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We consider Dirichlet problems of the form ¡jxj¬ ¢ u = ¶ u + g(u) in « , u = 0 on @« ,
where ¬ ; ¶ 2 R, g 2 C(R) is a superlinear and subcritical function, and « is a domain
in R2 . We study the existence of positive solutions with respect to the values of the
parameters ¬ and ¶ , and according that 0 2 « or 0 2 @ « , and that « is an exterior
domain or not.

1. Introduction

In this paper we deal with the equation

¡ jxj¬ ¢u = f (u) in « ; (1.1)

where f 2 C(R), ¬ 2 R and « is a domain in RN . Equation (1.1) is a model for
a class of N -dimensional stationary Schr�odinger equations with a singular poten-
tial [9, 15]. The case ¬ > 0 corresponds to a singularity at 0, while for ¬ < 0 the
singularity is the point at in­ nity.

Singular elliptic problems somehow related to (1.1) have been studied in the case
of dimensions N = 1 and N > 3 by several authors. We mention, for instance, [2{
4,6,8,10,16]. In this paper we will mostly concentrate on the two-dimensional case,
which exhibits some special features that do not appear in dimensions N 6= 2.

From the technical point of view, an important tool is given by the Kelvin trans-
form x 7! x=jxj2, which in two dimensions produces a sort of `duality’ between the
cases ` « contains 0’ and ` « is an exterior domain’, without changing the structure
of the equation.

The role played by the dimension of the domain is ­ rstly underlined in x 1, where
we prove some non-existence results in the spirit of the paper [4] by Brezis and
Cabŕe. Here we ­ rst assume that N > 2 and that f is positive and superlinear
at in­ nity, and we prove that no very weak positive solution to (1.1) exists when
0 2 « and ¬ > 2 (see x 1 for the precise de­ nitions).

Then we restrict our attention to the case N = 2 and we use the Kelvin transform
to show that no very weak positive solution exists when « is an exterior domain
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and ¬ 6 2. In particular, equation (1.1) on R2 has no very weak positive solution
for any ¬ 2 R.

Notice that this last non-existence result is false in dimension N 6= 2. As an
example, the equation

¡ jxj ¬ ¢u = jujN
¤
¬ ¡1 on RN ; (1.2)

where N > 3, N ¤
¬ = 2(N ¡ ¬ )=(N ¡ 2) and ¬ 2 [0; 2) has a positive solution with

­ nite energy (see [10]). This solution admits a variational characterization, since it
solves the minimization problem

S¬ (RN ) = inf

µZ

RN

jruj2
¿³Z

RN

jujN¤
¬

jxj¬
2́=N¤

¬
¶

(1.3)

on a suitable Sobolev space. Notice that for N > 3 the in­ mum S¬ (RN) is positive
by the Hardy{Sobolev inequality (see, for example, [5]). We remark also that for
N > 3 the exponent N ¤

¬ is the unique critical exponent associated to the singular
operator ¡ jxj ¬ ¢u, in the sense that it makes the equation (1.2) and the ratio
in (1.3) invariant with respect to dilations x 7! rx (r > 0).

In the two-dimensional case the situation is completely di¬erent. First we note
that for every q > 2 and ¬ 2 R,

inf

»Z

R2

jruj2
¿³Z

R2

jujq
jxj ¬

2́=q

: u 2 C 1
c (R2 n f0g); u 6= 0

¼
= 0;

which expresses the failure of the Hardy{Sobolev inequality in two dimensions
(see [5]).

In addition, for N = 2 and ¬ 6= 2, no critical exponent associated to ¡ jxj ¬ ¢u
exists, in the sense that (1.1) is never invariant with respect to dilations. On the
other hand, for ¬ = 2, every nonlinearity f gives rise to a dilation-invariant equa-
tion, which, together with the invariance under Kelvin transform, re®ects on phe-
nomena of concentration at 0 or vanishing, and then on a possible lack of compact-
ness for the corresponding variational problem.

The technical facts described above produce a variety of phenomena in the two-
dimensional case which are missing for N 6= 2.

For this reason, in the second part of the paper we start to study more closely
the two-dimensional case, by considering Dirichlet’s problems of the form

¡ ¢u =
¶ u + g(u)

jxj¬ in « ;

u = 0 on @« ;

9
=

; (1.4)

where ¶ ; ¬ 2 R, g 2 C(R) is subcritical and superlinear (see x 2 for the precise
assumptions).

First we consider the case 0 62 @« , and we investigate some situations which do
not ­ t into the non-existence results of x 1.

In particular, if « is a bounded smooth domain containing 0 and ¬ < 2, the stan-
dard Sobolev space H1

0 ( « ) turns out to be compactly embedded into the weighted
spaces Lq( « ; dx=jxj¬ ) for any q > 2, and the weight 1=jxj ¬ in fact gives rise to
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a removable singularity. Indeed, in this case, we ­ nd smooth positive solutions
u 2 H1

0 ( « ) with u(0) > 0, when ¶ lies in a suitable range. An analogous `dual’
result holds when « is an exterior domain with 0 62 ·« and ¬ > 2 (see theorem 3.3).

A di¬erent situation occurs if « is a bounded smooth domain containing 0 and
¬ > 2, because in general the space H1

0 ( « ) \ L2( « ; dx=jxj¬ ) is not compactly
embedded into Lq( « ; dx=jxj¬ ) for q > 2. However, in the radially symmetric case,
we can recover compactness, and when « is the unit ball, ¬ > 2 and ¶ < 0, we ­ nd
a positive radial solution u of (1.4) with ­ nite energy. The fact that

Z

«

u2

jxj¬ < 1

forces the solution to vanish at 0, and then in this case the singularity cannot be
considered as removable. Moreover, thanks to the Kelvin transform, we state that
a corresponding `dual’ result holds for « = fx 2 R2 : jxj > 1g, ¬ < 2 and ¶ < 0
(see theorem 3.4).

If ¬ = 2, concentration at 0 or vanishing may occur and indeed, in general, we
have existence of a radially symmetric positive solution only on R2, provided that
¶ < 0 (theorem 3.5).

If « is an unbounded, non-exterior domain, with 0 2 @« , in general we cannot
expect existence. For example, if « is a half-space, or more generally, a cone with
vertex at the origin, a Pohozaev-type argument [14] prevents existence for ¬ 6= 2
(see lemma 4.1).

However, for these domains we can prove existence of positive and changing-sign
solutions to (1.4) when ¬ = 2 (theorem 4.4). This is a consequence of the fact
that the Hardy{Sobolev inequality (which fails on R2) actually holds if we take as
domain R2 n ¡ , where ¡ = f(x1; 0) : x1 > 0g. More precisely, we prove that for
every q > 2 there exists Cq > 0 such that

³Z

R2

jujq
jxj2

2́=q

6 Cq

Z

R2

jruj2 for any u 2 C 1
c (R2 n ¡ ): (1.5)

In a forthcoming paper [7] we shall complete the study of problem (1.4) for
¬ = 2 in the case of arbitrary domains « contained in R2 n ( ¡ 0 [ ¡ 1 ), where
¡ 0 = ftx0 : 0 6 t 6 1g and ¡ 1 = ftx 1 : t > 1g, with x0; x 1 2 R2 n f0g.

The plan of the paper is as follows. In x 2 the non-existence of positive solutions
on domains containing 0 and exterior domains is discussed. In x 3 we look at the
Dirichlet problem on domains containing 0 and exterior domains, with the cases
¬ 6= 2 and ¬ = 2 studied in xx 3.1 and 3.2, respectively. Finally, x 4 is devoted to
the Dirichlet problem on cones.

2. Non-existence of positive solutions on domains containing 0 and
exterior domains

In this section we consider the equation

¡ ¢u =
f (u)

jxj¬ in « ; (2.1)

where ¬ 2 R, and f 2 C(R) satis­ es the following conditions.
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(f1) There exists p > 1 such that

lim inf
u ! + 1

f (u)

up
> 0:

(f2) f (u) > 0 for u > 0.

As regards the domain « , in this section we will assume that 0 2 « or « is an
exterior domain, i.e. there exists a compact set K » RN such that « = RN n K.

Let us introduce a notion of supersolution to (2.1) in a very weak sense, in the
spirit of analogous de­ nitions stated in [4] by Brezis and Cabŕe.

Given a domain « in RN and a Carath́eodory function h : « £ R ! R, we
say that a function u : « ! R solves ¡ ¢u > h(x; u) in D0( « ) if u 2 L1

loc( « ),
h(¢; u) 2 L1

loc( « ) and

¡
Z

«

u¢’ >
Z

«

h(x; u)’

for every ’ 2 C 1
c ( « ), ’ > 0.

Definition 2.1. Let « be a domain in RN and let f 2 C(R). A function u : « ! R
is a weak supersolution to (2.1) if u solves ¡ ¢u > f(u)=jxj ¬ in D0( « ). A function
u : « ! R is a very weak supersolution to (2.1) if u solves ¡ ¢u > f (u)=jxj ¬ in
D0( « n f0g). A weak or very weak supersolution u to (2.1) is positive if u > 0 a.e.
in « and u 6= 0.

The main result of this section is the following.

Theorem 2.2. Let f 2 C(R) satisfy (f1) and (f2).

(i) If « is a domain in RN containing 0, N > 2 and ¬ > 2, then (2.1) admits
no very weak positive supersolution.

(ii) If « is an exterior domain in R2 and ¬ 6 2, then (2.1) admits no very weak
positive supersolution.

As a consequence of theorem 2.2, we have the following non-existence result
concerning the case « = R2.

Corollary 2.3. Let f 2 C(R) satisfy (f1) and (f2). Then, for any ¬ 2 R, equa-
tion (2.1) on R2 admits no very weak positive supersolution.

The proof of theorem 2.2 is based on the next crucial lemma.

Lemma 2.4. Let « be a domain in RN containing 0, N > 2, and let f 2 C(R)
satisfy (f1) and (f2). If u is very weak non-negative supersolution to

¡ ¢u =
f(u)

jxj2 in « ; (2.2)

then u is a weak supersolution to (2.2).
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Proof. Since u is a very weak supersolution to (2.2), it is enough to show that u
solves ¡ ¢u > f(u)=jxj2 in D0(Br), where Br = fx 2 RN : jxj < rg » « for some
r 2 (0; 1). To this end, we will adapt the techniques developed in [4], by using
appropriate powers of testing functions (see also [1]).

Step 1 (f (u)=jxj2 2 L1(Br)). For every n 2 N large enough, let À n 2 C 1
c (Br)

satisfy

0 6 À n 6 1 on Br ;

À n(x) = 0 for jxj 6 1=n and jxj > 2
3 r, À n(x) = 1 for x 2 Br=2 n B2=n;

j¢ À nj 6 Cn2 on Un = B2=n n ·B1=n, j¢À nj 6 C on Br n Br=2:

Taking a suitable ­ > 2, we have that À ­
n 2 C2

c ( « ) and, by standard density
arguments (on any À ­

n), since u; f(u) 2 L1
loc( « n f0g), we have

Z

Br

f (u)

jxj2 À ­
n 6 ¡

Z

Br

u¢ À ­
n

= ¡ ­ (­ ¡ 1)

Z

Br

uÀ ­ ¡2
n jrÀ nj2 ¡ ­

Z

Br

uÀ ­ ¡1
n ¢ À n

6 ­

Z

Br

uÀ ­ ¡2
n j¢ À nj;

and then Z

Br

f (u)

jxj2 À ­
n 6 Cn2

Z

Un

uÀ ­ ¡2
n + C: (2.3)

By (f1), there exist ¯ ; k > 0 such that

f (u) > kup for u > ¯ : (2.4)

Letting U ¯
n = fx 2 Un : u(x) > ¯ g, we have

Z

Un

uÀ ­ ¡2
n 6 ¯ jUn n U ¯

nj +

Z

U ¯
n

uÀ ­ ¡2
n

6 C

nN
+

C

n2=p

Z

U ¯
n

u

jxj2=p
À ­ ¡2

n

C

n2
+

C

n2=p
jU ¯

nj1=p0
³Z

U ¯
n

up

jxj2 À (­ ¡2)p
n

1́=p

where p0 is the conjugate exponent to p. Choosing ­ = 2p=(p ¡ 1) (note that ­ > 2),
and using (2.4), we obtain

n2

Z

Un

uÀ ­ ¡2
n 6 C + C

³Z

Un

f (u)

jxj2 À ­
n

1́=p

; (2.5)

which, together with (2.3), implies

Z

Un

f (u)

jxj2 À ­
n 6 C + C

³Z

Un

f (u)

jxj2 À ­
n

1́=p

:
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Since p > 1, we infer that

sup
n

Z

Un

f (u)

jxj2 À ­
n < +1

and then, using (2.3) and (2.5),

sup
n

Z

Br

f (u)

jxj2 À ­
n < 1:

Finally, by (f2) and by Fatou’s lemma,
Z

Br

f (u)

jxj2 dx < 1:

Step 2 (u 2 L1(Br)). This follows immediately from step 1, since we have that
0 6 u 6 C(1 + f (u)=jxj2).

Step 3.

¡
Z

Br

u¢’ >
Z

Br

(f (u)=jxj2)’ for every ’ 2 C 1
c (Br); ’ > 0:

Proof. For every n 2 N, let ¿ n 2 C 1 (RN) satisfy 0 6 ¿ n 6 1, ¿ n = 0 on B1=n,
¿ n = 1 on RN n B2=n, jr¿ nj 6 Cn and j¢ ¿ nj 6 Cn2 on Un = B2=n n ·B1=n. Let
’ 2 C 1

c (Br), ’ > 0. Since u solves ¡ ¢u > f (u)=jxj2 in D0( « n f0g), for every
n 2 N we have

¡
Z

Br

u¢(’¿ n) >
Z

Br

f(u)
jxj2 ’¿ n: (2.6)

By step 1, Z

Br

f (u)

jxj2 ’¿ n !
Z

Br

f(u)

jxj2 ’:

Moreover, ¢(’¿ n) = ¿ n¢’ + 2r¿ n ¢ r’ + ’¢ ¿ n. By step 2,
Z

«

u¿ n¢’ !
Z

«

u¢’:

Furthermore,
Z

«

ujr¿ n ¢ r’j 6 Cn

Z

Un

u and

Z

«

u’j¢¿ nj 6 Cn2

Z

Un

u:

We claim that

n2

Z

Un

u ! 0 as n ! 1: (2.7)

Indeed, by (f1) and (f2), for every ° > 0 there exists k° > 0 such that

f (u) > k° u for u > ° : (2.8)

Arguing as in step 2, and using (2.8), we have that

n2

Z

Un

u 6 n2 ° jUn n U °
nj +

n2

k°

Z

U °
n

f (u) 6 C° +
C

k °

Z

Un

f (u)

jxj2 ;
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where U °
n = Un \ fu > ° g. By step 1,

Z

Un

f (u)

jxj2 ! 0;

and thus, by the arbitrariness of ° > 0, equation (2.7) follows. Hence we can pass
to the limit in (2.6) to get the thesis.

Proof of theorem 2.2. Let us show the statement (i). By contradiction, suppose
that (2.1) admits a very weak positive supersolution u. By lemma 2.4, since ¬ > 2,
u solves ¡ ¢u > f (u)=jxj2 in D0( « \ B1). In particular, by (f2), ¡ ¢u > 0 in
D0( « \ B1) and, since u > 0, u 6= 0, by the maximum principle, u > ° in a
neighbourhood U » « containing 0, for some ° > 0. Then, since f is continuous
and positive on (0; +1), there exists a > 0 such that f (u) > a on U . If N = 2, we
have that Z

U

f (u)

jxj2
>

Z

U

a

jxj2 = +1;

contrary to the fact that f(u)=jxj2 2 L1(U ). If N > 2, we have that

¡ ¢u > a

jxj2 = ¡ ¢

³
a

N ¡ 2
log

1

jxj

´

in D0(U ) and then

u > a

N ¡ 2
log

1

jxj
¡ b on U (2.9)

for some b > 0 (see [4] for more details). Moreover, by (f1) and (f2) there exists
k > 0 such that f (u) > kup for u > ° and then on U . Let now À 2 C 1

c (R + )
be such that 0 6 À 6 1 on R + , À = 1 on [0; 1] and À = 0 on [2; +1). Setting
À n(x) = À (njxj), ­ = 2p=(p ¡ 1), testing (2.2) with À ­

n and arguing as in the proof
of step 1 of lemma 2.4, we obtain that

Z

U

f(u)

jxj2 À ­
n 6 C

nN¡2
(2.10)

for some C > 0. On the other hand, using (2.8) and (2.9), we have that

Z

U

f (u)

jxj2 À ­
n > k °

Z

B1=n

u

jxj2

> (A log n ¡ B)

Z

B1=n

1

jxj2

= (A log n ¡ B)
1

nN¡2
;

which, for n 2 N large enough, is in contradiction with (2.10).
Part (ii) turns out to be equivalent to (i) thanks to the Kelvin transform

x 7! x=jxj2. More precisely, the proof of (ii) is accomplished using the following
lemma and the previous part (i).
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Lemma 2.5. Let « be a domain in R2 and let f 2 C(R). Then u is a very weak
supersolution to (2.1) if and only if ~u is a very weak supersolution to

¡ ¢~u =
f(~u)

jxj4¡ ¬
in ~« ; (2.11)

with ~« = fx=jxj2 : x 2 « ; x 6= 0g and ~u(x) = u(x=jxj2) for x 2 ~« .

Proof. Let u be a very weak supersolution to (2.1). One can easily check that
~u 2 L1

loc( ~« ) because 0 62 ~« and, for U »» ~« ,

Z

U

~u2 =

Z

~U

u2

jxj4 ;

where ~U = fx=jxj2 : x 2 Ug. Similarly, one can see that f (~u)=jxj4¡ ¬ 2 L1
loc( ~« ).

Furthermore, if ’ 2 C 1
c ( ~« ) and ~’(x) = ’(x=jxj2), then

¢ ~’(x) =
1

jxj4 ¢’(
x

jxj2 );

Z

~«

~u¢’ =

Z

«

u¢ ~’;

Z

~«

f (~u)

jxj4¡ ¬
’ =

Z

«

f (u)

jxj¬ ~’:

Hence ~u is a weak supersolution to (2.11). The other implication follows by the fact
that the Kelvin transform is idempotent.

Remark 2.6. In order to state an analogous result to lemma 2.5 in any dimension
N , one has to consider a weighted Kelvin transform. More precisely, one can prove
that, given a domain « in RN and a Carath́eodory function h : « £ R ! R, a
function u : « ! R is a weak supersolution to ¡ ¢u = h(x; u) in « n f0g if and
only if ~u is a weak supersolution to

¡ jxjN + 2¢~u = h

³
x

jxj2 ; jxjN¡2~u

´
in ~« ; (2.12)

with ~« = fx=jxj2 : x 2 « ; x 6= 0g and ~u(x) = jxj2¡Nu(x=jxj2) for x 2 ~« .
Consider now the case h(x; u) = f (u)=jxj¬ with an arbitrary f 2 C(R). In order

that (2.12) for ~u has the same structure of the equation for u, namely, can be
written in the form ¡ ¢~u = f (~u)=jxj­ for some ­ 2 R, a necessary and su¯ cient
condition is that N = 2.

A special situation occurs if f is homogeneous. More precisely, if h(x; u) =
jujp=jxj ¬ , equation (2.12) becomes

¡ ¢~u =
j~ujp
jxj~¬

in ~« ;

where ~¬ = N +2 ¡ ¬ ¡ p(N ¡ 2). In particular, for N 6= 2, we have ~¬ = ¬ if and only
if p = N ¤

¬ ¡ 1, where N ¤
¬ = 2(N ¡ ¬ )=(N ¡ 2). For N = 2, we have ~¬ = ¬ if and only

if ¬ = 2, whatever p is. More generally, we note that in the two-dimensional case,
for ¬ = 2, the equations (2.1) and (2.11) have the same form (invariance under
Kelvin transform for ¬ = 2 and N = 2).
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3. The Dirichlet problem on domains containing 0 and
exterior domains

In this section and in the following one we study the existence of positive solutions
for the Dirichlet problem

¡ ¢u =
f (u)

jxj¬ in « ;

u = 0 on @«

9
=

; (3.1)

in some cases that do not ­ t into the non-existence results of x 1. In particular, in
this section we deal with smooth domains « in R2 which are bounded and contain 0,
or which are exterior domains and 0 62 ·« . In x 3 we will consider the case in which
« is a cone in R2 with vertex at 0.

As concerns the notion of solution to problem (3.1), we are interested in varia-
tional solutions, according to the following de­ nition.

Definition 3.1. Let « be a smooth domain in R2 and let f 2 C(R). A variational
solution to problem (3.1) is a function u 2 L1

loc( « ) such that ru 2 (L2( « ))2, u = 0
on @« in the sense of the traces, f (u)=jxj ¬ 2 L1

loc( « n f0g) and
Z

«

ru ¢ r’ =

Z

«

f (u)

jxj¬ ’

for every ’ 2 C 1
c ( « n f0g).

Looking for variational solutions to problem (3.1) leads us to make suitable
assumptions on the behaviour of f at 0 and at in­ nity. More precisely, we will
restrict ourselves to the case f (u) = ¶ u + g(u), where ¶ 2 R and g 2 C(R) satis­ es
the following conditions.

(g1) log jg(u)j = o(u2) as juj ! 1.

(g2) g(u) = o(u) as u ! 0.

(g3) There exists · > 2 such that 0 < · G(u) 6 g(u)u for any u 6= 0, with

G(u) =

Z u

0

g(t) dt:

Consider now the problem

¡ ¢u =
¶ u + g(u)

jxj¬ in « ;

u = 0 on @« :

9
=

; (3.2)

As we will see in the following theorems, the existence of positive variational solu-
tions depends also on the range in which ¶ lies, as one expects. To this end, it is
useful to introduce the value

¶ 1;¬ ( « ) = inf

»Z

«

jruj2 : u 2 C 1
c ( « );

Z

«

u2

jxj¬ = 1

¼

de­ ned for an arbitrary domain « in R2 and for any ¬ 2 R.
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Note that for a bounded domain « containing 0, ¶ 1;¬ ( « ) = 0 if ¬ > 2 (see [5]),
while ¶ 1;¬ ( « ) > 0 and is attained by a positive function in H1

0 ( « ) if ¬ < 2, since,
in this case, H1

0 ( « ) is compactly imbedded in L2( « ; dx=jxj ¬ ).
Moreover, by the Kelvin transform, one can easily see that if « is a domain in

R2 and ~« = fx 2 R2 n f0g : x=jxj2 2 « g, then ¶ 1;¬ ( ~« ) = ¶ 1;4¡ ¬ ( « ).

Remark 3.2 (Evaluation of ¶ 1;¬ (B1)). Let « = B1 be the unit ball in R2 centred
at 0. Let us prove that for every ¬ < 2,

¶ 1;¬ (B1) = (1 ¡ 1
2
¬ )2 ¶ 1(B1):

Indeed, ­ xing ¬ < 2, there exists u ¬ 2 H1
0 (B1), u ¬ > 0, such that

Z

B1

u2
¬

jxj ¬ = 1 and

Z

B1

jru ¬ j2 = ¶ 1;¬ (B1):

Then, up to a multiplicative constant, u ¬ is the unique (classical) positive solution
to the Dirichlet problem

¡ ¢u ¬ = ¶
u ¬

jxj¬ in B1;

u ¬ = 0 on @B1;

9
=

; (3.3)

with ¶ = ¶ 1;¬ (B1). Considering in particular the case ¬ = 0, it is known that the
problem

¡ ¢u = ¶ 1(B1)u in B1;

u = 0 on @B1

)

admits a positive radially symmetric solution u0 2 H1
0 (B1). Then the function

u ¬ (x) = u0(x=jxj ¬ =2) solves (3.3) with ¶ = (1 ¡ 1
2 ¬ )2 ¶ 1(B1).

3.1. The case ® 6= 2

The next theorem describes a case in which compactness holds.

Theorem 3.3. Let g 2 C(R) satisfy (g1){(g3).

(i) If « is a bounded smooth domain and ¬ < 2, then (3.2) admits a varia-
tional positive solution u 2 H1

0 ( « ) if and only if ¶ < ¶ 1;¬ ( « ). In this case,
u 2 C1;® ( ·« ) for ® < 1, and u > 0 in « . In particular, u(0) > 0 when 0 2 « .

(ii) If « is a domain with 0 62 ·« and ¬ > 2, then (3.2) admits a variational
positive solution u if and only if ¶ < ¶ 1;4¡ ¬ ( « ). In this case, u 2 C1;® ( ·« )
for ® < 1, u > 0 in « . In particular, if « is an exterior domain, then
u(x) ! u 1 > 0 as jxj ! 1.

Proof. (i) For every u 2 H1
0 ( « ) let us set

J(u) =

Z

«

G(u)

jxj ¬ :
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Since ¬ < 2 and « is bounded, there exists C > 0 and ¼ > 1 such that

J(u) ¼ 6 C

Z

«

G(u) ¼ :

Using (g1){(g3), one easily checks that G(u) = o(u2) as u ! 0 and log G(u) = o(u2)
as juj ! 1. Therefore, thanks to the above estimate on J and to the Trudinger{
Moser inequality [13], following a standard procedure, one infers that the functional
J is well de­ ned and continuous on H1

0 ( « ). In fact, using analogous estimates and
standard arguments, one can see that J is Fr´echet di¬erentiable on H1

0 ( « ) and
its gradient is completely continuous (see [12, x II.4]). This allows us to treat (3.2)
with classical variational techniques. In particular, the necessity of ¶ < ¶ 1;¬ ( « ) is
obtained as usual by multiplying by the ­ rst eigenfunction. Instead, if ¶ < ¶ 1;¬ ( « ),
by assumptions (g1){(g3), a variational positive solution u 2 H1

0 ( « ) to (3.2) can
be obtained as a mountain-pass critical point of the energy functional associated
to (3.2). Moreover, classical regularity arguments apply to show that u 2 C1;® ( ·« )
and u > 0 in « .

(ii) It is enough to observe that a function u : « ! R is a variational positive
solution to (3.2) if and only if, setting ~« = fx 2 R2 n f0g : x=jxj2 2 « g, the function
~u : ~« ! R de­ ned by ~u(x) = u(x=jxj2) for x 2 ~« is a variational positive solution
to

¡ ¢~u =
¶ ~u + g(~u)

jxj4¡ ¬
in ~« ;

~u = 0 on @ ~« :

9
>=

>;

Then part (ii) follows by (i) and by the fact that ¶ 1;¬ ( ~« ) = ¶ 1;4¡ ¬ ( « ).

For ¬ > 2 and « a bounded domain containing 0, the space H1
0 ( « ) is not

contained in L2( « ; dx=jxj ¬ ) and in general a lack of compactness occurs even con-
sidering the space H1

0 ( « ) \ L2( « ; dx=jxj ¬ ). For instance, if ¬ = 4, then, using the
Kelvin transform, problem (3.2) on a bounded domain containing 0 turns out to be
equivalent to the non-compact problem

¡ ¢u = ¶ u + g(u) in ~« ;

u = 0 on @ ~« ;

)

where ~« is an exterior domain.
However, considering radially symmetric situations, we recover compactness and,

because of theorem 2.2, we need a changing-sign nonlinearity, that is, we have to
assume ¶ < 0.

Theorem 3.4. Let g 2 C(R) satisfy (g2) and (g3), and let ¶ < 0.

(i) If ¬ < 2 and « = fx : jxj > 1g, then (3.2) admits a variational positive radial
solution u 2 C2( « ) \ C0

0 ( ·« ), u > 0 in « , u(1) = 0.

(ii) If ¬ > 2 and « = fx : jxj < 1g, then (3.2) admits a variational positive radial
solution u 2 C2( « n f0g) \ C0

0( ·« ), u > 0 in « n f0g, u(0) = 0.
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Proof. (i) Setting u(x) = v(j ¶ j1=2 log jxj) and t = j¶ j1=2
log jxj, we can see that u is

a variational radial solution to (3.2) in « = fx : jxj > 1g if v : R + ! R satis­ es

¡ �v + e­ tv = e­ t·g(v) for t > 0; v 2 H1
0 (R + ); (3.4)

where ­ = (2 ¡ ¬ )=j¶ j1=2 and ·g = j ¶ j1=2g. In particular, let us point out that
Z

«

jruj2 = 2 º j¶ j1=2

Z 1

0

_v2:

To show the existence of a positive solution to (3.4), let us introduce the following
variational setting. Let

X =

»
v 2 H1

0 (R + ) :

Z 1

0

e­ tv2 < 1
¼

;

endowed with the inner product

hv1; v2i =

Z 1

0

( _v1 _v2 + e­ tv1v2)

and with the corresponding norm kvk = hv; vi1=2. One can check that X is a
Hilbert space, continuously imbedded in H1

0 (R + ), and then in Lq(R + ) for every
q 2 [2; 1]. We claim that X is compactly imbedded into L 1 (R + ). Indeed,
let (vn) » X be such that vn ! 0 weakly in X, and suppose, by contradic-
tion, that lim sup kvnkL1 > 2̄ > 0. Then, passing to a subsequence, there exist
(sn); (tn) » R + such that sn < tn, jvn(sn)j = ¯ , jvn(tn)j = 2 ¯ and ¯ < jvn(t)j 6 2 ¯
for t 2 (sn; tn). Let ½ n = tn ¡ sn. On one hand, we have that

¯ 6
Z tn

sn

j _vnj 6 ½ 1=2
n

³Z tn

sn

_v2
n

1́=2

6 ½ 1=2
n kvnk

and then, since (vn) is bounded, inf ½ n > 0. On the other hand,

kvnk2 >
Z tn

sn

e­ tv2
n > ¯ 2

­
(e­ tn ¡ e­ sn ) = ¯ 2e­ ¼ n ½ n

for some ¼ n 2 (sn; tn). Since inf ½ n > 0, we obtain that ( ¼ n) is bounded and then
(sn) too. Therefore, infn jvn(sn)j = ¯ > 0, in contrast to the fact that vn ! 0
uniformly on [0; t] for any t > 0.

Now the existence of a positive solution to (3.4) is obtained with standard vari-
ational techniques. Indeed, let

·G(u) =

Z u

0

·g(s) ds

and, for every v 2 X , let

I(v) = 1
2
kvk2 ¡

Z 1

0

e­ t ·G(v):

By (g2), I 2 C1(X) and the critical points of I are solutions to (3.4), of class
C2 on R + . Then, using (g2) and (g3), one can check that the functional I has a
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mountain-pass geometry. Moreover, thanks to the compact embedding of X into
L 1 (R + ), the Palais Smale condition holds. Hence I admits a critical point v 2 X,
with I(v) > 0. Finally, with standard arguments, changing ·g by 0 on R¡, we can
conclude that v > 0 in R + . Therefore, part (i) is proved.

(ii)Arguing as in the proof of theorem 3.3, one has that the statement (ii) is in
fact equivalent, by the Kelvin transform, to part (i).

3.2. The case ® = 2

In this subsection we investigate some special features occurring when ¬ = 2.
We remark that, in addition to the invariance under Kelvin transform (see

lemma 2.5), the case ¬ = 2 exhibits also invariance under dilation.
Let us consider ­ rst the problem on R2 associated to the equation

¡ ¢u =
¶ u + g(u)

jxj2 in R2: (3.5)

By corollary 2.3, we know that (3.5) has no weak positive supersolution for ¶ > 0.
On the other hand, we can state the following existence result.

Theorem 3.5. Let g 2 C(R) satisfy (g2) and (g3), and let ¶ < 0. Then (3.5)
admits a variational positive radial solution u 2 C2(R2 n f0g) \ C0(R2), u > 0 in
R2 n f0g, u(0) = u(1) = 0.

Proof. Arguing as in part (i) of the proof of theorem 3.4, we have that u is a
variational radial solution to (3.2) in R2 if and only if u(x) = v(j¶ j1=2

log jxj) and v
satis­ es

¡ �v + v = ·g(v) in R; v 2 H1(R); (3.6)

where ·g = j ¶ j1=2g. Now standard ODE or variational arguments show that (3.6)
admits a positive solution v 2 C2(R) and v(§1) = 0. Thus the proof is complete.

The possibility of also ­ nding a variational positive solution to

¡ ¢u =
¶ u + g(u)

jxj2 in « ;

u = 0 on @« ;

9
=

; (3.7)

when ¶ < 0 and « is a bounded domain containing 0 (as it happens if ¬ 6= 2) is
prevented, at least when « is star shaped, by the following Pohozaev-type result
that, in fact, holds without any sign assumption on u.

Lemma 3.6. Let « be a bounded smooth domain containing 0, and let f 2 C(R).
If u is a variational solution to (3.1) with ¬ = 2, and if F (u)=jxj2 2 L1( « ), where

F (u) =

Z u

0

f (s) ds;

then Z

@«

jruj2x ¢ ¸ = 0

(here ¸ is the outward normal at @« ). If, in particular, « is star shaped, then u = 0.
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Proof. Let À n 2 C 1 (R2) be a non-negative radial function such that À n(x) = 0
for jxj 6 1=n, À n(x) = 1 for jxj > 2=n, and jrÀ nj 6 Cn on R2. By standard
arguments, u is regular enough far from 0, and then

Z

«

ru ¢ r( À nx ¢ ru) =

Z

«

f(u)

jxj2 À nx ¢ ru: (3.8)

On one hand, we have that

Z

«

ru ¢ r( À nx ¢ ru) =

Z

«

(ru ¢ r À n)(x ¢ ru)

¡ 1

2

Z

«

(rÀ n ¢ x)jruj2 +
1

2

Z

«

div( À nxjruj2): (3.9)

By the divergence theorem,
Z

«

div( À nxjruj2) =

Z

@«

jruj2x ¢ ¸ :

Moreover, since Z

«

jxjjr À njjruj2 6 C

Z

1=n<jxj<2=n

jruj2

and jruj 2 L2( « ), equation (3.9) gives
Z

«

ru ¢ r( À nx ¢ ru) =
1

2

Z

@«

jruj2x ¢ ¸ + o(1); (3.10)

where o(1) ! 0 as n ! 1. On the other hand, since F (0) = 0 and u = 0 on @« ,
we have that

Z

«

f (u)

jxj2 À nx ¢ ru =

Z

@«

F (u)

jxj2 À nx ¢ ¸ ¡
Z

«

F (u) div

³
À n

x

jxj2

´

= ¡
Z

«

F (u)

jxj2
r À n ¢ x:

Noting that Z

«

jF (u)j
jxj2 jr À n ¢ xj 6 C

Z

1=n<jxj<2=n

jF (u)j
jxj2 ;

and, by assumption, F (u)=jxj2 2 L1( « ), we conclude that
Z

«

f (u)

jxj2 À nx ¢ ru ! 0 as n ! 1: (3.11)

Finally, equations (3.8), (3.10) and (3.11) imply the thesis.

Using lemma 3.6 we obtain the following non-existence result. Note that also in
this case we do not require any condition on the sign of u.

Corollary 3.7. Let g 2 C(R) satisfy (g1) and (g2), ¶ 2 R and let « be a
smooth bounded star-shaped domain in R2 containing 0. If u is a variational solution
to (3.7) such that u2=jxj2 2 L1( « ), then u = 0.
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Proof. Let X be the closure of C 1
c (R2 n f0g) with respect to the norm

kuk =

³Z

R2

(jruj2 +
u2

jxj2 )
1́=2

:

If u 2 C 1
c (R2 n f0g) and v(s; ³ ) = u(es cos ³ ; es sin ³ ), then

Z

R2

jruj2 =

Z

§

jrvj2 and

Z

R2

u2

jxj2 =

Z

§

v2;

where § = R £ (0; 2 º ). This shows that X is isomorphic to H1( § ). Under the
assumptions (g1) and (g2), it holds that the functional

v 7!
Z

§

G(v)

is well de­ ned and continuous on H1( § ). Thus, since
Z

R2

G(u)

jxj2 =

Z

§

G(v);

the functional

u 7!
Z

§

G(u)

jxj2

is well de­ ned and continuous on X. In particular, if u satis­ es the assump-
tions of the corollary, then G(u)=jxj2 2 L1( « ) and thus, since u2=jxj2 2 L1( « ),
F (u)=jxj2 2 L1( « ). Finally, the corollary follows by applying lemma 3.6.

4. The Dirichlet problem on cones

In this section we study the Dirichlet problem (3.2) when « is a proper
cone with vertex at 0, including the case of a half-plane, or R2 n ¡ , where
¡ = f(x1; 0) : x1 > 0g.

The special role played by the exponent ¬ = 2 in the study of (2.1) is in fact
emphasized in a still more striking way, in the case of a domain like a cone, as
stated in the next result. Note that the cones with vertex at 0 are all the domains
in R2, which are invariant under dilation and Kelvin transform.

Lemma 4.1. Let « be a cone in R2 with vertex at 0 and let f 2 C(R) sat-
isfy (f1). If u is a variational solution to (3.1) such that F (u)=jxj ¬ 2 L1( « ) (where
F (u) =

R u

0 f (s) ds) and Z

«

F (u)

jxj ¬
6= 0;

then ¬ = 2.

Proof. Let À n 2 C 1 (R2) be a non-negative radial function such that À n(x) = 0 for
jxj 6 1=n and jxj > 2n, À n(x) = 1 for 2=n 6 jxj 6 n, jr À nj 6 Cn for 1=n 6 jxj2=n,
and jr À nj 6 C=n for n 6 jxj 6 2n. Arguing as in the proof of lemma 3.6, we can
test the equation ¡ ¢u = f (u)=jxj ¬ with À nx ¢ ru, to get

Z

«

ru ¢ r( À nx ¢ ru) =

Z

«

f(u)

jxj ¬ À nx ¢ ru: (4.1)
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The left-hand side of (4.1) can be estimated with similar calculations as in (3.9),
(3.10), obtaining that

Z

«

ru ¢ r( À nx ¢ ru) =
1

2

Z

@«

jruj2 À nx ¢ ¸ + o(1); (4.2)

where o(1) ! 0 as n ! 1. As regards the right-hand side of (4.1), we have

Z

«

f(u)

jxj ¬ À nx ¢ ru =

Z

«

F (u) div

³
À n

x

jxj ¬

´

= (2 ¡ ¬ )

Z

«

F (u)

jxj ¬ À n ¡
Z

«

F (u)

jxj¬ x ¢ rÀ n: (4.3)

Using the fact that F (u)=jxj¬ 2 L1( « ), equation (4.3) implies

Z

«

f (u)

jxj¬ À nx ¢ ru = (2 ¡ ¬ )

Z

«

F (u)

jxj¬ + o(1): (4.4)

Finally, by (4.1), (4.2), (4.4), and since x ¢ ¸ = 0 on the boundary of a cone, we
infer that u satis­ es

(2 ¡ ¬ )

Z

«

F (u)

jxj¬ = 0

that implies the thesis.

According to lemma 4.1, when « is a cone, we are lead to study just the case
¬ = 2. Moreover, by the rotational invariance of (4.5), we can reduce ourselves to
consider cones of the form

« ³ = f( » cos ½ ; » sin ½ ) : » > 0; 0 < ½ < ³ g;

where ³ 2 (0; 2 º ]. As we will see in the next proposition, it is convenient to introduce
the space

D1
0( « ³ ) = closure of C 1

c ( « ³ ) with respect to the norm kuk = krukL2

and the values

Sq( « ³ ) = inf

»Z

« ³

jruj2 dx : u 2 C 1
c ( « ³ );

Z

« ³

jujq
jxj2 = 1

¼
;

where q > 2. Note that S2( « ³ ) = ¶ 1;2( « ³ ), according to the de­ nition given in x 2.

Proposition 4.2. For every ³ 2 (0; 2 º ], (D1
0( « ³ ); k ¢ k) is a Hilbert space isomor-

phic to H1
0 ( § ³ ), where § ³ = R £ (0; ³ ). Moreover,

(i) ¶ 1;2( « ³ ) = º 2=³ 2;

(ii) for any q > 2, the value Sq( « ³ ) is positive and is attained by a positive
function u 2 D1

0( « ³ ).
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Proof. The mapping ¿ : § ³ ! « ³ , de­ ned by ¿ (s; ½ ) = (es cos ½ ; es sin ½ ), is a di¬eo-
morphism from § ³ onto « ³ with Jacobian given by jJ ¿ (s; ½ )j = e2s. Furthermore,
if u 2 C 1

c ( « ³ ) and v = u ¯ ¿ , then
Z

« ³

jruj2 =

Z

§ ³

jrvj2 and

Z

« ³

jujq
jxj2 =

Z

§ ³

jvjq :

Since the Poincaŕe inequality holds in D1
0( § ³ ), we infer that D1

0( § ³ ) = H1
0 ( § ³ )

and ¶ 1;2( « ³ ) = ¶ 1( § ³ ), that is, the `­ rst eigenvalue’ for ¡ ¢ in H1
0 ( § ³ ). Hence

D1
0( « ³ ) turns out to be a Hilbert space endowed with the norm krukL2 and the

mapping © : D1
0( « ³ ) ! D1

0( § ³ ), de­ ned by © (u) = u ¯ ¿ , is an isomorphism of
Hilbert spaces. Then, thanks to the isomorphism © , parts (ii) and (iii) follow by
well-known results. Finally, the equality ¶ 1;2( « ³ ) = º 2=³ 2 is obtained by using the
known fact that ¶ 1( § ³ ) = ¶ 1(I³ ) = º 2=³ 2, where I³ = (0; ³ ).

Remark 4.3.

(i) We point out the di¬erence between the case « = R2, for which the
Hardy inequality fails, and « = « ³ (including the case « = R2 n ¡ ,
with ¡ = fx 2 R2 : x1 > 0g), for which the Hardy inequality holds, since
¶ 1;2( « ³ ) > 0. In fact, as it is clear from the proof of proposition 4.2, the
Hardy inequality on « ³ is equivalent to the Poincaŕe inequality on § ³ .

(ii) By proposition 4.2, for any ¶ < ¶ 1;2( « ³ ), the functionals

u 7!
³Z

« ³

jruj2 ¡ ¶
u2

jxj2
1́=2

de­ ne equivalent Hilbertian norms in D1
0( « ³ ).

Proposition 4.2 allows us to tackle the Dirichlet problem

¡ ¢u =
¶ u + g(u)

jxj2 in « ³ ;

u = 0 on @« ³

9
=

; (4.5)

by using variational methods.

Theorem 4.4. Let g 2 C(R) satisfy (g1){(g3).

(i) Given ³ 2 (0; 2 º ], problem (4.5) on « ³ admits a positive solution if
¶ < ¶ 1;2( « ³ ).

(ii) For every ¶ 2 R, there exists ³ ¶ 2 (0; 2 º ] such that, for every ³ 2 (0; ³ ¶ ),
problem (4.5) on « ³ admits a positive solution.

(iii) Given ³ 2 (0; 2 º ], for every ¶ 2 R, problem (4.5) on « ³ admits in¯nitely
many solutions changing sign.

Proof. Let ³ 2 (0; 2 º ] be ­ xed. Using the isomorphism © : D1
0( « ³ ) ! H1

0 ( § ³ )
de­ ned in the proof of proposition 4.2, one can easily check that a function
u 2 D1

0( « ³ ) is a solution to (4.5) if and only if v = © (u) is a solution to

¡ ¢v = ¶ v + g(v) in § ³ ; v 2 H1
0 ( § ³ ); (4.6)
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where § ³ = R £ (0; ³ ). Under the assumptions (g1){(g3), standard variational
arguments apply to prove the existence of a positive solution to problem (4.6) if
¶ < ¶ 1( § ³ ) = ¶ 1;2( « ³ ).

(ii) By proposition 4.2 (ii), for every ¶ 2 R, there exists ³ ¶ 2 (0; 2 º ] such that
¶ 1;2( « ³ ) > ¶ if ³ 2 (0; ³ ¶ ). Then, by (i), problem (4.5) admits a positive solution.

(iii) Given ³ 2 (0; 2 º ] and ¶ 2 R, by proposition 4.2 (ii), there exists k0 2 N [f0g
such that ¶ 1;2( « ³ k ) > ¶ for any k > k0, where ³ k = ³ =2k. Fix k > k0 and, setting
§ k = § ³ k , consider the positive solution v of (4.6) on § k obtained in part (i). Note
that, by regularity theory, v 2 C1;® ( ·§ k) and v = 0 on @§ k. We want to construct
a solution to (4.6) on § ³ , and then, by the isomorphism © , a solution to (4.5) on
« ³ , by gluing together suitable translations of §v, with an `accordion’ procedure.
Precisely, let ³ i = ³ 2i¡k, for i = 0; : : : ; k, v0 = v and, for i = 1; : : : ; k,

vi(s; ½ ) =

(
vi¡1(s; ½ ) as ½ 2 (0; ³ i¡1]; s 2 R;

¡ vi¡1(s; ½ ¡ ³ i¡1) as ½ 2 ( ³ i¡1; ³ i); s 2 R:

By construction, vk turns out to be a solution to (4.6) on § ³ having 2k¡1 positive
components. Since this procedure can be repeated for any k > k0, part (iii) is
proved.

In the special case in which ³ = 2 º , we have the following multiplicity result on
R2, to compare with corollary 2.3 and theorem 3.5.

Corollary 4.5. Let g 2 C(R) satisfy (g1){(g3). Then, for every ¶ 2 R, equa-
tion (3.5) admits in¯nitely many solutions changing sign in D1

0(R2 n ¡ ).
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