near-Earth plasma environment, the typical applications related to pas-
sive or active low-frequency electromagnetic sounding are connected with electron
whistler mode waves (Helliwell 1993). Such waves are registered hourly on the
Earth’s surface as well as on board satellites or space vehicles moving in the vicin-
ity of planets; they can propagate over distant regions of planetary magnetospheres,
being well guided by geomagnetic field lines (Helliwell 1965, 1993). In particular,
they play an important role in establishing the equilibrium state of radiation belts
(Kennel and Petschek 1966). Even if the typical source of whistlers is lightning
discharges, several types of plasma instabilities can also give rise to whistler mode
emissions. Moreover, recent developments in helicon discharge physics are also con-
nected with the interaction of non-plane waves of the electron whistler mode with
a bounded plasma in finite-size laboratory devices (Boswell and Chen 1997; Chen
and Boswell 1997).
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GO equations have been fruitfully used for interpreting electron whistler spec-
trograms (i.e. dynamical frequency–time spectra) registered in overdense plasma-
spheric plasmas extending typically out to a few Earth radii. In this way, the
propagation of quasi monochromatic wave packets between emitters and remote
receivers through an intermediate background plasma with large-scale inhomo-
geneities was investigated. Another natural application is connected with the study
of the modification of wide electromagnetic spectra emitted by natural impulsive
and extended sources such as lightning discharges due to the essential scattering
of ray trajectories on their path to the remote receiver, so that some wavepackets
are unable to reach the receiver.

One of the typical difficulties arising when solving GO equations is the so-called
‘aiming problem’, i.e. the necessity to select starting conditions for rays such that
they are able to reach a given target or illuminate a remote receiver, for example.
There is no rapid general way to achieve this aim, especially when considering space
plasmas with curvilinear magnetic field lines and very wide ranges of variation of
characteristic parameters. Even though the power of modern personal computers
allows one, in some limited cases, to partly solve such problems in a reasonably
short computing time by direct enumeration of all possible meaningful ray starting
conditions, to reach this goal necessitates simplification of the dispersion equation
for waves of the considered plasma mode. The direct use of the general total cold-
plasma dispersion law requires more computer resources, and also often encounters
the problem of numerical instability, which is connected with very large variations
of background plasma parameters along ray trajectories, In fact, we have found
that a numerical code of the same structure based on a simplified dispersion law is
more stable.

To derive a relevant simplified dispersion law for electron whistlers propagating
in very wide relative frequency domains (with respect to background plasma char-
acteristic frequencies) is a rather complex problem, even when considering the lim-
iting case of the cold-plasma approximation. Indeed, for the typical Earth plasma
environment and a fixed frequency, one should take into account the contribution
to the dielectric permittivity tensor of several plasma components with very differ-
ent altitude scales in their space distributions, the steep variation of the dipole-like
magnetic field with radius, and, as a result, the very wide range of ratios of wave
frequency to the characteristic frequencies of the background plasma crossed by the
rays. The inherent accompanying problem consists in choosing an adequate model
of particle density distributions with altitude. Nevertheless, for wave frequencies
much less than the plasma frequency, we have found a relevant approximate dis-
persion law that retains the features of the total cold-plasma whistler dispersion
equation in very wide frequency domains, that is, from the range of the so-called
lower-hybrid resonance (LHR) frequency ωlhr until the domain where the contri-
bution of ion motion can be neglected. In this limit, the net combined contribution
of all ions is expressed through the LHR frequency only; this reduces the amount
of background plasma parameters needed for the calculations, and enables one, in
principle, to use the spectrogram records of intense LHR frequency emissions by
satellites for adequate fitting of the model in use.

This paper is organized as follows. In the next section, we derive the modified
whistler dispersion law valid in a wide frequency domain, which can be ‘naturally’
reduced to the conventional one (see (20), and Shafranov 1967) corresponding to
high-frequency whistler waves of high refractive index in an overdense plasma when
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the plasma frequency ωp is much larger than the electron gyrofrequency ωc. Ex-
pressions for group velocity and frequency gradient are presented in the Appendix,
where the ‘infinity problem’ for radiation energy loss of Cherenkov electrons inher-
ent to the conventional dispersion law is also discussed. In order to demonstrate the
relevance of our approximation, a comparison between ray trajectories calculated
by the simplified and the total dispersion laws is presented in Section 3. Finally,
simulations of the so-called magnetospherically reflected whistler spectrograms are
presented in order to illustrate one possible example of application.

2. Modified whistler dispersion law
The dispersion equation for waves propagating in a cold plasma can be written
without any approximation as follows:

cos2 θ
(

1− χ

N 2

)
=
(

1− η

N 2

) [
cos2 θR

(
1− η

N 2

)
− χ

N 2

]
, (1)

where N = ck/ω is the refractive index, c the speed of light, k the wavenumber
modulus, ω the frequency, and θ the angle between the wave vector k and the
background magnetic field B0 (cos θ ≡ k·B0/kB0). Expressions for χ and cos2 θR,
actually corresponding to formal definition of the resonance angle θR, i.e. ε sin2 θR+
η cos2 θR = 0, can be written as (for cos2 θR < 0, the resonance cone does not exist
for plane waves)

χ ≡ ε− g2

ε− η , cos2 θR ≡ ε

ε− η . (2)

The components ε, g and η of the dielectric permittivity tensor in a cold plasma
(Shafranov 1967) are defined by
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∑
α

ω2
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ω2 − ω2
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, g = −
∑
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∑
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where ωpα and ωcα are the plasma frequency and gyrofrequency of species α, re-
spectively; for electrons, one uses the notation ωp ≡ ωpe and ωc ≡ −ωce > 0.

The presentation of the dispersion law in the form (1) is rather natural for waves
of high refractive index; at the same time, the coefficients χ, η and cos2 θR depend
on the frequency only (and not on θ). An additional simplification can be achieved
in the high-frequency limit, when ion motion can be neglected; in this case, one has

χ = 1, cos2 θR =
ω2

Ω2
c

(
1− ω2

ω2
p + ω2

c

)
(4)

with

Ω2
c =

ω2
c

1 + µ
, µ =

ω2
c

ω2
p

, (5)

(see also Stix 1992). In the low-frequency limit ω� ωc and for frequencies greater
than the maximum ion gyrofrequency i.e. ω� ωH (where ωH is the hydrogen-ion
gyrofrequency), keeping the main terms in (3) leads to

χ ' χ̃ = 1− 1 + µ

µ

ω2
lhr

ω2 , cos2 θR ' cos2 θ̃R =
ω2

Ω2
c

(
1− ω2

lhr

ω2

)
, (6)

where the small terms ωH/ωc � 1 have been omitted; the approximation η '
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−ω2
p/ω

2 was used when ωp is not very small compared with ωc, so that the relation
ω2 � ω2

p results from ω2 � ω2
c . Finally, a simplified dispersion equation can be

obtained as

cos2 θ
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)
, (7)

with

Ω2
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ω2
p

1 + µ
, κ =

ω2
p

k2c2 , κ̃ =
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p

k2c2 . (8)

This dispersion law follows from (1) in the frequency domain ωH � ω� {ωc, ωp},
where the ratio ω2

c/ω
2
p is not limited to small values; the lower-hybrid resonance

frequency ωH � ωlhr� ωc satisfies the condition ε = 0, and can be found from the
usual expression

ω2
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eff , (9)
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where α labels the different ions; nα, eα and Mα are the density, charge and atomic
mass of species α (MH = 1); subscript e (respectively H) corresponds to electrons
(respectively the hydrogen ion); Meff is an effective ion mass expressed in atomic
mass units; ωpi is the ion plasma frequency.

In the high-frequency limit, which is realized for frequencies much greater than
the ion plasma frequency ω � ωpi, (4), the dispersion equation can be obtained
from (7) by omitting terms containing ωlhr and putting χ̃ = 1, that is

cos2 θ

(
1− ω2

k2c2

)
= (1 + κ)(1 + κ̃)

ω2

Ω2
c

. (11)

Using (7) (or (11)), one can find the frequency as a function of the wave vector; then
one obtains from (7) that

ω2[(1 + κ)(1 + κ̃) + µκ̃ cos2 θ] = Ω2
c cos2 θ + ω2

lhr(1 + κ + κ cos2 θ). (12)

Let us mention that a very similar dispersion law for the low-frequency domain
ωH � ω� ωc has been presented before by Bud’ko (1985); however, the expression
of Bud’ko keeps the superfluous small terms ω2

pi/ω
2
p� 1, which should be omitted

together with ω2
lhr/ω

2
c� 1; then its corrected form coincides with (12). One should

note that the upper part of the frequency range ωH � ω � {ωc, ωp} for validity
of (7), namely ωlhr<ωpi�ω�{ωc, ωp}, overlaps with the validity range of (11),
namely ωpi�ω�ωp. In the upper part of these frequency ranges, the approximate
expressions for the coefficients χ and cos2 θR of both equations differ from each
other by negligibly small terms of the order of (ωpi/ω)2. Then it is rather natural
to accept (7) (or (12)) as an appropriate approximation for the electron whistler
dispersion law valid in the total frequency domain ωH � ω� ωp. The possibility
of a smooth transition from the coefficients (6) to the expressions (4) is based on
the existence of a large domain ωpi� ω� ωc of common applicability if ω2

pi/ω
2
c is

small enough that

me

MH

ω2
p

ω2
c

M−1
eff � 1. (13)
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The other condition for appropriate plasma parameters can be found from the
relation ωH � ωlhr; actually it is easy to satisfy(

1 +
ω2
c

ω2
p

)
me

MH
Meff � 1, (14)

except for the case of a very rarefied plasma, when

ω2
p

ω2
c

. me

MH
Meff . (15)

An additional simplification of (7) can be useful for the analytical treatment of
dispersive properties of electron whistler waves. This can be achieved for high values
of the refractive index, χN−2 � 1, so that the simplified dispersion law takes the
following form (here one should omit in (12) terms containing κ cos2 θ and κ̃ cos2 θ):

ω2 =
ω2
lhr

1 + κ̃
+

Ω2
c cos2 θ

(1 + κ)(1 + κ̃)
. (16)

For small values of κ and κ̃, the quasiresonant regime of propagation can be realized
for angles θ close to the resonant cone angle θR:

cos2 θR =
ω2

ω2
c

(
1 +

ω2
c

ω2
p

)
− me

MH
M−1

eff . (17)

In the high-frequency limit ω2 � ω2
lhr, the expression (16) differs negligibly from

that obtained directly from (1), when ion motion is neglected (χ = 1, N−2� 1 and
ω� ωp so that (4) reduces to cos2 θR = ω2/Ω2

c).
Actually, the condition N−2� 1 can be written by use of (16) as

1
N 2 = µ

κ̃

1 + κ̃

(
cos2 θ

1 + κ
+
me

MH
M−1

eff

)
� 1, (18)

and is naturally satisfied under overdense plasma conditions, when µ� 1; however,
for µ ' 1, the dispersion law (16) is valid for κ̃ cos2 θ� 1.

The high-frequency modified dispersion law for electron whistlers can be found
from (12) by omitting terms containing ωlhr:

ω2 =
Ω2
c cos2 θ

(1 + κ)(1 + κ̃) + µκ̃ cos2 θ
. (19)

We remind the reader that the term in (19) containing µκ̃ is a direct consequence
of the term ω2/k2c2 on the left-hand side of (11), which is not considered here as
small in comparison with unity. Under overdense plasma conditions (µ� 1), one
recovers the conventional whistler dispersion law (κ̃ ' κ, Ω2

c ' ω2
c):

ω2 =
ω2
c cos2 θ

(1 + κ)2 . (20)

Thus, we have demonstrated that, for electron whistler waves with frequencies
ωH � ω� ωp, the simplified dispersion law presented in (7) and solved in the form
(12) is a relevant approximation of the total cold-plasma dispersion law in a wide
frequency domain including the LHR frequency range in its lower part as well as
the high-frequency domain where ion motion can be neglected. The possible plasma
density should satisfy the conditions (13) and (14); both are easy to fulfil because
of the smallness of the parameter me/MH ' 5× 10−4.
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Let us briefly discuss some additional questions that can arise when applying (19)
to quasiresonant whistler waves of the highest possible frequencies. It is known
from cold-plasma theory that the resonant (κ ' 0) frequency corresponding to
cos2 θR = 1 should be equal to the minimum value of {ωc, ωp}. However, according
to (19), the resonance should occur at a frequency Ωc = ωc/

√
(1+ω2

c/ω
2
p); then to sat-

isfy at ω ' Ωc the validity condition (19), i.e. ω� ωp, one needs overdense plasma
conditions ω2

c/ω
2
p� 1. Thus, the vicinities of resonant points cos2 θ ' cos2 θR ' 1

at the highest frequencies in space regions where ωc & ωp are not described by the
approximation (19). This means that when applying (12) to GO equations in space
plasmas (as will be done below), one should discard those solutions corresponding
to rays that reach the regions where the local condition ω � ωp is not fulfilled.
The origin of this problem lies in the fact that the component of the displacement
current parallel to B0 for low-frequency waves is neglected throughout the paper,
so that η = −ω2

p/ω
2.

In the next section, we actually compare numerically ray trajectories satisfying
the conditions 10ω2

H 6 ω2 6 1
10ω

2
p and calculated using either the full cold-plasma

dispersion law or the simplified one (12), under typical conditions corresponding to
the so-called diffusive equilibrium density distributions in the near-Earth plasma
environment. Spatial distortions between ray trajectories calculated by both disper-
sion laws are shown to be not significant for any kind of trajectories. However, the
corresponding relative difference in arrival time for almost-coinciding trajectories
can reach 10–20%; this is not surprising, especially for the case of quasiresonant ray
trajectories with high refractive index, when the group velocity tends to zero, with
an almost-fixed direction of propagation close to the resonance cone. Moreover, the
numerical stability of solutions (e.g. the accuracy of frequency conservation along
the ray) of GO equations is typically better when using the approximate dispersion
law (12) than the full cold-plasma dispersion law.

3. Application to wave propagation in space plasmas
3.1. Numerical analysis of ray trajectories

Let us compare with each other several ray trajectories of qualitatively differ-
ent kinds calculated in inhomogeneous plasmas with very large scattering of char-
acteristic parameters inherent to the wide space regions where rays propagate.
An appropriate sample is the near-Earth plasma, where ωc ' ωp ' 1 MHz and
ωlhr ' 10 kHz at altitudes h ' 1000 km; however, at radial distances of around
4RE (where RE is the Earth’s radius), the electron gyrofrequency at the equator
is around ωceq ' 13.5 kHz, whereas ωp > 20ωc, and ωlhr ' 0.3 kHz, depending on
features of altitude density distributions. Thus, a ray with frequency ω ' 13.8 kHz
belongs to the near-LHR frequency range at h ' 1000 km, but it has a relatively
high frequency near ωc at h ' 20 000 km.

In order to demonstrate quantitatively the relevance of the dispersion-law ap-
proximation, let us first present different kinds of whistler ray trajectories calcu-
lated using either the total cold-plasma whistler dispersion law or the simplified
one (12), in the Earth’s plasmasphere as well as outside it. The plasmasphere is
the dense plasma surrounding the Earth, which rotates together with it; its outer
boundary (called the plasmapause) corresponds to a steep drop-off of the plasma
density almost across the geomagnetic field lines, forming a gradient-type wave-
guide along the magnetic shell at an equatorial radial distance of around 4RE ,
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that is at L ' 4, where L is the so-called McIllwain or L-shell parameter. Tak-
ing into account the large steep increase of conductivity at the lower boundary of
the ionosphere, it is commonly accepted that the wave vector of starting whistler
wave packets excited by lightning discharges is oriented almost vertically (Edgar
1976). A dipole-like magnetic field structure was used and the altitude distributions
of particle densities were chosen in accordance with the so-called diffusive equilib-
rium model where the charged particles (electrons and two main ions: hydrogen and
oxygen) are distributed in the Earth’s gravitational field according to a Boltzmann
law, essentially modified by the particles’ mutual Coulomb interaction providing
the net quasineutrality of the plasma (Angerami and Thomas 1964).

Figure 1 shows typical doubled rays – that is, the two ray trajectories calcu-
lated with the use of total and simplified dispersion laws – influenced by large-scale
inhomogeneities of the magnetic field and the plasma environment, as well as by
the drop-off of the plasma density at the plasmapause near L ' 4 (see also Inan
and Bell 1977). Figure 1(a) shows whispering-gallery rays – actually doubled rays
– of frequency 3.2 kHz (respectively 14.2 kHz) starting at latitude λ = −60◦ (re-
spectively λ = −55◦); the latter exhibits a ‘beak’ near the point where the local
gyrofrequency is close to the ray frequency and its downgoing part corresponds
to a quasiresonant propagation regime with κ < 0.2 near the equator. The spatial
difference between the two variants of calculation is rather small and not visible
on the figure; the time distortion (i.e. the relative difference in arriving time for
almost-coinciding rays) is less than 10% along the trajectories. In Fig. 1(b) one
can see a couple of doubled rays with frequency ω = 5.2 kHz: a whispering-gallery
doubled ray starting at λ = −55◦ and a typical magnetospherically reflected (MR)
doubled ray bouncing between LHR reflection points in the plasmasphere after
coming close to the plasmapause (starting at λ = −60◦); as in the previous case,
the two variants almost coincide and the time distortion is around 10%. Finally
Fig. 1(c) presents another couple of doubled rays: the first starts at λ = −55◦ with
ω = 7.2 kHz and escapes from the plasmasphere near the equator, whereas the sec-
ond (ω = 13.8 kHz) turns down inside the plasmapause; the corresponding time
distortion is roughly 20%. One should note that the similarity between rays calcu-
lated with the two dispersion laws is directly connected with the good coincidence
between corresponding variations of coefficients χ and cos2 θR as functions of space
coordinates, for a fixed frequency in the relevant frequency domain. However, to
obtain a good coincidence between doubled rays after the low-altitude reflection
point – as can be seen in Fig. 1(c) – requires a significant increase in the numerical
accuracy of calculations using the total dispersion law (but not the modified one).

Whereas in most cases trajectories do not differ when calculated with the mod-
ified or the total dispersion laws, in a few cases a spatial distortion appears that
increases with time, as one can see in Fig. 1(d). This is typical of adjacent traject-
ories (i.e. those lying at the boundary between qualitatively different kinds of rays)
with small differences in starting parameters (or, as here, calculated with different
dispersion laws), which, in spite of their close initial conditions, can have very dif-
ferent behaviour – for example, they can undergo trapping or free propagation. In
these cases, one should not expect a quantitative coincidence of trajectories. At
the same time, the contribution of such rays to spectrograms can be supposed to
be vanishing and non-regular owing to their high variability with small changes
of background plasma parameters. For illustration, Fig. 1(d) presents ray trajec-
tories with very close frequencies (ω = 7.405 kHz and ω = 7.4 kHz). The ray at

https://doi.org/10.1017/S0022377801001301 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377801001301


156 B. V. Lundin and C. Krafft

Figure 1. Typical whistler ray trajectories obtained by numerical calculations; the Earth is
sketched as a half circle in thick solid lines; magnetic field lines are represented by dashed
lines up to L = 4; on both axes, the coordinate is the distance to the Earth’s centre nor-
malized by the Earth’s radius RE ; trajectories are sketched as solid lines. Doubled rays are
represented, corresponding to simulations using the modified whistler dispersion law and the
total one; when both rays constituting the so-called doubled ray can be distinguished from
each other, they are labelled respectively by ‘m’ and ‘t’, indicating whether the modified or
the total dispersion law was used, respectively. (a) A whispering-gallery doubled ray starts
at latitude λ = −60◦ with frequency ω = 3.2 kHz and propagates near the plasmapause; the
other starts at λ = −60◦ with ω = 14.2 kHz and, after propagation in the captured regime
near the plasmapause, exhibits a ‘beak’ near the point where the local gyrofrequency is close
to the ray frequency. (b) shows a whispering-gallery doubled ray launched at λ = −60◦ and
a typical magnetospherically reflected (MR) doubled ray starting at λ = −55◦ and bouncing
between LHR reflection points with decreasing L-shell, both with frequency ω = 5.2 kHz.
(c) One doubled ray starts at λ = −55◦ with ω = 7.2 kHz and escapes from the plasmasphere
near the equator, whereas the second (ω = 13.8 kHz) turns down inside the plasmapause
before the equator. (d) Sensitivity to variation of starting conditions is demonstrated for
doubled rays of very close frequencies (ω = 7.405 kHz and ω = 7.40 kHz), both starting at
λ = −55◦; the modified dispersion law finally provides feeding of the plasmasphere by the
MR whistler wave with frequency ω = 7.405 kHz; however, calculations based on the total
dispersion law (see the rays labeled by ‘t’) show visible differences with respect to former
trajectories (labeled by ‘m’), even when calculations are performed with very high numerical
accuracy.

ω = 7.405 kHz and governed by the modified dispersion law is finally captured by
the plasmasphere; however, the ray trajectories corresponding to the total disper-
sion law differ visibly from each other just after escaping the plasmasphere, and
are clearly different from the former ones even when calculations are performed
with very high numerical accuracy.
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Finally, we want to stress that, no matter if distortion can sometimes be found
for rays calculated with the two dispersion laws, the main qualitative features of
spectrograms simulated by the two variants should be identical, since in both cases
the same qualitatively different sets of rays play the same basic roles in the for-
mation of spectral features. Then, numerical simulation of spectrograms can be
an appropriate tool for determining large-scale space plasma features that essen-
tially influence the rays’ propagation properties; moreover, the use of the modified
whistler dispersion law is an appropriate approach that takes into account the fact
that space plasma parameters are not known exactly along the ray paths.

3.1.1. Propagation of magnetospherically reflected whistlers. This subsection illus-
trates one of the possible useful applications of the simplified dispersion law by
considering the numerical simulation of the well-known spectrograms (i.e.
frequency-time dynamical spectra) of so-called magnetospherically reflected (MR)
whistlers. Such spectra (similar to that presented in Fig. 2), which are commonly
observed near the equator on board high orbiting satellites (at altitudes of around
two Earth radii), result from the propagation through the magnetospheric plasma
of electron whistler waves emitted by lightning discharges and penetrating into the
upper ionosphere within a rather wide latitude range (of around 20◦) after a swift
propagation below the ionosphere from the lightning source location. MR whistlers
were first observed by the OGO 1 and 3 satellites, and their frequency–time spectral
properties were discussed in detail by Smith and Angerami (1968) and explained
numerically by Edgar (1976) (see also Shklyar and Jiricek 2000). These non-ducted
whistlers propagate obliquely with respect to magnetic field lines in a smoothly
inhomogeneous overdense plasmaspheric plasma, encountering successive geomag-
netic L-shells during their bouncing back and forth between the Earth’s hemi-
spheres; reflections occur in space regions where the local lower-hybrid frequency
is close to the frequency of the quasiresonant waves. Then, to each ‘nose-type’ line
in the dynamic spectra registered by an equatorial satellite there corresponds a
precise number of crossings of the equator by MR whistler rays before they reach
the receiver.

Actually, MR whistler spectra are a remarkable manifestation of the electro-
magnetic filter property of the Earth’s plasmasphere filled by a smoothly inhomo-
geneous plasma. As mentioned above, it is commonly accepted that the wave vector
of starting whistler wave packets is oriented almost vertically. Then the two-dimen-
sional continuum (finite interval of whistler frequencies excited by lightning dis-
charges in a finite latitude domain under the ionosphere, if one ignores for simplicity
the longitude coordinate when corresponding gradients are small enough) of simul-
taneously starting rays is transformed after propagation into a numerated set of
lines in frequency–time spectra at some registration point. However, one must stress
that, in order to reproduce visibly continuous lines in the calculated spectra, it is
necessary to launch a huge amount of rays, because most of them do not reach the
remote receiver. Then it is essential to find a way to significantly reduce computer
time when calculating each ray path. This can be achieved by using the simplified
whistler dispersion law to calculate ray propagation. Figure 2 shows an example
of a whistler frequency–time spectrogram calculated using the simplified disper-
sion law; for comparison, when all terms are taken into account in the whistler
dispersion relation for a cold plasma, similar results are obtained, but the total
computing time is increased by at least 30% (and more if higher numerical accu-
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t (s)

Figure 2. Typical frequency–time spectrogram of magnetospherically reflected whistlers
calculated using the simplified wave dispersion law: whistlers with frequencies 1 kHz
< ω < 20 kHz are emitted by a lightning source and enter the magnetosphere within an
extended latitude domain ranging from λ = −55◦ to λ = −20◦; rays are launched with steps
of ∆λ = 0.3◦ in latitude and ∆ω = 0.05 kHz in frequency. The altitude of the satellite receiver
is h ' 9700 km; the time of registration is indicated in seconds on the horizontal axis.

racy is required to achieve correct calculations), whereas the numerical stability is
significantly decreased.

In general, the main reason for using an appropriately simplified dispersion law is
not to determine with high accuracy all the parameters of the rays. Indeed, atten-
tion can be paid to the interesting possibility of revealing correspondences between
the qualitative features of space plasmas crossed by the wide variety of ray paths
reaching the ‘receiver’ and the calculated spectrogram features. One can expect
that spectral features simulated using the simplified dispersion law should be cor-
rect (i.e. ‘topologically’ the same as those obtained using the total dispersion law)
if the same sets of qualitatively different groups of rays can be reproduced in both
approaches under the same background plasma conditions and with non-identical
but close starting parameters – and this is our case, as has been demonstrated
above. Then, the revelation of persistent spectral features after numerical enumer-
ation of various space plasma characteristic parameters can be a promising basis
for interpreting actually observed spectrograms. The exact numerical modelling of
wave propagation phenomena is a rather obscure aim, since plasma parameters
along ray paths are actually rather poorly defined.

4. Conclusions
The possibility has been shown of deriving a modified dispersion law for the electron
whistler mode waves in a cold plasma that is valid for a wide range of ratios ωc/ωp
of electron gyro- to plasma frequencies (see (13) and (14)) if the wave frequency is
much less than ωp and essentially exceeds the gyrofrequency of the lightest ion. This
dispersion law is useful for efficient analytical treatment as well as for simplified
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and fast numerical calculations of wave propagation in a background plasma with
high variability of characteristic parameters along wave-packet trajectories.

Moreover, the modified dispersion law retains the features of the total whistler
dispersion equation in very wide frequency domains, that is, from the range of the
lower-hybrid resonance frequency ωlhr until the domain where ion motion can be
neglected. In this frequency domain, the net combined contribution of ions can
be expressed through the value of the lower-hybrid resonance frequency only. The
conventional electron whistler dispersion law (20) (Shafranov 1967) is the natural
limit of the modified law under overdense plasma conditions, i.e. ωp � ωc, and in
the high-frequency range where the ion contribution can be omitted.

Test simulations of dynamical (frequency–time) spectra of whistler waves propa-
gating in the Earth’s plasmasphere after excitation by lightning discharges in wide
frequency ranges and extended space regions under the ionosphere reveal that mod-
ern personal computers permit one to approach a solution of the so-called ‘aiming’
problem of the geometrical-optics equations by use of direct enumeration for start-
ing conditions of whistler rays. Numerical studies have shown that, on average, the
computing time of ray-tracing simulations is halved and that the numerical stabil-
ity (as well as the frequency conservation accuracy) is significantly increased when
using the simplified dispersion law instead of the total one. Moreover, the use of an
appropriately simplified dispersion law that allows stable and fast numerical cal-
culations constitutes a promising basis for investigating correspondences between
plasma features along ray paths in extended space regions and persistent spectral
features of spectrograms registered by remote receivers.
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Appendix. Group velocities, frequency gradients and dispersion
features
The components of the group velocity vg = (vg1, vg2, vg3) can be calculated using
the dispersion law (12) as follows:

vg3 =
∂ω

∂k3
=
k3

k
U (1− V + ∆ sin2 θ), (A 1)

vg1,2 =
∂ω

∂k1,2
= −k1,2

k
U (V + ∆ cos2 θ), (A 2)

∆ ≡ − χ

N 2 =
ω2

Ω2
c

κ

(
− µ

1 + µ
+
ω2
lhr

ω2

)
,

with

U =
Ω2
c

ω2[(1 + κ)(1 + κ̃) + µκ̃ cos2 θ]
ω

k
, (A 3)
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V =
ω2

Ω2
c

(
1− ω2

lhr

ω2 − κκ̃
)
, (A 4)

where vg3 is directed along the magnetic field and vgi(i = 1, 2) correspond to trans-
verse components; k is the modulus of the wave vector k = (k1, k2, k3); N,ω, θ, χ, µ,
Ωc, ωlhr, κ and κ̃ are defined in the text.

The frequency gradient can be written as

− ∇ω
2

ω2 [(1 + κ)(1 + κ̃) + µκ̃ cos2 θ]

= (1 + κ)

(
−∇ω

2
lhr

ω2 + κ̃
∇Ω2

p

Ω2
p

)

+
(

1− ω2
lhr

ω2 + κ̃

)[
κ̃
∇Ω2

p

Ω2
p

− (1 + κ̃)
∇Ω2

c

Ω2
c

]

−κ̃ cos2 θ

[
(1 + µ)

∇ω2
lhr

ω2 +
ω2
lhr

ω2

(
∇Ω2

p

Ω2
p

− ∇Ω2
c

Ω2
c

)]
, (A 5)

where Ωp is defined by (8). A simple equation defines the frequency gradient near
the LHR reflection point where k3 = 0 and κ̃ = ω2

lhr/ω
2 − 1:

− ∇ω
2

ω2 =
1

1 + κ̃

(
−∇ω

2
lhr

ω2 + κ̃
∇Ω2

p

Ω2
p

)
. (A 6)

The limit of high refractive index, N−2 � 1, described in the main text, can be
obtained by omitting the terms containing ∆ and µκ̃ in (A 1)–(A 4) as well as those
containing cos2 θ in (A 5).

Let us analyse the so-called Gendrin singularity point (Etcheto and Gendrin
1970) inherent to the conventional whistler dispersion law (20), which corresponds
to the condition |vg⊥| = 0, or κ = 1. In this case, an electron moving with the
resonant velocity v3R = cωc/2ωp is in Cherenkov resonance with whistler wave
packets of any frequencies ω = 1

2ωc cos θ that have the same wavenumber k =
ωp/c; then wave and particles move together, |vg⊥| = 0 and v3R = vg3, and the
corresponding electron radiative energy loss tends to infinity.

However, the dependence of resonant velocity on wave frequency – inherent
to (12) – can solve this ‘infinity problem’. Indeed, in this case and for the high-
frequency range ω� ωlhr, the Gendrin singularity point corresponds to the condi-
tion 1− κκ̃− µκ̃ cos2 θ ' 0. Then, for finite µ, the wave packets move more slowly
along the magnetic field than the resonant electrons:

v3R − vg3 = µκ̃
ω2

Ω2
c

v3R. (A 7)

On the other hand, finite transverse leakage of wave energy out of the interaction
region is provided for wave packets moving together with resonant electrons along
the magnetic field (v3R = vg3); in this case, the transverse group velocity vg⊥ is
proportional to µ:

vg⊥ = µκ̃
ω2

Ω2
c

k⊥
k
U. (A 8)
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The singularity point of the spectral energy loss dW/dω of electrons at Cherenkov
resonance under the approximation in use depends on the frequency near the
Gendrin singularity point (where p ' 1) according to

dW

dω
α

1√
1− p + 1

2p(1 + µ)(ωlhr/ω)2
, p =

(
2v3Rωp
cωc

)2

' 1, (A 9)

Omitting the ion contribution to the dispersion law for ω � ωlhr, one recovers
the conventional Gendrin ‘infinity problem’ at p = 1; in this case, the energy loss
integrated over frequency diverges. Thus, the ‘infinity problem’ cannot be solved
without taking into account the ion contribution to the whistler dispersion while
one omits the small terms (ω/ωp)2� 1 as has been done throughout this paper.
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