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The origin of hysteresis in the flag instability
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The flapping flag instability occurs when a flexible cantilevered plate is immersed in
a uniform airflow. To this day, the nonlinear aspects of this aeroelastic instability are
largely unknown. In particular, experiments in the literature all report a large hysteresis
loop, while the bifurcation in numerical simulations is either supercritical or subcritical
with a small hysteresis loop. In this paper, the discrepancy is addressed. First, weakly
nonlinear stability analyses are conducted in the slender-body and two-dimensional
limits, and, second, new experiments are performed with flat and curved plates. The
discrepancy is attributed to inevitable planeity defects of the plates in the experiments.
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1. Introduction
The scientific interest in the flapping flag instability dates back to Lord Rayleigh

(1878). As a side remark in his famous paper on the stability of jets, he showed that
an infinite membrane placed in an airflow is always unstable. Of course, the problem
becomes more complex when bending rigidity and finite plate dimensions are taken
into account; see Paı̈doussis (2004) and Shelley & Zhang (2011) for recent reviews.

Theoretical models of this instability can be divided into two categories according
to the plate aspect ratio. For large aspect ratios, a two-dimensional analysis is relevant,
and Kornecki, Dowell & O’Brien (1976) were the first to show that the flow around
the plate can be modelled using unsteady aerofoil theory. When the plate aspect
ratio is asymptotically small, however, the aerodynamic forces can be modelled using
slender-body theory (Datta & Gottenberg 1975; Lemaitre, Hémon & de Langre 2005).
The studies in these two asymptotic limits have been recently generalized by Eloy,
Souilliez & Schouveiler (2007) and Doaré, Sauzade & Eloy (2011), who considered
intermediate aspect ratios and confinement effects.

The aforementioned stability analyses are all linear, though, and to our knowledge,
the nonlinear dynamics has never been addressed theoretically. This is one of the goals
of this paper, the other being to compare these new weakly nonlinear analyses to
experiments.

Since the pioneering study of Taneda (1968), different groups have performed
experiments on the flag instability either for small aspect ratios (Datta & Gottenberg
1975; Lemaitre et al. 2005) or for moderate to large aspect ratios (Zhang et al. 2000;
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) Sketch of the
experimental setup; (b) definition of the coordinates and plate dimensions; and (c) view of
the one-dimensional plate motion x(s, t)= (x, y).

Tang, Yamamoto & Dowell 2003; Eloy et al. 2008 among others). In this latter case, a
large hysteresis is always observed at the threshold or, said differently, the motionless
state and the flapping state coexist and are both stable over a large range of airflow
velocities. To quantify the importance of this hysteresis, we will refer to the hysteresis
loop, (Uc − Ud)/Uc, where [Ud Uc] is the velocity range of bistability. In large aspect
ratio experiments, this hysteresis loop is typically of 20 %. For aspect ratios smaller
than one, however, hysteresis can disappear (Eloy et al. 2008).

For small aspect ratios, and neglecting the nonlinearities of the aerodynamic forces,
Yadykin, Tenetov & Levin (2001) showed that elastic and inertial nonlinearities yield
no hysteresis. In the two-dimensional limit, most numerical simulations have exhibited
bistability, both for inviscid flows modelled with vortex methods (Alben & Shelley
2008; Michelin, Llewellyn Smith & Glover 2008) or for viscous flows modelled
with Navier–Stokes solvers (Zhu & Peskin 2002; Connell & Yue 2007). The only
exceptions are the studies of Tang et al. (2003), who did not consider aerodynamic
nonlinearities, and Tang & Paı̈doussis (2007), who considered relatively short and
heavy plates. Even when bistability is present, the hysteresis loop is much smaller
than in the experiments: Alben & Shelley (2008) and Michelin et al. (2008) report
hysteresis loops of 2.5–4 % and 4.5 %, while experiments in the same range of
parameters exhibit loops of 20 % or more. Several effects have been advanced to
account for this discrepancy: blockage and confinement effects (Tang & Paı̈doussis
2007), planeity defects of the plate (Tang & Paı̈doussis 2007; Eloy et al. 2008), or
damping effects (Alben & Shelley 2008). But, until now, none of these hypotheses
have been tested.

This paper is organized as follows: in § 2 the experimental setup is briefly described;
in § 3 the physical model is introduced and the weakly nonlinear analyses are carried
out; in § 4 the experimental results are presented and compared to the theoretical
predictions; and finally in § 5 these results are discussed.

2. Experiments
The experimental setup is illustrated in figure 1(a). Experiments are performed in

a horizontal low-turbulence wind tunnel of 80 cm × 80 cm cross-section. The flexible
rectangular plates are cut from Mylar sheets, whose physical characteristics are given
in table 1. The bending rigidity D has been measured through deflection tests under
gravity, and the fluid and material damping coefficients ν and µ have been evaluated
by measuring the damping of clamped plates in air at rest.
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Parameter Symbol Value Unit

Plate length L 3–30 cm
Plate height H 1–20 cm
Plate surface density m 0.25 kg m−2

Plate bending rigidity D 3.0× 10−3 N m
Fluid damping ν 0.044 kg m−2 s−1

Internal damping µ 1.7× 10−6 kg m2 s−1

Wind velocity U 0–65 m s−1

Air density ρ 1.20 kg m−3

TABLE 1. Characteristics of the experiments.

The same protocol has been followed in all experiments and will be briefly
described. Once the plate is clamped into the mast, the flow velocity is gradually
increased. At small velocities the plate is motionless. Eventually, for a critical flow
velocity Uc, the plate starts to flutter with a large amplitude and a well-defined
frequency. When the flow velocity is decreased, the plate returns to its stable state
again at a different critical velocity Ud 6 Uc, thus leading to a hysteretic cycle.

The motion of the plate is recorded with a CCD laser displacement sensor of spatial
and frequencies accuracies of 1 µm and 10 000 Hz. In the present study, the deflection
was measured at the plate centre. At this point and near the threshold the deflection is
always harmonic in time, and the amplitude A will refer to the peak amplitude of the
deflection.

3. Modelling
Consider a flexible plate of length L and span H clamped into a mast parallel to the

vertical axis 0z and immersed in a uniform flow of velocity U (figure 1b). Assuming
the motion is independent of z, this plate obeys the Euler–Bernoulli beam equation

m∂2
t x+ D∂4

s x− ∂s(〈T〉∂sx)+ ν∂tx+ µ∂t∂
4
s x+ 〈p〉n̂= 0, (3.1)

with s the curvilinear coordinate, x(s, t) = (x, y) the plate position, m its mass per
unit area, D its bending rigidity, T the generalized tension in the plate that enforces
inextensibility (i.e. ‖∂sx‖2 = 1), and 〈·〉 denotes the average along the span. The terms
proportional to ν and µ in (3.1) model the dissipation due to the fluid viscosity and
the Kelvin–Voigt structural damping respectively (Paı̈doussis 2004). The last term in
(3.1) is due to the pressure jump across the plate, p(s, z, t), and n̂ is the unit vector
normal to the plate (figure 1c). In addition the deflection y(s, t) satisfies clamped–free
boundary conditions: y= ∂sy= 0 in s= 0, and ∂2

s y= ∂3
s y= T = 0 in s= L.

The Reynolds number being large, we will further assume that the flow is potential
such that the total flow velocity is given by u = U + ∇φ, with U the imposed airflow
and φ the perturbation potential. The potential φ can be found by solving a Laplace
problem with Neumann boundary conditions ensuring the impermeability of the plate,
i.e.

1φ = 0 with ∇φ · n̂= (∂tx− U) · n̂ on S, (3.2)

where S is the moving plate surface. From φ the pressure jump can be calculated using
the unsteady Bernoulli equation.
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Using L and L/U as characteristic length and time, the control parameters are
reduced to three dimensionless numbers noted with asterisks: the reduced velocity U∗,
the mass ratio M∗, and the aspect ratio H∗, i.e.

U∗ = UL
√

m/D, M∗ = ρL/m, H∗ = H/L, (3.3a–c)

and the dissipative properties are characterized by two coefficients

ν∗ = νρ−2m3/2D−1/2, µ∗ = µρ2m−5/2D−1/2, (3.4a,b)

where ρ is the fluid density. With this non-dimensionalization the damping coefficients
depend neither on the plate dimensions H and L nor on the flow velocity U and are
thus constant in the present study: ν∗ = 0.071± 0.001 and µ∗ = 0.0014± 0.0003 (with
95 % confidence intervals).

Equations (3.1)–(3.2) describe the nonlinear, fully coupled, fluid–structure
interaction. We will now consider three approximations of these equations: the linear
limit to address the instability threshold, and the weakly nonlinear limit both for an
elongated plate and for an infinite plate, to study the nature of the bifurcation.

3.1. Linear model
Assuming small lateral deflection (y � L and ∂xy � 1), the system (3.1)–(3.2) is
linearized, giving

m∂2
t y+ D∂4

x y+ ν∂ty+ µ∂t∂
4
x y+ 〈p〉 = 0, (3.5a)

1φ = 0 with ∂yφ = ∂ty+ U∂xy for y= 0 and 0< x< L. (3.5b)

This system is solved by the same method as in our previous papers (Eloy et al.
2007, 2008), except that dissipative terms are retained in the analysis. The main steps
of this linear stability analysis are as follows. First, a complex angular frequency
ω is assumed and the deflection y is expanded on Galerkin modes that satisfy
the clamped–free boundary conditions. Second, the Laplace problem (3.5b) for the
perturbation potential is solved for each Galerkin mode in three dimensions, and the
associated average pressure jump 〈p〉 is calculated. Finally, the eigenvalue problem
obtained from the equation of motion (3.5a) is solved to obtain the global modes
and their complex frequencies. If one of these complex frequencies has a negative
imaginary part, the plate is unstable.

This linear stability analysis allows us to predict the critical velocity U∗c , above
which the system is unstable, as a function of the dimensionless parameters M∗, H∗,
ν∗, µ∗.

3.2. Slender-body nonlinear model
In the slender-body limit (i.e. H � L), the aerodynamic force on the plate can be
decomposed into two terms: a reactive force originating from the added mass of air
accelerated when the plate moves, and a resistive force modelling the drag on the
plate due to crossflow. As a result, the average pressure jump is decomposed as
〈p〉 = preac + presis, where preac is the reactive part and has been calculated by Lighthill
(1971) in the context of fish locomotion, and presis is the resistive part, so that

preac =M
(
ẇ− (uw)′+ 1

2 w2κ
)
, presis = 1

2ρCd|w|w, (3.6a,b)

where dots and primes denote differentiation with respect to t and s respectively, u
and w are the longitudinal and normal components of the plate velocity relative to the
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uniform airflow (such that ẋ− U = ut̂ + wn̂), so that

u=−Ux′ + ẋx′ + ẏy′, w= Uy′ − ẋy′ + ẏx′, (3.7a,b)

M = πρH/4 is the added mass of air, κ = y′′/ (1− y′2)
1/2

is the plate curvature and Cd

is a drag coefficient taken to be Cd = 1.8 for a plate (see Buchak, Eloy & Reis 2010).
Inserting (3.6) and (3.7) into (3.1) and projecting onto x̂ and ŷ give two coupled

dynamical equations for x(s, t) and y(s, t). Following Yadykin et al. (2001), these
equations are decoupled by first using the x-projection to eliminate the average
tension 〈T〉. Then x(s, t) and its derivatives are eliminated by using the inextensibility
condition. Finally the terms of order larger than y3 are discarded, yielding a weakly
nonlinear dynamical equation for y(s, t) that can be expressed as

L (y)+ mfm(y)+ DfD(y)+Mfreac(y)+ ρCdfresis(y)= 0, (3.8)

where L is the linear differential operator

L (y)= mÿ+ Dy′′′′ +M(U2y′′ + 2Uẏ′ + ÿ), (3.9)

and the other terms are O(y3) nonlinear terms, given by

fm(y)= y′
∫ s

0

(
ẏ′2 + y′ÿ′

)
ds− y′′

∫ L

s

∫ s

0

(
ẏ′2 + y′ÿ′

)
ds ds, (3.10a)

fD(y)= y′′′′y′2 + 4 y′y′′y′′′ + y′′3, (3.10b)

freac(y) = −1
2

U2y′′y′2 + U(ẏ′y′2 − 3y′′y′ẏ)− 2ẏ′y′ẏ− 1
2

y′′ẏ2 + y′
∫ s

0

(
ẏ′2 + y′ÿ′

)
ds

+ 2(Uy′′ + ẏ′)
∫ s

0
ẏ′y′ds− y′′

∫ L

s
y′
(
U2y′′ + 2Uẏ′ + ÿ

)
ds, (3.10c)

fresis(y)= 1
2
|Uy′ + ẏ|(Uy′ + ẏ), (3.10d)

except fresis, which is of order y2. For the sake of brevity dissipative terms have been
omitted from this analysis (we have checked that they were indeed negligible).

The deflection y is now assumed to be of the form

y(s, t)= (Ah0(s)+ h1(s))eiωt + c.c. (3.11)

where A is a small complex amplitude (|A| � L), h0 is the solution of the
linear problem L (h0eiωt) = 0 with clamped–free boundary conditions and the proper
normalization to allow comparison with experiments (i.e. h0(L/2) = 1/2, such that
y(L/2, t)= A cosωt), h1 gathers the terms of order greater than A, and ‘c.c.’ stands for
‘complex conjugate’.

Using standard methods of perturbation theory, the weakly nonlinear amplitude
equation for A is found. It consists in finding and solving the linear adjoint problem,
inserting the decomposition (3.11) into (3.8), and forming the scalar product with the
adjoint solution. It yields the following amplitude equation given in dimensionless
form for A∗ = A/L,

−ω∗2A∗ + iω∗U∗c1A∗ + (U∗2c2 + c3

)
A∗ + (U∗2c4 + iω∗U∗c5)|A∗|A∗

+ (U∗2c6 + iω∗U∗c7 − ω∗2c8 + c9

) |A∗|2 A∗ = 0, (3.12)

where ω∗ = ωL2
√

mD, and the complex coefficients ci depend on the control
parameters M∗ and H∗. Once the ci are calculated, the solutions of the second
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588 C. Eloy, N. Kofman and L. Schouveiler

degree (3.12) for ω∗ can be obtained. Then, values of |A∗| such that the imaginary
part of ω∗ is zero give the saturated amplitude A∗(U∗).

The first nonlinear effect comes from the resistive force (3.10d) and gives the
term proportional to |A∗|A∗ in (3.12). As a result, A∗ is proportional to (U∗ − U∗c )
close to the threshold. This behaviour has to be contrasted with the usual pitchfork
bifurcation for which A∗ is proportional to (U − U∗c )

1/2. In any case, the bifurcation is
not subcritical, and one therefore expects no hysteresis in the slender-body limit.

3.3. Two-dimensional nonlinear model
For plates of large aspect ratios (H� L), substantial assumptions have to be made to
solve the weakly nonlinear problem analytically. First the plate span and length are
assumed to be infinite. The problem then becomes two-dimensional, and it is further
assumed that the deflection is a propagating wave of amplitude A:

y= A cos(kx− ωt). (3.13)

To calculate the flow around the plate, the perturbation potential is expanded in powers
of A (i.e. φ = Aφ1 + A2φ2 + A3φ3 + · · ·), similarly to the methods used for the weakly
nonlinear analysis of the Rayleigh–Taylor instability (Nayfeh 1969). Inserting this
expansion into (3.2) and using a Taylor expansion to evaluate φ on the plate, the
Laplace problem is solved for the first three orders, yielding

φ±1 =∓(V − U) sin(kx− ωt) e∓ky, (3.14a)

φ±2 =− 1
2 k(V − U) sin(2kx− 2ωt) e∓2ky, (3.14b)

φ±3 =∓ 1
8 k2(V − U) sin(kx− ωt) e∓ky + h.o.t., (3.14c)

where V = ω/k is the wave speed of the deformation, the superscript ± corresponds to
the upper and lower parts of the flow and ‘h.o.t.’ stands for ‘higher order terms’.

The pressure field is deduced from the potential φ using the unsteady Bernoulli
equation. The y-component of the pressure force FP is then calculated by evaluating
the pressure jump using a Taylor expansion and projecting it onto the vertical axis.
Keeping only the first harmonics and the terms up to order A3 yields

FP = F1

(
1− 5

8 A2k2
)

with F1 = 2ρ (V − U)2 Ak cos(kx− ωt). (3.15)

The nonlinearities originating from the inertial and elastic terms can be evaluated
by using the expressions (3.10a,b). Note that derivatives with respect to s have to
be transformed into derivatives with respect to x using the chain rule. Note also
that, when calculating (3.10a), boundary terms arising from the integrations are
neglected because y(x, t), as given by (3.13), do not satisfy the clamped–free boundary
condition.

Neglecting the dissipative terms, the different nonlinearities can now be gathered to
obtain a weakly nonlinear dispersion relation in dimensionless form (with A∗ = A/L
and k∗ = kL):

−ω∗2

(
1+ 1

8
A∗2k∗2

)
+ k∗4

(
1− 1

2
A∗2k∗2

)
− 2

M∗

|k∗| (ω
∗ − U∗k)2

(
1− 5

8
A∗2k∗2

)
= 0, (3.16)

where the first term corresponds to inertia, the second to the bending force, and the
last to the pressure force. Solving this second degree equation for ω∗ and finding the
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values of A∗ for which the imaginary part of ω∗ is zero gives the saturated amplitude
A∗(U∗).

When the mass ratio and the wavenumber are the same as in the experiments
(M∗ = 0.6, k∗ ≈ 3π/2), the weakly nonlinear dispersion relation (3.16) predicts a
subcritical bifurcation, with a hysteresis loop of approximately 0.1 % (see figure 2b).
The bifurcation is always subcritical, except for small values of the mass ratio,
M∗ < k∗/10, for which it is supercritical. This prediction should be considered with
caution, however, because several approximations have been made to obtain the
dispersion relation (3.16): in particular, the plate has been assumed to be infinite
to calculate the pressure forces, and we know from the linear stability analysis that
finite size effects can be important.

However, a comparison with the inviscid numerical simulations found in the
literature give good qualitative agreement. For M∗ = 0.2, k∗ = 3π/2, the bifurcation
is found to be supercritical (since M∗ < k∗/10) as in Tang & Paı̈doussis (2007); for
M∗ = 3.3, k∗ = 5π/2, the hysteresis loop is equal to 5.2 %, which compares well with
the 3.4 % reported by Alben & Shelley (2008); finally, for M∗ = 10, k∗ = 7π/2, the
hysteresis loop is found to be 12.8 % while Michelin et al. (2008) found 4.5 %.

4. Results
To examine the dynamics near the threshold, two sets of experiments have been

carried out, either with flat plates or curved plates (see the inset of figure 2a). Flat
plates were cut from unused Mylar sheets and clamped into the mast, whereas curved
plates were first heated on a curved surface for 10 s. In this latter case, an intrinsic
curvature of the order of 0.1/L in the vertical direction subsisted (this curvature is
exaggerated in the inset of figure 2a). For both flat and curved plates, each experiment
was reproduced five to ten times to assess the repeatability and to extract statistics.

Experimental values of the flutter amplitude A∗, measured for M∗ = 0.6 and three
different values of H∗, are plotted in figure 2. It first shows that the deflection A∗(U∗)
does not depend on the intrinsic curvature of the plate and that the repeatability
on this measurement is excellent. These plots also show that the weakly nonlinear
analyses developed in § 3 give good predictions of the saturated flutter amplitude. In
the elongated plate limit (figure 2a), the analysis predicts a supercritical bifurcation
with A∗ proportional to (U∗ − U∗c ) near the threshold. However, as illustrated in
figure 2(d), A∗ can always be reasonably fitted as A∗ ∼ (U∗ − U∗c )

1/2 for all aspect
ratios, which indicates that the resistive force modelled by (3.10d) may not be valid
for small flutter amplitudes. Since this drag force is caused by vorticity shed from the
top and bottom edges of the plate, it probably means that this shedding occurs only
when the flutter amplitude is sufficiently large.

Experimental data for H∗ = 1.5 are plotted in figure 2(b) together with results of the
two-dimensional analysis. In the inset of the figure, the scale of U∗ has been expanded
to emphasize the subcritical nature of the bifurcation. This subcriticality does not
appear on experimental data (see figure 2d), but this could be due to the moderate
value of the aspect ratio. For H∗ = 1.0 (figure 2c), the measured flutter amplitudes lie
between the predictions of the slender-body and two-dimensional approximations.

Statistics on the the critical velocities have also been performed and the results are
reproduced in table 2 (see also the arrows in figure 2 indicating the mean values
of U∗c and U∗d ). These statistics show that U∗d exhibits good repeatability and has
indistinguishable values whether the plate is curved or flat. On the contrary, the
mean value of U∗c changed drastically between flat and curved plates. In addition, the
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FIGURE 2. Flutter amplitude as a function of the velocity U∗ for a mass ratio M∗ = 0.6
and aspect ratios: H∗ = 0.5 (a), H∗ = 1.5 (b), and H∗ = 1.0 (c). Open and filled symbols
correspond to experiments with flat plates and curved plates (see the inset in a). The
corresponding average thresholds U∗d and U∗c are represented with the same convention
(exact values are given in table 2). The lines in (a–c) represent the predictions of the weakly
nonlinear analyses in the slender-body (–) and two-dimensional limits (- -), as calculated from
(3.12) and (3.16). Finally the square of the amplitude is plotted in (d) for three experiments
with different aspect ratios as labelled (lines are best linear fits near the threshold).

standard deviation for U∗c is consistently larger than for U∗d , showing relatively poor
repeatability.

These results show that U∗c is extremely sensitive to curvature. As was shown by
Peake (1997), the plate curvature can be taken into account in the linear regime by
adding a spring foundation term to the equation of motion (3.1), with spring rate per
unit surface, Ehκ2, with E = 1.5 GPa the plate Young’s modulus, h= 280 µm the plate
thickness, and κ ≈ 0.1 m−1 the curvature. In dimensionless terms, this corresponds
to adding a constant term of order δ2/h2 to the dispersion relation (3.16), where
δ is the typical deflection due to curvature. For the curved plates used here, this
dimensionless spring rate is approximately 200 and leads to a 20 % increase in the
instability threshold, in qualitative agreement with the experimental observations (this
term is only an approximation because nonlinearities should be considered when
δ & 0(h): Audoly & Pomeau 2010). As soon as planeity defects are of the order of the
plate thickness, and this is almost impossible to avoid in practice, one then expects a
stiffening effect and a delayed instability.

When the plate starts to flutter, however, one expects this curvature to be ‘ironed
out’, as originally hypothesized by Tang & Paı̈doussis (2007). This ironing out is due
to the prohibitive cost of having a non-zero Gauss curvature that would introduce
stretching energy in addition to bending energy.
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H∗ = 0.5 H∗ = 1.0 H∗ = 1.5
U∗d U∗c U∗d U∗c U∗d U∗c

Flat plates 11.7±0.2 12.3±0.3 9.4±0.1 12.0±1.8 9.0±0.4 15.4±4.9
Curved plates 11.5±0.1 19.9±3.7 9.5±0.1 20.8±2.9 8.7±0.4 12.8±1.5

TABLE 2. Statistics of the measured critical velocities U∗d and U∗c for M∗ = 0.6 and three
aspect ratios H∗ = 0.5, 1.0, and 1.5. For each case, the first figure is the mean and the
second the standard deviation measured from 5 to 10 similar experiments.

In brief, we propose the following scenario. Because of curvature or planeity defects,
the plate is stiffer and the instability is delayed. Once the plate flutters, however, these
defects are ironed out and the decreasing threshold U∗d is the one predicted by the
analyses. This scenario is consistent with all the experimental observations. It explains
why A∗ and U∗d are unchanged when curvature is added, why U∗c has poor repeatability
and can be increased by curvature. It also explains why the hysteresis loop tends to
increase with the aspect ratio for flat plates (curvature defects should also have a
zero Gauss curvature and are thus more likely to be in the vertical direction when
H∗ > 1). Note that for the largest aspect ratio, H∗ = 1.5, the curved plates have a lower
mean threshold U∗c than flat plates, but this is not statistically significant because of
insufficient data.

The present stiffening scenario might not be the only cause of hysteresis: in
particular, it cannot explain the bistability observed in the soap film experiments of
Zhang et al. (2000). However, the alternative explanations found in the literature are
ruled out by the present set of experiments: neither blockage nor damping effects
would lead to poor repeatability of U∗c and a drastic increase of U∗c when curvature is
introduced.

Finally, it should be noted that no amplitude smaller than A∗ ≈ 0.06 could be
measured, for all aspect ratios and despite the care taken. It is thus difficult to give
a definite answer on the nature of the bifurcation. Nevertheless, the amplitude clearly
behaves as A∗ ∼ (U∗ − U∗c )

1/2 near the threshold (figure 2d), and we have shown that
the hysteresis is mainly caused by planeity defects. Without these defects, we would
thus expect a supercritical bifurcation, in agreement with the theory (the bifurcation
could become subcritical for larger H∗ or larger M∗, but then plates may sag under
their own weight).

Figure 3 shows how the thresholds U∗d and U∗c vary with aspect ratio for constant
mass ratio, or vary with mass ratio for constant aspect ratio. This measurement is
compared with the predictions of the linear stability analysis and the agreement is
excellent for U∗d , confirming the proposed scenario. It also shows that taking into
account the internal and viscous damping gives a better prediction of the instability
threshold.

Figure 3(b) also shows that, for sufficiently large airflow velocities, the flutter
is no longer periodic. This departure from periodic motion occurs apparently when
the unstable mode (with wavenumber k∗ ≈ 3π/2) has the same frequency as the
next eigenmode (with k∗ ≈ 5π/2). A nonlinear interaction between these modes is
thus likely to be the cause of this secondary bifurcation, which is currently being
investigated.
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FIGURE 3. Instability threshold as a function of H∗ for fixed M∗ = 0.6 (a) and as a function
of M∗ for fixed H∗ = 0.5 (b) for flat plates. Open and filled triangles correspond to U∗d and U∗c
respectively. The thick line is the result of the linear stability analysis detailed in § 3.1 and, the
thin line is the same analysis without dissipative terms (i.e. for ν = µ = 0). The filled circles
in (b) mark the departure from periodic motion and the dotted line indicates the location
where the second and third eigenmodes have the same frequency.

5. Conclusion
In this paper, we addressed theoretically and experimentally the nonlinear dynamics

of the flag instability near its threshold. Weakly nonlinear analyses have been carried
out both in the slender-body limit and in the two-dimensional limit. In the former
case, the bifurcation is always supercritical, while it can be subcritical in the latter
case for large enough mass ratios (in agreement with numerical simulations of Tang &
Paı̈doussis 2007; Alben & Shelley 2008; Michelin et al. 2008).

In the experiments, the dynamics near the threshold is complicated by inherent
planeity defects, which usually lead to large hysteresis. These defects are likely to be
the main cause of discrepancies between numerical simulations and experiments. They
are also responsible for the poor repeatability of the measured instability threshold
when airflow velocity is increased. However, the threshold measured for decreasing
velocity is both repeatable and in excellent agreement with the predictions of the linear
stability analysis.
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