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We consider Dirichlet problems of the form —|z|*Au = Au + g(u) in 2, v = 0 on 942,
where a, A € R, g € C(R) is a superlinear and subcritical function, and {2 is a domain
in R2. We study the existence of positive solutions with respect to the values of the
parameters o and A, and according that 0 € £2 or 0 € 92, and that 2 is an exterior
domain or not.

1. Introduction
In this paper we deal with the equation
—|z|*Au = f(u) in 2, (1.1)

where f € C(R), o € R and {2 is a domain in RY. Equation (1.1) is a model for
a class of N-dimensional stationary Schrodinger equations with a singular poten-
tial [9,15]. The case o > 0 corresponds to a singularity at 0, while for a < 0 the
singularity is the point at infinity.

Singular elliptic problems somehow related to (1.1) have been studied in the case
of dimensions N = 1 and N > 3 by several authors. We mention, for instance, [2—
4,6,8,10,16]. In this paper we will mostly concentrate on the two-dimensional case,
which exhibits some special features that do not appear in dimensions N # 2.

From the technical point of view, an important tool is given by the Kelvin trans-
form z + x/|x|?, which in two dimensions produces a sort of ‘duality’ between the
cases ‘{2 contains 0" and ‘(2 is an exterior domain’, without changing the structure
of the equation.

The role played by the dimension of the domain is firstly underlined in § 1, where
we prove some non-existence results in the spirit of the paper [4] by Brezis and
Cabré. Here we first assume that N > 2 and that f is positive and superlinear
at infinity, and we prove that no very weak positive solution to (1.1) exists when
0 € 2 and a > 2 (see § 1 for the precise definitions).

Then we restrict our attention to the case N = 2 and we use the Kelvin transform
to show that no very weak positive solution exists when (2 is an exterior domain
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and « < 2. In particular, equation (1.1) on R? has no very weak positive solution
for any o € R.

Notice that this last non-existence result is false in dimension N # 2. As an
example, the equation

—|z|*Au = [u[N"1 on RV, (1.2)

where N > 3, N = 2(N — «a)/(N — 2) and « € [0,2) has a positive solution with
finite energy (see [10]). This solution admits a variational characterization, since it
solves the minimization problem

S, (RY) = inf[/RN |vu|2/(/RN %)WN;} (1.3)

on a suitable Sobolev space. Notice that for N > 3 the infimum S, (R”) is positive
by the Hardy—Sobolev inequality (see, for example, [5]). We remark also that for
N = 3 the exponent N is the unique critical exponent associated to the singular
operator —|z|*Au, in the sense that it makes the equation (1.2) and the ratio
in (1.3) invariant with respect to dilations z — rz (r > 0).

In the two-dimensional case the situation is completely different. First we note
that for every ¢ > 2 and a € R,

inf{/Rz |Vu|2/(/Rz %)Wq:u € C°(R?*\ {0}), u # 0} =0,

which expresses the failure of the Hardy—Sobolev inequality in two dimensions
(see [5]).

In addition, for N = 2 and « # 2, no critical exponent associated to —|z|*Au
exists, in the sense that (1.1) is never invariant with respect to dilations. On the
other hand, for o = 2, every nonlinearity f gives rise to a dilation-invariant equa-
tion, which, together with the invariance under Kelvin transform, reflects on phe-
nomena of concentration at 0 or vanishing, and then on a possible lack of compact-
ness for the corresponding variational problem.

The technical facts described above produce a variety of phenomena in the two-
dimensional case which are missing for N # 2.

For this reason, in the second part of the paper we start to study more closely
the two-dimensional case, by considering Dirichlet’s problems of the form

—Au = —(u) in 2

3

(1.4)
u =0 on 0f2,

where A\,a € R, g € C(R) is subcritical and superlinear (see §2 for the precise
assumptions).

First we consider the case 0 € 92, and we investigate some situations which do
not fit into the non-existence results of § 1.

In particular, if {2 is a bounded smooth domain containing 0 and o < 2, the stan-
dard Sobolev space H}(§2) turns out to be compactly embedded into the weighted
spaces L1(2,dx/|z|*) for any q > 2, and the weight 1/|z|® in fact gives rise to
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a removable singularity. Indeed, in this case, we find smooth positive solutions
u € H}($2) with u(0) > 0, when X lies in a suitable range. An analogous ‘dual’
result holds when {2 is an exterior domain with 0 ¢ 2 and a > 2 (see theorem 3.3).

A different situation occurs if {2 is a bounded smooth domain containing 0 and
a = 2, because in general the space Hj(2) N L2(£2,dx/|z|%) is not compactly
embedded into LI(£2,dx/|z|*) for ¢ > 2. However, in the radially symmetric case,
we can recover compactness, and when {2 is the unit ball, « > 2 and A < 0, we find
a positive radial solution u of (1.4) with finite energy. The fact that

|5
— < X
o |zl

forces the solution to vanish at 0, and then in this case the singularity cannot be
considered as removable. Moreover, thanks to the Kelvin transform, we state that
a corresponding ‘dual’ result holds for 2 = {x € R : 2| > 1}, o < 2 and A < 0
(see theorem 3.4).

If « = 2, concentration at 0 or vanishing may occur and indeed, in general, we
have existence of a radially symmetric positive solution only on R?, provided that
A < 0 (theorem 3.5).

If 2 is an unbounded, non-exterior domain, with 0 € 92, in general we cannot
expect existence. For example, if (2 is a half-space, or more generally, a cone with
vertex at the origin, a Pohozaev-type argument [14] prevents existence for o # 2
(see lemma 4.1).

However, for these domains we can prove existence of positive and changing-sign
solutions to (1.4) when o = 2 (theorem 4.4). This is a consequence of the fact
that the Hardy—-Sobolev inequality (which fails on R?) actually holds if we take as
domain R?\ I', where I' = {(x1,0) : x; > 0}. More precisely, we prove that for
every q > 2 there exists Cq > 0 such that

( [y 2 o (B2

/ —) < Cq/ |[Vul?  for any u € C°(R*\ I). (1.5)
r? |z)? R2

In a forthcoming paper [7] we shall complete the study of problem (1.4) for
a = 2 in the case of arbitrary domains {2 contained in R? \ (I3 U I'y), where
Iy ={tzg:0<t <1} and [y, = {tzo : t = 1}, with 2o, 2o € R?\ {0}.

The plan of the paper is as follows. In §2 the non-existence of positive solutions
on domains containing 0 and exterior domains is discussed. In §3 we look at the
Dirichlet problem on domains containing 0 and exterior domains, with the cases
a # 2 and o = 2 studied in §§3.1 and 3.2, respectively. Finally, §4 is devoted to
the Dirichlet problem on cones.

2. Non-existence of positive solutions on domains containing 0 and
exterior domains

In this section we consider the equation

—Au = flw) in 2

sl

, (2.1)

where o € R, and f € C(R) satisfies the following conditions.
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(f1) There exists p > 1 such that

lim inf M > 0.

u——too yP

(f2) f(u) > 0 for u > 0.

As regards the domain (2, in this section we will assume that 0 € {2 or 2 is an
exterior domain, i.e. there exists a compact set K C RY such that 2 = RN \ K.

Let us introduce a notion of supersolution to (2.1) in a very weak sense, in the
spirit of analogous definitions stated in [4] by Brezis and Cabré.

Given a domain 2 in RV and a Carathéodory function h : 2 x R — R, we
say that a function u : 2 — R solves —Au > h(x,u) in D'(2) if u € L. (),

loc
h(-,u) € LL (§2) and
—/ uAcp}/ h(z,u)e
Q Q

loc
for every ¢ € C°(£2), ¢ = 0.

DEFINITION 2.1. Let {2 be a domain in RY and let f € C(R). A function u : 2 — R
is a weak supersolution to (2.1) if u solves —Au > f(u)/|z|* in D'(§2). A function
u: 2 — R is a very weak supersolution to (2.1) if u solves —Au > f(u)/|z|* in
D'(22\{0}). A weak or very weak supersolution u to (2.1) is positive if u > 0 a.e.
in £ and u # 0.

The main result of this section is the following.
THEOREM 2.2. Let f € C(R) satisfy (f1) and (f2).

(i) If 2 is a domain in RN containing 0, N > 2 and o > 2, then (2.1) admits
no very weak positive supersolution.

(i) If 2 is an exterior domain in R? and o < 2, then (2.1) admits no very weak
positive supersolution.

As a consequence of theorem 2.2, we have the following non-existence result
concerning the case 2 = R2.

COROLLARY 2.3. Let f € C(R) satisfy (f1) and (f2). Then, for any a € R, equa-
tion (2.1) on R? admits no very weak positive supersolution.

The proof of theorem 2.2 is based on the next crucial lemma.

LEMMA 2.4. Let 2 be a domain in RN containing 0, N > 2, and let f € C(R)
satisfy (f1) and (f2). If u is very weak non-negative supersolution to

—A :J|:(CT2) in §2

(2.2)

3

then u is a weak supersolution to (2.2).
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Proof. Since u is a very weak supersolution to (2.2), it is enough to show that u
solves —Au > f(u)/|z|? in D'(B,), where B, = {x € RV : |2| < r} C 2 for some

€ (0,1). To this end, we will adapt the techniques developed in [4], by using
appropriate powers of testing functions (see also [1]).

STEP 1 (f(u)/|z|?> € L*(B,)). For every n € N large enough, let x, € C>(B,)
satisfy
0< xp <1lon B,
Xn(x) =0 for [z] < 1/n and |z| > 2r, xn(x) =1 for z € B, /2 \ Ba/n,
|Axn| < Cn® on U, = By, \ Bijn, |Axn| < C on B, \ B, s.

Taking a suitable 3 > 2, we have that x? € C?(£2) and, by standard density
arguments (on any x?), since u, f(u) € Li _(£2\ {0}), we have

loc
f(u)
5 |.Z‘|2 XZ < - UAXQ

=-B(B- )/ uxh 2 Vxal? - ﬂ/B uxh " Axn

<ﬂ/ uxh 2| Axal,

/B JL(C?'Q X2 < CnQ/U uxB=2 4+ C. (2.3)

By (fl1), there exist d,k > 0 such that

and then

f(u) = ku? foru > 4. (2.4)
Letting U2 = {z € U,, : u(x) > 6}, we have

[ iz <avave [ o

n

c . cC 5o

SN e [y |x|2/PX"

1/p
il 6|1/p’(/ “_pxw—z)p)
n? - p¥rn vs |z 7"

where p’ is the conjugate exponent to p. Choosing 8 = 2p/(p—1) (note that 8 > 2),
and using (2.4), we obtain

1/p
n2/ uxh 2 < C+ C( ﬂ?xﬁ) , (2.5)
n v, |zl
which, together with (2.3), implies
1/p
v, |zl v, |2l
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Since p > 1, we infer that

U
sup/ il Q)Xﬁ < +o0
n Ju, |2

and then, using (2.3) and (2.5),
sup/ f(uQ) X2 < oco.
n JB, |x|

Finally, by (f2) and by Fatou’s lemma,
(u)

|z[?

dx < 0.

B

STEP 2 (u € L'(B,)). This follows immediately from step 1, since we have that
0<u<C(L+ f(u)/|z?).

STEP 3.

[ waez [ GwePe forevery peCEB),

r B

WV

0.

Proof. For every n € N, let ¢, € C®(RY) satisfy 0 < ¢, < 1, ¢, = 0 on By,
¢n =1 on RN\ By, [Vo,| < Cn and |A¢,| < Cn? on U, = By, \ Bijy. Let
o € CX(B,), ¢ > 0. Since u solves —Au > f(u)/|z|? in D'(£2\ {0}), for every
n € N we have

[ unieon > [ oo (2:6)
r By
By step 1,
(u) (u)
OPn — .
B, |72 B, |72
Moreover, A(ppy,) = ¢ppAp + 2V, - Vo + pAd,. By step 2,
/ uppAp — / uAgp.
[0 [0
Furthermore,

/ u|Vo, - V| < C’n/ u and / up|Ady| < C’nQ/ u.
2 2

n n

We claim that
n2/ u— 0 asn — oo. (2.7)

n

Indeed, by (f1) and (f2), for every € > 0 there exists k. > 0 such that
flu) > ko foru>e. (2.8)

Arguing as in step 2, and using (2.8), we have that

2 C
n2/ u<n26|Un\Ufl|—|—n— flu) < Ce+ — (UQ),
kfe Us kfe Un |x|

n
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where US = U, N {u > €}. By step 1,

f(w)
/Un e

and thus, by the arbitrariness of € > 0, equation (2.7) follows. Hence we can pass
to the limit in (2.6) to get the thesis. O

Proof of theorem 2.2. Let us show the statement (i). By contradiction, suppose
that (2.1) admits a very weak positive supersolution u. By lemma 2.4, since o > 2,
u solves —Au > f(u)/|z|? in D'(£2 N By). In particular, by (f2), —Au > 0 in
D'(f2 N By) and, since v > 0, u # 0, by the maximum principle, © > € in a
neighbourhood U C {2 containing 0, for some ¢ > 0. Then, since f is continuous
and positive on (0, +00), there exists a > 0 such that f(u) 2 aonU. If N =2, we

have that
(u) / a
> — = 400,
U |3C|2 -~ U |3C|2

contrary to the fact that f(u)/|z|? € L*(U). If N > 2, we have that

a a 1
A — = Al ——1og—
! (N—z °g|x|>
in D'(U) and then
a

1
>N_210g——b on U (2.9)

||

for some b > 0 (see [4] for more details). Moreover, by (fl1) and (f2) there exists
k > 0 such that f(u) > kuP for v > € and then on U. Let now y € CX(RY)
be such that 0 < y < 1 on R*, y = 1 on [0,1] and x = 0 on [2,+00). Setting
Xn(z) = x(n|z]), B8 =2p/(p — 1), testing (2.2) with x? and arguing as in the proof
of step 1 of lemma 2.4, we obtain that

f(u) B < c

v |zl Xn S TN 2

(2.10)

for some C > 0. On the other hand, using (2.8) and (2.9), we have that

/ f(@;)x§>ke/ LQ
v |l By |17l

1
Bi/n JJ|
1
= (Alogn—B)m,

which, for n € N large enough, is in contradiction with (2.10).

Part (ii) turns out to be equivalent to (i) thanks to the Kelvin transform
x — z/|z|%2. More precisely, the proof of (ii) is accomplished using the following
lemma and the previous part (i).
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LEMMA 2.5. Let £2 be a domain in R? and let f € C(R). Then u is a very weak
supersolution to (2.1) if and only if @ is a very weak supersolution to

—Al = J(@) in 2, (2.11)

- |x|4—a

with 2 = {z/|z|? :z € 2, z #0} and @(z) = u(z/|z|?) for z € Q2.

Proof. Let u be a very weak supersolution to (2.1). One can easily check that
@ € L (£2) because 0 & §2 and, for U CC §2,

2

- u
L=l m

U U|33|

where U = {z/|z]? : z € U}. Similarly, one can see that f(a)/|z|** € LL (92).
Furthermore, if o € C°(§2) and $(z) = o(x/|z|?), then

o [ g [ S@ [ 10,

|| o |zl

1 T
Ap(zr) = —Ap(—=
@(x) |.Z‘|4 90( .Z‘|2)’ /f)
Hence @ is a weak supersolution to (2.11). The other implication follows by the fact

that the Kelvin transform is idempotent. O

REMARK 2.6. In order to state an analogous result to lemma 2.5 in any dimension
N, one has to consider a weighted Kelvin transform. More precisely, one can prove
that, given a domain 2 in RY and a Carathéodory function h : 2 x R — R, a
function v : 2 — R is a weak supersolution to —Au = h(z,u) in 2\ {0} if and
only if @ is a weak supersolution to

—|z|NT2AG = h(# |x|N—2a> in 0, (2.12)

with 2 = {z/]z|? : z € 2, x # 0} and @(z) = |z[2~Nu(z/|z|?) for z € 0.
Consider now the case h(x,u) = f(u)/|x|* with an arbitrary f € C(R). In order
that (2.12) for @ has the same structure of the equation for w, namely, can be
written in the form —Ad = f(@)/|x|® for some 8 € R, a necessary and sufficient
condition is that N = 2.
A special situation occurs if f is homogeneous. More precisely, if h(z,u) =
|u|P/|x|*, equation (2.12) becomes

a?
:W 1mn Q,

—Al
where & = N+2—a—p(N —2). In particular, for N # 2, we have & = « if and only
ifp=NX—1, where N} = 2(N —«)/(N —2). For N = 2, we have & = « if and only
if @« = 2, whatever p is. More generally, we note that in the two-dimensional case,
for & = 2, the equations (2.1) and (2.11) have the same form (invariance under
Kelvin transform for & = 2 and N = 2).
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3. The Dirichlet problem on domains containing 0 and
exterior domains

In this section and in the following one we study the existence of positive solutions
for the Dirichlet problem
—Au = Lu) in 2

ozl

u=20 on 012

3

(3.1)

in some cases that do not fit into the non-existence results of §1. In particular, in
this section we deal with smooth domains {2 in R? which are bounded and contain 0,
or which are exterior domains and 0 € 2. In §3 we will consider the case in which
2 is a cone in R? with vertex at 0.

As concerns the notion of solution to problem (3.1), we are interested in varia-
tional solutions, according to the following definition.

DEFINITION 3.1. Let £2 be a smooth domain in R? and let f € C'(R). A wariational
solution to problem (3.1) is a function v € L (§2) such that Vu € (L?(£2))%, u =0

loc
on 942 in the sense of the traces, f(u)/|z|* € Li (£2\{0}) and
/ Vu-Vap:/ f(ua)go

loc
for every ¢ € C°(2\ {0}).

Looking for variational solutions to problem (3.1) leads us to make suitable
assumptions on the behaviour of f at 0 and at infinity. More precisely, we will
restrict ourselves to the case f(u) = Au+ g(u), where A € R and g € C(R) satisfies
the following conditions.

(g1) loglg(u)| = o(u?) as |u| — oo.
(g2) g(u) = o(u) as u — 0.
(g3) There exists g > 2 such that 0 < pG(u) < g(u)u for any u # 0, with

|| (3.2)
u=20 on 0f2.

As we will see in the following theorems, the existence of positive variational solu-
tions depends also on the range in which A lies, as one expects. To this end, it is
useful to introduce the value

2
AM,a(f2) = inf{/ |Vul? :u € C(02), / L 1}
Q o lzl®

defined for an arbitrary domain 2 in R? and for any a € R.
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Note that for a bounded domain {2 containing 0, Ay ,(£2) =0 if @ > 2 (see [5]),
while A1 o(§2) > 0 and is attained by a positive function in H}(£2) if o < 2, since,
in this case, H}(2) is compactly imbedded in L2({2,dz/|z|*).

Moreover, by the Kelvin transform, one can easily see that if {2 is a domain in
R? and 2 = {z € R?\ {0} : z/|z|> € 2}, then A\; o(2) = A1.4_0(£2).

REMARK 3.2 (Evaluation of Ay ,(Bi)). Let §2 = By be the unit ball in R? centred
at 0. Let us prove that for every o < 2,

Al,a(Bl) = (1 - %O()Q)\l(Bl).

Indeed, fixing a < 2, there exists u, € Hg(B1), uq = 0, such that

u2
/ —% =1 and / |Vua|? = M o(B1).
By |7 B

Then, up to a multiplicative constant, u,, is the unique (classical) positive solution
to the Dirichlet problem

Uq .
—Aua = )\—a m Bla

|z| (3.3)
Uy =0 on 0By,

with A = A1 o(B1). Considering in particular the case o = 0, it is known that the
problem

—Au = )\1(31)’& in Bl,
u=20 on 0B;

admits a positive radially symmetric solution ug € H{(Bj). Then the function
Ua () = ug(z/|z|*/?) solves (3.3) with A = (1 — $a)2A1(B1).

3.1. The case a %= 2

The next theorem describes a case in which compactness holds.
THEOREM 3.3. Let g € C(R) satisfy (g1)-(93).

(i) If 2 is a bounded smooth domain and o < 2, then (3.2) admits a varia-
tional positive solution u € HY(2) if and only if X < A\ o(£2). In this case,
u € CH(02) for v < 1, and u > 0 in 2. In particular, u(0) > 0 when 0 € £2.

(i) If 2 is a domain with 0 ¢ 2 and o > 2, then (3.2) admits a variational
positive solution u if and only if A < A14_o(£2). In this case, u € C17(£2)
for v < 1, uw > 0 in 2. In particular, if {2 is an exterior domain, then
w(T) = U > 0 as |z| — oo.

Proof. (i) For every u € HJ}(£2) let us set

O i

o lzl*
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Since o < 2 and {2 is bounded, there exists C > 0 and o > 1 such that
J(u)? < C/ G(u)’.
19

Using (g1)—(g3), one easily checks that G(u) = o(u?) as u — 0 and log G(u) = o(u?)
as |u| — oo. Therefore, thanks to the above estimate on J and to the Trudinger—
Moser inequality [13], following a standard procedure, one infers that the functional
J is well defined and continuous on H¢ (£2). In fact, using analogous estimates and
standard arguments, one can see that J is Fréchet differentiable on H{(£2) and
its gradient is completely continuous (see [12, § IL.4]). This allows us to treat (3.2)
with classical variational techniques. In particular, the necessity of A < A1 (£2) is
obtained as usual by multiplying by the first eigenfunction. Instead, if A < A1 o(£2),
by assumptions (g1)—(g3), a variational positive solution u € H}(£2) to (3.2) can
be obtained as a mountain-pass critical point of the energy functional associated
to (3.2). Moreover, classical regularity arguments apply to show that v € C7(£2)
and v > 0 in §2.

(ii) It is enough to observe that a function u : 2 — R is a variational positive
solution to (3.2) if and only if, setting 2 = {z € R?\ {0} : /|z|* € 2}, the function
@ : 2 — R defined by @(x) = u(z/|z|?) for z € £ is a variational positive solution

to
—AQ = )\u—|——g(u) in _(2’
|x|4—a
u =0 on 992.
Then part (ii) follows by (i) and by the fact that Aj o (2) = A\ 4_a(£2). O

For « > 2 and 2 a bounded domain containing 0, the space HJ({2) is not
contained in L2(£2,dz/|z|%) and in general a lack of compactness occurs even con-
sidering the space H}(£2) N L?(£2,dx/|x|*). For instance, if o = 4, then, using the
Kelvin transform, problem (3.2) on a bounded domain containing 0 turns out to be
equivalent to the non-compact problem

—Au = Au+ g(u) in £,
u =0 on 012,
where (2 is an exterior domain.
However, considering radially symmetric situations, we recover compactness and,

because of theorem 2.2, we need a changing-sign nonlinearity, that is, we have to
assume A < 0.

THEOREM 3.4. Let g € C(R) satisfy (92) and (93), and let X\ < 0.

(i) Ifa<2and 2 ={z:|z[ > 1}, then (3.2) admits a variational positive radial
solution u € C?(2) N CY(2), u > 0 in 2, u(co) = 0.

(ii) Ifa>2and 2 = {x : x| <1}, then (8.2) admits a variational positive radial
solution u € C?(2\{0})NCY(N2), u >0 in 2\ {0}, u(0) = 0.
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Proof. (i) Setting u(z) = v(|\|*/?log|z|) and t = A" log ||, we can see that u is
a variational radial solution to (3.2) in 2 = {x : |z| > 1} if v : RT — R satisfies

—i+eltv = flg(v) for t>0, wve HIRT), (3.4)

where 8 = (2 — a)/|\|/? and g = |A\|'/2g. In particular, let us point out that

/ Vuf? = 27T|A|1/2/ o2,
2 0

To show the existence of a positive solution to (3.4), let us introduce the following
variational setting. Let

X:{veHg(Rﬂ:/O

endowed with the inner product

oo

ePly? < oo} ,

o0
(v1,v2) = / (0102 + etvyvg)
0

and with the corresponding norm |[v]| = (v,v)Y/2. One can check that X is a
Hilbert space, continuously imbedded in Hg(R™), and then in LI(RT) for every
q € [2,00]. We claim that X is compactly imbedded into L*®°(R¥). Indeed,
let (v,) C X be such that v, — 0 weakly in X, and suppose, by contradic-
tion, that limsup ||v,| L= = 26 > 0. Then, passing to a subsequence, there exist
(sn), (tn) C R such that s, < t,, [vn(sn)] =6, |va(tn)] = 26 and § < |v,(t)] < 2§
for t € (sn,tn). Let 7, = t, — $p. On one hand, we have that

tn tn \1/2
s< [Ta<n2([Ti2) <l
S Sn

n

and then, since (vy,) is bounded, inf 7, > 0. On the other hand,

t 2
" 1)
L e R
S

n

for some o, € (Sn,tn). Since inf 7, > 0, we obtain that (o,) is bounded and then
(spn) too. Therefore, inf, |v,(s,)| = 6 > 0, in contrast to the fact that v, — 0
uniformly on [0, ¢] for any ¢t > 0.

Now the existence of a positive solution to (3.4) is obtained with standard vari-
ational techniques. Indeed, let

and, for every v € X, let

1) = 4ol = o)

By (g2), I € C'(X) and the critical points of I are solutions to (3.4), of class
C? on R*. Then, using (g2) and (g3), one can check that the functional I has a
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mountain-pass geometry. Moreover, thanks to the compact embedding of X into
L>®(R"), the Palais Smale condition holds. Hence I admits a critical point v € X,
with I(v) > 0. Finally, with standard arguments, changing g by 0 on R™, we can
conclude that v > 0 in RT. Therefore, part (i) is proved.

(ii)Arguing as in the proof of theorem 3.3, one has that the statement (ii) is in
fact equivalent, by the Kelvin transform, to part (i). O

3.2. The case o« = 2

In this subsection we investigate some special features occurring when o = 2.

We remark that, in addition to the invariance under Kelvin transform (see
lemma 2.5), the case o« = 2 exhibits also invariance under dilation.

Let us consider first the problem on R? associated to the equation

_ Au+g(u)
e

By corollary 2.3, we know that (3.5) has no weak positive supersolution for A > 0.
On the other hand, we can state the following existence result.

THEOREM 3.5. Let g € C(R) satisfy (92) and (93), and let X < 0. Then (3.5)
admits a variational positive radial solution v € C*(R?\ {0}) N C°(R?), u > 0 in
R2\, {0}, u(0) = u(o0) = 0.

—Au n R2. (3.5)

Proof. Arguing as in part (i) of the proof of theorem 3.4, we have that u is a
variational radial solution to (3.2) in R? if and only if u(x) = v(|)\|l/2 log|z|) and v

satisfies
—i+v=g) in R, veHYR), (3.6)
where § = |A\'/2g. Now standard ODE or variational arguments show that (3.6)
admits a positive solution v € C?(R) and v(do0) = 0. Thus the proof is complete.
O
The possibility of also finding a variational positive solution to
YN [C) R Y
2] (3.7)
u =0 on 0f2,

when A\ < 0 and {2 is a bounded domain containing 0 (as it happens if « # 2) is
prevented, at least when {2 is star shaped, by the following Pohozaev-type result
that, in fact, holds without any sign assumption on .

LEMMA 3.6. Let {2 be a bounded smooth domain containing 0, and let f € C(R).
If u is a variational solution to (3.1) with o = 2, and if F(u)/|x|?> € L*(£2), where

r - [ " f(s)ds,

then

/ |Vul?z-v =0
on

(here v is the outward normal at 912). If, in particular, £2 is star shaped, then v = 0.
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Proof. Let x,, € C°°(R?) be a non-negative radial function such that x,(z) = 0
for |z| < 1/n, xn(z) = 1 for |z| > 2/n, and |Vx,| < Cn on R%. By standard
arguments, u is regular enough far from 0, and then

/ Vu - V(xpx - Vu) = / {(]2) XnZ - V. (3.8)
2 2 1z

On one hand, we have that

/Q Vu-V(xnx - Vu) = /Q(Vu - Vxn)(z - Vu)

—l/ (Vxn-x)|Vu|2—|—l/ div(xnz|Vul?). (3.9)
2Jq 2Jg

By the divergence theorem,

/ div(xpz|Vul?) :/ |Vul?z - v.
Q EYe)

Moreover, since

[ lxalivar < Vul?
N 1/n<|z|<2/n
and |Vu| € L?(£2), equation (3.9) gives
/ Vu-V(xnz - Vu) = l/ |Vul?z - v 4 o(1), (3.10)
7 2 Joa

where o(1) — 0 as n — o0o. On the other hand, since F(0) = 0 and u = 0 on 942,
we have that

[, g vu= [ e v= [ Fwas(ogs)
[ Hgy
2 |3C|2 "

[ W, <o [F(w)
2

|.7J|2 1/n<|x|<2/n |,Z‘|

Noting that

and, by assumption, F(u)/|z|*> € L'(§2), we conclude that

/ JLE]QXTLHC'VUHO as n — 00. (3.11)
Q

Finally, equations (3.8), (3.10) and (3.11) imply the thesis. |

Using lemma 3.6 we obtain the following non-existence result. Note that also in
this case we do not require any condition on the sign of u.

COROLLARY 3.7. Let g € C(R) satisfy (g1) and (92), A € R and let 2 be a
smooth bounded star-shaped domain in R? containing 0. If u is a variational solution
to (3.7) such that u?/|z|* € L'($2), then u = 0.
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Proof. Let X be the closure of C2°(R? \ {0}) with respect to the norm

= ([ awue s )

If u e C(R?\ {0}) and v(s, 0) = u(e® cosh,e® sinf), then

2
/ |Vu|2:/ |Vou|?  and / u—2=/ v?,
R2 x g2 |z x

where ¥ = R x (0,27). This shows that X is isomorphic to H'(X). Under the
assumptions (gl) and (g2), it holds that the functional

v = /2 G(v)

is well defined and continuous on H 1(2 ). Thus, since

/ G
R2 |33|

G(u)

X |3C|2

the functional

u +—

is well defined and continuous on X. In particular, if u satisfies the assump-
tions of the corollary, then G(u)/|z|?> € L*(£2) and thus, since u?/|z|? € L(12),
F(u)/|z|* € L'(£2). Finally, the corollary follows by applying lemma 3.6. O

4. The Dirichlet problem on cones

In this section we study the Dirichlet problem (3.2) when (2 is a proper
cone with vertex at 0, including the case of a half-plane, or R? \ I', where
I' = {(21,0) : z1 > 0}.

The special role played by the exponent o = 2 in the study of (2.1) is in fact
emphasized in a still more striking way, in the case of a domain like a cone, as
stated in the next result. Note that the cones with vertex at 0 are all the domains
in R?, which are invariant under dilation and Kelvin transform.

LEMMA 4.1. Let 2 be a cone in R? with vertex at 0 and let f € C(R) sat-
isfy (f]) Ifu is a variational solution to (3.1) such that F(u)/|z|* € L*(2) (where

fo ) and
[ 22 0
o |zl

Proof. Let x,, € C*°(R?) be a non-negative radial function such that x,, (z) = 0 for
|z] < 1/nand |z| > 2n, xu(x) = 1 for 2/n < |z| < n, |Vxn| < Cn for 1/n < |z]2/n,
and |V, | < C/n for n < |z| < 2n. Arguing as in the proof of lemma 3.6, we can
test the equation —Au = f(u)/|z|* with x,z - Vu, to get

/Vu-V(an-Vu): G )an Vu. (4.1)
2 o |zl

then a = 2.
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The left-hand side of (4.1) can be estimated with similar calculations as in (3.9),
(3.10), obtaining that

/Vu-V(an-Vu):l/ |Vul*xnz - v+ o(1), (4.2)
o 2 Jon

where o(1) — 0 as n — 00. As regards the right-hand side of (4.1), we have

[ e e [ (o)

g [P F)
=(2 )/Q PC Xn /Q o Vixn- (4.3)
Using the fact that F(u)/|z|* € L*(£2), equation (4.3) implies
. |3£|L2 XnZ - Vu = (2 — «) /Q }|;(|1:;) + o(1). (4.4)

Finally, by (4.1), (4.2), (4.4), and since x - v = 0 on the boundary of a cone, we

infer that u satisfies
F
(2 - a)/ (Ti) =0

that implies the thesis. O

According to lemma 4.1, when {2 is a cone, we are lead to study just the case
a = 2. Moreover, by the rotational invariance of (4.5), we can reduce ourselves to
consider cones of the form

29 ={(pcosT,psint) : p>0, 0 <7 <0},

where 6 € (0,27]. As we will see in the next proposition, it is convenient to introduce
the space

D{(029) = closure of CS°(£29) with respect to the norm |lu = ||Vu| 2

and the values

q
Sq(ﬁe)zinf{/ |Vu|2dx:uecg°(99),/ lul® _ }
(o)

20 |3C|2
where ¢ > 2. Note that So(f29) = A\1,2(f29), according to the definition given in § 2.

PROPOSITION 4.2. For every 0 € (0,2x], (D}(£29),] - ||) is a Hilbert space isomor-
phic to H} (%), where Sy = R x (0,6). Moreover,

(i) M 2(920) = 7%/0%

(i) for any q > 2, the value Sq(£2¢) is positive and is attained by a positive
function u € D}(£2p).
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Proof. The mapping ¢ : Xy — {29, defined by ¢(s, 7) = (e® cos 7, e®sin 1), is a diffeo-
morphism from Yy onto {2y with Jacobian given by |J4(s,7)| = e%*. Furthermore,
ifu € C°(2) and v = uw o ¢, then

q
/ |Vu|2:/ Vo2 and /%:/ o],
0 o (o) |x| Yo

Since the Poincaré inequality holds in D}(Xy), we infer that D}(Xy) = HJ(Xy)
and A12(29) = A1(Xy), that is, the ‘first eigenvalue’ for —A in H}(Xp). Hence
D{(£29) turns out to be a Hilbert space endowed with the norm |[Vul||z 2 and the
mapping @ : D}(2p) — D§(Xy), defined by ®(u) = u o ¢, is an isomorphism of
Hilbert spaces. Then, thanks to the isomorphism @, parts (ii) and (iii) follow by
well-known results. Finally, the equality A1 2(£2y) = 72/6? is obtained by using the
known fact that A\;(Xg) = A1 (lp) = 72/62, where Iy = (0, 0). O

REMARK 4.3.

(i) We point out the difference between the case 2 = R2, for which the
Hardy inequality fails, and 2 = 2 (including the case 2 = R2? \ T,
with I' = {x € R? : x; > 0}), for which the Hardy inequality holds, since
A1,2(£29) > 0. In fact, as it is clear from the proof of proposition 4.2, the
Hardy inequality on {2y is equivalent to the Poincaré inequality on Xy.

(ii) By proposition 4.2, for any A < A12(f2), the functionals

u2 1/2
u— (/ |Vul? — )\—2>
20 ||

define equivalent Hilbertian norms in D{(£2y).
Proposition 4.2 allows us to tackle the Dirichlet problem
A
_Autow) g,
|| (4.5)
u=20 on 02

—Au

by using variational methods.

THEOREM 4.4. Let g € C(R) satisfy (g1)-(93).

(i) Giwen 0 € (0,2x], problem (4.5) on 2y admits a positive solution if
A< )\1’2(09).

(ii) For every A € R, there emists 05 € (0,27] such that, for every 6 € (0,0,),
problem (4.5) on £y admits a positive solution.

(iii) Given 6 € (0,27, for every A € R, problem (4.5) on 2y admits infinitely
many solutions changing sign.

Proof. Let 6 € (0,27] be fixed. Using the isomorphism @ : D{(§25) — Ha(Xp)
defined in the proof of proposition 4.2, one can easily check that a function
u € D}(£29) is a solution to (4.5) if and only if v = &(u) is a solution to

—Av =X +gv) in Xy, wve Hi(Xp), (4.6)
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where Yy = R x (0,6). Under the assumptions (gl)-(g3), standard variational
arguments apply to prove the existence of a positive solution to problem (4.6) if
A< )\1(29) = )\1’2(09).

(ii) By proposition 4.2 (ii), for every A € R, there exists 6, € (0,2n] such that
A12(£29) > X if 6 € (0,6)). Then, by (i), problem (4.5) admits a positive solution.

(iii) Given 6 € (0,27] and X € R, by proposition 4.2 (ii), there exists kg € NU{0}
such that A\j 2(£2p,) > A for any k > ko, where 0 = 0/2%. Fix k > ko and, setting
Yk = X, consider the positive solution v of (4.6) on X}, obtained in part (i). Note
that, by regularity theory, v € C%7(X}) and v = 0 on X. We want to construct
a solution to (4.6) on Xy, and then, by the isomorphism @, a solution to (4.5) on
{29, by gluing together suitable translations of +v, with an ‘accordion’ procedure.
Precisely, let 6; = 62°=%, for i =0,...,k,vo =v and, fori =1,... k,

vi—1(s, T) as 7 € (0,0,—1], s€R,

Ui(S,T) - —’Ui_l(S,T - 91'_1) as T € (91_1,91), s € R.

By construction, vy, turns out to be a solution to (4.6) on X having 2~ positive
components. Since this procedure can be repeated for any k& > ko, part (iii) is
proved. O

In the special case in which § = 27, we have the following multiplicity result on
R?, to compare with corollary 2.3 and theorem 3.5.

COROLLARY 4.5. Let g € C(R) satisfy (91)-(g93). Then, for every A € R, equa-
tion (3.5) admits infinitely many solutions changing sign in D}(R?\ I').
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