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We use methods of bifurcation theory to study properties of solution curves for a
class of quasilinear two-point problems. Unlike semilinear equations, here, solution
curves may stop at some point, or solution curves may turn the ‘wrong way’
(compared with semilinear equations) as in a paper by Habets and Omari, where the
prescribed mean curvature equation was considered. This class of equations will be
our main example. Another difference from semilinear equations is that the
bifurcation diagram may depend on the length of the interval, as was discovered
recently by Pan, who considered the prescribed mean curvature equation and
f(u) = eu. We generalize this result to convex f(u), with f(0) > 0, and to more
general quasilinear equations. We also give formulae which allow us to compute all
possible turning points and the direction of the turn, generalizing similar formulae in
Korman et al . We also present a numerical computation of the bifurcation curves.

1. Introduction

We use methods of bifurcation theory to study the uniqueness and exact multiplicity
of positive solutions of the Dirichlet problem

ϕ(u′)′ + λf(u) = 0 for − L < x < L, u(−L) = u(L) = 0, (1.1)

where u = u(x), depending on a positive parameter λ. Problem (1.1) has been
studied extensively, but mostly under assumptions consistent with the p-Laplacian
case (ϕ′(t) > 0 for t �= 0 while ϕ(0) = ϕ′(0) = 0). The equation is then degenerate
elliptic. We shall consider another, less studied case, assuming that

ϕ ∈ C2(R) is odd and ϕ′(t) > 0 for all t ∈ R, (1.2)

f(u) ∈ C2(R̄+) and f(u) > 0 for u > 0. (1.3)

The main example is ϕ(t) = t/
√

1 + t2 of the prescribed mean curvature equation,
which was considered in [2, 5]; those papers motivated the present work. We con-
sider the problem on the interval (−L, L) for convenience, which is related to the
symmetry of solutions. By shifting, we can replace the interval (−L, L) by any other
interval (a, b) of length 2L. Unlike the semilinear case, equation (1.1) is not scaling
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invariant. Indeed, the length of the interval matters, as was discovered in [10]. For
the prescribed mean curvature equation and f(u) = eu, Pan [10] shows that the
bifurcation diagram is different for the case 2L < π and 2L � π, (see figures 3 and
4). We fully recover the results of Pan [10] and generalize them to any convex f(u)
and more general ϕ(t). While the previous papers used time maps, we have used
bifurcation theory analysis in the spirit of Korman et al . [8].

Another remarkable property of quasilinear equation (1.1) is that a solution curve
may turn the ‘wrong way’ compared with semilinear equations. For example, if
f(u) = up, 0 < p < 1 and ϕ(t) = t/

√
1 + t2 of the prescribed mean curvature

equation, Habets and Omari [5] discovered that the solution curve is parabola-like,
with a turn to the left. Here f(u) is concave, so that, for semilinear equations
(i.e. when ϕ(t) = t), only turns to the right are possible. By contrast, we show
that, for convex f(u), only turns to the left are possible, similarly to semilinear
equations.

The positive solutions of (1.1) turn out to be even functions, decreasing on [0, L),
i.e. α = u(0) is the maximum value of the solution. We prove that the value of
α = u(0) uniquely identifies the solution pair (λ, u(x)). It follows that the curves
in the (λ, α) plane, the bifurcation diagrams, give an exhaustive description of the
solution set of (1.1). For convex f(u) we show that the bifurcation diagram consists
of a single curve, which makes at most one turn. Generalizing Korman et al . [9],
we also give a formula which allows to compute all α at which a turn may occur,
and another formula, which gives the direction of the turn. Since, for quasilinear
equations, the set of all admissible α is often a finite interval, these formulae allow
us to give a computer-assisted justification of the bifurcation diagrams.

To see what the expected properties of the solutions are, we start with an equiv-
alent Dirichlet problem as follows:

u′′ + λh(u′)f(u) = 0 for − L < x < L, u(−L) = u(L) = 0. (1.4)

We assume that f(u) ∈ C2(R̄+) and

0 < h(t) ∈ C2(R) and h(−t) = h(t) for all t. (1.5)

This problem has been extensively studied without the term h(u′) (see, for example,
[1, 7, 11], which contain a number of further references). The extra term h(u′) may
produce some new effects, especially in the case when the well-known Nagumo
condition is violated, i.e. when h(u′) is superquadratic in |u′|. Let us consider two
examples (see also [6]).

Example 1.1.

u′′ + λ(1 + u′2) = 0 for − 1 < x < 1, u(−1) = u(1) = 0. (1.6)

Any solution of (1.6) is positive and even (see below), i.e. u(−x) = u(x) and u′(0) =
0. Integrating, we calculate the solution:

u(x, λ) =
1
λ

ln
cos λx

cos λ
.

Hence, for 0 < λ < 1
2π, problem (1.6) has a unique positive solution while, as

λ ↑ 1
2π, the maximum of solution u(0, λ) tends to infinity. For semilinear equations
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(i.e. without the h(u′) term) similar behaviour occurs if f(u) is asymptotically linear
(it is referred to as ‘bifurcation from infinity’).

Example 1.2.

u′′ + λ(1 + u′4) = 0 for − 1 < x < 1, u(−1) = u(1) = 0. (1.7)

Again, the solution is an even function. The equation is invariant under the trans-
formation u → u+const. This allows us to construct the solution of (1.7) by solving
first the initial-value problem

y′′ + λ(1 + y′4) = 0 for − 1 < x < 1, y(0) = y′(0) = 0, (1.8)

then selecting a constant α > 0, so that u(x) = y(x) + α solves (1.7) (observe that
y(x) < 0). Setting y′ = p(y), followed by q = p2, we can integrate (1.8), obtaining

y′ = −
√

− tan 2λy for x > 0. (1.9)

We can probably finish the analysis of this problem in an elementary fashion. How-
ever, it seems easier to rely on the results of the present paper. We will show that
all solutions of (1.7) lie on a unique solution curve and that the maximum value
u(0, λ) is increasing as we continue this curve, starting at λ = 0, u = 0. Since
u(1) = 0, it follows that y(1) = −α. As we continue the curve for increasing λ, the
quantity 2λα is monotone increasing, and hence at some λ, it will become equal to
1
2π. We see from (1.9) that the corresponding solution of (1.6) has an infinite slope
at both end points x = ±1, while the maximum value of solution is bounded. It
will follow from our results that the solution curve cannot be continued any further.
This phenomenon of ‘sudden death’ never happens for semilinear equations.

One can put problem (1.4) in the form (1.1) by letting

ϕ(t) =
∫

1
h(t)

dt.

One advantage of the form (1.1) is in the existence of the first integral, which we
review below. The advantage of the form (1.4) is that we may allow h(t) to vanish
at some points.

We recall the theorem of Crandall and Rabinowitz [3], which is one of our prin-
cipal tools.

Theorem 1.3 (Crandall and Rabinowitz [3]). Let X and Y be Banach spaces. Let
(λ̄, x̄) ∈ R × X and let F be a continuously differentiable mapping of an open
neighbourhood of (λ̄, x̄) into Y . Let the null space N(Fx(λ̄, x̄)) = spanx0 be one-
dimensional and codim R(Fx(λ̄, x̄)) = 1. Let Fλ(λ̄, x̄) �∈ R(Fx(λ̄, x̄)). If Z is a
complement of spanx0 in X, then the solutions of F (λ, x) = F (λ̄, x̄) near (λ̄, x̄)
form a curve (λ(s), x(s)) = (λ̄ + τ(s), x̄ + sx0 + z(s)), where s → (τ(s), z(s)) ∈
R × Z is a continuously differentiable function near s = 0 and τ(0) = τ ′(0) = 0,
z(0) = z′(0) = 0.
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2. Preliminary results

The following lemma on symmetry of solutions is included in the results of [4], but
we provide a simple proof.

Lemma 2.1. Assume that h(t) satisfies (1.5). Then any positive solution of problem
(1.4) is an even function, with u′(x) < 0 for x > 0.

Proof. It suffices to show that u(x) is symmetric with respect to any of its critical
points. Let u′(ξ) = 0. Consider v(x) ≡ u(2ξ−x). We see that v(x) is another solution
of (1.4), and v(ξ) = u(ξ) and v′(ξ) = u′(ξ) = 0. It follows that u(x) ≡ v(x). This is
only possible if there is a single critical point ξ = 0.

To apply bifurcation theory we need to consider the linearized problem for (1.4):

w′′ + λh′(u′)f(u(x))w′ + λh(u′)f ′(u(x))w = 0 for − L < x < L, (2.1)
w(−L) = w(L) = 0,

where u(x) is a solution of (1.4). If this problem has a non-trivial solution, we call
u(x) a singular solution of (1.4). We say that the solution u(x) is non-singular,
if w(x) ≡ 0 is the only solution of (2.1). Clearly, w′(L) �= 0 for any non-trivial
solution, and hence we may assume that

w′(L) < 0. (2.2)

Lemma 2.2. Let u(x) be a positive solution of (1.4). If problem (2.1) admits a non-
trivial solution, then it does not change sign, i.e. we may assume that w(x) > 0 on
(−L, L).

Proof. Assume that w(x) vanishes on (0, L) and the other case when w(x) vanishes
on (−L, 0) is similar. We can then find ξ ∈ (0, L), so that w(ξ) = 0, and w(x) > 0
on (ξ, L). Differentiate the equation in (1.4) as follows:

u′′
x + λh′(u′)f(u)u′

x + λh(u′)f ′(u)ux = 0. (2.3)

Combining (2.3) with the equation in (2.1), we have

(u′w′ − wu′′)′ + λh′(u′)f(u)(u′w′ − wu′′) = 0. (2.4)

We see that the function p(x) ≡ u′w′ − wu′′ satisfies a linear first-order equation.
Hence, it is either of one sign, or identically zero. We have p(L) = u′(L)w′(L) � 0,
in view of (2.2). On the other hand, p(ξ) = u′(ξ)w′(ξ) < 0, which is a contradiction.

Defining ϕ(t) by the relation ϕ′(t) = 1/h(t), we rewrite problem (1.4) in the form

ϕ(u′)′ + λf(u) = 0 for − L < x < L, u(−L) = u(L) = 0. (2.5)

If h(t) satisfies (1.5), then ϕ(t) satisfies (1.2). Conversely, if ϕ(t) satisfies (1.2),
then problem (2.5) can be put in the form (1.4), with h(t) satisfying (1.5). When
considering the form (1.4), we may allow for h(t) to vanish at some points. The
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advantage of the form (2.5) is the existence of the first (or energy) integral [7].
Indeed, defining

Φ(z) =
∫ z

0
tϕ′(t) dt and F (z) =

∫ z

0
f(t) dt,

we see that any solution of (2.5) satisfies

Eu(x) ≡ Φ(u′(x)) + λF (u(x)) = c = const. (2.6)

By lemma 2.1, any positive solution of (2.5) is an even function. We say that v(x)
is a supersolution of (2.5) if

ϕ(v′)′ + λf(v) � 0 for − L < x < L, v(−L) = v(L) = 0. (2.7)

We call v(x) a subsolution of (2.5) if the inequality sign is reversed. We call v(x)
a strict subsolution if the inequality in (2.7) is strict. Note that we require the
supersolution and subsolution to satisfy the boundary conditions. If v(x) > 0 is a
supersolution and it is an even function, then

E′
v(x) � 0 for x ∈ (0, L), (2.8)

and the opposite inequality holds for positive and even subsolutions.

Lemma 2.3. Assume that condition (1.2) holds, that v(x) is a supersolution and
u(x) is a subsolution of (2.5) and that both functions are positive on (−L, L) and
even. Assume that

|u′(L)| > |v′(L)|. (2.9)

Then
u(x) > v(x) for all x ∈ (−L, L). (2.10)

Proof. Observe that Φ(t) is an even function, positive for t �= 0, and Φ(x2) >
Φ(x1), provided that |x2| > |x1|. (For the prescribed mean curvature equation,
Φ(t) = 1 − 1/

√
1 + t2.) It suffices to prove (2.10) on the interval [0, L). By our

condition (2.9), the inequality (2.10) holds for x near L. As we consider decreasing
x, let ξ ∈ [0, L) be the first point where (2.10) fails. We then have

Eu(ξ) � Ev(ξ) and Eu(L) > Ev(L). (2.11)

Using (2.8), we also have

Eu(L) � Eu(ξ) and Ev(L) � Ev(ξ). (2.12)

Using (2.12) in the second inequality of (2.11), we obtain a contradiction to the
first inequality of (2.11).

The same argument gives us the following corollaries.

Corollary 2.4. With u(x) and v(x) as in the preceding lemma, assume that, for
some η ∈ (0, L), we have

u(η) = v(η) and |u′(η)| > |v′(η)|.
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Then

u(x) > v(x) for all x ∈ (−η, η). (2.13)

Corollary 2.5. Any two positive solutions of (2.5) cannot intersect, and hence
they are strictly ordered on (−L, L).

Remark 2.6. Assume that, for some η ∈ (0, L], we have

u(η) = v(η) and |u′(η)| = |v′(η)|,

and u(x) > v(x) on some interval (η − ε, η). Assume that either v(x) is a strict
supersolution, or u(x) is a strict subsolution of (2.5) (or both). Then (2.13) still
holds. Indeed, one of the inequalities in (2.12) is now strict, and we reach the same
contradiction.

By lemma 2.1, α ≡ u(0) is the maximal value of solution. We show next that
it is impossible for any two positive solutions of (2.5) to share the same maximal
value α.

Lemma 2.7. Assume conditions (1.2) and (1.3) hold. Then the value of u(0) = α
uniquely identifies the solution pair (λ, u(x)) of (2.5) (i.e. there is at most one λ,
with at most one positive solution u(x), so that u(0) = α).

Proof. Assume, to the contrary, that we have two solution pairs (λ, u(x)) and
(µ, v(x)), with u(0) = v(0) = α. Clearly, λ �= µ, since otherwise we have a con-
tradiction with the uniqueness property of initial-value problems. So let µ > λ.
Then v(x) is a strict supersolution of (2.5) (at λ). We have

v′′(0) = −µf(u(0))
ϕ′(0)

< −λf(u(0))
ϕ′(0)

= u′′(0).

It follows that v(x) < u(x) for small x > 0. The functions u(x) and v(x) will
intersect again at some 0 < ξ � L. But that is impossible by lemma 2.3 and
corollary 2.4.

The linearized problem for (2.5) takes the form

(ϕ′(u′)w′)′ + λf ′(u)w = 0 for − L < x < L, w(−L) = w(L) = 0. (2.14)

Lemma 2.8. Assume that conditions (1.2) and (1.3) hold, and u(x) is a positive
solution of (2.5), with |u′(L)| < ∞. Then any non-trivial solution of (2.14) satisfies
w(x) > 0 on (−L, L). Moreover, the null space of (2.14) is one dimensional, and
w(x) is an even function.

Proof. We could use lemma 2.2 to prove that w(x) does not change sign on (−L, L).
Instead, we give a self-contained proof. Differentiating equation (2.5), and combin-
ing the resulting equation with (2.14), we see that ϕ′(u′)(wu′′ − u′w′) = const.,
which implies that w(x) cannot vanish on [0, L) or on (−L, 0]. By the uniqueness
for initial-value problems, the value of w′(L) uniquely determines w(x), and hence
the null space of (2.14) is one-dimensional. Since the function ϕ′(u′) is even, w(−x)
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is also a solution of (2.14), and hence w(−x) = cw(x) (since null space is one-
dimensional). Evaluating this relation at x = 0, we conclude that c = 1, proving
the symmetry of w(x).

We will need the following simple non-degeneracy result.

Lemma 2.9. Assume that conditions (1.2) and (1.3) are satisfied, and, in addition,
that

f ′(u) >
f(u)

u
> 0 for all u > 0, (2.15)

tϕ′′(t) � 0 for all t ∈ R. (2.16)

Then any positive solution of (2.5) is non-singular, i.e. the linearized problem (2.14)
has only the trivial solution.

Proof. Multiply equation (2.5) by w, and (2.14) by u, then subtract and integrate
∫ L

−L

w′(u′ϕ′(u′) − ϕ(u′)) dx + λ

∫ L

−L

(
f(u)

u
− f ′(u)

)
uw dx = 0.

The second integral is negative, and the first one is equal to

−
∫ L

−L

wu′ϕ′′(u′)u′′ dx < 0,

giving us a contradiction, unless w ≡ 0 (observe that u′′ < 0 from equation (2.5)).

For the prescribed mean curvature equation we have ϕ(t) = t/
√

1 + t2, and con-
dition (2.16) is satisfied.

3. Uniqueness and multiplicity of solutions

We begin with a general description of the solution curve, for any L > 0.

Theorem 3.1. Assume that ϕ(t) satisfies condition (1.2), and that the function
f(u) ∈ C2(R̄+) is positive on (0,∞). Then all positive solutions of problem (2.5),
satisfying |u′(L)| < ∞, lie on a unique curve in the (λ, u(0))-plane. This curve is
parametrized by α = u(0). If, moreover, we assume that

f(u) is increasing for all u > 0 and Φ(t) is uniformly bounded on (−∞,∞)
(3.1)

and

lim
u→∞

f(u)
F (u)

= 0, (3.2)

then the value of α = u(0) on this curve cannot extend to infinity, i.e. the solution
curve stops at some (λ̄, ᾱ).
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Proof. We show that, at every point (λ0, u0), either the implicit function theorem or
the Crandall–Rabinowitz theorem 1.3 applies. We begin by recasting the equation
in operator form F (λ, u) = 0, where the map F (λ, u) : R+×C2(−L, L) → C(−L, L)
is defined by F (λ, u) = ϕ(u′)′ + λf(u). Observe that Fu(λ, u)w is given by the left-
hand side of the linearized equation (2.14). Since the point (λ0, u0) is singular, it
follows that the linearized problem (2.14) has a non-trivial solution w(x), which is
positive by lemma 2.8. By lemma 2.8 it follows that the null space N(Fu(λ0, u0)) =
span{w(x)} is one-dimensional, and then codimR(Fu(λ0, u0)) = 1, since Fu(λ0, u0)
is a Fredholm operator of index zero. To apply the Crandall–Rabinowitz theorem
(theorem 1.3), it remains to show that Fλ(λ0, u0) /∈ R(Fu(λ0, u0)). Assuming the
contrary would imply the existence of a non-trivial v(x), a solution of

(ϕ′(u′
0)v

′)′ + λ0fu(λ0, u0)v = f(λ0, u0) for x ∈ (−L, L), v(−L) = v(L) = 0.

By the Fredholm alternative (or just multiplying this equation by w, equation (2.14)
by v, subtracting and integrating)

∫ L

−L

f(λ0, u0)w(x) dx = 0,

which is impossible, since the integrand is positive. Hence, the Crandall–Rabinowitz
theorem 1.3 applies at (λ0, u0(x)), so we may continue the solutions.

To prove the uniqueness of a solution curve, let us continue the solutions toward
decreasing α = u(0). If f(0) > 0, the solution curve enters (λ = 0, u = 0). If
f(0) = 0, then α → 0 as λ → ∞ by the Sturm comparison theorem. In both cases,
any solution curve takes up all values of α near zero. By lemma 2.7, there can be
only one solution curve.

Turning to the last claim, we evaluate the energy relation (2.6) at x = 0, obtaining
c = λF (α) (with α = u(0)), and hence the energy relation takes the form

Φ(u′(x)) + λF (u(x)) = λF (α).

Evaluating this at x = L, and using the boundedness of Φ(t), we conclude that
λF (α) is bounded uniformly in α. If we assume on the contrary that α = u(0) → ∞,
then, by assumption (3.2), λf(u(0)) gets small, and since f(u) is increasing, the
same is true for λf(u(x)) for all x ∈ (0, L). Integrating equation (2.5) over any
interval (0, x), we conclude that |φ(u′(x))| is small, and hence |u′(x)| is small, which
is inconsistent with u(0) being large.

If the solution curve stops at some (λ̄, ᾱ), the most likely scenario is that when
we continue in λ the solution develops an infinite slope at x = ±L, when λ = λ̄,
and immediately disappears. We cannot rule out the possibility that the solution
continues for a while with infinite slope, and then disappears. However, for the pre-
scribed mean curvature equation we can give a condition for uniqueness of solution
with infinite slope at x = ±L.

Theorem 3.2. Let u(x) be a solution to the Dirichlet problem (2.5) for prescribed
mean curvature case (ϕ(t) = t/

√
1 + t2), such that |u′(±L)| = ∞. Define G(u) =
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F−1(u), the inverse function. Then
∫ π/2

0

G′(cos t/λ)
λ

cos t dt = L. (3.3)

Proof. The energy relation (2.6) at such a solution takes the form

1 − 1√
1 + u′2

+ λF (u) = 1

or
λF (u) =

1√
1 + u′2

. (3.4)

To integrate this equation, we let u′(x) = − tan t, where t is a parameter, 0 � t � 1
2π

(corresponding to 0 � x � L). Then, from (3.4),

λF (u) = cos t or u = G

(
cos t

λ

)
.

We have

dx =
du

u′(x)
=

G′((cos t)/λ)(−((sin t)/λ) dt)
tan t

=
G′((cos t)/λ)

λ
cos t dt.

Integrating, we conclude the lemma.

It follows that a solution with |u′(±L)| = ∞ may only occur at a unique λ,
provided that the function G′(cos t/λ)/λ is monotone in λ for all t ∈ (0, 1

2π).

Remark 3.3. We can give a similar formula for solutions with |u′(±L)| = p for
any 0 < p < ∞. Set ε = 1/

√
1 + p2 and define δ by tan(1

2π − δ) = p. Then our
arguments show that

∫ π/2−δ

0

1
λ

(
G′

(
cos t − ε

λ

))
cos t dt = L. (3.5)

The following is our main exact multiplicity result.

Theorem 3.4. Assume that ϕ(t) satisfies conditions (1.2) and (2.16), and more-
over that its range over R is bounded, while the function f(u) ∈ C2(R̄+) is convex,
it satisfies f ′(u) > 0 for u > 0 and it is bounded below by a positive constant on
[0,∞). Then problem (2.5) has at most two positive solutions for any λ > 0. More-
over, all positive solutions lie on a unique solution curve in the (λ, u(0))-plane. This
curve begins at the point (λ = 0, u(0) = 0) and either it tends to infinity at some
λ0 > 0, or at λ0 it develops infinite slope at x = ±L and stops, or else it bends
back at some λ0 > 0. After the turn, the curve continues without any more turns,
and it either tends to infinity for decreasing λ, or else it develops infinite slope at
x = ±L and stops at some λ̄, 0 � λ̄ < λ0 (the last possibility holds, provided that
conditions (3.1) and (3.2) are satisfied).

Proof. When λ = 0 we have a trivial solution u = 0. By the implicit function
theorem we conclude that, for small λ, there is a continuous-in-λ curve of positive
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solutions emanating from (λ = 0, u = 0). By the maximum principle, solutions
remain positive on our curve. We claim that this solution curve cannot be continued
indefinitely for all λ > 0. Indeed, since ϕ(0) = 0, integrating equation (2.5) we have,
for some γ > 0,

−ϕ(u′(x)) = λ

∫ x

0
f(u(z)) dz � λγx for all x ∈ (0, L).

Since the range of ϕ(t) is bounded, it follows that λ has to be bounded.
Let λ0 denote the supremum of λ, for which the solution curve continues to the

right. It is possible that solutions become unbounded or develop infinite slope at
x = ±L as λ → λ0 (these are two of the possibilities discussed in the statement of
the theorem). So assume that the solutions stay bounded as λ → λ0. Clearly, the
pair (λ0, u0(x)) is a singular solution of (2.5) (since solutions cannot be continued
to the right in λ). By theorem 3.1, the Crandall–Rabinowitz theorem (theorem 1.3)
applies at (λ0, u0(x)). We claim next that a turn to the left occurs at (λ0, u0(x))
and at any other critical point, which implies that there is at most one turn on the
solution curve.

According to the Crandall–Rabinowitz theorem 1.3, the solution set near the
point (λ0, u0(x)) is a curve λ = λ(s), u = u(s), with λ(0) = λ0 and u(0) = u0(x).
It also tells us that

λ′(0) = 0 and us(0) = w(x), (3.6)

where w(x) is the solution of the linearized problem. To prove the claim we need
to show that λ′′(0) < 0. To obtain an expression for λ′′(s), we differentiate equa-
tion (2.5) in s twice, obtaining

(ϕ′(u′)u′
ss + ϕ′′(u′)u′

s
2)′ + λf ′(u)uss + 2λ′f ′(u)us + λf ′′(u)u2

s + λ′′f(u) = 0.

Setting s = 0, and using (3.6), we have (we write u instead of u0)

(ϕ′(u′)u′
ss)

′ + (ϕ′′(u′)w′2)′ + λ0f
′(u)uss + λ0f

′′(u)w2 + λ′′(0)f(u) = 0,

uss(−L) = uss(L) = 0.

Multiplying this equation by w, the linearized equation (2.14) by uss, subtracting
and then integrating, we obtain

λ′′(0) =
−λ0

∫ L

−L
f ′′(u)w3 dx +

∫ L

−L
ϕ′′(u′)w′3 dx∫ L

−L
f(u)w dx

. (3.7)

Next we observe that w′(x) � 0 on [0, L). Indeed, we would get an obvious contra-
diction at any point of local minimum of w(x) (it is here that we use the assumption
f ′(u) > 0). On the interval (0, L), w′(x) � 0, u′ < 0 and hence ϕ′′(u′) � 0 by (2.16).
On (−L, 0) these inequalities are all reversed. It follows that

∫ L

−L

ϕ′′(u′)w′3 dx � 0,

and we conclude that λ′′(0) < 0. Hence, there is at most one turn (to the left) on
any solutions curve.
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Finally, we prove that there is only one solution curve. Indeed, if there were
another curve, we could continue it in the direction of the decreasing maximum
value u(0). We know that λ is bounded on any curve, so eventually this curve
would have to travel left in λ, but there would be no place for it to go, since we
have uniqueness near (λ = 0, u = 0) by the implicit function theorem.

We also have the following uniqueness result. We state it for the prescribed mean
curvature equation and f(u) = up, although, clearly, both ϕ(t) and f(u) can be
more general. For L = 1 this result was established earlier in [2, 5], while Pan [10]
observed that it holds unchanged for any L > 0. Our proof here is different.

Theorem 3.5. Consider the problem

ϕ(u′)′ + λuq = 0 for − L < x < L, u(−L) = u(L) = 0, (3.8)

where ϕ(t) = t/
√

1 + t2 with any constants q > 1 and L > 0, and where λ is a
positive parameter. Then all positive solutions lie on a unique curve in the (λ, α =
u(0)) plane. This curve begins at some (λ̄, ᾱ) and tends to (λ = ∞, α = 0) without
any turns. That is, for λ ∈ (0, λ̄) the problem has no positive solutions, and for
λ � λ̄ it has exactly one positive solution. The solution at λ = λ̄ has an infinite
slope at x = ±L.

Proof. We begin by showing that, for any L, we can find λ so that the problem
has a solution for any 0 < p = |u′(L)| � ∞. We use the formula (3.5). Here
G′(u) = c0u

−q/(q+1), with

c0 =
1

q + 1
(q + 1)1/(q+1).

The formula (3.5) takes the form

c0

∫ π/2−δ

0

(cos t − ε)−q/(q+1)

λ1/(q+1) cos t dt = L,

where ε = 1/
√

1 + p2 and tan(1
2π − δ) = p. Clearly, there is a unique λ solving this

equation.
It follows that for any L problem (3.8) is solvable for some λ. Let us start with any

such solution and continue it in λ. This can be done by lemma 2.9 since all solutions
are non-degenerate. When we decrease λ the solution curve will stop at some (λ̄, ᾱ)
by theorem 3.1, while, for increasing λ, the solution curve can be continued for
all λ. By the Sturm comparison theorem, positive solutions must tend to zero as
λ → ∞.

4. Numerical computations for the prescribed mean curvature equation

We discuss the numerical computation of positive solutions for the problem

ϕ(u′)′ + λf(u) = 0 for − L < x < L, u(−L) = u(L) = 0, (4.1)

where ϕ(t) = t/
√

1 + t2 and f(u) > 0 for u > 0. According to lemma 2.7, the
value α = u(0) uniquely identifies the solution pair (λ, u(x)). Since solutions of
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(4.1) are even, and u′(0) = 0, the knowledge of λ and α = u(0) allows a quick and
easy computation of solution u(x) by putting problem (4.1) into an equivalent form
(1.4) with h(t) = (1+ t2)3/2 and solving the initial-value problem, starting at x = 0
(in Mathematica this requires just one command, ‘NDSolve’). It follows that a
two-dimensional curve (λ, u(0)), the solution curve, gives a faithful representation
of the set of all positive solutions for problem (4.1) for all values of λ. The question
is, given α = u(0), how does one compute the corresponding λ?

We begin the computation of the solution curve with the energy relation (2.6),
which, for the prescribed mean curvature equation, takes the form (here Φ(t) =
1 − (1/

√
1 + t2))

1√
1 + u′2

= 1 − λ∆F, (4.2)

where we denote

F (u) =
∫ u

0
f(t) dt and ∆F = F (α) − F (u).

Solving for u′(x), with x ∈ (0, L), we obtain

du

dx
= −

√
2λ∆F − λ2(∆F )2

1 − λ∆F
.

Separating variables and integrating over x ∈ (0, L) yields
∫ α

0

1 − λ∆F√
2λ∆F − λ2(∆F )2

du = L. (4.3)

This is a relation, connecting λ and α, i.e. given α, we can compute the correspond-
ing unique λ (which is in accordance with lemma 2.7). We scale u = αv and put
(4.3) into the form

αg(α, λ) − L = 0, (4.4)

where

g(α, λ) ≡
∫ 1

0

1 − λ∆F√
2λ∆F − λ2(∆F )2

dv,

with a redefined ∆F = F (α) − F (αv). We now vary α with a certain step size and
compute the corresponding λ from (4.4) by employing Newton’s method:

α[g(α, λn) + gλ(α, λn)(λn+1 − λn)] = L,

i.e.

λn+1 = λn +
L/α − g(α, λn)

gλ(α, λn)
.

For the initial guess λ0 we take the value of λ, which was computed for the preceding
α. When λF (α) = 1, we see from the energy relation (4.2) that the solution has
infinite derivatives at x = ±L. We therefore stop calculating the solution curve
once the inequality λF (α) < 1 is violated.
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Figure 1. Solution curve for problem (4.1) with f(u) = u2, L = 1.
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Figure 2. Solution of problem (4.1) when f(u) = u2, L = 1, α = 2.3, and λ � 0.245639.

Example 4.1. We solve problem (4.1) with f(u) = u2, L = 1. Theorem 3.5 applies
in this case. In figure 1 we give the solution curve produced by Mathematica.

We see that the solution curve stops (i.e. it cannot be continued to the left) at
α � 2.3. In figure 2 we present the solution, computed using Mathematica, when
α = 2.3 and λ � 0.245639. Its slope is nearly infinite at x = L. Since the solution
u(x) is even, we present it on the half-interval (0, L).

5. Prescribed mean curvature equation with exponential nonlinearity

We apply our results to problem (u = u(x)) as follows:

ϕ(u′)′ + λeu = 0 for − L < x < L, u(−L) = u(L) = 0, (5.1)

where ϕ(t) = t/
√

1 + t2, for which we recover the recent results of [10].

Theorem 5.1 (Pan [10]). All solutions of problem (5.1) lie on a unique solution
curve. This curve begins at (λ = 0, u = 0) and continues for λ > 0. It makes exactly
one turn at some λ = λ0. If 2L � π, then after the turn the curve continues for all
λ > 0, and u(0) → ∞ as λ → 0. In the case when 2L < π, we have a solution with
|u′(±L)| = ∞ at some λ̄ < λ0, and the solution curve stops at λ̄.

Proof. Since f(u) = eu is convex, theorem 3.4 applies. Applying formula (3.3), we
see that if a solution with |u′(±L)| = ∞ occurs at some λ, then, where G(u) =
ln(u + 1), ∫ π/2

0

cos t

cos t + λ
dt = L,

i.e. 2L < π. It follows that, in the case where 2L � π, solutions cannot have infinite
slope at x = ±L.

To apply theorem 3.4, it remains to show that as we continue the solution from
(λ = 0, u = 0) to the turning point at λ = λ0, the solution curve cannot go to
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Figure 3. Solution curve of problem (5.1) when L = 1.

infinity or develop infinite slope at the end points. The first possibility is ruled
out by the energy relation, which implies that λF (α) < 1. To rule out the second
possibility, we show that for large p = |u′(L)| we have dλ/dp < 0 (i.e. infinite slope
at the end points can develop only for decreasing λ). We use formula (3.5). With
ε = 1/

√
1 + p2 and 1

2π − δ = tan−1 p, we have
∫ π/2−δ

0

cos t

cos t + λ − ε
dt = L. (5.2)

We differentiate this relation in p, observing that cos(π/2 − δ) = ε:

ε

λ

(
−dδ

dp

)
+

(
−dλ

dp
+

dε

dp

) ∫ π/2−δ

0

cos t

(cos t + λ − ε)2
dt = 0. (5.3)

By the above, we may assume that 2L < π. Observe that

−dδ

dp
=

1
1 + p2 ,

so that the first term in (5.3) is equal to

1
λ

1
(1 + p2)3/2 .

Also, dε/dp = −p/(1+p2)3/2. As p → ∞, we have δ, ε → 0, and by (5.2) we see that
λ tends to a limit λ̄ > 0 (if λ̄ = 0, then 2L = π from (5.2), which is a contradiction).
Then the integral in (5.3) tends to a positive value. We conclude that dλ/dp < 0
for large p, since otherwise the left-hand side of (5.3) is negative (the second term
is negative, while the first one is of higher order in p).

According to the energy relation, solutions with infinite slope at the end points
occur when λF (α) = 1. This is a curve in the (λ, α)-plane, which we call the blow-up
curve. For f(u) = eu, the blow-up curve is

α = ln
(

1 +
1
λ

)
. (5.4)

Example 5.2. Using Mathematica and the algorithm from the preceding section,
we have solved problem (5.1) for L = 1. In figure 3 we present the bifurcation
diagram. The solution curve touches the blow-up curve (5.4) (dashed), and stops.
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Figure 4. Solution curve of problem (5.1) when L = 2.

Example 5.3. We have solved problem (5.1) for L = 2; see figure 4. The solution
curve stays below the blow-up curve (5.4) (dashed) and continues for all λ, as λ → 0.

6. Computing the location of bifurcation

We again consider the problem

ϕ(u′)′ + λf(u) = 0 for − L < x < L, u(−L) = u(L) = 0. (6.1)

We shall assume that the conditions of lemma 2.7 hold. According to lemma 2.7, the
value of α = u(0) uniquely identifies the solution pair (λ, u(x)), and in particular
λ = λ(α). We now present a formula that allows us to compute all α at which a turn
of the solution curve may occur, i.e. when the corresponding linearized problem

(ϕ′(u′)w′)′ + λf ′(u)w = 0 for − L < x < L, w(−L) = w(L) = 0, (6.2)

possesses non-trivial solutions. (Recall that u(x) is then called a singular solution.)
We begin with an elementary lemma, whose proof is straightforward.

Lemma 6.1. Let U(x) be a solution of the linear equation

(a(x)u′)′ + b(x)u = 0.

Then w(x) = U(x)v(x) is a second solution of the same equation, provided that
v(x) satisfies

a(x)v′(x) =
c

U2(x)
, where c is any constant.

Theorem 6.2. Assume that conditions (1.2) and (1.3) hold. Define g(t) ≡ ϕ′(t)t3.
A positive solution of problem (6.1) with maximal value α = u(0) is singular if and
only if

H(α) ≡ λ

∫ α

0

f(α) − f(τ)
g(Φ−1(λF (α) − λF (τ)))

dτ − 1
Φ−1(λF (α))

= 0. (6.3)

(Recall that λ = λ(α) by lemma 2.7.)

Proof. We need to show that the linearized problem (6.2) has a non-trivial solution.
Set a(x) ≡ ϕ′(u′(x)). It follows by lemma 6.1 that the function

w(x) = −u′(x)
∫ L

x

1
a(t)u′2(t)

dt, (6.4)
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defined for x � 0, satisfies the equation in (6.2) (since u′ satisfies that equation).
We have w(L) = 0. Assume that we also have

w′(0) = 0. (6.5)

Let us continue w(x) to the interval (−L, 0) as a solution of the linearized equa-
tion (6.2), using the value of w(0) and (6.5) as the initial conditions. Since u(x) is
even, w(x) satisfies the same equation on (−L, 0) as it did on (0, L), and the initial
conditions are the same. It follows that w(x) is an even function and, in particular,
w(L) = 0. We have obtained a non-trivial solution of the linearized problem (6.2).
Conversely, any non-trivial solution of (6.2) is an even function by lemma 2.8, and
hence (6.5) is satisfied. It follows that the linearized problem (6.2) has a non-trivial
solution if and only if (6.5) is satisfied. We now show that this happens if and only
if H(α) = 0.

Expressing −a(x)u′′(x) = λf(u(x)) from equation (6.1), we have

a(x)w′(x) = λf(u(x))
∫ L

x

1
a(t)u′2(t)

dt +
1

u′(x)
. (6.6)

Similarly,

1
u′(x)

=
∫ x

L

d
dt

1
u′(t)

dt +
1

u′(L)
= λ

∫ x

L

f(u(t))
a(t)u′2(t)

dt +
1

u′(L)
.

Using this in (6.6),

a(x)w′(x) = λ

∫ L

x

f(u(x)) − f(u(t))
a(t)u′3(t)

u′(t) dt +
1

u′(L)
. (6.7)

Recall the energy relation

Φ(u′(x)) + λF (u(x)) = λF (α),

from which we obtain

u′(t) = Φ−1(λF (α) − λF (u(t))) and u′(L) = Φ−1(λF (α)), (6.8)

where the inverse function Φ−1 is taken to be negative valued. Then

a(t)u′3(t) = g(Φ−1(λF (α) − λF (u(t))))

and we rewrite (6.6), changing the variables

a(x)w′(x) = λ

∫ 0

u(x)

f(u(x)) − f(τ)
g(Φ−1(λF (α) − λF (τ)))

dτ +
1

Φ−1(λF (α))
. (6.9)

Here, setting x = 0, we see that (6.5) is equivalent to (6.3).

Example 6.3. Consider the semilinear case, when ϕ(t) = t. Compute g(t) = t3,
Φ(t) = 1

2 t2, Φ−1(t) = −
√

2t and g(Φ−1(t)) = −2
√

2t3/2. Then

H(α) = − 1
2
√

2
√

λ

[ ∫ α

0

f(α) − f(τ)
[F (α) − F (τ)]3/2 dτ − 2√

F (α)

]
,

which gives us the same result as in [9].
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Figure 5. The graph of the function H.

Example 6.4. We now revisit example 5.2, whose bifurcation diagram is given by
figure 3. The turn of the solution curve occurred at λ � 0.54 and α � 0.6. Here,
ϕ(t) = t/

√
1 + t2 and we compute

g(t) =
t3√

1 + t2
, Φ(t) = 1 − t√

1 + t2
,

Φ−1(t) = −
√

2t − t2

1 − t
, g(Φ−1(t)) = −(2t − t2)3/2.

This allows us to numerically compute the function H(α), whose graph we present
in figure 5.

We see that H(α) vanishes at α � 0.6. We could use this computation, together
with the formula from the next section, to give an alternative computer-assisted
justification of the bifurcation diagram in figure 3.

7. Computing the direction of bifurcation

In the preceding section we gave the necessary and sufficient condition that the solu-
tion curve has a turn at the solution with u(0) = α. We now present another formula
that allows us to compute the direction of the turn at u(0) = α. By lemma 2.7, the
value of λ at the turn is determined by the value of α. We define the functions g(t)
and h(t) as follows:

g(t) = ϕ′(t)t3, h(t) = ϕ′3(t)t.

We also define

J1(α) = −
∫ α

0
f ′′(τ)(Φ−1(λF (α) − λF (u)))2

×
( ∫ τ

0

1
g(Φ−1(λF (α) − λF (u)))

du

)3

dτ,

J2(α) = −
∫ α

0

ϕ′′(p(u))
h(p(u))

×
[
λ

∫ 0

u

f(u) − f(τ)
g(Φ−1(λF (α) − λF (τ)))

dτ +
1

Φ−1(λF (α))

]3
du,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.1)

where
p(u) ≡ Φ−1(λF (α) − λF (u)), J(α) = −λJ1(α) + J2(α).
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Theorem 7.1. We consider the problem (6.1) and assume that conditions (1.2)
and (1.3) hold. Assume that a turn on the solution curve occurs when u(0) = α
(i.e. H(α) = 0, see (6.3)). Then the turn is to the right in the (λ, α) plane if
J(α) > 0, and is to the left if J(α) < 0.

Proof. According to the Crandall–Rabinowitz theorem (theorem 1.3), the direction
of the turn is determined by the sign of λ′′(0), which is given by the formula (3.7).
By lemma 2.8, w(x) > 0, and so the denominator in (3.7) is positive. Hence, the
sign is determined by the numerator in (3.7), which is

−λ

∫ L

0
f ′′(u)w3 dx +

∫ L

0
ϕ′′(u′)w′3 dx ≡ −λJ1 + J2. (7.2)

(Recall that u(x) and w(x) are both even functions.) We shall show that the first
integral in (7.2) is equal to J1(α), while the second one is equal to J2(α). Using
(6.4), we rewrite the first integral in (7.2) as

J1 = −
∫ L

0
f ′′(u(x))u′3(x)

( ∫ L

x

1
a(t)u′3(t)

u′(t) dt

)3

dx.

In the inner integral we change from t to u by letting u = u(t). Using (6.8), we
obtain ∫ L

x

1
a(t)u′3(t)

u′(t) dt =
∫ 0

u(x)

1
g(Φ−1(λF (α) − λF (u)))

du.

Then

J1 = −
∫ L

0
f ′′(u(x))u′2(x)

( ∫ 0

u(x)

1
g(Φ−1(λF (α) − λF (u)))

du

)3

u′(x) dx.

Changing variables x → τ by letting τ = u(x), we obtain the integral J1(α).
Turning to the second integral J2 in (7.2), we rewrite it using the formula (6.9)

as follows:
∫ L

0

ϕ′′(u′)
u′(x)[ϕ′(u′)]3

[
λ

∫ 0

u(x)

f(u(x)) − f(τ)
g(Φ−1(λF (α) − λF (τ)))

dτ +
1

Φ−1(λF (α))

]3
u′(x) dx.

Letting u = u(x) here, we obtain the integral J2(α).
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