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ABSTRACT

This paper studies deep learning approaches to find optimal reinsurance
and dividend strategies for insurance companies. Due to the randomness of
the financial ruin time to terminate the control processes, a Markov chain
approximation-based iterative deep learning algorithm is developed to study
this type of infinite-horizon optimal control problems. The optimal controls
are approximated as deep neural networks in both cases of regular and singular
types of dividend strategies. The framework of Markov chain approximation
plays a key role in building the iterative equations and initialization of the algo-
rithm. We implement our method to classic dividend and reinsurance problems
and compare the learning results with existing analytical solutions. The fea-
sibility of our method for complicated problems has been demonstrated by
applying to an optimal dividend, reinsurance and investment problem under a
high-dimensional diffusive model with jumps and regime switching.
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1. INTRODUCTION

Since the pioneering work by Borch (1960), Borch (1962) and Arrow (1963),
there has been an extensive research on optimal reinsurance. Reinsurance is
a standard tool to reduce and eliminate risks born by primary insurance car-
riers. The primary insurance carrier pays the reinsurance company a certain
part of premiums in return of protections from reinsurance companies against
the adverse claim volatilities. The recent book on reinsurance Albrecher et al.
(2017) provides an impressive list of references on the subject.
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Dividend payment strategies are crucial to companies. It represents an
important financial signal about a firm’s future growth opportunities and may
influence the wealth of the shareholders. Optimal dividend strategies for insur-
ance companies were first studied by De Finetti (1957), who solved the problem
in a discrete-time model by assuming that the surplus process follows a simple
random walk and that decision makers aim to maximize the expected dis-
counted total dividends until financial ruin. Gerber (1972) provided solutions
for optimal dividend problem under both discrete and continuous models.
Asmussen and Taksar (1997) re-examined the problem using the theory of con-
trolled diffusion processes. Types of dividend controls such as regular, singular
or impulse controls together with reinsurance policies are investigated under
various scenarios thereafter. See Hogaard and Taksar (1999), Wei et al. (2010)
and references therein. In past decades, a huge amount of research has been
devoted to finding optimal insurance strategies using analytical techniques
under various mathematical models. Due to increasing complexity of stochastic
systems, such as considering regular, singular and impulse controls simulta-
neously, and multiple decision makers in a stochastic game framework, etc,
closed-form solutions are virtually impossible in many cases. Recently, there
is emerging research on solving the optimization problems numerically using
finite difference or similar type methods. See Jin ef al. (2013), Van Staden et al.
(2018) and Jin et al. (2018).

On the other hand, the fast developments of computer science, artificial
intelligence, big data analytics and machine learning are changing our society
and life in almost all aspects. More and more research has been conducted
on what the impact of data science on the insurance industry is, how we can
use the high tech and data science to the insurance industry, such as improve
risk management by reducing losses, claim reserve estimation, policy design
and increasing profit. See Wiithrich (2018a, 2018b) and Aleandri (2018). A
comprehensive set of machine learning techniques in non-life insurance pricing
and data science such as regression trees, neural networks and unsupervised
learning are presented in Wiithrich and Buser (2019) study.

When managing an insurance portfolio, the decision-making process forms
a stochastic control problem, which generally is categorized into two types:
finite-time horizon and infinite-time horizon. There exists some literature on
applying deep learning methods to solve finite-time horizon problems. Han and
E (2016) and E et al. (2017) expressed the control family by parametric neural
networks and approximate the expectation of multiple time step objective by its
Monte Carlo mean. Thus, searching for the optimal control strategy is trans-
ferred to a simplified expectation maximization where a complicated function
is maximized over neural network parameters. Bachouch et al. (2019) and Huré
et al. (2019) integrated deep learning methods into Monte Carlo backward
optimization algorithms. They used parametric neural networks to approxi-
mate control strategies as well, but the optimization is conducted backward
in every time step. Recently, there are emerging application of deep learning
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methods to various stochastic models in finance and risk management, see
Pereira et al. (2019), Fecamp et al. (2019) and Carmona and Laurire (2019).
Overall, these methods are dealing with optimization in finite-time horizon.

For infinite-time horizon problems, since there is no fixed terminal time,
we can hardly reformulate optimization problems as the maximization of a
simple expectation of projections. There exist very few literature on applying
deep learning methods to optimize infinite-time horizon stochastic controls.
In this paper, the hybrid feature of the proposed algorithm lies in the inte-
gration of deep learning method and Markov chain approximation method
(MCAM) to solve optimal dividend and reinsurance problem. Particularly, we
approximate the controls with neural networks, apply the MCAM to identify
a neighborhood of optimal controls, fit the initial values of neural network’s
parameters and learn the optimal parameters of neutral networks with gradient
descent algorithm. We benchmark the existing theoretical results to justify the
correctness of our method. Particularly, we work on an optimal dividend and
reinsurance problem that was studied by Hogaard and Taksar (1999). Besides,
we apply the proposed method for a problem with more factors being con-
trolled in a much more complicated jump diffusion with the regime-switching
stochastic environment. The numerical results demonstrate the effectiveness of
our method in solving complex stochastic control problems.

Comparing with the existing numerical methods on infinite-time stochas-
tic control problems, our proposed algorithm has two main advantages. First,
as we all know, it is inevitable to face the problem of “curse of dimensional-
ity” when dealing with optimization problems with multiple control variables
and in high-dimensional stochastic environment. The introduction of machine
learning framework enables us to replace the optimization over the piecewise
control grid for every state value by the simultaneous maximization among
parametric neural networks for all state values. Now, the computational com-
plexity mainly comes from the evaluation of gradients for every state value and
thus increases linearly with respect to the number of points in the state lattice.
Hence, the computation efficiency can be improved. Second, the accuracy of
numerical results can be improved by the proposed method as well. Traditional
methods generally use piecewise constant controls to approximate the optimal
control. Then, the accuracy of the control strategy is subject to the denseness of
the control grid. On the contrary, neural networks allow the control strategy to
take values in the continuous range and will conquer the difficulty of effectively
selecting the scales of control grid to meet the requirement of accuracy.

The rest of the paper is organized as follows. A general formulation of
surplus, dividend and reinsurance strategies and assumptions is presented in
Section 2. Section 3 deals with the case of restricted dividend payment rate.
The deep learning MCAM is presented. The neural networks are constructed
accordingly. The case of unrestricted dividend payment rate is investigated
in Section 4. A complicated optimal dividend, reinsurance and investment
problem under multi-dimensional regime-switching jump diffusion model is
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presented in Section 5. Numerical examples are provided in Section 6 to illus-
trate the performance of the algorithms in all cases. Some concluding remarks
are provided in Section 7.

2. FORMULATION

Let (22, F,F,P) be a complete filtered probability space where F:={F,} is a
right-continuous, P-complete filtration. We consider an insurance company
that collects the premiums and purchases reinsurance policies to share the
risks with reinsurance companies. Similarly to Hegaard and Taksar (1999),
we denote the claim process as Z(f) and formulate Z(¢) by the diffusion
approximation of the classical Cramér—Lundberg model:

dZ(t) = adt — cdW (1), @.1)

where constants ¢ > 0 and o > 0 represent the mean and the volatility of the
claim process, respectively, and W (?) is a standard P-Brownian motion. The
premium is paid continuously at a constant rate ¢ = (1 4 n)a, where n > 0 is the
safety loading. Then, the dynamics of the insurer’s surplus process is given by

dR(t) = cdt — dZ ()
=andt+odW (1).

We assume that the insurer can purchase proportional reinsurance to man-
age insurance business risks. Denoted by ¢(7) € [0, 1], the reinsurance strategy
of the insurer at time ¢. It means the reinsurance company will compensate
the insurer for 1 — ¢(¢) of claims at time #; therefore, the net liability for the
insurance company will be ¢(¢) of original claims. Suppose that the reinsur-
ance premium is also determined by the expected value premium principle.
Under the proportional reinsurance contract ¢(¢), the reinsurance premium
rate is k = (1 4+ p)(1 — ¢(2))a with safety loading p >n. When p =7, we call
it cheap reinsurance. Therefore, the surplus process with such a proportional
reinsurance treaty is governed by

dR(t) = cdt — p(t)dZ(t) — kdt
=[(n— p) + pp(D]adt + o p()dW (1), (2.2)

where (n — p) <0.

A dividend strategy D(-) is an F,-adapted process {D(¢) : t > 0} correspond-
ing to the accumulated amount of dividends paid up to time ¢ such that D(¢)
is a nonnegative and nondecreasing stochastic process that is right-continuous
and has left limits with D(0~) = 0. Two types of dividend controls will be con-
sidered: regular and singular control. The regular dividend control problem
corresponds to the cases where the dividend payments are paid continuously.
In the restricted dividend payment rate case, we consider dividend strategies in
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the form of dD(¢) = u(¢)dt, where the control variable u(-) represents a restricted
dividend rate. The singular dividend control corresponds to the situation where
the dividend process is not continuous, and the surplus level changes drastically
on a dividend payday. Hence, the dividend payment rate is unrestricted in this
case. We will consider the dividend policies in restricted and unrestricted cases,
respectively. Denote X (7) as the surplus process in the presence of dividend
payments. In both cases, X(¢) can be written as

dX(t) = dR(t) — dD(?), 2.3)

where X (0) = x.

By choosing the optimal reinsurance and dividend payment strategies, we
aim to maximize the present value of cumulative discounted dividend pay-
ments until financial ruin. Let y be the constant discount factor. We assume
that y > 0. For an arbitrary pair of controls 7 (-) = (¢(-), D(-)), the objective
function is defined as

J(x,m)=E, (/T e“”dD(l)), (2.4)
0

where t =inf{r > 0: X(¢) <0} represents the time of ruin and E, denotes
the expectation conditioned on X (0) = x. Hence, the value function V(x)=
sup,, J(x, ).

3. RESTRICTED DIVIDEND PAYMENT RATE

In this section, we consider how to optimize reinsurance and dividend strategy
under the case where there is a bound M on the dividend rate. Since the optimal
dividends policy is either a barrier or a band strategy, D(f) is an absolutely
continuous process. We write D(¢) as

dD(t) =u(t)dt, 0 <u(t)< M, 3.1

where u(t) is an F,-adapted process and 0 < M < oo. Then, the surplus process
X () in the presence of dividend payments is given by

dX () = dR(t) — u(t)dt, X(0)=x>0 (3.2)

forall t < t and we impose X (f) =0 for all z > 7. Suppose the dividend is paid at
a rate u(¢), where u(¢) is an F,-adapted process, and the optimal payout strategy
is applied subsequently. Then, the expected discounted dividend until ruin is
given by

J(x, () =E, [/OT e‘y’u(t)dt], (3.3)
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where [E, denotes the expectation conditioned on X (0) = x. The value func-
tion of maximizing expected dividend payoff is defined by the following
optimization problem:

V)= sup  J(x, (). (3.4)

$€[0,1],u€[0,M]

3.1. Markov chain approximation method

In this subsection, a brief introduction of MCAM is presented. We will

formulate the transition probabilities of MCAM to construct an iterative com-

putational scheme. A comprehensive introduction of MCAM can be referred

to Kushner and Dupuis (2001). In Section 3.2, deep learning neural networks

will be introduced to approximate control functions and will be used along with

the recursive equation constructed here to locate the optimal control strategy.
In what follows, we first define some notations:

= (¢, u);
M£10,1] x [0, M];

1
o (v, 1) £ 207

B (x,m)E(n—p+pp)a—u;
S(x,m) 2 u;
o (x,7)2 B (x,m)| Ax 4+ 2a (x, 7);

AX?

At (x, ) = 5
w((x,m)+yAx

where Ax is the step size of states. Then for a given control strategy w, the
change of objective value can be approximated by the following Markov chain:

S(x, V,m)~ e VAT
X[p@,x+ Ax|m) V (x+ Ax) +p (x, x — Ax|7m) V (x — AX)]

+8(x, ) At, (3.5)

where transition probabilities are defined as follows:
A (X, ) +max{B (x,7),0} Ax

B (x, )| Ax + 20 (x, )

2@ (X, ) + max {—p (x,m),0} Ax
1B (x, )| Ax + 20 (x, )

p (x, x4+ Ax|m) ,

(3.6)
p (x,x — Ax|m)
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The optimal iterative control strategy and value function are given as

V(x)=sup S(x, V., ),

mell

m* =argmax S(x, V, w).
mwell

3.2. Deep learning Markov chain approximation method

In this part, we will present a new method as an integration of MCAM and
deep learning method, which can preserve the stable convergence of MCAM,
the strong generalizability of neural network and the high computation effi-
ciency of machine learning at the same time. Considering the fact that the
neural network owns outstanding capability of fitting non-linear functions,
we adopt neural networks to model the relationship between control strat-
egy m = (¢, u) and state value x as in Figure 1. Without loss of generality, we
assume the neural network only contains two hidden layers of three nodes.

Remark 3.1. Generally speaking, neural networks with more layers are equipped
with stronger ability to learn more complicated control strategies. However, if
the neural network is far more complicated than it is required by the optimiza-
tion problem, excessive parameters will more probably lead to issues of gradient
vanishing or local minimum. We find that the two-layer neural networks perform
well in both the simple and complex numerical examples in Section 6. The rule we
choose the layers of neural networks is as follows: For complex problems which
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FIGURE 2: Neural node computation.

our method is targeting at, the architecture of neural networks can be chosen by
referring to the results of similar simple problems.

The computational structure of every neural node follows the pattern in
Figure 2. Besides, given the different admissible ranges of reinsurance and div-
idend strategies, we use independent neural networks for the dividend strategy
u and the insurance strategy ¢.

The output range of neural networks should match the admissible range
of the corresponding control, where the output of ¢ should be in [0, 1], and
u should be in [0, M]. This is achieved by assigning a specific output func-
tion to the neural network. Moreover, the architecture of the neural network,
for example, the number of nodes in every layer, the number of hidden layers
and the intermediate activation functions, should be appropriately determined
according to the property and complexity of the problem. Excessively compli-
cated neural networks may overestimate the sophistication of the relationship
between the state value and the optimal control values, which will poten-
tially cause the disappearance of gradients, and then result in the failure of
the learning algorithm. However, a relatively simple structure will suffer from
the insufficient ability of generalization, which makes the family of parametric
neural network control strategies not big enough to effectively approximate the
admissible control family.

Define ® as the collection of all weights and bias terms in two neural
networks, then denote the neural network control strategy by

#(x) £ N (x]0) = (§, ).
Given a state lattice, {x;};_,, define the global improvement function G as
G2 GV(x), V(x2), ..., V(xa)).

The global improvement function G reflects how much the iterative value func-
tion will improve globally through the iterative Markov chain. The choice G
should serve the goal that the value function will be improved on most states
rather than on every state of the state lattice. This global improvement is
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achieved by iteratively adopting the neural network control strategy 77 which is
optimized in every iteration. This is equivalent to searching for ® maximizing
G with a given iterative value function. Usually, G can be chosen as the average
value of the value function:

1 n
G (V(x1), V(xa), o, Vo) =~ PRAEN
i=1

Remark 3.2. We can choose other general global improvement functions such as
the weighted average of V(x,). The impact to efficiency depends on the formula-
tion of the infinite horizon optimization problem. For the present formulation, it
does not show much difference, so we choose the average value for simplicity.

Assuming we are currently in the k-th iteration with the iterative value
function V*~! obtained from the previous iteration, the best parameters in the
current iteration ® are determined by

O =argmax G (S*(x)), S (x2), . . ., S*(x,)), (3.7)
®

S¥(x) = S(x, V¥, N (x|©)).

We will show how to search for ®F by gradient descent algorithm in Section 3.3.
With @F, the iterative control strategy is expressed as

A x)=N (xl@k),
which can be adopted in (3.5) to obtain the k-th iterated value function:
Ve (x) = S(x, VL, 7% (), 1<i<n.

The above iteration will repeat until the termination condition is met:

n

S (P ) - V) < e

i=1

where ¢, is a predefined small positive number.
Overall, the iteration constructed in this section can be summarized as a
computational flow in Figure 3.

3.3. Determining the iterative neural network control strategy

In every iteration step, the fundamental job is to obtain the iterative control
strategy, where ®*! is located through maximizing G by the gradient descent
algorithm. The implementation of this algorithm will be briefly described with
respect to the following optimization:

®F =argmax G (S*(x), $*(x2), . . ., S*(x,)|©). (3.8)
[©)
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Given an initial value ®f, we construct the following iterative sequence:

3G (-, ©)

eF, =0f+n
i +[ 30

@—e)lk] 5 (3.9)

where £ is called learning rate. It can be proved that:

lim ©F = 0. (3.10)

[—o00

There exists rich literature on improvements of the standard gradient descent
algorithm, where an outstanding one is called Adam algorithm, which will
adjust the learning rate adaptively along with the learning process (see Kingma
and Ba 2014 for details). Further, the gradient descent algorithm will terminate
when

|G("®5€)_G( /+1)| < €p, (3.11)

where €p is a pre-defined small value for the acceptable precision.

The accuracy of gradient computation plays an essential role in the effective
implementation of the gradient descent algorithm. Here, we adopt automatic
differentiation method, which follows the idea that most functions are just
sequence of simple operations and every simple operation can be easily dif-
ferentiated. Thus, the gradient can be evaluated recursively using gradients of
this sequence of simple operations. Precisely, the computational process of %
in the k-th iteration follows

3G (S*(x1), SK(x2), . . ., S5(x,)|©)
BIC)

3G (SK(x1), S*(x2), ..., S(x,)10) 3S*(x;) 37 (x;)
_Z 3.5k (x;) an(x;) 9O

(3.12)
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d aSk S (xi)

Here, ask( 5 relies on the form of global improvement function G, an T

derived from Markov chain computational rule (3.5) as
08 (x;)  9S(x;, V!, 7 (x:)
a7 (x;) N a7 (x;)
= —ye v Aludt) [P (xi, X117 (x2)) VA (xign)
+p (X x| (x) V! (xisn) ]

is

DAL (x, 7(x)
aﬁ'(x,‘)
R N CEC)) o (i )fm () Ve (xi)
o7 (x;)

A7 (x;)
a6 (X,‘, ﬁ'(X,))

+8p (i, X121 17 (x,)) k1 (x;_l):|

At (i 7)) +8 (x5, 71 () At (xi, 7 (i)

a7 (x;) A7 (x7) ,
where
At (Xi, ft(x,)) . At (Xi, ft(x,)) oo (Xl', fr(x,))
A7 (x;) B (xi, 7 (x7)) o7 (x;)
aAt (xia ﬁ(xl)) 818 (xia 7%('xl))
ap (Xi, ﬁ(xi)) A7 (x;)
ap (X,', Xitl, ﬁ(xi)) N ap (xi: Xitl, ﬁ(xi)) da (Xi, ﬁ(xi))
07 (x;) T o (xi, (X)) A7 (x;)
ap (xi, Xitl, ﬁ(xi)) ap (Xf, ﬁ(xi))
3/3 (x,‘, ﬁ'(x,)) 87%()6,) ’
Note that p(xixic A0)  dp(xixia A())  dAH(xiA(x) d dAT(xi 7t (xi)) can be easily

da(xif(x)) ° p(xiA(x) 7 (xR (x)) an B (xi? (x1))

i i 9 i i 98 (xi, 7 (x;
derived from functions in (3.6). And, M(;n(z (; )), ’ (;ﬂ(’i (; ) and (;ﬁéf; ) are

characterized by the stochastic optimization problem itself, thus are stralght-
forward computations. The last required element making (3.12) complete is
3’;%“ , which follows the backward propagation differentiation method for
neural networks.

In addition to the accurate computation of gradients, an appropriate choice
of initial ® is of great importance to successfully run the gradient descent algo-
rithm as well. Due to the complexity of stochastic optimization problem, the
learning objective is a sophisticated nested function of parameters ®, which
will lead to the issue that the learning objective has some local maximal points.
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Although we can randomly generate several initial combinations of parame-
ters, it cannot guarantee that we will reach the global maximum. Finding a
way to determine the starting values of parameters is always a key step. Due to
the curse of dimensionality, MCAM will mostly give inaccurate result, which
however will preserve a rough shape of the control strategy. Based on this idea,
we propose a method to locate the initial value of ® using the information
collected from running MCAM on a small state lattice. Specifically, in every
iteration, we run standard MCAM on a small state lattice and a control grid to
obtain the piecewise control values. These values will keep the rough shape of
control strategy, and then we can improve the neural network control strategy
from this general shape to avoid searching for the best © in a very big space.
Denote the small state lattice by { y,} with m < n. Focusing iteration step
k, suppose we have obtained the plecew1se control strategy on the small lattice
denoted as {7 (yj)}l,zl, then the initial value of @} is obtained from the fitting

neural network control strategy N (x|®) against 7% (y):

©F = argmin Z N(yj|®)]

(C] =1

Note ©F is obtained by gradient descent algorithm as well. Now the initial neu-
ral network control strategy 7 ( - |@f) will preserve the almost same information
as the resulted control from ordinary MCAM. This is where we will start from
to further improve the strategy through maximizing objective G.

Remark 3.3. Since only a rough shape of control strategy is needed, the step
size of the piecewise control grid should be relatively large to accelerate the
computation.

Remark 3.4. It is generally known that the local minimal issue does not matter
much when fitting smooth functions by neural networks. Thus, the initial value of
® for running fitting step can be generated randomly.

3.4. Description and discussion of the algorithm

To summarize all above construction, a complete description of the algorithm
will be given here. The algorithm starts from the following initialization steps.

Initialization 1: Construct the state lattice for deep learning algorithm
denoted as {x;};_,, and the state lattice for obtaining initial value of ® denoted

as { yj} . These two state lattices satisfy following conditions:
X0 =)0, Xp=Vm, M <n.

Initialization 2: Choose three sets of computation precision € and a maxi-
mal number of learning times. They are used to obtain initial values of ®,, to
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determine iterative control strategy N(x, ®), and to stop the MCAM iteration,
respectively.

Initialization 3: Pick up an appropriate function f(x) to compute initial
value for iteration. The choice is subject to properties of the problem. Compute
U° as

Uo(yj):f(y/)ﬁ ]: la' c.,m.

Initialization 4. Use the same function f(x) as in Initialization 3 to compute
V0 as

x)=f(x), i=1,...,n.

After initialization, the algorithm will repeat below iterative steps. The rep-
etition will stop until the algorithm achieves the desired precision, which is set
up in Initialization 2.

Step 1: For j=1,...,m, 7%(y;) is obtained from standard MCAM. The
input values U*~! are from Initialization 3 or Step 4 in the last round.

Step 2: Fit against 7%(y) by the gradient descent algorithm to obtain
parameter starting values ©F:

m

Of =argmin ) (# (1)) ~N1@)".

j=1

The fitting process will stop if the desired precision is achieved or if the maximal
number of fitting iteration is reached, whichever comes first.

Step 3: Maximize G (S*(x;), $*(x2),...,S*(x,)) by the gradient descent
algorithm to obtain the iterative control strategy. The input values V*~! are
from [Initialization 4 or Step 5 in the last round. The learning process will
stop if the desired precision is achieved or if the maximal number of learn-
ing iteration is reached, whichever comes first. Now, we have ©F, which yields
#*(x) =N (x]|©F).

Step 4: Forj=1,...,m, iterate to U* (y;) in the following way:

Uk (yj) = S(yp Uk_l 5 ﬁk()/]))
Step 5: Fori=1,...,n, iterate to V* (x;) in the following way:
VE(x) = S, V!, 75(x).

Step 6: Compute >, (V*(x;) — V! (x,»))2 and then check the termination
condition:

o IEY 7, (V¥ (x;) — V*'(x)))’ <e, stop.
o IEY, (V5 (x) — VE(x)) > e,

— If the maximal number of iterations is reached, stop.
— Otherwise, go to Step 1.
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Remark 3.5. The parameter m is the size of lattice used to obtain the rough shape
of the control strategy. Since the algorithm requires to conduct a traversal on the
control grid for each state of the lattice, the smaller m will improve the time
efficiency. However, smaller m will lead to higher numerical error introduced by
the longer distance of the lattice, which will make the rough shape not suitable for
later learning. In practice, we will make m as small as possible as long as it will
generate a stable guess of optimal controls.

Remark 3.6. The overall algorithm involves two layers of loop. The outer loop is
the iteration of the value function, which follows the computation rule of Markov
chain approximation. For every sub-step of the outer loop, there are two different
iterations for different purposes. One is to locate the rough shape of neural net-
work control strategy by fitting against piecewise controls, while the other one is
to further improve the neural network control strategy through maximizing the
objective G by the deep learning algorithm.

Remark 3.7. In step 4 and step 5, the same control strategy A% = N (-|®k) is used
to update both U* and V*, since we want to keep U* owning a comparably similar

shape as V* to make the 7%+ meaningful to use in step 2 of the next round.

Remark 3.8. Sometimes, we can let the small state lattice { yj};”:l be a subset of

{x:Yi, with y; =x;, 1 <j<m, and then let U* (yj) =k (x,A/.),. 1 <j<m. Thus,
we can avoid iteration of values on two lattices simultaneously.

After describing our hybrid method in detail, we will discuss its pros and
cons in two main aspects: the curse of dimensionality and the accuracy of
control value.

Bellman (1961) raises the problem of the curse of dimensionality in numer-
ically solving controls that the computation nodes of optimal controls grow
exponentially when state variables increase. A combination of all states should
be considered for finding optimal controls on the lattice. The classical MCAM
suffers from the curse of dimensionality, since, for every point in the state lat-
tice, we need to conduct a traversal over the control value grid. As a result, the
computational complexity of MCAM is of the same order of the product of
the number of points in the state lattice and the number of nodes in the control
value grid. In order to enhance the accuracy of the result, we need to narrow the
difference distance of the state lattice and introduce a more precise piecewise
control value grid. However, this exponential increase of computational time
consumption makes this method become an unaffordable choice for obtaining
accurate results. This phenomenon is especially outstanding when the stochas-
tic dynamic is driven by high-dimensional randomness, or there are several
factors being controlled.
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With the help of the deep learning method, the optimization over the piece-
wise control grid can be avoided by calibrating neural network parameters for
all states of the lattice simultaneously. The algorithmic complexity is mainly
determined by the operation of evaluations of gradient, which is linearly with
the size of the state lattice. The enhancement of algorithm efficiency brings
more practical feasibility than existing lattice traversal methods. For simple
problems, a finer difference can be applied to the construction of the state
lattice in order to lower the error in numerical results. Many complicated
problems, whose computational cost is beyond acceptance under the imple-
mentation of the ordinary MCAM, are now numerically solvable by our
method.

The accuracy of the control strategy is another aspect to be improved by our
method. In the implementation of the ordinary MCAM, the control strategy
is optimized among a control value grid which only contains a finite number
of nodes. Thus, the accuracy of the control strategy is always subject to the
denseness of the control value grid. By contrast, neural networks allow the
control strategy to take values in a given continuous range and will easily con-
quer the difficulty of effectively selecting the preciseness of the control grid.
Moreover, when considering to approximate admissible control strategy by
piecewise controls, we have no idea which range should be more precise to
account for the rapid change of control. However, in our method, by the gra-
dient descent algorithm, the neural network control strategy will be adjusted
appropriately according to the sensitivities of value function toward the control
strategy. Furthermore, for some problems, admissible controls can take values
from infinite real intervals, but we can only fix a large finite range to draw con-
trol values. This raises a general problem that how can we effectively select
such large enough intervals. With the flexibility of neural networks, this can be
easily solved by mapping the output of parametric control neural networks to
the required infinite real interval.

Besides the above two main aspects, our method also preserves the main
virtue of MCAM that the numerical result will converge to the optimal result in
a very stable way. This stability of convergence is kept by using a small number
of state nodes to obtain a rough shape of the control. As the source of stability,
this shape is incorporated into the neural network control strategy through the
information captured by the initial value of ®. Maximizing G will improve
the value on most states on top of MCAM result by enabling controls to
take values in continuous ranges. Overall, with the integration of MCAM and
deep learning, we can achieve the stable convergence, the high computational
efficiency and the good accuracy of control strategy simultaneously.

4. UNRESTRICTED DIVIDEND PAYMENT RATE

In this section, we consider dividend strategy as a singular control and use
the convention that D(0~) = 0. The jump size of D at time ¢ > 0 is denoted by
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AD(t):= D(t) — D(t7), and D“(¢) := D(t) — > _,_,., AD(s) denotes the continu-
ous part of D(?).

Considering the dividend payment, the surplus process in the presence of
dividend payments is written as

dX (1) = dR(1) — dD(1), X(0)=x >0, @.1)

where x is the insurer’s initial surplus. The performance function is the expected
value of discounted future dividend payments

J(x, () =E, </0r e”’dD(t)), 4.2)

where 7 is the time of ruin and E, denotes the expectation conditioned on
X (0) = x. The value function of maximizing expected dividend payoffis defined
by the following optimization problem:

V(x)=sup J(x, 7(-)), 4.3)

where 7(-) =(¢(-), D(-)). By applying MCAM to (4.3) again, we have the
following iterative solution:

B(x, V,¢) £ e 72D [p (x, x + Ax|g) V (x + Ax)
+p(x,x—Ax|¢p) V (x — Ax)]

+8(x, p)AL(x, $)

L(x)= sup B(x, V,¢).
#€[0,1]

Here, we adopt same notations p and At as in (3.6), where the corresponding
terms are defined as follows

e L.
Blx, )= (n— p+ po)a;
8(x, ¢)=0.

Let
K(x)=V(x— Ax)+ Ax.

By combining above two parts, we now can construct the new iterative
rules. Precisely, the reinsurance strategy is obtained as

$*Y = arg max B(x, V¥, $). 4.4
#€0,1]
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Then, we have the value by inputting the reinsurance strategy (4.4) as

LM (x) = sup B(x, V¥, ¢). 4.5)
¢€[0,1]

When dividend is paid out, the value changes as
K*(x) = V*(x — Ax) + Ax.
Then, the new value function is obtained as
V! (x) = max { L (x), K (x)}. (4.6)

Meanwhile, the cutting point for dividend strategy can be approximated as
1
#*(x) =max {x: L' (x) - K*'(x) < 0} — EAx. 4.7)

Since it is impossible to guarantee that there always exists a point in state lattice
making LF*!(x) — K¥1(x) =0, this approximation will bound the error by the
half of step size.

To apply our deep learning method, we only model the relation between the
state x and the reinsurance strategy by a neural network as

oY £ N (x]0).

Observing from (4.5), the optimization over admissible control values is con-
ducted only for evaluation of L, thus we define the global improvement
function G on L instead of V" as

G2 G (L(x)), L(x), . . ., L(x,)).

By inputing previous value function V¥, we can determine the iterative reinsur-
ance strategy and the iterative function Q as

O —argmax G (L(x1), L(x2), . . ., L(x,)),
®

L () = B(xi, VAN (x|@* ) 1 <i<n.

Here, the gradient descent algorithm can be run again to search for the best ®.
After obtaining Q“*!, we can use same functions as (4.7) and (4.6) in MCAM
to compute the iterative dividend strategy #**! and to iterate the value function
to V1. As well, this iteration procedure will be repeated until:

n

Z (V' (x) — Vk(x,-))2 <e.

i=1

Remark 4.1. This unrestricted case is used to offer basic illustration about how to
extend our method for more general stochastic optimization problems in actuarial
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field. For more complex controlled dynamics or more complicated objectives, the
optimization may involve selecting from maximums of different parts such as pos-
sible capital injections to avoid financial ruin. It does not add much difficulty to
learn such types of impulse controls. Since the crucial logic of our method relies
on improving the function which directly reflects the optimization over control
values, we just need to apply a deep learning method for every function we need
to independently optimize.

5. OPTIMAL DIVIDEND REINSURANCE AND INVESTMENT UNDER
REGIME-SWITCHING JUMP DIFFUSION MODEL

In this section, we will use the proposed algorithm to solve the optimal dividend
reinsurance and investment problem under a complicated regime-switching
Jjump-diffusion model where no analytical results are available. A numerical
example will be provided in Section 6 to illustrate the performance of the
algorithm.

To delineate the random environment and other random factors, we use a
continuous-time Markov chain yx(7) whose generator is Q = (gq,,) € R"" and
state space is M ={1,...,h}. Let ¢; be the arrival time of the j-th claim.
Corresponding to each re M, A,(tf)=max{j e N:{; <t} is the number of
claims up to time #, which is a Poisson counting process.

The surplus process under consideration is a regime-switching jump diffu-

sion. Let H.(t) := Z/’\: Y) Yi,j=1,2,...,the accumulated claims in regime i up
to time ¢. For r € M, the claim arrival process A,(¢) is a Poisson process with
intensity A, > 0 and claim sizes Y;,j=1,2, ..., are i.i..d random variables with

density function g(x) that is independent of A,(¢). Suppose that the claim size
has finite first and second moments, respectively. Further, we assume for each
r € M, the premium rate c(r) follows the expectation premium principle:

cr=04+rE[Y].

Let ¢ be an exogenous retention level, which is a control chosen by the insur-
ance company representing the proportional reinsurance policy. We allow
the insurance companies to continuously reinsure a fraction of its claim with
the retention level ¢ € [0, 1]. By using the variance premium principle, the
reinsurance premium rate at time ¢ is

V(@)= (1 - HE[Y]+v(l - ¢)*Var[Y]. (.1

where v > 0 is the safety loading of the reinsurer. We use different premium
principles for insurers and reinsurers since we aim to show the feasibility of our
numerical method for a general model. Other types of premium principles are
also accepted.

Following the work in Yang and Zhang (2005), we assume the surplus pro-
cess is invested in a financial market under the regime-switching progress with
a risk-free asset whose price follows
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dSo(1) = So(D)ro(x (1))t

and K risky assets whose prices are given by

dSi(1) = SO ((x (D)dt + Y oy(x ()dW(1)),

j=1

where W(t)=(W1(?),..., Wi(t)) is a K-dimensional standard Brownian
motion. In the above and hereafter, 4" denotes the transpose of 4 with 4 being
either a vector or a matrix with appropriate dimensions and |4| denotes the
Euclidean norm of 4. Set

B(x (1) = (u1(x () = ro(x(©)), - - ., mx(x () — ro(x (1)), and
o (x(®) = (o;(x (D)kxk- (5.2)

We use the proportional portfolio @ (¢) = (@ (?), . . ., wg(t)) to represent
an investment strategy, where @;(?) is the percentage in the total wealth of the
capital invested in the i-th risky asset. To better reflect the reality in certain mar-
kets where short selling is not allowed, we further set a borrowing constraint
on the investment strategy, which means ZlK:l w;(t) <1 at any time. Denote

[0, 11 =10, 1] x [0, 1] x - - - x [0, 1],
and denote the constraint set of the controls as
K
= we[O,l]K:Zwisl}. (5.3)
i=1

The surplus process with dividend payment is given by

dX (1) ={X()[ro(x (1) + & ()B(x ()] + c(x (D))dt — Ay ¥ (P)}dt
+ X&' (o (x (0))dW (1) — ¢pdH, (1) — dD(?). (5.4)
We are working on a filtered probability space (2, F, {F;}, P), where F; is the
o-algebra generated by {x(s), W(s), A,(s):0<s<t, re M}.

Here, the dividend rate is bounded by M as well, thus dD(¢) = u(¢)dt. For
re M, and V(-,r) € C}(R), define an operator £ by

LV(x,r) = Vi(x, Nx(ro(r) + @' B(r)) + ¢(r) — L, (¢) — u] + %xz Vila'o(n)?

+ A, /Ox [V(x — ¢z, r)— V(x,1)]g(z)dz + OV(x, -)(r), (5.5)
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where V, and V., denote the first and second derivatives with respect to
x, and

QV(x, (1) = gu(V(x,5) = V(x, 1),

SFET

where ¢, is the transition rate from regime r to regime s. In this case, denote
the control as 7 := (¢, u, w) € [0, 1] x [0, M] x {[O, 11*n {ZZKZI w; < 1}}
As before, we define following terms:

1 K K 2
wurmeley (2 wfa,-,»<r>) ;
=1 \i=1

B (x,r,7) = (ro(r) + @' B(r)x + c(r) — L, (¢) — u;
§(x,r,m) £ u;
o, )= (1) Ax+ 20 (x,r, 1) — q,,sz;

AX?

At (x,i,m) = )
(6, 1, ) w (x,r, ) +yAx?

To simplify the derivation, the Markov chain update rule will be given directly
for the state lattice {x;};_, as

_ P (i1 Xigr, r|7) VI (X240, 7)
(1= &, At (xi, 7, 7)) B0 07

+17 (xi, Iy Xp—1, l’lT[) Vk71 (xn—h }’)

. (U= AL () €Y T (x| VG s)
V* (x;,r)=su SET
e |
i1
+ A AL (X, 1, ) @AY m (xi,r, x5, r|) VE(x, r
J J
=0

+8 (xi, 1, ) At (x;, 7, 70)
where transition probabilities are defined as follows:

D 6o o Xer. P17 a @ (X, r, ) + max {B (xi,r,m),0} Ax
is s N+l —

>

w(xiaraﬂ)

p(x X r|ﬂ)éa(xisran)_min{ﬂ(xiar7n)aO}Ax'
is s An—1> -

>

a)(xi:raﬂ)

P (xia r, X,',S|7T) é qr.X‘At (xl'a r, T[)a
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m (xf, ¥, X, rln) il g(2)dz, 0 <j<i;
o
[

oo

m(xia V,XO,F|7T)A/ g(Z)dZ
Xj—X]

6. NUMERICAL EXAMPLES

Computation precision € and maximal numbers of learning times for locating
the initial value of ®, for determining iterative control strategy ®* and for
iteratively updating value function V'* are as follows:

Triggering error Max no. of steps

Control fit 103 10,000
Gradient descent 10-° 5000
Global iteration 1077 50,000

Due to the fact the value function is concave, root function ,/x is used as
the initial guess of the value function. All methods are coded by Python
with TensorFlow package and run on x64 platform of Intel Xeon E-2186
2.90 GHz CPU with 64 GB RAM and NVIDIA Quadro P5200 GPU with
16 GB RAM.

6.1. Restricted dividend payment rates

In this case, we exactly follow the framework of Hegaard and Taksar (1999)
and assume the bound for dividend rate M is 1.0. The effectiveness of the
proposed method will be examined numerically against the set-up as follows:

n p o 14
0.1 0.1 02 0.125

According to the analytical results in Hogaard and Taksar (1999), the closed-
form solutions for optimal restricted reinsurance strategy, optimal dividend
strategy are obtained with feedback control type. The optimal controls and
value function with above parameters are as follows:

u(x) = Ly=0.4283)

¢(x) =min {1, 5x},
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FIGURE 4: Convergences of value function and control strategies.

1.0

0.8

0.6

S

0.4

0.2

0.0{ =
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
X X X

FIGURE 5: Convergence of value function and control strategies in first 1000 iterations.

0.5267 (5x)*°, x<0.2,
V(x)={ —0.3648¢760355x 4 (.5169¢!9355% 0.2 < x < 0.4283, (6.1)
8 — 7.6633¢01385x x> 0.4283.

For the deep learning MCAM, the value function and the control strategies
after different numbers of iterations are plotted in Figure 4. To better demon-
strate the change of control strategy and the value function during the course
of iterations, we will also show the convergence for the first 1000 iterations as
shown in Figure 5. To examine the effectiveness of our method, the theoretical
results computed from explicit solutions are provided as benchmarks.

It can be observed from Figures 4 and 5 that the control strategy converges
much faster than the value function. After the first 1000 iterations, the control
strategy almost converges to the optimal, but the value function does not rise
much. This is due to the fact the iterative control strategy is updated using the
information of the shape of the value function instead of the absolute location
of the value function. Our method is of more help to achieve faster convergence
of the control by introducing deep learning to improve the shape of the value
function globally.
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FIGURE 6: Convergences of value function and control strategies.
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FIGURE 7: Convergence of value function and control strategies in first 1000 iterations.

6.2. Unrestricted dividend payment rates

All set-ups and parameters of the numerical test remain the same in this sec-
tion. Similar to the case of restricted dividend payment rates, the closed-form
solutions of optimal feedback-type controls and value functions are obtained
in Hogaard and Taksar (1999) as follows:

D(x) = (x —0.4493)*,
¢(x)=min {1, 5x},

0.5275 (5x)%° x<0.2,
V(x)={ —0.3653¢760355x 4 (0.5176¢' 935 (.2 < x < 0.4493, (6.2)
x +0.3507 x> 0.4493.

The value function, reinsurance strategies and accumulated dividend
amount are plotted in Figure 6, and the convergence for first 1000 iterations
is in Figure 7.

Similarly as in Section 6.1, the value function and optimal controls are
learned well in 50,000 iterations. Due to the singularity of the dividend
payment, the total amount of dividend payment is approximated directly. It is
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shown that total accumulated dividend payment converges to a ramp function,
where the turning point represents the barrier to trigger the dividend payment.
This method does not rely on the technique of quasi-variational inequality
which is generally referred to in the optimization problems with singular con-
trols. Instead, it deals with the objective functions directly to approximate the
dividend payment amount. In addition, we should bear in mind that it does
not add extra difficulties to extend this algorithm to optimization problems
with more types of controls, such as investment and capital injections.

6.3. Optimal dividend reinsurance and investment

In this part, we will examine the effectiveness when our method is implemented
under a complicated random environment. Suppose there are two regimes with
the following generator matrix:

—-0.05 0.05
0.1 —0.1(

Further, we assume the claim follows exponential distribution with density
g(x)=¢e**, and there are two risky assets available in the financial market.
The parameters are set up as follows:

e v l y M
I 002 0.1 0.125 1.5

Regime A Fo M1 M2 01l O 021 On
1 0.05 0.05 0.18 0.2 0.15 05 03 0.6
2 0.1 0.12 0.2 025 0.15 04 025 0.6

The convergence results are plots as Figure 8 for regime 1 and Figure 9 for
regime 2. The comparison of final results between regime 1 and regime 2 are
plots as Figure 10.

It can be seen from figures that the value functions hardly change from
10,000 iterations to 20,000 iterations, which indicates the convergence of
numerical results is achieved by our method. From the comparison of results,
our method effectively learns the difference between controls of different
regimes, which demonstrates the effectiveness in searching for the optimal
strategy under complicated stochastic dynamics.

We also implement the original MCAM algorithm for this problem with
the same size of lattice on the same computational platform as a benchmark of
time efficiency. It turns out that our method can approximately reduce 80% of
the time consumed by the classical MCAM method for this example. The rea-
son is that, as the neural network control strategy is approaching the optimal
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FIGURE 8: Convergences of value function and control strategies for regime 1.
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FIGURE 9: Convergences of value function and control strategies for regime 2.

control strategy, the number of deep learning iterations decreases dramatically.
In other words, since the computation work is reduced to a small number of
deep learning iterations plus the valuation of the control value for every state
using the trained neural network, the time spent on conducting traversal over
the control grid for every state in the lattice can be saved.

In the following, we will provide an example to show how the efficiency and
accuracy can be improved. Consider a lattice of classical MCAM with N x M
computation nodes, where N is the number of nodes of state and M is the
number of nodes for controls. Now we implement the propose algorithm in
two steps: First, we deal with a lattice with N /5 computation nodes for rough
guess. By using the MCAM, we need M nodes to determine the initial guess
of controls. Then, the total step is N x M /5. Second, we use gradient descent
method to determine the parameters of the neural networks. Assume that the
number of gradient calculation nodes to obtain initial guess of parameter at
each state is K, and the gradient calculation nodes for the parameter converge
at each state is K>, the computation for gradient descentis N x (K| + K5). Thus,
the total computation for our method is N x (M /5 + K| + K5).
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FIGURE 10: Comparison of final results between regime 1 and regime 2.

Practically, the proposed deep learning algorithm’s total computation load
N x (M/5+ K| + K,) is significantly smaller than the transversal grid in the
classical MCAM with size N x M when M is sufficiently large. Moreover, with
larger M, the control accuracy is improved as well. Thus, if we compare results
with the same accuracy level state lattice, the proposed algorithm’s computa-
tion efficiency is significantly improved in finding optimal controls for a given
M. In addition, if the algorithm runs the same number of computation nodes
as MCAM, M can be set much larger in our method, marking approximating
controls more accurate.

7. CONCLUDING REMARKS

This paper develops a hybrid Markov chain approximation-based deep learn-
ing method to approximate the optimal reinsurance and dividend strategies.
The optimal controls are subject to a random termination stopping time, thus
leading to an infinite-horizon optimization problem. The developed deep learn-
ing algorithm directly approximate the value function and controls by deep
neural networks.

The accuracy of approximating piecewise controls in MCAM much
depends on the density of the control grid. However, subject to the com-
putation capability, the computation grids cannot be arbitrarily dense. The
proposed method implements the gradient descent method to find the optimal
control strategy. Hence, we can obtain more accurate control values from the
continuous output of the neural network. Meanwhile, our proposed method
can also handle the curse of dimensionality from which existing numerical
methods are suffering. Given that the time spent on searching among the
control grid has been saved, we can build a finer state lattice with limited
computing power.

In future studies, we will develop a deep learning algorithm to solve for opti-
mization problem with finite horizon. To find the optimal controls as neural
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networks of a class of implicit parameters, we will simulate a set of Monte
Carlo sample paths and gradually improve the strategies by training the neural
network for each control. Also, similar to the infinite-horizon case, the curse
of dimensionality becomes even worse because of the additional time inter-
vals. With the Markov chain approximation-based deep learning method, we
work on the optimization criteria directly, and only need more parameters and
sample paths when more states or control variables are included. Then, the
amounts of computation work only increase linearly. Hence, the computation
cost is largely reduced.

Further, we can also use stochastic approximation methods instead of
gradient descent method to train neural networks. Stochastic approximation
method has its advantage to approximate gradients in complex stochastic
systems. A comprehensive introduction of stochastic approximation can be
referred to Kushner and Yin (2003). Then, the forward-backward propagation
method will be applied to calibrate the neural networks to learn the optimal
strategies along the timeline.
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