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SUMMARY
This paper introduces the notion of kinematic redundancy in
nonholonomic mechanical systems, identifies some of the
interesting properties which result because of the presence
of the redundancy, and initiates a study of the control and
application of these systems.  It is shown that kinematic
redundancy in nonholonomic system can be exploited both
to simplify the problem of controlling these systems and to
enhance their performance capabilities. Moreover, it is
demonstrated that these results can be obtained even in the
presence of considerable uncertainty regarding the system
model. The proposed ideas are illustrated through the study
of three example systems: a space robot, a mobile
manipulator, and a tractor-trailer system with two steering
inputs (fire truck).

KEYWORDS: Kinematic redundancy; Nonholonomic systems;
Adaptive control.

1. INTRODUCTION
There is great theoretical and practical interest in controlling
mechanical systems in the presence of constraints on the
realizable system motions. Systems for which the motion
constraints are nonholonomic (nonintegrable) have been of
particular interest recently. Much of the attention devoted to
nonholonomic systems is a consequence of the importance
of such systems in applications. For example, nonholo-
nomic constraints arise in systems with rolling contact, such
as wheeled (and other) mobile robots and multifingered
robotic hands, and in systems for which the dynamics
admits a symmetry, such as space systems with angular
momentum conservation. Interest in studying nonholo-
nomic systems is also motivated by the fact that for these
systems traditional control methods are insufficient and new
approaches must be developed.

Most of the work reported to date on controlling
nonholonomic mechanical systems has focused on the
kinematic control problem, in which it is assumed that the
system velocities are the control inputs and that the system
dynamics can be adequately represented using the system
kinematic model. While this work has produced useful
results, there are important reasons for formulating the
nonholonomic system control problem at the dynamic
control level, where the control inputs are those produced by
the system actuators and the system model contains the

mechanical system dynamics. For example, since this is the
level at which control actually takes place in practice,
designing controllers at this level can lead to significant
improvements in performance and implementability and can
help in the early identification and resolution of difficulties.
Recognizing the importance of considering the nonholo-
nomic system control problem at the dynamic control level,
several researchers have considered this problem in recent
years.1–9 Progress has been made in understanding the
fundamental characteristics of these systems and several
useful dynamic controllers have been presented. Addition-
ally, work has been initiated to address important practical
issues, such as the effects of model uncertainty.

While research on the dynamic control of nonholonomic
mechanical systems has produced valuable results, much
work remains to be done. For instance, the transient
performance of many nonholonomic system controllers is
inadequate for practical applications, and effective, compre-
hensive solutions to such problems as collision avoidance,
environmental interaction, sensor-based planning and con-
trol, and user interfacing have not yet been developed.
Additionally, in many cases the control algorithms proposed
for nonholonomic systems are very complicated and
computationally expensive, which has limited the applica-
bility of nonholonomic systems. In this paper we initiate an
exploration of the extent to which various structural
properties present in nonholonomic mechanical systems can
be exploited to resolve some of these difficulties. Toward
this end, we consider the notion of kinematic redundancy in
nonholonomic systems. While the utility of kinematic
redundancy in robotic manipulators is well known,10 this
property has not been studied in a systematic way for
nonholonomic systems. We begin our investigation by
introducing a definition of kinematic redundancy which
seems both natural and useful when applied to non-
holonomic mechanical systems. We then identify some of
the properties which result because of the presence of the
redundancy. Next we consider the problem of controlling
these systems, and show that kinematic redundancy can be
used both to simplify the control problem and to enhance
system performance. Additionally, we demonstrate that
these results can be obtained even in the presence of
uncertainty regarding the system model.

To introduce the basic ideas in a concrete way and
provide additional motivation for much of what follows, we
close this section by considering three examples of
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nonholonomic systems which are clearly “redundant” in
some sense. We will return to these examples as we develop
an understanding of this notion of redundancy.

Example 1: Space robot. Consider the simple model of a
“free-flying” space robot shown in Figure 1. The system is
modeled as a rigid “space platform” with inertia J pinned to
the ground at its center of mass, and a three link planar
manipulator with link lengths l1 = l2 = l3 = l and link masses
m1 =m2 =m3 =m, assumed for simplicity to be concentrated
at the distal ends of the three links. The manipulator has
three actuators, one at each joint, while the platform’s
pinned connection to the ground is unactuated. Note that
pinning the platform in this way permits it to rotate freely
but prevents translation. Thus the nonholonomic constraints
arising from angular momentum conservation is retained,
while the holonomic constraints arising from linear momen-
tum conservation in a truly “free-flying” system are
replaced with holonomic pinned constraints; observe that
this simplifies the subsequent analysis but removes none of
the essential structure of the system. Background informa-
tion on free-flying space robots is given in reference 11.

Let f denote the angle of the platform, u1, u2, u3, be joint
coordinates for the manipulator, and x, y represent the
position of the tip of the manipulator relative to some fixed
reference frame. For many applications with space robots,
the task requirements involve placing the manipulator end-
effector at a user-specified location while simultaneously
controlling the orientation of the space platform. For the
simple planar model considered here, this implies that for
such tasks the configuration space of interest is three
dimensional (with coordinates f, x, y) and thus is a subset
of the full four dimensional configuration space. This
suggests the possibility that the “extra” degree-of-freedom
(DOF) could be used to achieve some additional benefit,
such as improved performance or reduced controller
complexity.

Example 2: Mobile manipulator. Consider the simple
mobile manipulator system obtained by mounting a two link
planar arm on a two wheel mobile platform (see Figure 2).
We remark that background material on mobile manip-
ulators and their applications can be found in reference 12.
Let z1, z2, f denote the position and orientation coordinates
for the (axle of the) mobile platform and M, J represent the
platform inertial parameters. The two link planar manip-
ulator has joint coordinates u1, u2, end-effector coordinates
x1, x2, link lengths l1 = l2 = l , and link masses m1 =m2 =m,
assumed for simplicity to be concentrated at the distal ends
of the two links. The platform and the manipulator each
have two actuators, so that the overall system possesses four
actuators for its five DOF.

For many applications with mobile manipulators, the task
requires that the manipulator end-effector be positioned at a
given location and that the mobile platform be positioned in
such a way that the arm is in a “good” configuration (e.g.,
far from arm singularities). For the simple planar model
described above, it is clear that the arm can be maintained in
a good configuration for a wide range of platform
configurations. For example, to place the arm far from
singularities imposes only one constraint on the three DOF
of the platform. Thus, again, there is the possibility that the
“extra” DOF could be used to achieve some additional
benefit.

Example 3: Fire truck. Consider a tractor-trailer system
with independent steering inputs at the front and rear axles
(see Figure 3); this vehicle geometry is typical of a fire
truck, and provides enhanced maneuverability for the
system as a result of the extra steering input at the rear axle.
Background material on fire truck systems is provided in
reference 13. For this system x, y, u1 are the position and
orientation coordinates for the rear axle of the tractor, u2 is
the angle of the trailer, f1, f2 represent the front and rearFig. 1. Illustration of space robot.

Fig. 2. Illustration of mobile manipulator.
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steering angles, respectively, Ib1
, Ib2

, Is1
, Is2

, m1, m2 are the
system inertial parameters, and l1 = l2 = l are the wheel base
lengths. The fire truck is assumed to have two steering
inputs and one drive input, so that the overall system
possesses three inputs for its six DOF. Observe that the fire
truck can be maneuvered without using the rear axle
steering input (so that f2 is a constant); for example, setting
f2 =0 yields the usual tractor-trailer system. Thus it can be
seen that this system possesses a form of redundancy
associated with its kinematics, and it is of interest to utilize
this redundancy to improve the performance of the system.

2. REDUNDANT NONHOLONOMIC SYSTEM
CHARACTERIZATION
The focus of this paper is the introduction of a notion of
kinematic redundancy for nonholonomic mechanical sys-
tems and the initiation of a study of the control and
application of these systems. We wish to work with
nonholonomic systems arising from both explicit kinematic
constraints and from symmetries of the system dynamics.
Thus in this section we first develop models for these two
classes of systems which are useful for characterizing
redundancy in nonholonomic systems, and then establish a
natural and useful definition of kinematic redundancy in
terms of these models. Once this definition is in place we
shall turn to the problem of controlling the motion of these
systems.

Consider first the class of nonholonomic mechanical
systems arising from the presence of explicit constraints on
the system kinematics; these systems can be modeled as1

M(x)T=H*(x)ẍ+V*cc(x, ẋ)ẋ+G*(x)+AT(x)l (1a)

A(x)ẋ=0 (1b)

where xPRn is the vector of system generalized coor-
dinates, TPRp is the vector of actuator inputs, M:Rn→Rn3 p

is bounded and of full rank, H*:Rn → Rn3 n is the system

inertia matrix, V*cc:R
n

3 Rn→Rn3 n quantifies Coriolis and
centripetal acceleration effects, G*:Rn→Rn arises from the
system potential energy, A:Rn→Rm3 n is a bounded full rank
matrix quantifying the nonholonomic constraints, lPRm is
the vector of constraint multipliers, and all functions are
assumed to be smooth. It is well known that the mechanical
system dynamics (1) possesses considerable structure. For
example, for any set of generalized coordinates x, the matrix
H* is symmetric and positive definite, the matrix V*cc

depends linearly on ẋ, and the matrices H* and V*cc are
related according to Ḣ*=V*cc +V*cc

T.
It is useful for our subsequent development to rewrite the

nonholonomic system model by employing a reduction
procedure to decrease the dimension of the dynamics (1).
Toward this end, observe that the assumption that A is full
rank implies that the codistribution spanned by the rows of
A has dimension m. The annihilator of this codistribution is
then an r=n2m dimensional smooth distribution
D=span[r1(x), r2(x), . . . , rr(x)], where the ri are smooth
vector fields on the configuration space which satisfy Ari =0
;x. Defining R =[r1, r2, . . . , rr]PRn3 r permits this
relationship to be expressed more concisely as AR=0. As an
example, let the matrix A be partitioned as A=[A1 A2], with
A1PRm3 m and A2PRm3 r and where A1 is nonsingular (this is
always possible, possibly with a reordering of the configura-
tion coordinates). Then R can be constructed as follows:

R=F 2A21
1 A2

Ir
G (2)

where Ir is the r3 r identity matrix. Defining a partition of x
corresponding to the partition specified for A, so that
x=[xT

1 xT
2]

T with x1PRm and x2PRr, permits the system
velocities to be determined by ẋ2 via ẋ=R(x)ẋ2. This
parameterization then allows (1) to be reformulated as

ẋ1 =A*(x)ẋ2 (3a)

F=H(x)ẍ2 +Vcc(x, ẋ2)ẋ2 +G(x) (3b)

where A*=2A21
1 A2, F=RTMT, H=RTH*R,

Vcc =RT(H*Ṙ+V*ccR), and G=RTG*. In what follows, it is
assumed that p>r and RT M is full rank, so that any desired
F can be realized through proper specification of T and
the system (3b) is fully actuated. Additionally, we suppose
that the involutive closure of D (defined as the smallest
involutive distribution containing D) has constant rank n
on the configuration space, so that the constraints are
nonintegrable and the system (1) is (completely) non-
holonomic.14

Note that (3) consists of a “reduced” dynamic model (3b),
which defines the evolution of the “reducing outputs” x2,
together with a purely kinematic relationship (3a). There-
fore the representation (3) provides a simpler description of
the nonholonomic mechanical system than that given in (1).
Moreover, as shown in the next lemma, the dynamics (3b)
retains much of the mechanical system structure of the
original system (1).

Lemma 1: The dynamic model terms H, G are bounded
functions of x whose time derivatives Ḣ, Ġ are also bounded

Fig. 3. Illustration of fire truck.
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in x and depend linearly on ẋ2, the matrix H is symmetric
and positive definite, and the matrices H and Vcc are related
according to Ḣ=Vcc +VT

cc.

Proof: The proof is given in reference 9. j

We now turn our attention to those nonholonomic
mechanical systems which arise because of the presence of
a symmetry in the system dynamics. More specifically,
consider the class of mechanical systems for which the
system Lagrangian is G-invariant for some Lie group G,15

and suppose for concreteness that G=SO(2). By decompos-
ing the configuration space into irreducible representations
of SO(2), it is always possible to choose (local) configura-
tion coordinates x=[xT

1 xT
2]

T for this system in such a way
that the elements of x2PRr are coordinates for Rn/G and the
elements of x1PRm are the coordinates which transform
nontrivially under G. Selecting coordinates in this way
permits the G-invariant system Lagrangian to be written in
the form L(x, ẋ)= ẋTH*(x2)ẋ/22U(x2) for some potential U
and inertia matrix

H*=F J1(x2)

QT(x2)

Q(x2)
J2(x2)

G (4)

with submatrices J1, J2, Q which are independent of x1.
The fact that L is independent of x1 means that the Euler-

Lagrange equations corresponding to the x1 coordinates
have the character of a velocity constraint:

L
ẋ1

=J1(x2)ẋ1 +Q(x2)ẋ2 =0 (5)

where it is assumed that the system is initially at rest.
Observe that (5) can be used to parameterize the system
velocities via ẋ=R(x2)ẋ2, with R defined as

R=F 2J21
1 Q
Ir

G (6)

We again assume that the smallest involutive distribution
containing the span of the columns of R has constant rank n,
in which case the constraints (5) are nonintegrable and the
system is nonholonomic.

Now an analysis which exactly parallels the one given
above for kinematic nonholonomic systems can be applied
to reduce the original 2n order mechanical system to a 2r
order mechanical system together with m kinematic equa-
tions:

ẋ1 =A**(x2)ẋ2 (7a)

F=H(x2)ẍ2 +Vcc(x2, ẋ2)ẋ2 +G(x2) (7b)

where A**=2J 21
1 Q and F=B(x2)T for some matrix

BPRr3 p which depends only on x2 (because it is supposed
that the inputs do not break the system symmetry). It is
assumed that p>r and B is full rank, so that any desired F
can be realized through proper specification of T and the
system (7b) is fully actuated. Note that (7b) is a 2r order
differential equation which defines the evolution of the 2r

states (x2, ẋ2), and that the behavior of the remaining
configuration coordinates x1 is completely determined by
the kinematic relationship (7a). Moreover, an analysis
virtually identical to the one summarized in Lemma 1 can
be used to show that the reduced system (7b) retains the
mechanical system structure of the original system.

Reduced representations have now been obtained for both
kinematic and symmetric noholonomic mechanical systems.
Examination of these reduced models reveals that the model
(3) contains the model (7) as a special case (corresponding
to the situation in which the Lagrangian L(x, ẋ), distribution
D, and input matrix are independent of x1). Thus, in what
follows, we focus on the nonholonomic mechanical system
(3), with the implicit understanding that all results apply to
the system (7) as well.

The reduced representations obtained above for kine-
matic and symmetric nonholonomic mechanical systems
can be employed to develop a useful and natural definition
for kinematic redundancy in these systems. We wish to
provide a definition for redundancy which captures the idea
that redundant systems possess “extra” DOF beyond those
required to satisfy the given task objectives. Note, however,
that it may not be appropriate to treat all of the system DOF
equally.  Indeed, from a motion control perspective, there is
a fundamental difference between the x1 and x2 coordinates
for the system (3). More specifically, the evolution of the
reducing outputs x2 can be controlled directly using the
input F, since (3b) is a fully actuated mechanical system,
while the behavior of x1 can be influenced only indirectly
through the control of x2. One consequence of this structural
property of the system is that it is much harder to control x1

than x2; in fact, much of the difficulty in controlling
nonholonomic systems is related to the problem of specify-
ing, and then tracking, a desired trajectory x2d for x2 which
causes both x1 and x2 to evolve as desired.

These considerations lead us to a definition of redun-
dancy that focuses on systems with extra DOF in the
reduced space. More precisely, we have the following:

Definition: The nonholonomic system (3) is kinematically
redundant for a given task if the task can be completed
using only a subset x21PRr1 of the reducing outputs
x2 =[xT

21 xT
22]

T, where x22PRr2 and r1 +r2 =r.

Implicit in this definition is the assumption that all of the
coordinates x1 are relevant for the given task. Note that, if
this is not the case, the control problem can be simplified by
ignoring those elements of x1 which are unimportant for the
task.

3. REDUNDANT NONHOLONOMIC SYSTEM
CONTROL
In this section we present a class of motion control
algorithms for nonholonomic mechanical systems which are
redundant according to the definition given above. It is
shown that the available redundancy can be effectively
exploited both to simplify the control of these systems and
to enhance their performance capabilities. Moreover, it is
demonstrated that these results can be obtained in the
presence of uncertainty regarding the system dynamic
model and the nonholonomic constraints.
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3.1 Preliminaries
The definition for kinematic redundancy given above is
motivated, in part, by the claim that the reducing outputs x2

can be controlled directly since (3b) is fully actuated. This,
in turn, implies that the redundant reducing outputs x22 can
be conveniently utilized to improve performance or simplify
the control problem. Thus we begin our discussion of
redundant system control by exhibiting two algorithms for
controlling the reduced system (3b), one for position
tracking and one for velocity tracking. These algorithms
will be utilized as subsystems in the complete redundant
nonholonomic system controllers proposed later in the
paper.

Recall that (3b) is shown in Lemma 1 to inherit all of the
“nice” mechanical system structure of the original system.
As a consequence, motion control for this reduced system
can be accomplished using the performance-based adaptive
control methodology recently proposed by the authors.16,17

Thus, for example, the following adaptive control scheme
can be used to track any desired position trajectory x2d(t) for
x2 without rate measurements or knowledge of the system
dynamic model:

F=A(t)ẍ2d +B(t)ẋ2d + f(t)+k1g
2w+k2g

2e
ẇ=22gw+g2ė (8)

where e=x2d 2x2 is the trajectory tracking error, w provides
a means of injecting damping into the closed-loop system
without using rate measurements, k1, k2, g are positive
scalar constants, and f(t)PRr, A(t)PRr3 r, B(t)PRr3 r are
(feedforward) adaptive gains which are adjusted according
to the following simple update laws:

ḟ=2s1f+b1q

Ȧ=2s2A+b2qẍT
2d (9)

Ḃ=2s3B+b3qẋT
2d

where q= ė+k2e/k1g2w/g represents a weighted and
filtered error term and the si and bi are positive scalar
adaptation gains.

The suitability of the position trajectory tracking con-
troller (8), (9) is indicated by the following lemma.

Lemma 2: The adaptive controller (8), (9) ensures that
(3b) evolves in such a way that e, ė, w, f, A, B are
semiglobally uniformly bounded and the tracking error e, ė
converges exponentially to a neighborhood of the origin
which can be made arbitrarily small.

Proof: The proof follows immediately from the proof of
Theorem 2 in reference 17 once it is observed that (3b) is a
fully actuated mechanical system. j

In a similar manner the performance-based adaptive
control methodology can be used to derive a scheme for
tracking any desired velocity trajectory v2d(t) for v2 = ẋ2

without knowledge of the system dynamic model. More
specifically, consider the velocity tracking scheme

F=C(t)v̇2d +D(t)[v2v2d]+g(t)+ken

ġ=2s4g+b4en (10)
Ċ=2s5C+b5env̇

T
2d

Ḋ=2s6D+b6en[v2v2d]
T

where en =v2d 2v2 is the velocity tracking error, g(t)PRr is
an adaptive auxiliary signal, C(t)PRr3 r, D(t)PRr3 r2

are
adaptive feedforward elements, k is a positive constant, the
si and bi are positive scalar adaptation gains, and the
notation [uw]=[u1w1, . . . , u1wr, u2w1, . . . , urwr]

TPRr2
is

introduced for convenience. The stability properties of the
proposed velocity tracker are summarized in the following
lemma.

Lemma 3: The adaptive controller (10) ensures that en, g,
C, and D are globally uniformly bounded and that the
velocity tracking error en converges exponentially to a
compact set which can be made arbitrarily small.

Proof: The proof follows immediately from the proof of
Lemma 3 in reference 18 once it is observed that (3b) is a
fully actuated mechanical system. j

3.2 Motion control
We are now in a position to address the problem of
controlling the motion of the redundant nonholonomic
mechanical system (3). Our approach is to consider three
subclasses of the general system (3), each of which
possesses certain structural properties which simplify the
redundancy utilization problem, and then provide a control
method for each subclass. Note that, in view of the
availability of the position tracking scheme (8), (9) and the
velocity tracker (10) given above, it can be assumed that any
desired trajectory for the reducing coordinates x2 or
velocities ẋ2 can be accurately followed. Thus it is seen that
the challenge is to utilize the available redundancy to
improve the control of the x1 coordinates in some way, and
we are led to focus our attention on the kinematic system
(3a) in much of what follows.

To assist in the identification of useful subclasses of
systems for subsequent study, let us rewrite the kinematic
system (3a) as

ẋ11 =A3(x)ẋ21 +A4(x)ẋ22 (11a)

ẋ12 =A5(x)ẋ21 +A6(x)ẋ22 (11b)

In (11), the Ai are appropriate submatrices of A*, x1 is
partitioned as x1 =[xT

11 xT
12]

T, and the vectors x11PRr2 and
x12PRr3 are chosen in such a way that r2 +r3 =m and A4 is
nonsingular in the region of interest (such a partition is
always possible, possibly with a reordering of the configura-
tion coordinates).

Consider first the subclass of nonholonomic systems for
which A5 =A6 =0 in (11). In this case the system possesses
the same number of redundant reducing outputs x22 as
“vertical” coordinates x11 =x1 (so that r2 =m and r3 =0). It
should be noted that such systems are important in
applications; for instance, the systems given in examples 1
and 2 belong to this class. In this situation, it turns out that
it is possible to eliminate the nonholonomic nature of the
control problem altogether, so that motion control is
straightforward to accomplish and the available redundancy
can be readily utilized to achieve a wide range of
performance objectives.

Toward this end, observe first that in many applications
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the performance enhancement objectives can be formulated
as a trajectory tracking problem for the (nonredundant)
reducing outputs x21 and vertical coordinates x1 (see, for
example, reference 10 for an analogous discussion for
redundant manipulator systems). Now for nonredundant
nonholonomic systems it is not possible to simultaneously
track arbitrary trajectories for the reducing and vertical
coordinates, because arbitrarily chosen trajectories will in
general violate the nonholonomic constraints. In the present
case, however, the presence of the redundant reducing
outputs x22 can be used in a straightforward manner to
permit any desired trajectories for x21 and x1 to be followed.
More precisely, suppose that the desired evolution of ẋ22,
denoted ẋ22d, is specified as follows:

ẋ22d =A21
4 (ẋ1d 2A3ẋ21d)

where x1d and x21d are the desired trajectories for x1 and x21,
respectively. Then, if the desired velocity trajectories ẋ21d,
ẋ22d for the reducing outputs ẋ21, ẋ22 are accurately tracked
(using the adaptive scheme (10), for example), it can be seen
that x21 and x1 will evolve as desired despite the non-
holonomic constraints. Indeed, in this case it can be seen
that the control problem is no longer nonholonomic, so that
control algorithm simplification and performance enhance-
ment are achieved simultaneously. This approach to
nonholonomic system control is illustrated in the following
section through simulations with the systems in examples 1
and 2. It should be noted that the performance obtainable
using the above strategy can be improved by introducing a
“closed-loop” component to the equation defining ẋ22d:

ẋ22d =A 21
4 (ẋ1d +k3(x1d 2x1)2A3ẋ21d) (12)

where k3 is a positive constant. It is easy to show that this
“kinematic controller” guarantees accurate tracking of the
desired vertical trajectory x1d provided that the desired
reducing output trajectories x21d and x22d are accurately
tracked (using an analysis similar to that given in reference
19, for example); recall that accurate tracking of the
reducing output trajectories can be achieved because these
coordinates are fully actuated.

While the subclass of redundant nonholonomic systems
identified above is important in applications, it is clear that
not all nonholonomic systems have as many redundant
reducing coordinates as vertical coordinates.  For example,
it will be shown that the fire truck in example 3 has three
vertical coordinates and only one redundant reducing
output. Thus we are led to examine more general situations.
Consider again the kinematic system (11), but now suppose
that A6 =0 and A5 is nonzero but independent of x22 . In this
case the system possesses more vertical coordinates x1 than
redundant reducing outputs x22, but the evolution of x22 only
influences a subset x11 of the vertical coordinates x1. This
class of systems is also important in applications; for
instance, example 3 belongs to this class.

As might be expected, in this situation it is not possible to
achieve as much as with the first class of systems identified
above. However, in this case it is still possible to control the
system in such a way that x21 and x12 are driven to their
desired final values and x11 is made to track any user-
specified trajectory. This latter trajectory tracking capability

can be used to improve overall system performance. One
method of achieving this control objective is given in the
following algorithm:

(i) For the system ẋ12 =A5(x)ẋ21 (i.e., (11b) with A6 =0),
utilize nonholonomic control methods to determine a
trajectory for ẋ21 which would drive both x21 and x12 to
their desired values (this is always possible because the
original system is controllable).

(ii) Given the desired evolution for x11d, generate a desired
trajectory for ẋ22d using

ẋ22d =A 21
4 (ẋ11d +k3(x11d 2x11)2A3ẋ21) (13)

(iii) Track the desired velocity trajectories for ẋ21 and ẋ22

simultaneously using the adaptive scheme (10).

This approach to nonholonomic system control is illustrated
in the following section through simulations with the fire
truck in example 3.

Finally, we turn to our third subclass of redundant
nonholonomic systems. Consider the class of systems for
which there is a time scale separation between the task to be
completed by the x21 coordinates and the task which defines
the evolution of all of the other coordinates. More precisely,
suppose that the task associated with the x21 outputs must be
performed quickly, while the task defined in terms of x1 and
x22 can be completed more slowly. This situation is very
common in applications. For instance, many tasks involving
mobile manipulators (as in example 2) belong to this class.
A common objective with mobile manipulators is to obtain
the performance of a high bandwidth manipulator with a
large workspace, and this goal can be realized if the end-
effector of the manipulator can be positioned quickly even
while the platform is positioned more slowly. Observe that
this is the perspective often taken with “compound” robotic
manipulators.20 One approach to controlling such systems is
to regard all of the elements of x1 and x22 to be redundant,
so that the primary concern is with x21 and the motion
control of the remaining coordinates is viewed as a
secondary task. Since the x21 coordinates are fully actuated
it is easy to control them quickly, using (8), (9) for example,
and the other coordinates can then be driven to their goal
configuration more slowly. More specifically, we propose
the following algorithm:

(i) Quickly drive x21 to the goal x21d using the adaptive
tracking scheme (8), (9).

(ii) Hold x21 at x21d (using (8), (9)) and simultaneously drive
x1 and x22 to appropriate values. The motion control for
x1 and x22 can be realized using the stabilization strategy
proposed by the authors in reference 18, for example.

Note that even if the system is controllable it may not be
possible to control x1 and x22 to their desired values while
holding x21 at x21d , because this latter requirement can be a
strong constraint. However, in those cases in which the task
is achievable in this way the proposed algorithm has the
desired effect of ensuring that the system is driven to the
goal and the “important” coordinates are controlled more
quickly than the “unimportant” ones.
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3.3 Compensation for kinematic uncertainty
The control strategies summarized above provide methods
for controlling the motion of certain classes of redundant
nonholonomic mechanical systems. These schemes can be
used both to simplify the control problem and to enhance
system performance. Moreover, the algorithms can be
implemented despite the presence of uncertainty regarding
the mechanical system dynamics (3b). Note, however, that
implicit in the development of these control strategies is the
assumption that there is no uncertainty associated with the
kinematic relationship (3a) (or, equivalently).11 This can be
a reasonable assumption for many nonholonomic systems
but is certainly not always the case. Consider, for example,
the situation in which the nonholonomic constraints are a
consequence of a symmetry of the system dynamics. In this
case the kinematic constraint (11) depends on the inertial
parameters of the system, and it is often desirable to permit
these parameters to be uncertain. In view of this observa-
tion, we now briefly consider the situation in which there is
uncertainty in the constraint (11). Here we concentrate on
the first subclass of redundant nonholonomic systems
discussed above, in which A5 =A6 =0, and present a method
of compensating for kinematic uncertainty for this case;
similar methods can be developed for the other cases.21

Consider the kinematic system (11) with A5 =A6 =0; in
this case x11 =x1 and the system model (11) can be written

ẋ1 =A3(x, p)ẋ21 +A4(x, p)ẋ22 (14)

where we have made explicit the dependence of the
kinematic system on a vector of system parameters p. Let p̂
denote an estimate for p and define the associated predicted
value of ẋ1, denoted ˆ̇x1, as follows:

ˆ̇x1 = Â3ẋ21 + Â4ẋ22 (15)

where the notation Âi =Ai(x, p̂) is introduced. In what
follows it is supposed that the matrix Â4 is invertible for all
values of the parameter estimate p̂ (recall that it is invertible
for p̂=p); this can be ensured by restricting the possible
values for this estimate, for example. In this case, applica-
tion of the kinematic control scheme

ẋ22d = Â21
4 (ẋ1d +k3(x1d 2x1)2 Â3ẋ21) (16)

to the system (15) leads to the result

ė1 +k3e1 = ˆ̇x1 2 ẋ1 (17)

where e1 =x1d 2x1. Observe that, since ˆ̇x1?ẋ1 in general
(because p̂?p), this approach will not achieve the desired
objective of accurate tracking of x1d by x1 (note, of course,
that any given x21d can be accurately followed because x21 is
directly actuated). However, we can use the error associated
with this basic method to improve our estimate for p and
thereby asymptotically realize this trajectory tracking goal.

Toward this end, observe that any uncertainty in the
kinematic constraints which is associated with inertial
parameters can always be linearly parameterized by slightly
modifying (14) as follows:

ẋ1 =W(x, ẋ)p (18)

where the matrix W is a known function. Indeed, the
existence of such a linear parameterization is a direct

consequence of the well-known property that the inertial
parameters appear linearly in the dynamics of mechanical
systems. It should be mentioned that this linear para-
meterization property also holds for many systems with
uncertain kinematic, rather than inertial, parameters. As this
property of (14) is obviously inherited by the prediction
system (15), we can also rewrite that kinematic model in the
same way:

ˆ̇x1 =W(x, ẋ)p̂ (19)

The models (18) and (19) can be used to develop an
algorithm for updating our estimate p̂ for the parameter
vector p. Consider the following simple estimation
scheme:

ˆ̇p=aWTE (20)

where E= ẋ1 2 ˆ̇x1 and a is a positive constant. If this
estimation strategy is combined with the kinematic con-
troller (16), then accurate tracking of the desired vertical
trajectory x1d can be obtained despite the kinematic model
uncertainty. More precisely, we have:

Lemma 4: The kinematic controller (16) and estimation
scheme (20) ensure that the vertical coordinates x1 accu-
rately track the desired trajectory x1d.

Proof: Differencing the kinematic models (18) and (19)
yields

E=W(x, ẋ)f (21)

where f=p2 p̂. Differentiating the Lyapunov function
candidate V=fTf/2 along (20), (21) and simplifying the
resulting expression gives V̇=2a i E i2, from which it
may be concluded that E is bounded and converges to zero.
This fact can then be combined with (17) to establish the
claims of the lemma. j

The performance of this approach to compensating for
uncertainty in the kinematic model is illustrated in the next
section.

4. CASE STUDIES
In this section we consider the three example systems
introduced previously in light of our definition of kinematic
redundancy, apply the proposed motion control strategies to
these systems, and illustrate the control law simplification
and performance enhancement obtainable with the proposed
approach.

4.1 Space robot
Consider first the space robot presented in example 1 and
shown in Figure 1. As summarized above, the space robot is
an example of a symmetric system with nonholonomic
constraint arising from angular momentum conservation.
The system has configuration coordinates
x=[f x y u1]

TPR4, with reducing outputs x2 =[x y u1]
T and

vertical coordinate x1 =f. The (reduced) dynamic model for
the system is of the general form (7) and is given in
reference 21. Suppose that the task to be completed by the
space robot involves tracking a user-specified trajectory
with the manipulator end-effector while simultaneously
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ensuring that the platform orientation tracks some desired
trajectory. Observe that this capability can be used to
achieve many performance improvement objectives, such as
maintaining a fixed platform location while completing
tasks with the end-effector or placing the platform in an
optimal configuration for a given operation. In this case,
x21 =[x y]T and x22 =u1 is the redundant coordinate according
to our definition. Moreover, it can be seen that the system
belongs to the first class considered above since it possesses
one vertical coordinate and one redundant reducing output.

We begin our simulation study for the space robot by
assuming that the system dynamic model (3b) is uncertain
but the kinematic model (11) is accurately known. In this
case we can apply the kinematic control scheme (12) to
generate the trajectory ẋ22d for ẋ22 which ensures that x1 and
x21 closely track x1d and x21d, respectively, and then use the
adaptive control law (10) to track the desired velocity
trajectories ẋ21d and ẋ22d. This control approach is applied to
the mathematical model of the space robot through
computer simulation with a sampling period of two
milliseconds. The system model parameters are defined as
m=J=10 and l=1. The adaptive gains g C, and D are set
initially to zero, and the controller parameters are set as
k=10, k3 =2, and si =0.1, bi =10 for all i. It is noted that no
attempt was made to “tune” the gains to obtain the best
possible performance for this simulation. The control
strategy was tested using a wide range of initial conditions
and desired trajectories; sample results are given in Figures
4a and 4b, and demonstrate the feasibility of the method.

It is interesting to note that, if the task requirements
involve the special case of platform motion in which the
platform remains stationary during the task, an alternative
control approach can be employed. More specifically,
because the space robot is redundant the desired motion can
be achieved by controlling the end-effector using only the
actuators at the second and third joints of the manipulator,
so that the output of the actuator at the first joint is zero and
the platform does not move from its initial configuration. It
can be shown that x21 is fully actuated even with the actuator
at the first joint turned off.21 Thus x21 can be made to track
x21d using the adaptive scheme (8), (9), and since the
actuator at the first joint is not utilized for this motion the
platform remains in its original configuration. Sample
results obtained using this approach are given in Figures 5a
and 5b, and illustrate that this method can be used to move
the end-effector without moving the platform.

Finally, we consider the problem of controlling the space
robot in the presence of uncertainty regarding both the
dynamic model (3b) and the kinematic model (11). In this
case we can utilize the kinematic control scheme (16), (20)
to generate the desired trajectory ẋ22d for ẋ22 which ensures
that x1 and x21 closely track x1d and x21d, respectively, and
then use the adaptive control law (10) to track the desired
velocity trajectories ẋ21d and ẋ22d. This control approach is
applied to the mathematical model of the space robot
through computer simulation with a sampling period of two
milliseconds. The system model parameters are defined as
above. The adaptive gains g, C, and D are set to zero
initially, and the controller parameters are set as k=10,
k3 =2, a=1, and si =0.1, bi =10 for all i. It is noted that no

attempt was made to tune the gains to obtain the best
possible performance for this simulation. The control
strategy was tested using a wide range of initial conditions,
desired trajectories, and initial estimates for p; sample
results are given in Figures 6a and 6b, and demonstrate the
feasibility of the method.

4.2 Mobile manipulator
Consider next the mobile manipulator system presented in
example 2 and shown in Figure 2. The mobile manipulator
provides an example of a nonholonomic system arising
from the presence of explicit constraints on the system
kinematics, in this case corresponding to the rolling
constraint of the wheeled mobile platform. Let d denote the
distance from the point (z1, z2) on the platform to the point
(x1, x2) at the end-effector of the manipulator. Note that
controlling the system so that the distance d remains in a
desired range provides a simple means of ensuring that the
manipulator is maintained in a useful posture. The elements
of x=[d x1 x2 z1 f]TPR5 define configuration coordinates
for the system, with x1 =d and x2 =[x1 x2 z1 f]T the vertical
coordinate and reducing outputs, respectively. The
(reduced) dynamic model for the mobile manipulator is of
the general form (3) and is given in reference 21. Suppose
that the task specification for the mobile manipulator
involves driving the manipulator end-effector to some goal
location while simultaneously controlling the platform in
such a way that the distance d remains at its initial value;
this task represents a simple model for applications
involving end-effector placement while maintaining a useful
manipulator configuration. In this case it can be seen that
x21 =[x1 x2]

T and the elements of x22 =[z1 f]T are redundant
by our definition. This system belongs to the first class of
redundant nonholonomic systems because the number of
vertical coordinates is one and the number of task relevant
redundant coordinates is also one: since motion of the
redundant coordinate f has no impact on the distance d, z1

is the only task relevant redundant coordinate.
In our simulation study of the mobile manipulator, we

assume that the system dynamic model (3b) is uncertain but
the kinematic model (11) is accurately known. Thus we
define desired trajectories for x21d, x1d, and fd which will
accomplish the task objectives, and use (12) to generate the
desired trajectory ẋ22d for ẋ22. Using the adaptive control law
(10) to track the desired velocity trajectories ẋ21d and ẋ22d

ensures that x1, x21 and f closely track x1d, x21d, and fd,
respectively. This control approach is applied to the
mathematical model of the mobile manipulator through
computer simulation with a sampling period of two
milliseconds. The system model parameters are defined as
M=J=10, l=1, and m=10. The kinematic controller (12)
and adaptive velocity tracker (10) are implemented exactly
as in the space robot simulation, despite the fact that the two
systems have quite different properties. This choice for the
controller terms is made to demonstrate that these gains
need not be tuned for a particularly system to obtain good
performance. The control strategy was tested using a wide
range of initial conditions and desired trajectories. The
results of these simulations are quite similar to those given
in the previous section and hence are not shown.
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As stated in the definition, the idea of redundancy for
nonholonomic systems is strictly connected with the
definition of the task the system is supposed to achieve. For
example, if we are only interested in the end effector
location of the mobile manipulator, the vehicle portion of
the robot would be redundant and the control problem

would be straightforward (since the end effector coordinates
are reducing outputs and can be controlled directly). On the
other hand, if we are interested in the final location of both
the end effector and the mobile platform, so that we can gain
a virtually infinite workspace, the system would not be
redundant at all; in this case we are led to a classical

Fig. 4. (a) Response of end-effector coordinates (x, y) of space robot in first simulation. (b) Desired (dotted) and actual (solid) response
of the space robot platform angle f in first simulation. Dashed line depicts response of platform angle when uncontrolled.
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nonholonomic control problem with the limitations and
difficulties mentioned in the Introduction. For example, in
this second case, the overall system could require a
considerable amount of time to get to a desired location
because of the nonholonomic constraint on the mobile
platform.

These considerations suggest a compromise: if we are
interested in a final location of the end effector inside the
range reachable without moving the platform, we can move
the arm to the goal by a fast and efficient movement and
then move the platform to the desired location while holding
the end-effector position fixed. While this strategy doesn’t

Fig. 5. (a) Response of configuration coordinates u1 (solid), u2 (large dash), u3 (small dash) and f (dotted) of space robot in second
simulation. (b) Response of end-effector coordinates (x, y) of space robot in second simulation.
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provide a virtually infinite workspace, it allows efficient
motion while simultaneously retaining the possibility for
future efficient motions; thus the effective workspace for
multiple tasks is increased significantly. An algorithm to
realize this objective is:

(i) Quickly drive x21 to the goal x21d using the adaptive

tracking scheme (8), (9).
(ii) Hold x21 at x21d (using (8), (9)) and simultaneously drive

x1 and x22 to values which place the manipulator in a
desired configuration relative to the platform. The
motion control for x1 and x22 can be realized using the
stabilization strategy proposed by the authors in
reference 18, for example.

Fig. 6. (a) Desired (solid) and actual (dashed) response of space robot platform angle f in uncertain kinematics simulation. Dotted line
depicts response of platform angle if kinematic uncertainty is not compensated. (b) Evolution of parameter estimate p̂ for space robot
in uncertain kinematics simulation.
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This algorithm is applied to the mathematical model of
the mobile manipulator through computer simulation with a
sampling period of two milliseconds. The system model
parameters are defined as above. The adaptive gains f, A,
and B are set to zero initially, and the controller parameters
are set as k1 =k2 =10, g=2, and si =0.1, bi =10 for all i. It is
noted that no attempt was made to tune the gains to obtain
the best possible performance for this simulation. The

control strategy was tested using a wide range of initial
conditions and desired trajectories. Sample results obtained
using this approach are given in Figures 7a and 7b, and
demonstrate the feasibility of the method. In this simulation
both the end effector and the platform are commanded to
move to the origin, but while the time for the overall system
to get to the goal is large, the end-effector arrives to the goal
in a shorter time, ready for a new task.

Fig. 7. (a) Response of end-effector coordinates (x1, x2) of mobile manipulator in a simulation study. (b) Response of platform
coordinates (z1, z2) of mobile manipulator in a simulation study.
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4.3 Fire truck
Finally, consider the fire truck presented in example 3 and
shown in Figure 3. The fire truck is another example of a
system with explicit nonholonomic constraints on its
kinematics, corresponding to the rolling constraints of the
wheels. As noted above, the presence of two steering inputs

provides this vehicle with enhanced maneuverability com-
pared with single steering input tractor trailer systems. The
fire truck has configuration coordinates x=[x y u1

f1 u2 f2]
TPR6, with vertical coordinate x1 =[x y u2]

T and
reducing outputs x2 =[f1 u1 f2]

T (see Figure 3). The
(reduced) dynamic model for the fire truck is of the general

Fig. 8. (a) Response of tractor coordinates (x, y) in fire truck simulation. (b) Response of tractor angle u1 (solid) and trailer angle u2

(dashed) in fire truck simulation.
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form (3), and the simple version of the model used in this
simulation study is given in reference 21. Suppose that the
task to be completed by the fire truck involves maneuvering
the system to some goal location in such a way that the
potential for collisions with environmental obstacles is
reduced. Since the rear steering input is not required to drive
the system to the goal, and is only used to maneuver the
system more effectively, it is seen that x21 =[f1 u1]

T and
x22 =f2 is the redundant coordinate. Moreover, note that the
system belongs to the second class considered above since
it possesses more vertical coordinates (three) than redundant
reducing outputs (one).

To achieve the objective of maneuvering the fire truck
while reducing the potential for collisions with obstacles,
we adopt the following simple strategy: drive the tractor
portion of the system to the goal in a collision-free manner,
and use the available redundancy to cause the trailer to
follow the path of the tractor as closely as possible. Thus the
trailer may be visualized as “slithering” after the tractor in
the same way that the body of a snake slithers after the
snake’s head, and it is seen that in this way the potential for
collisions between the trailer and environmental obstacles is
reduced. We present algorithms for realizing this slithering
motion for highly redundant robotic arms in [20], and now
consider implementing this idea with the fire truck.

Consider the following chained form representation of
the kinematics of the fire truck (see reference 13 for a
derivation of this representation):

ż0 =n1

ẋ0 =n2

ẋ1 =x0n1 (22)
ẋ2 =x1n1

ẏ0 =n3

ẏ1 =y0n1

We can use this kinematic model together with ideas from
differential flatness22 to plan a trajectory for the (non-
redundant) reducing outputs x21 which drives both x21 and
x12 =[x y]T to their desired values. Roughly, differential
flatness refers to a kind of kinematic reduction in which a
set of outputs, equal in number to the number of inputs, is
sufficient to describe the motion of the full system
unambiguously. If a system is flat and a set of flat outputs is
identified then the entire system state can be reconstructed
from these outputs without resorting to integration of the
system dynamic model. As a consequence, the trajectory
generation problem is easily solved for flat systems; see
references 9 and 22 for the details of this process. In the
case of the firetruck it can be verified from (22) that the
coordinates (z0, x2, y1) are flat outputs, so that this approach
can be used. Once the appropriate desired trajectory for x21

has been determined using flatness, the kinematic control
law (13) can be utilized to generate the trajectory for ẋ22d

which will ensure that x11 =u2 closely tracks any desired
trajectory. In the present case the desired trajectory for u2 is
defined on-line in such a way that the slithering objective is
realized.21 The adaptive control law (10) can then be used to
track the desired velocity trajectories ẋ21d and ẋ22d.

This control approach is applied to the mathematical
model of the fire truck through computer simulation with a
sampling period of two milliseconds. The system model
parameters used in the simulation are given in reference 21.
The kinematic controller and adaptive velocity tracker are
implemented exactly as in the space robot simulation,
despite the fact that the two systems have quite different
properties. This choice for the controller terms is made to
demonstrate that these gains need not be tuned for a
particular system to obtain good performance. Sample
results obtained using this approach are given in Figures 8a
and 8b. Figure 8a shows an example trajectory which takes
the fire truck to the goal (in this case the origin) while
Figure 8b depicts the body angles for the tractor and trailer
and illustrates how the trailer slithers after the tractor.

5. CONCLUSIONS
This paper considers kinematically redundant nonholo-
nomic mechanical systems, identifies some of the
interesting properties which result because of the presence
of the redundancy, and initiates a study of the control and
application of these systems. It is shown that kinematic
redundancy in nonholonomic systems can be exploited both
to simplify the problem of controlling these systems and to
enhance their performance capabilities. Moreover, it is
demonstrated that these results can be obtained even in the
presence of considerable uncertainty regarding the system
model. The ideas are illustrated through case studies
involving a space robot, a mobile manipulator, and a tractor-
trailer system with two steering inputs.
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