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Using an iterative algorithm, a family of stationary two-dimensional vortical dipoles is
constructed, including translational (symmetric and asymmetric about the translation
axis) and orbital (i.e. moving in circles) dipoles. The patches of uniform vorticity
comprising a dipole possess symmetry about the axis passing through their centroids
and are, generally, unequal in area and absolute value of vorticity. The solutions are
discriminated by three parameters, the ratio of the areas of individual vortices, the
ratio of their vorticities and the separation between the centroids of the patches. The
dipole stability and evolution of unstable states are studied numerically with a contour
dynamics method, where the perturbations allowed are, generally, asymmetric. The
diagrams of convergence of the iterative algorithm (without any symmetry constraints)
are built in three cross-sections of the parameter space: at opposite vorticity of the
individual vortices, at equal areas of the vortices and at zero net circulation of the
vortex pairs (when inequality of areas of the individual vortices is offset by inequality
of the absolute values of vorticity). The convergence bound is shown to be close
to the stability bound in the parameter space, and the larger is the separation, the
stronger are the perturbations needed to move the dipole out of equilibrium. Typical
scenarios of the evolution of unstable symmetric translational dipoles and weakly
stable dipoles of other kinds are described, including the transition of a dipole into
an oscillating tripole – the scenario that has not been discussed so far.

Key words: contour dynamics, vortex breakdown, vortex instability

1. Introduction
The first examples of stationary solutions for pairs of symmetric non-overlapping

patches of equal or opposite uniform vorticity in two-dimensional ideal-fluid flows
were obtained numerically by Deem & Zabusky (1978). Such a vortex pair either
rotates steadily at a constant angular velocity around the central point (in the
equal-vorticity case), or propagates steadily at a constant translational speed (in
the opposite-vorticity case). Shortly thereafter, a more general family of translating
dipoles of this type was found by Pierrehumbert (1980), Saffman & Tanveer (1982)
and by Wu, Overman II & Zabusky (1984). In fact, the dipoles of this family are
symmetric about both the axis of translation and a transverse axis; therefore, we term
them doubly symmetric.

† Email address for correspondence: zinovyk@mail.biu.ac.il
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308 V. G. Makarov and Z. Kizner

The next step in this line was taken by Dritschel (1995) who studied pairs of vortex
patches of equal or opposite vorticity but, generally, unequal areas and, therefore, of
non-zero net circulation. A vortex pair of this type rotates as a whole around some
centre that lies either within the line segment connecting the centroids (‘centres of
mass’) of the two patches (in the equal-vorticity case), or outside it (in the opposite-
vorticity case). In the latter case, the dipole moves in some circular orbit; this is the
reason why we term such solutions stationary orbital dipoles. The set of translating
doubly symmetric dipoles is a limit case in this category, when the orbit radius goes
to infinity. By performing a linear stability analysis, Dritschel (1995) determined the
stability properties of his solutions with respect to asymmetric perturbations of the
contours bounding the vorticity patches, under the assumption that the perturbations
preserve the areas of the patches. He showed that, when the two individual patches
constituting a vortex pair are brought sufficiently close to each other, the pair becomes
unstable. A similar behaviour was demonstrated in two-layer modons (Kizner, Berson
& Khvoles 2002) and in their point-vortex analogues, hetonic quartets (Kizner 2006,
2008).

In this paper, those vortex pairs are considered whose partners can differ not
only in area but also in the absolute value of vorticity. Hence, we differentiate
the dipoles by three parameters: the ratio of the areas of their individual vortices
(or by the relative difference of the areas), the ratio of the vorticity values of
the patches (or by the relative difference of these values) and by the relative
separation d between the centroids of the vortices. The targets of our research
are the following: (i) numerical construction of the broadest possible three-parameter
family of stationary dipoles and determination of the convergence domain of our
algorithm, (ii) estimation of the stability region in the three-dimensional parameter
space for the dipoles found and (iii) studying the typical scenarios of evolution
of unstable or slightly perturbed stable dipoles that are close to the stability
bound.

Stationary dipole solutions are searched for numerically using an extended version
(for a number of uniform-vorticity patches) of an algorithm suggested by Kozlov &
Makarov (1998). Although, generally, no symmetry restrictions are imposed, the
shapes obtained are always symmetric about the axis passing through the centroids
of the two individual vortices. In the special case of doubly symmetric dipoles, the
solution is obtained by a mirror-symmetry mapping of a single vortex patch steadily
propagating along a rigid straight-line wall.

The dipole stability and evolution of unstable states are studied numerically with a
contour dynamics code. In the general case of asymmetric dipoles, the perturbations
allowed are also asymmetric. Convergence diagrams for the general algorithm (where
no symmetry considerations are invoked) are plotted in three cross-sections of the
parameter space: at fixed opposite values of vorticity of the individual vortices, at
fixed equal areas of the vortices and at zero net circulation (when inequality of
areas of the individual vortices is compensated for by inequality of the absolute
values of their vorticity). The convergence domain in the parameter space is given by
an inequality d >dB , where dB is a function of the two remaining parameters. The
stability tests run show that all the dipoles obtained with the general algorithm are
stable to small asymmetric perturbations, and the larger the d, the stronger must be
the perturbations to move the dipole out of equilibrium. Special tests performed for
the dipoles located on the convergence bound indicate that the latter is close to the
stability bound. The stability of doubly symmetric dipoles is considered separately
relative to symmetric and asymmetric perturbations; such dipoles are shown to be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

60
26

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006026


Stability and evolution of uniform-vorticity dipoles 309

stable to symmetric perturbations at any d, and to asymmetric perturbations only
under the condition that d >dB .

Our contour dynamics simulations reveal two main types of evolution of weakly
stable asymmetric dipoles (those located close to the stability bound), and of unstable
doubly symmetric dipoles: a dipole, whether translational or orbital, transforms either
into a smaller orbital dipole usually accompanied by a relatively small third vortex
(this behaviour was observed by Dritschel 1995 in opposite-vorticity dipoles), or into
an oscillating tripole. The dipole-to-tripole transition has not been described up to
now.

2. Definitions and methods
2.1. Basic notions and designations

We base our consideration on the principle of vorticity conservation in two-
dimensional flows of ideal incompressible fluids,

∂ω/∂t + u ∂ω/∂x + v ∂ω/∂y = 0, (2.1)

where x and y are the Cartesian coordinates, u and v are the x- and y-components of
the flow velocity, respectively, and ω = ∂v/∂x − ∂u/∂y is the vorticity.

Consider a dipole vortical structure composed of two simply connected patches
in which the non-zero vorticity is concentrated. Within each patch, the vorticity is
assumed to be constant and opposite in sign relative to the other patch. Let the
areas and vorticity values of the individual patches be, respectively, S1, S2 and ω1 > 0,

ω2 < 0. Non-dimensional variables are introduced by taking
√

S̄ =
√

(S1 + S2)/2 as the
linear scale, and by scaling the vorticity with the mean absolute value ω̄ =(ω1 −ω2)/2;

accordingly, 1/ω̄ serves as the time scale, and ω̄ and ω̄
√

S̄ as the scales for the angular
and linear velocity, respectively. From this point on, all the variables and parameters
are regarded as non-dimensional, and symbols S1, S2, ω1 and ω2 stand for the non-
dimensional areas and vorticities of the patches. Dritschel (1995) used the ratio of the
areas occupied by the two vorticity patches to discriminate between different types
of dipoles; in a more general situation, this logic suggests the use of the ratio of the
absolute values of vorticity in the patches as well. Denoting these ratios as α and β ,

α = S2/S1, β = −ω2/ω1 > 0, (2.2)

we obtain: S1 = 2/(1 + α), S2 = 2α/(1 + α), ω1 = 2/(1 + β) and ω2 = −2β/(1 + β).
The coordinates (x∗

1 , y
∗
1 ) and (x∗

2 , y
∗
2 ) of the centroids (centres of mass) of patches 1

and 2 in the fixed frame of reference (x, y) are given by the following formulas:

x∗
i =

1

Si

∫∫
x dx dy, y∗

i =
1

Si

∫∫
y dx dy, (2.3)

where i = 1, 2, and the integration is performed within patch i only. The distance
between the centroids of the two patches,

d =
√

(x∗
1 − x∗

2 )
2 + (y∗

1 − y∗
2 )

2, (2.4)

will be one of the parameters used to identify a stationary dipole. A consequence of
(2.1) is that the net circulation Γ and the impulse (linear momentum) components Ix

and Iy are constants of motion. They can be written as

Γ =

∫∫
ω dx dy = ω1S1 + ω2S2 = 4

1 − αβ

(1 + α)(1 + β)
, (2.5)
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310 V. G. Makarov and Z. Kizner

Ix =

∫∫
ωx dx dy = ω1S1x

∗
1 + ω2S2x

∗
2 = 4

x∗
1 − αβx∗

2

(1 + α)(1 + β)
,

Iy =

∫∫
ωy dx dy = 4

y∗
1 − αβy∗

2

(1 + α)(1 + β)
,

⎫⎪⎪⎬
⎪⎪⎭

(2.6)

where the integrals are calculated over the whole (x, y)-plane or, what is the same,
within the area occupied by the two vortex patches. The coordinates xR and yR of
the dipole centroid, which is the centre of the dipole rotation, are

xR =
Ix

Γ
=

x∗
1 − αβx∗

2

1 − αβ
, yR =

Iy

Γ
=

y∗
1 − αβy∗

2

1 − αβ
; (2.7)

xR and yR are also constants of motion. From (2.5) and (2.7), it is immediately seen
that the conditions αβ = 1 and Γ = 0 are equivalent and that the condition αβ = 1
determines translational dipoles, i.e. those whose centres of rotation lie at infinity. At
αβ �= 1, the coordinates of the dipole centroid are finite. In this case, the dipole is
orbital, and its centre of rotation lies in the straight line passing through the points
(x∗

1 , y
∗
1 ) and (x∗

2 , y
∗
2 ), but outside the segment connecting these points.

The location of the geometrical centre (xg, yg), which appears to be a convenient
characteristic to represent the trajectory of the dipole as a whole, depends on the
shape, size and mutual arrangement of the patches and not on their vorticities:

xg =
x∗

1 + αx∗
2

1 + α
, yg =

y∗
1 + αy∗

2

1 + α
. (2.8)

The family of translational dipoles composed of patches having the same areas and
opposite vorticities, α = β =1, was obtained by Pierrehumbert (1980), while the case
of β =1 and arbitrary α was investigated by Dritschel (1995). We are considering a
family of dipole solutions at arbitrary α and β > 0. Below, it will be seen that, in
the set of stationary dipole configurations that can be obtained with our iterative
algorithm, a specific dipole (normalized as described above) can be identified by the
three parameters α, β and d. In fact, the visualization of the convergence (or stability)
region becomes easier if we change from parameters α and β to the relative differences
of the areas of the patches and of their vorticities, i.e. to δS = (1 − α)/(1 + α) and
δω = (1 − β)/(1 + β), respectively. Therefore, below, each dipole will be identified by
the three parameters δS, δω and d.

2.2. Methods

The method of contour dynamics was suggested by Zabusky, Hughes & Roberts
(1979) for high-resolution simulation of the evolution of uniform-vorticity patches. In
more recent times, the method was supplemented with a procedure of reconnection
of bounding contours, namely, of cutting off thin vorticity filaments and pooling
nearby patches (or filaments) of the same vorticity to create bigger patches; in this
modification, the method came to be called the contour surgery method (Dritschel
1988). Various numerical implementations of the method differ from each other in
the mode of approximation and surgery of the contours, and in the way of numerical
integration and differentiation. Below is a brief description of the algorithm used in
this work.

Following Kozlov (1983), we parameterize the coordinates (ξ, η) of points belonging
to the boundary contour of a simply connected patch of constant vorticity ω by setting
ξ = ξ (λ, t) and ξ = ξ (λ, t), where 0 � λ� Λ; the contour is circuited counterclockwise
when λ varies from 0 to Λ, and ξ and η are periodic functions of λ with the period Λ.
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Stability and evolution of uniform-vorticity dipoles 311

Once the shape and location of the contour are known, the flow induced by the patch
is found via the Poisson equation relating the flow streamfunction and the vorticity
field. This yields the following formulas for the velocity components of the flow:

u(x, y, t) =
ω

2π

∫ Λ

0

[η(λ, t) − y]g(λ, x, y, t) dλ,

v(x, y, t) = − ω

2π

∫ Λ

0

[ξ (λ, t) − x]g(λ, x, y, t) dλ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

where

g(λ, x, y, t) =
η̇[ξ (λ, t) − x] − ξ̇ [η(λ, t) − y]

[ξ (λ, t) − x]2 + [η(λ, t) − y]2
, (2.10)

and dot denotes differentiation with respect to λ. The full velocity is a sum of the
velocities induced by individual patches. The velocity at which a point (ξ, η) on a
contour moves is

dξ

dt
= u(ξ, η, t),

dη

dt
= v(ξ, η, t). (2.11)

Equations (2.9)–(2.11) are discretized by distributing a set of nodes in each contour
at a distance 
C measured along the contour; time is discretized with a step 
t .
By so doing, we arrive at a system of ordinary differential equations (2.11) written
for each node. These equations are solved with a fourth-order Runge–Kutta method.
To compute the integrals in the right-hand sides of these equations (see (2.9) and
(2.10)) and also to estimate the minimal width of each patch and the minimal distance
between any pair of contours, at any fixed t, the coordinates ξ (λ, t) and η(λ, t) are
approximated with a periodic cubic spline. The patches are split (or merged) when
the minimal width (or distance) becomes less than 0.2
C, and the vorticity debris
of the area smaller than 0.001 are removed. Thereupon, new nodes are arranged
in the contour at the same distance 
C. For the contour surgery, an original code
(Makarov 1991) is used. Along with the general algorithm for vorticity patches on
an unbounded plane, a version valid for patches located in a half-plane with a rigid
wall is employed to simulate the evolution of a doubly symmetric translational dipole
subjected to perturbations symmetric about the translation axis.

At the stage of tuning the contour dynamics code, 
t was varied from 0.1 to
0.001 and 
C from 0.1 to 0.01. It was found that, at 
t � 0.0025 and 
C � 0.015,
an increase in resolution did not affect the results materially. Therefore below, the
combination of 
t = 0.0025 and 
C = 0.015 (the latter corresponds to arranging
of 420 nodes over a circle of a unity radius) is referred to as the fine resolution
combination. The results related to stability and transitions (§§ 3.2 and 3.3) were
obtained with just this resolution.

Capturing the shapes of stationary dipoles is based on the fact that, in a co-moving
frame of reference, the total velocity at any point of a contour bounding a vorticity
patch should be tangent to the contour. This velocity is a sum of the velocity (U, V)
of the incoming flow caused by the motion of the frame, and the velocity (u, v) in
a fixed frame of reference (see (2.9) and (2.10)). For a translational dipole, U and V
are constants, and for an orbital dipole, (U, V) is the linear velocity of a rigid-body
rotation at a constant angular velocity around a fixed centre determined by (2.7).
Using the above-described parameterization, the kinematic condition of stationarity
can be written as

[u(ξ, η; λ) + U (ξ, η; λ)]η̇ − [v(ξ, η; λ) + V (ξ, η; λ)]ξ̇ = 0. (2.12)
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The integro-differential equation obtained by substitution of (2.9) and (2.10) into
(2.12) relates the as yet unknown shape of the vorticity patches and the incoming
flow. This equation is solved with an iterative procedure, which is an extension to
a number of stationary patches of the algorithm employed by Kozlov & Makarov
(1998) for capturing the shape of a unique vortex patch in a prescribed exterior flow
(see also Makarov & Bulgakov 2008). As in the algorithm of Wu et al. (1984), a
constraint is imposed on the shape of vorticity patch, according to which any patch
must be star-convex. In order to force the procedure to converge to a unique dipole
solution with a given triple of parameters δS, δω and d, during the iterations, we keep
unchanged the areas of the two patches and the positions of their centroids in the
(x, y)-plane by making a homothetic stretching/compression and by shifting the
patches at the end of each iteration step. A half-plane version of the algorithm is
used to seek doubly symmetric translational dipoles. In most of our computations,
we use 1000 nodes and stop the computations when the relative distance between two
successive approximations of each contour becomes less than 10−13.

3. Results
3.1. Translating and orbital dipole stationary states

3.1.1. Doubly symmetric dipoles

First (mostly for testing our iterative algorithm), we consider the doubly symmetric
translating dipoles (in which δω = δS = 0) found earlier by Pierrehumbert (1980). Such
solutions can be constructed (i) by exploiting the double symmetry, (ii) using only
the symmetry about the translation axis (the x-axis) and (iii) without imposing any
constraints except for the condition that the patches are star-shaped. Versions (i)
and (ii) provide undistinguishable results, and in both cases the iterative procedure
converges at d � dS ≈ 0.528, where dS is the limiting separation corresponding to the
Sadovskii (1971) dipole in which the boundaries of the patches have two vertices
each and a mutual rectilinear segment at the translation axis. In contrast, the general
algorithm (iii) diverges when d is under some critical level d0 ≈ 0.775 even if, as the
initial guess, we utilize the solution constructed with one of the versions (i) and (ii).
At d >d0, the solutions obtained with any one of the three versions of the algorithm
coincide to within small discretization errors. In the computations initialized in such
a way, the divergence always manifests itself at a certain stage by a sharp increase
of the relative difference of the perimeters δP = (P1 − P2)/(P1 + P2). This process is
attended by the increase (or decrease) of the angular momentum of the vortex pair.
The process of loss of symmetry culminates in stopping of the procedure, when, due
to the strong deformation, one of the patches ceases to be star-shaped. Note that the
smaller the d, the earlier the divergence (figure 1).

3.1.2. Asymmetric dipoles

When δω and/or δS differ from zero, there exists a convergence bound
d = dB(δS, δω) in the parameter space (δω, δS, d), such that the iteration process
converges at d � dB(δS, δω) and diverges at d < dB(δS, δω); obviously, dB(0, 0) = d0

(see § 3.1.1). Qualitatively, the divergence occurs in the same way as shown in figure 1:
one of the patches elongates and bends and, accordingly, δP blows up.

In the solutions obtained at d � dB(δS, δω), as the critical value dB is approached,
an increase of steepness can be observed in the changes of the angular momentum,
relative perimeter difference δP , excess energy E, the gap between the patches G and
the angular (or translational) velocity Ω (or U) of the dipole. The angular momentum
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(a)
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0

0

5 × 10–3

2000 4000

3 4 k � 5800

k

5832 5834

5

(b)

Figure 1. Divergence of the general iterative procedure at d <d0 ≈ 0.775 and δω = δS = 0
(doubly symmetric dipole). (a) Relative difference of perimeters δP versus the iteration number
k; the lines labelled 1, 2, 3 and 4 illustrate the divergence at d =0.649, 0.762, 0.773 and 0.774,
respectively; line 5, convergence at d = 0.775. (b) Typical sequence of dipole shapes before the
stopping of the iterative procedure, d = 0.774.
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Figure 2. Parameters of the asymmetric stationary dipoles as functions of d. (a) Excess energy
E; (b) angular velocity Ω (or translational velocity U in the case of δω ≡ −δS); (c) the gap
G between the two patches; (d ) the derivative (δP )′ of the relative perimeter difference with
respect to d. The lines labelled 1 correspond to δω = 0 and δS = 0.5; labelled 2 to δS =0 and
δω = 0.5 and labelled 3 to δω = −δS = 0.5. Solid circles correspond to d = dB .

and δP are monotonic functions of d, while each of the parameters E, Ω , U and G
has an extremum in the vicinity of d = dB . This fact is illustrated by figure 2, where
some dipole parameters are plotted for the opposite-vorticity and equal-area orbital
dipoles and for asymmetric translational dipoles.
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y

y

y

y

x x x

Figure 3. Stationary dipoles on the convergence bound d = dB (δS, δω). Left column, δω = 0
and δS = 0.025, 0.25, 0.5 and 0.99 (from top to bottom); central column, δS = 0 and δω =0.025,
0.25, 0.5 and 0.8 (from top to bottom); right column, δω = −δS = 0.025, 0.25, 0.5 and 0.99
(from top to bottom). Bold solid lines, the bounding contours of the vorticity patches; thin
solid lines, level contours of the co-moving streamfunction (given at the step of 0.01 in all
the plots except for the bottom right-hand one, where the step is 0.001); broken line, the
streamfunction separatrix contour.

To identify the solution at fixed δω and δS, we use the separation d. When d
is close to dB , this way of identification is less reliable than at larger d since here
small variations of d imply significant variations of other characteristics (figure 2).
Therefore, it comes as no surprise that, in the region of high gradients of the dipole
characteristics, the iterative algorithm becomes more and more sensitive to numerical
errors as d is decreased. This is what leads to the divergence at d <dB . One may even
surmise that in terms of d, there are, generally, two branches of solutions for which
d = dB is a turning point, and our algorithm captures only one of the two branches
(see also § 3.2.2).

Some examples of stationary dipole shapes are shown in figure 3. We confine
ourselves to the three cross-sections of the parameter space: δω = 0 (the case of equal
absolute values of vorticity considered by Dritschel 1995); the equal-area case δS =0,
where the patches differ in the absolute values of their vorticity and δω = −δS, where
the total circulation of the dipole is zero so that a pair of patches of, generally,
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unequal areas and absolute values of vorticity propagates steadily (along the x-axis).
In figure 3, only the dipoles obtained at the convergence bound d = dB are presented.
Obviously, by changing the signs of δω and/or δS, dipoles symmetrical to those
shown in figure 3 will be obtained.

As δS → 1 at δω = 0 or as δω → 1 at δS =0, one of the vortices becomes vanishingly
small (figure 3, left column, bottom plot) or the vorticity of one of the patches vanishes
(figure 3, mid-column, bottom plot). Because, in both cases, the contribution of one
of the vortices in the net circulation (hence, in the induced velocity field) goes to zero,
the remaining vortex approaches a shape allowable for a single stationary vorticity
patch. In the first case, apparently, the limiting shape of the remaining vortex is an
ellipse (the Kirchhoff vortex) while, in the second case, it is a circle. At δS = 0, we
are able to follow the change in shape of the dipole only from δω =0 up to δω ≈ 0.8,
because further increase of δω makes the weak vortex non-star-shaped. In the limit of
δω = −δS → 1 (figure 3, right column, bottom plot), the dipole dies out. The case of
δω = δS �= 0 is passed over since it is roughly similar to the case of δS = 0 and δω �= 0.

3.2. Stability and convergence

The stability analysis of dipoles is carried out numerically based on short-term contour
dynamics simulations, with the above-described stationary dipole solutions taken as
initial states. In the special case when the stability of doubly symmetric dipoles to
symmetric perturbations is studied, the half-plane version of the algorithm (see § 2.2)
should be employed. Certain numerical noise (coming from the discretization and
round-off errors) is always present in the computations, leading to disruption of the
structure of an unstable dipole. However, in some cases, initial perturbations are
deliberately imposed on the stationary states under consideration (see below).

We regard a dipole to be unstable if it responds to small initial and/or repeatedly
acting perturbations by considerable changes in the shape and relative positions of
the two vorticity patches. In fact, as computations show, if such changes begin, they
always lead to a change in the topological structure of the dipole. Of course, any
small initial perturbation of the areas occupied by the two patches (even if it does
not lead to any structural rearrangements) will necessarily affect the velocity and the
trajectory of the dipole as a whole, for example, transforming a translational dipole
into an orbital one or changing the orbit radius. However, such kind of response in
the absolute motion should not be interpreted as a manifestation of instability, unless
the shape of the dipole and its structural integrity are disrupted.

3.2.1. Doubly symmetric dipoles

Asymmetric perturbations. Doubly symmetric dipoles (δS = δω = 0) were scanned in
the range dS ≈ 0.528 � d < 1.4 at a small step, and at d > 1.4 they were put to the
test selectively. Such dipoles proved to be unstable to asymmetric perturbations at
d � 0.774 and stable at d � 0.775, which agrees with the stability bound, d ≈ 0.775,
found by Dritschel (1995). Remarkably, this stability bound coincides with the
convergence bound d0 ≈ 0.775 (see § 3.1.1). The stable and unstable behaviour of
dipoles can easily be distinguished when the evolution of the dipole parameters
is examined. As an example, in figure 4(a), the evolution of the relative perimeter
difference, δP , is shown for some values of d. The steep, exponential increase/decrease
of δP (lines 1–3) confirms the instability of dipoles at d <d0, (the sequence of shapes
gone through by the dipole at this stage looks similar to that in a divergent iterative
process, see figure 1b). The stability of dipoles at d = 0.775 and d =0.776 is attested
by the fact that δP remains limited and small (lines 4 and 5) behaving basically in
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Figure 4. Evolution of parameters of doubly symmetric dipoles subjected to asymmetric
perturbations. (a) Relative perimeter difference δP = (P1 − P2)/(P1 + P2) against the distance
xg travelled by the dipole. (b) Trajectory of dipole’s geometrical center (xg, yg). Lines 1–5
represent the dipoles with the initial d = 0.649, 0.762, 0.774, 0.775 and 0.776, respectively (as
in figure 1a).
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Figure 5. Stability of the doubly symmetric dipoles to symmetric perturbations. (a) Separation
d and (b) the single-patch perimeter against the distance travelled by the dipole. Lines 1–3
correspond to the initial d = 0.536, 0.65 and 0.79, respectively.

the same manner as most of the other parameters behave. The weak bending of lines
4 and 5 in figure 4(b) does not contradict the stability of the corresponding dipoles:
stable translational dipoles being subjected to small perturbations can move along
slightly curved trajectories (see also below, § 3.2.2).

Symmetric perturbations. The stability of doubly symmetric dipoles to symmetric
perturbations was tested using the half-plane version of the contour dynamics code,
which allows following the evolution of a single vorticity patch that moves along a
rigid wall (x-axis). Some results of these fine-resolution tests are presented in figure 5.

The doubly symmetric dipoles with d >dS ≈ 0.528 prove to be stable to symmetric
perturbations: all their characteristics barely change during the simulations (see lines
2 and 3 in figure 5). As for the Sadovskii dipole (at d = dS ≈ 0.528) and dipoles with
d close to dS , their shapes cannot be resolved at sufficient accuracy in the contour
dynamics computations: their contours get smoother and somewhat shorter, while
the separation, which should be conserved, increases a little (line 1 in figure 5).
Should this be interpreted as unstable behaviour or as a manifestation of adiabatic
‘creeping’ of a stable dipole over the manifold of stationary solutions? To answer
this question, we performed special tests in which the states passed by the evolving
dipole were fitted by stationary solutions. These tests indicate that the latter option is
more plausible. So we categorize all doubly symmetric dipoles (d >dS) as stable with
respect to symmetric perturbations.
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Figure 6. Convergence and stability diagrams in three cross-sections of the parameter space.
(a) Directions of the cross-sections on the (δS, δω)-plane. (b), (c), (d ) Diagrams at δω = 0
(opposite vorticity), δS = 0 (equal areas) and δS = −δω (asymmetric translational dipoles),
respectively. Solid line indicates the convergence bound above which all dipoles are stable;
dashed line, the extremely perturbed separation d = dB − δd∗ as a function of δS or δω, at
which the corresponding dipole begins to behave unstably; in (d ), the perturbation δd∗ is
under 0.08 % of d. Dotted line in (b) is the stability bound according to Dritschel (1995). Solid
circles symbolize the states whose evolution is discussed in § 3.4.

3.2.2. Asymmetric dipoles

We proceed now to the stability of orbital and asymmetric translational dipoles
(§ 3.1.2). The convergence and stability bounds examined in three cross-sections of the
parameter space, at δω = 0, δS = 0 and δω = −δS (see figure 6a), turn out to be close to
each other. In figure 6(b–d ), solid lines indicate the convergence bound d = dB(δS, δω)
above which the iterative procedure for capturing the stationary solutions converges.
Each of these cross-sections is obtained based on 30 points distributed regularly over
the interval of 0 � δS < 1 (figure 6b), 0 � δω � 0.8 (figure 6c) and 0 � δω = −δS < 1
(figure 6d ); clearly, the cross-sections must be symmetric about the d-axis.

An obvious property of the three graphs in figure 6(b–d ) is the junction of
the convergence boundaries in the point δS = 0, δω = 0 and d0 ≈ 0.775. This point
demarcates the regions of stability and instability of doubly symmetric dipoles to
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asymmetric perturbations and also the regions of convergence and divergence of the
general algorithm when applied to the construction of doubly symmetric solutions.

Contour dynamics tests confirm the stability of all the dipoles at d > dB(δS, δω).
As for the dipoles belonging to the convergence bound, in the vicinity of the junction
point, the fine-resolution numerical noise is insufficient for causing any visible changes
in the dipole shape and behaviour. However, in lower-resolution simulations, these
dipoles demonstrate unstable behaviour. As the point representing a dipole in the
parameter space is moved along each of the three cross-sections of the convergence
bound outward from the junction point, the dipole gradually becomes insensitive to
numerical errors.

To estimate the stability threshold of dipoles belonging to the surface d = dB(δS, δω),
an initial perturbation is deliberately introduced by lowering the true separation d
by a small value δd without changing the shape of the patches. The initially small
perturbation δd is gradually increased until, at some δd = δd∗, the dipole starts
to behave unstably. The onset of instability in a perturbed asymmetric dipole is
diagnosed in the same way as in doubly symmetric dipoles (see lines 3 and 4 in
figure 4). The results of these tests are provided in figure 6(b–d ), where in plots
(b) and (c), the broken lines (based on 10 ‘experimental’ points each) represent
the extremely perturbed dipole separation, d = dB − δd∗ (as a function of δS or δω,
respectively), at which the unstable behaviour shows up. In the cross-section δS = −δω,
the perturbations needed to induce unstable behaviour are really small, δd∗ < 0.08 %.
Thus, in this specific case (figure 6d ), the stability bound can be identified with the
convergence bound.

Notice that at δω = 0, we find stable dipoles below Dritschel’s (1995) stability bound
(figure 6b, dotted line). This can be explained by the fact that, to identify a dipole,
we have chosen d (in addition to δω and δS) whereas Dritschel uses for this purpose
the ratio of the transverse size of the upper (relative to the x-axis) vorticity patch
to the entire transverse size of the dipole; we denote this ratio as D. Of course, it
is possible to establish a functional relation between D and d. However the data
provided by Dritschel (1995) suggest that, at a fixed δS > 0, the relation D = D(d) is
not a one-to-one function but has two branches matching at d = dB(δS, 0). By using
our algorithm, we are able to obtain only the solutions lying on the upper branch (see
§ 3.1.2); these solutions are stable. In contrast, Dritschel achieves the lower-branch
dipoles as well. The lower-branch dipoles located close to the turning point are stable,
whereas the dipoles distant from this point (and lying on the lower branch) are not. In
terms of d, this means that the stability bound for the lower-branch dipoles is located
on the right of the turning point. This is why, in figure 6(b), the line standing for
Dritschel’s stability bound runs above the line representing the convergence bound of
our algorithm (the latter line apparently coincides with or is close to that composed
of the turning points).

3.3. Transitions

Here the results of three long-term simulations are presented. In figure 6(b–d ),
the initial locations in the parameter space of the three dipoles considered below
are marked by solid circles. These examples illustrate the typical behaviour of a
doubly symmetric dipole (δω = δS =0) which is strongly unstable to asymmetric
perturbations, and the transitions made by the dipoles located on the convergence
bound at δω �= 0 and δS =0, and at δS = −δω �= 0. In the latter two cases, the dipoles
are resistant to the numerical noise present in the fine-resolution model. Therefore,
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Figure 7. The evolution of an initially doubly symmetric dipole with the separation d = 0.643.
(a) The shape of the vorticity patches at t = 0, 82, 105, 140 and 350 (from left to right); shaded
are the regions of positive vorticity. (b) Trajectories of the centroids of the dipole partners
before the transition (two almost horizontal lines), and of the tripole core vortex (bold solid
line), its two satellite vortices (thin solid and dashed lines) and the small fourth vortex (bold
dashed line) – after the transition. (c), (d ) Net circulation Γ and the y-component Iy of the
impulse of the entire ensemble of vortices against time.

to initiate an unstable development, the patches constituting a stationary dipole are
brought a little closer to each other.

3.3.1. Evolution of an unstable doubly symmetric dipole into an oscillating tripole

The evolution of doubly symmetric dipoles (i.e. where δS = δω = 0) unstable to
asymmetric perturbations is investigated in the whole segment of their existence, at
dS ≈ 0.528 < d < d0 ≈ 0.775. One of the two patches always splits into two main parts,
and the closer the dipole is to the stability bound d = d0, the more unequal in area
are the parts. At d close to d0, this inequality ultimately leads to the emergence of an
orbital dipole accompanied by a relatively small remote vortex. If, however, the initial
dipole is highly unstable (when d < 0.67), the two parts turn out to be comparable in
area, and the ultimate state is an asymmetric tripole structure (figure 7a) moving in
a winding path (figure 7b).
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Figure 8. The tripole motion after the elimination of the fourth, remote vortex. (a) Trajectories
of the centroids of the core vortex (bold line) and of one of the satellite vortices (dashed line).
(b), (c) The angle θ between the line segments drawn from the core centroid to the centroids
of the two satellites, and the distances D1,2 from the core centroid to the centroids of the
satellites against time in a few complete oscillatory cycles.

The motion of a non-equilibrium asymmetric tripole must be a superposition of
an intrinsic oscillation, own rotation and translational or orbital motion, depending
on whether the net circulation is zero or not (disregarding deformations, debris
and filamentation). In the simulation (figure 7) initialized with a doubly symmetric
dipole with d = 0.643, the net circulation of the entire vortical ensemble – with
allowance made for the small negative vortex accompanying the tripole – barely
differs from zero (figure 7c). This is why, although the circulation of the tripole itself
is non-zero, its motion roughly resembles that of an oscillating tripole with zero
net circulation (figure 7b), until the small fourth vortex collides with the tripole at
approximately t = 11 000. Note that significant changes in the invariants may result
only from dissipation due to the contour surgery; this effect is especially strong when
a transition or collision happens (figure 7c,d ).

We have considered a scenario when, at t = 400, all debris and the small fourth
vortex have been eliminated from the computations. The results of this simulation
for 400 < t < 6000 are shown in figure 8. The centroids of the three vortices arrange
a triangle with periodically varying parameters. As expected, the outer orbit of the
tripole is now a circle (figure 8a). In addition to the outer orbital motion, the tripole
executes its own rotation and undergoes oscillations in the mutual arrangement of
the core and the two satellite vortices (figure 8b,c).

3.3.2. Emergence of a tripole from an equal-area orbital dipole

Here the transitions will be considered that are made in response to small initial
perturbations by equal-area (δS =0) dipoles lying on the convergence/stability bound
(figure 6c). The unstable behaviour begins from some elongation of the weaker-
vorticity patch; this is followed by splitting of the patch into two unequal parts and
formation of an oscillating tripole configuration. The ultimate configuration depends
on the net circulation Γ = 2δω of the initial dipole. The smaller the δω, the closer
the initial dipole to the doubly symmetric one (at d = d0) and the more similar its
evolution to that described by Dritschel (1995). As δω is increased, from approximately
δω = 0.1, the ultimate three-vortex structure gets more and more compact becoming
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Figure 9. Transition of an equal-area orbital dipole (δω =0.5 and d = 0.918) into an oscillating
tripole. (a) The shape of the vorticity patches at t = 0, 35, 110, 350 and 2500. (b) Trajectories
of the centroids of tripole’s core vortex (solid line) and of one of its satellite vortices (dashed
line) in one cycle of their oscillations (t > 4400); the center of tripole’s rotation is marked by
a solid circle in the middle. (c), (d ) Same as (b) and (c) in figure 8.

similar to the oscillating orbital tripole described in § 3.3.1 (figure 8). We note that a
tripole emerging from an equal-area dipole has no accompanying vortex that could
be at all comparable in size with the tripole itself.

Further increase of δω leads to strengthening of the core vortex relative to the
satellite vortices. Accordingly, the trajectory of the core centroid lies in the vicinity of
the rotation centre of the tripole. In figure 9(a), the emergence of a tripole from an
equal-area dipole with δω = 0.5 (marked by a solid circle in figure 6c) is shown; the
transition is initiated by decreasing the initial separation d = 0.918 by 0.4 %. Notice
that the tripole rotation centre and the rotation centre of the original orbital dipole
are practically indistinguishable (the solid circle in the middle of figure 9b). This
is indicative of the fact that very small quantities of vorticity are dissipated by the
surgery procedure in this simulation. The periodic, almost elastic character of the
intrinsic oscillations of the tripole are evidenced by figure 9(c, d ).

Not always the emerged asymmetric oscillating tripoles survive in long-term
simulations. Considerable asymmetry (which happens at sufficiently large δω) can
cause so strong oscillations that the satellite vortices eventually approach each other
closely and merge. Thereupon, the weak vorticity patch can split again, but in a
different proportion, to form an orbital dipole with a third, remote vortex.

3.3.3. Transition of an asymmetric translational dipole into an orbital dipole

The last issue to be considered in this paper is the non-trivial transition of an
asymmetric translational dipole (lying on the convergence/stability bound) into an
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Figure 10. Transition of an asymmetric translational dipole with δω = −δS = 0.5 and
d = 1.055 into an orbital dipole. (a) The shape of the vorticity patches at t =0, 350, 10 010,
10 215 and 19 288; at t = 10 010, only the dipole without the remote third vortex is shown;
dashed lines at t = 10 010 and 19 288 indicate the fitted stationary solutions. (b) Trajectories
of the centroids of the vortex patches constituting the dipole (solid and dashed lines) and of
the third, smaller negative vortex (bold line). (c), (d ) Net circulation Γ and the y-component
Iy of the impulse against time; solid line, the entire ensemble, dashed line, the dipole only.

orbital dipole (figure 10). The initial state shown in the first frame in figure 10(a)
(t = 0) is a dipole with δω = −δS =0.5 and d = 1.055, marked by a solid circle in
figure 6(d ). Its unstable evolution is initiated by a reduction of the separation to
1.0549. In the course of the evolution, the negative banana-like patch splits into
two unequal parts, but as distinct from the evolution of a weakly unstable doubly
symmetric dipole, the smaller part is now comparable in size with the positive patch
(figure 10a). Therefore, the effect of this smaller vortex on the motion of the orbital
dipole assembled by the positive and the bigger of the negative patches becomes
significant. Eventually, after a lapse of some 17 000 time units, only the dipole vortex
survives (last frame in figure 10a).

The intricate shape of the dipole trajectory by t = 16 200 (figure 10b) is due to the
interaction of the dipole with the third vortex. The dipole itself is quite robust, which
is confirmed by the fact that the stationary solution fitted to the dipole at t =10 010
(the dashed line in figure 10a) demonstrates high stability in contour dynamics tests.
However, nearly periodically, once within a full turn, the dipole comes within short
distance to the third, smaller vortex (figure 10a, t = 10 215). This interaction leads to
a slow decrease in the net circulation of the entire ensemble (figure 10c) and makes
the overall motion of the ensemble spirally unwinding (see the trajectory in figure 10b
and the dashed line in figure 10d ). The changes in the circulation of the dipole remain
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insignificant by approximately t = 16 200 (figure 10c). This fact points that, gradually,
the dipole slightly weakens, and the third vortex strengthens a little. However, the
encounter with the dipole at about t =16 200 becomes fatal for the smaller vortex:
it dissipates via filamentation. The remaining dipole relaxes very fast to an almost
stationary orbital dipole with a positive net circulation (figure 10c) and the centre of
rotation at a fixed point x ≈ 55, y ≈ 2 (figure 10b). The stationary solution that fits
this state (last frame in figure 10a, dashed line) is highly stable. Special tests show
that, in order to move the dipole out of the equilibrium, its separation d must be
diminished by more than 25 % (at fixed δS and δω).

4. Conclusion
We considered dipolar vortex structures composed of two oppositely-signed uniform

vorticity patches. Using an original iterative algorithm, we have constructed a broad
family of stationary uniform-vorticity dipoles, both translational and orbital. A
translational dipole has zero net circulation and propagates along a straight-line
trajectory, while an orbital dipole, having non-zero net circulation, moves in a circular
orbit. In an orbital dipole, the areas of the two patches constituting the dipole, or
the absolute values of their vorticity are necessarily unequal, the shapes of the two
patches being always different from each other.

A stationary dipole, whether translational or rotational, obtained with our algorithm
is always symmetric about the axis passing through the centroids of the two patches.
A translational dipole can be symmetric about the translation axis if its patches are
equal in area and in the absolute value of vorticity; in this case, a dipole is categorized
as doubly symmetric. But, in general, a translational dipole is asymmetric about the
translation axis.

A properly normalized stationary dipole solution is identified by the relative
differences of the areas of the two vorticity patches and of their vorticity, δS and δω,
and by the separation d between the centroids The solutions belonging to three cross-
sections of the parameter space (δS, δω, d) were considered in detail, the cross-sections
being: δω = 0 (orbital dipoles with equal absolute values of vorticity in the patches),
δS = 0 (orbital dipoles with equal areas of the patches) and δω = −δS (asymmetric
translational dipoles). In these cross-sections, the position of the convergence bound
of the general iterative algorithm, d = dB(δS, δω), was estimated. Stability tests have
shown that all dipoles located in the parameter space above this bound are stable with
respect to asymmetric perturbations, and the closer the dipole is to the convergence
bound, the smaller are the perturbations needed to move the dipole out of equilibrium.
These tests indicate that the convergence and stability bounds are close to each other,
becoming indistinguishable at sufficiently small δS and δω. We have also constructed
all the possible doubly symmetric solutions, including those unstable to asymmetric
perturbations, and demonstrated their stability to perturbations symmetric about the
translation axis.

Particular attention has been given to the typical scenarios of evolution of unstable
or slightly perturbed stable dipoles located close to the stability bound. A weakly
unstable opposite-vorticity orbital dipole (δω = 0 and δS �= 0) makes a transition to a
quasi-stationary orbital dipole that weakly interacts with a remote vortex (this case
was considered by Dritschel 1995). In a similar way evolves a slightly unstable doubly
symmetric dipole (δS = δω =0). If, however, the initial doubly symmetric dipole is
highly unstable, the ultimate state is an oscillating tripole accompanied by a small
fourth vortex. When all vorticity debris and the small fourth vortex are eliminated, the
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remaining tripole moves quite regularly in some circular outer path, while executing
intrinsic rotation and periodical oscillations.

An equal-area orbital dipole (δS = 0, δω �= 0) lying on the convergence/stability
bound also makes a transition either to a dipole or a tripole, depending on the net
circulation of the original dipole. The smaller δω is, the closer is the initial dipole to
the doubly symmetric one and, consequently, the more similar is its evolution to the
first of the two scenarios outlined above. As δω is increased, the ultimate three-vortex
structure gets more and more compact, becoming similar to the oscillating tripole
of the second scenario. Remarkably, in this case, the tripole has no accompanying
(fourth) vortex.

A substantially asymmetric translational dipole (δS = −δω) lying on the
convergence/stability bound makes a transition to an ensemble of an orbital dipole
and a smaller third vortex. As distinct from the first scenario, in this case, the effect
of the smaller vortex on the motion of the orbital dipole is significant. Although the
dipole itself is quite robust, nearly periodically, once within a full turn, the dipole
comes within short distance to the third vortex. This interaction makes the motion of
the dipole quite intricate.

To sum up, two main results should be highlighted. The first one is the reviled
dependence of the dipole stability on the separation between the patches in all kinds of
stationary dipoles: larger separation guarantees resistance to stronger perturbations.
Such dependence has been observed in baroclinic modons and distributed hetons
whose two vorticity ‘masses’ can overlap (Sokolovskiy & Verron 2000; Kizner et al.
2002, Kizner, Berson & Khvoles 2003; Kizner 2006, 2008). Here we have shown
that the same is valid for non-overlapping barotropic dipoles. The second result
is the discovery of the dipole-to-tripole transition. Whereas the dipole-to-dipole
transition had been previously observed in opposite-vorticity dipoles (Dritschel 1995),
the observation of the dipole-to-tripole transition appears to be novel. This scenario
differs radically from that of the tripole emergence from unstable shielded monopolar
vortices (Gent & McWilliams 1986; Carton, Flierl & Polvani 1989; van Heijst &
Kloosterziel 1989; van Heijst, Kloosterziel & Williams 1991; Orlandi & van Heijst
1992; Morel & Carton 1994; Makarov 1996; see also Kizner & Khvoles 2004 and
references therein).
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