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Abstract. In recent work Philip Welch has proven the existence of ‘ineffable liars’ for Hartry
Field’s theory of truth. These are offered as liar-like sentences that escape classification in Field’s
transfinite hierarchy of determinateness operators. In this article I present a slightly more general
characterization of the ineffability phenomenon, and discuss its philosophical significance. I show
the ineffable sentences to be less ‘liar-like’ than they appear in Welch’s presentation. I also point to
some open technical problems whose resolution would greatly clarify the philosophical issues raised
by the ineffability phenomenon.

§1. Introduction. In [2] and [4], Hartry Field sets out a paracomplete solution to the
paradoxes of truth that he claims is revenge immune.

Part of the basis for this claim is his theory’s provision of a transfinite hierarchy of
definable determinacy operators Dα̇ .1 DA is intended to mean that A is determinately
true; DDA (or D2A) that A is determinately determinately true; and so on. These Dαs are
associated with theorems to the effect that certain ‘intuitively paradoxical’ sentences are
α-indeterminate for some α. The standard liar Q0, for example, is equivalent to its own
untruth (¬T�Q0�), which implies (in Field’s logic) that it isn’t determinate (¬DQ0) by
elementary reasoning. In fact one can argue in general that where Qα is equivalent to its
own α-indeterminacy, expressed by ¬DαT�Qα�, we always have ¬Dα+1Qα , that is, that
Qα is α + 1-indeterminate.

The Qαs are a natural class of paradoxical sentences, and the arguments for their α + 1–
indeterminacy are simple. One can create more and more complex paradoxical sentences
working in Field’s object language by e.g., iterated combinations of variants on Curry
and liar sentences, using the D operator. It is natural to wonder whether every ‘intuitively
paradoxical’ sentence in Field’s language can be shown to be α-indeterminate (for some α)
in this way, though it should be said that even formulating this idea precisely is not a
straightforward matter. (There will be some discussion on this below.)

In recent work Philip Welch has turned his attention to these issues and derived some
interesting and philosophically noteworthy results. In particular he has shown that, over
any given (standard) ground model M, there will be sentences W in the language of Field’s
theory whose “ultimate value” is 1

2 in the Field expansion of M,2 but for which every
definable determinacy operator Dα over M has the ultimate value of DαW 1

2 as well. As
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paradox.
1 I use α̇ in the paper to denote a notation for the ordinal α in a given formal language. Generally I

may leave of the dots when notation systems aren’t explicitly relevant.
2 For ‘Field expansion’, I mean a Strong Kleene expansion of M for a language with conditional

operator and truth predicate as described in [4]. §2 has more details.
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798 CHRIS SCAMBLER

a result none of these sentences or their negations get a designated value in the Field
expansion of M. Welch has dubbed these sentences ineffable liars, suggesting that they
are examples of liar-like sentences about which the object language of Field’s theory must
remain silent. Welch goes on to suggest that the existence of such ineffable sentences may
bear on the revenge immunity of Field’s logic.

In this paper I present a slightly more general characterization of ineffability to the one
given in [9], and a simpler and slightly corrected argument for the existence of ineffable
liars.3 Along the way, we will see that the sentences are less ‘liar-like’ than they may
initially seem. I then discuss the significance of these results with respect to the revenge
immunity of Field’s theory, pointing toward a couple of open logical problems that seem
to be of special philosophical significance in this regard.

First I will give some background.

§2. Field’s construction. In [2] and [4], Field shows how to expand any (standard)
model M for a classical language L to a model M+ for the language L ∪ {→, T}, which
I will hereafter call L+, satisfying naive principles of truth and validating reasonable laws
for → (with salient exceptions: conditional proof, and contraction). He then defines a
validity relation |�F for the expanded language using the expanded models. I will assume
familiarity with Field’s construction and logic, but must say a few things for later reference.

All formulas of the form A → B are atomic in L+. The construction proceeds by
iterating rounds of the Kripke construction4 (generating strong Kleene valuations for T ,
holding values for → fixed) and successively refining the valuations for → in the light of
information coming from the iterated rounds of the Kripke construction. If F is a valuation
for conditionals, let |A|F be the value for A in the least Kripke fixed point model expanding
M and the valuation F for →. A sequence Fα of valuations for conditionals can then be
inductively defined using:

F+
α = {〈�A → B�, 1〉 : ∃β∀γ ∈ [β, α)[|A|Fγ ≤ |B|Fγ ]} (1)

F−
α = {〈�A → B�, 0〉 : ∃β∀γ ∈ [β, α)[|A|Fγ > |B|Fγ ]}. (2)

Fα then consists of F+
α , F−

α , and all other conditionals paired with 1
2 . I will henceforth write

|A|α for |A|Fα .5

There are three broadstrokes possibilities for the sequence |A|α as α runs through the
ordinals: ||A|| = 1 means |A|α is eventually constant on 1, m.m. for ||A|| = 0; ||A|| = 1

2 iff
||A|| �∈ {0, 1}. In [2], Field proved

THEOREM 2.1. There are ordinals � for which |A|� = ||A||.

3 This paper arose because I noticed a small error in Welch’s original presentation, discussed in
note 19, and Welch and I both set about looking for ways to fix it. Unsurprisingly, my solution
diverges more from Welch’s original argument than his does. The problem with Welch’s original
argument, and the relation between his solution to it and mine, will be briefly discussed below, in
note 19.

4 In the sense of [5].
5 I understand from conversation with Field that he now prefers the definition for the 0-clause for

conditionals according to which a conditional gets the value 0 at a stage iff its antecedent had
the value 1 and the consequent had the value 0 at the previous stage. All the arguments I make
below are unaffected by which approach we take here; the modifications that would be needed to
accommodate it are obvious enough that I won’t point them out.

https://doi.org/10.1017/S1755020318000473 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000473


INEFFABILITY AND REVENGE 799

Such � are called acceptable points. These are (as Field shows) unbounded in the
ordinals, and I will enumerate them by �α . The least such ordinal �0 varies with the
cardinality of the ground model M, and we will have more to say about its precise location
in the ordinals relative to the cardinality of M below.

As already mentioned, one of the important facts about Field’s construction is that
it furnishes a transfinite hierarchy of determinateness operators Dα̇ , defined whenever a
notation α̇ is available for an ordinal α in L+ (relative to a given ground model).6 I’ll now
present some basic definitions and facts about this hierarchy.

The most basic definition is the following:

DA := A ∧ ¬(A → ¬A). (3)

Given the other rules of Field’s logic, we have that

|¬(A → ¬A)|α = 1

just in case A got the value 1 at the previous stage (where this means on a continuous tail
up to α if α is a limit).7 So, intuitively, |DA| = 1 holds at a given stage when A holds at
that stage, and held at the previous stage.

Of course, the operator D can be iterated; and how many times it can be iterated depends
on the availability of ordinal notations. The following definitions and lemmas carve out a
framework of sorts for discussing these.

DEFINITION 2.2. A two-place formula P(x, y) of L+ bivalently defines a prewellorder
(over a given ground model M) just in case

• P≤ = {〈a, b〉 : ||P(a, b)|| = 1} is a prewellorder;8

• For all b ∈ Fld(P≤) and all a ∈ M, ||P(a, b) ∨ ¬P(a, b)|| = 1.

When P bivalently defines a prewellorder, P≤ will have some definite ordinal type, and
consequently one can view the (names of)9 objects of Fld(P≤) as notations for ordinals in
L+ (relative to the ground model M). If a ∈ Fld(P≤) has a set of P-predecessors of order
type α, I will say that a is a notation for α and write α̇ for a (leaving P, M clear from
context).10

Suppose we are given a P that bivalently defines a prewellorder. By recursion along
P, and working in L+, we can define an operator DP(x, y) on (codes of) formulas and
notations by:

6 By ‘relative to a given ground model’, I will always mean ‘in the Field construction over a
given ground model’; in this case, specifically what is meant it that α̇ is a notation for α in
the Field expansion of whatever ground model we are considering. To avoid such a mouthful, I
will generally use the shorter phrase ‘relative to a given ground model’.

7 Because A → ¬A gets value 0 at α just in case there is a β such that for all γ ∈ [β, α) |A|γ is
greater than 1 − |A|γ (by the strong Kleene clause for negation), which happens just when |A|γ
is 1; and when α is a successor, this reduces to A getting the value 1 at the previous stage.

8 Here I assume that a and b name themselves in the language for all a, b in the domain M.
This means that technically the language varies with the ground model. Of course this could
be avoided, but the convention adopted seems to me the simplest.

9 See previous note.
10 One annoying technical detail here is that a notation for an ordinal may only ‘stabilize’ as such

fairly late in the construction. A full definition of notation would proceed level by level, and
would have the definition above as a special case. For present purposes, I have chosen to give
this looser version of the definition and simply restrict attention to sufficiently late stages of the
construction, because the alternative seems needlessly complicated.

https://doi.org/10.1017/S1755020318000473 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000473


800 CHRIS SCAMBLER

DP(A, 0̇) = A (4)

DP(A, ˙α + 1) = D(DP(A, α̇)) (5)

DP(A, λ̇) = ∀x[P(x, λ̇) → TDP(A, x)]. (6)

The notions of 0̇ and ˙· + 1 can obviously be written out in full in terms of P in L+. Really,
DP operates directly on the codes of formulas, not formulas; this is an object language
definition. I have left out the corner quotes for readability.11 The formula (coded by)
DP(A, α̇) is what I have been referring to as Dα̇A, and intuitively is the αth iterate of the D
operator applied to A. Importantly, one can show that if the order type of P is less than or
equal to that of Q, then the operators defined by P ‘agree’ with those of the corresponding
type as defined by Q, meaning that we can in effect ‘forget about’ which bivalently defined
prewellorder we employ. Similarly, since P is a prewellorder, there may and in general will
be different notations relative to P for each ordinal <OT(P≤), but again we can prove it is
a matter of indifference which is used. See [3] for further discussion of these operators.

Recall that DA is true at a given stage when A is true at that stage, and was true at the
last stage. One might therefore expect DDA to ‘look two stages back’, and so on for further
iterations. This is the content of the following lemma.

LEMMA 2.3. Let α̇ be notation for α over some ground model M. Then, for any A and
for sufficiently large γ (see note 10), |Dα̇A|γ = 1 if and only if there is a σ with σ +α ≤ γ ,
and |A|β = 1 for every β ∈ [σ, γ ].

Proof. A routine induction on α. �
In producing ineffable liars, it will also be important to have conditions relating ||Dα̇A|| to
|A|γ as γ goes through the ordinals. The case of 1 is straightforward: we have

LEMMA 2.4. ||Dα̇A|| = 1 iff ||A|| = 1.

Proof. An easy consequence of Lemma 2.3. �
But it is the case of 0 and 1

2 that we are really interested in; in this case, it is possible for
||A|| = 1

2 , but ||Dα̇A|| = 0, if certain conditions are met. The following series of lemmas is
designed to clarify these conditions. In so doing we will arrive at necessary and sufficient
conditions for a sentence to be ineffable.

LEMMA 2.5 (Diagonal Lemma). If |A|γ �= 1, then for each α > 0, |D ˙α+1A|γ+α = 0 so
long as the relevant notation exists.

Proof. By induction on α.12 For the base case if |A|γ �= 1 it is easy to verify that
|DA|γ+1 = 0, whence |D2A|γ+1 = 0 as the lemma requires. (Indeed, for all finite n we
will have the stronger |DnA|γ+n = 0.)

11 To put the corner quotes back in, you need to write �A� wherever A is written in the definition, and
also put corner quotes around the entire expressions on the right hand side of the identities (5), (6).
For the purposes of the definition, the bare operator D must also be understood as operating on
the code of A to yield a code for A ∧ ¬(A → ¬A). The actual formulas can of course be decoded
from that version of the definition in an effective way given any reasonable coding function �·�.

12 Because we are simply assuming notations exist for all relevant α, I’ll drop the dots in this
argument. Generally I may leave them off where no confusion is possible. I will also repeatedly
make use of the fact (which should be evident from the definitions) that |DαA|γ = 0 implies
|DβA|γ = 0, all β > α.
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Suppose α = β+1, and that it holds for β. Then we have |DαA|γ+β = 0 by the inductive
hypothesis, so that

|¬(DαA → ¬DαA)|γ+α = 0,

which implies |Dα+1A|γ+α = 0, as desired.
Suppose α = λ, and that it holds for all β < λ. Then we have |Dβ+1A|γ+β = 0 for

each β < λ by the inductive hypothesis, and this implies that |DλA|γ+β = 0 for all such
β. This in turn implies that |¬(DλA → ¬DλA)|γ+λ = 0, so that |Dλ+1A|γ+λ = 0, as
required. �

REMARK 2.6. In the context of the last lines of the previous proof, note that we do not
necessarily have |DλA|γ+λ = 0; indeed, if |A|δ = 1 for all δ ∈ (γ, γ + λ] we will have
|DλA|γ+λ = 1. (See Table 1.)

Table 1. Visualization of the ‘worst case scenario’ for the diagonal lemma, explaining
why the simpler |DαA|γ+α = 0 idea goes wrong. At γ + ω, DnA has the value 1 for every
n, yielding the value 1 for DωA (emphasized with exclamation points). Accordingly, the
correct diagonal runs one column to the right.

S A DA D2A D3A . . . DωA Dω+1A Dω+2A . . . DαA . . .
γ <1 ? ? ? . . . ? ? ? . . . ? . . .

γ + 1 1 0 0 0 . . . 0 0 0 . . . 0 . . .
γ + 2 1 1 0 0 . . . 0 0 0 . . . 0 . . .
γ + 3 1 1 1 0 . . . 0 0 0 . . . 0 . . .

...
...

...
...

...
. . .

...
...

...
. . .

... . . .
γ + ω 1 1 1 1 . . . 1!! 0 0 . . . 0 . . .

γ + ω + 1 1 1 1 1 . . . 1 1 0 . . . 0 . . .
γ + ω + 2 1 1 1 1 . . . 1 1 1 . . . 0 . . .

...
...

...
...

...
. . .

...
...

...
. . .

... . . .
γ + α − 1 1 1 1 1 . . . 1 1 1 . . . 0 . . .

γ + α 1 1 1 1 . . . 1 1 1 . . . 1
. . .

LEMMA 2.7. ||Dα̇A|| = 0 iff either

• ||A|| = 0

or

• There is an ε such that all δ > ε either have |A|β �= 1 for some β ∈ [δ, δ + α), or
|A|δ+α = 0.

Proof. For the right to left: This is obvious if ||A|| = 0, so assume that the values of A are
as described in the second bullet. We show that eventually all γ are such that |DαA|γ = 0.

Pick δ > ε (ε witnessing the existential claim in the second bullet) such that |A|δ < 1.
Let f (δ) be the least ordinal >δ such that |A|f (δ) < 1. (Our assumption implies f is total
on ordinals.) It suffices to show that |DαA|β = 0 for each β ∈ (δ, f (δ)], since then
the same reasoning applies in the interval [f (δ), f (f (δ))], &c. This is what we aim to
show.

There are two cases. Case one: for some γ ∈ (δ, δ + α), |A|γ < 1. Then γ = δ + ν for
some ν < α, so by the diagonal Lemma we must have |DαA|β = 0 for all β ∈ (δ, δ + ν].
Since by hypothesis |A|δ+ν < 1, we are done.
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Case two: |A|β = 1 for all β ∈ (δ, δ + α). In this case, the diagonal Lemma still
guarantees that |DαA|β = 0 for all such β; but then |A|δ+α must be 0 (since δ > ε). This
implies that |DαA|δ+α = 0, and obviously |A|δ+α < 1, so again we are done.

For the left to right we proceed by contraposition. Suppose that ||A|| �= 0, and

∀ε∃δ > ε∀γ ∈ (δ, δ + α)[|A|γ = 1, and |A|δ+α > 0]. (7)

Fix arbitrary ε; we will produce ν > ε at which |DαA|ν �= 0. Let δ > ε be as in (7). Using
Lemma 2.3, we have |DβA|(δ+1)+β = 1 for each β < α. If α is a limit ordinal we get
|DαA|δ+α = 1 immediately as a consequence. Otherwise we have

|¬(Dα−1A → ¬Dα−1A)|δ+α = 1;

and since by hypothesis |A|δ+α > 0, we must have |DαA|δ+α > 0 as required. So take
ν = δ + α. �

LEMMA 2.8. ||Dα̇A|| = 1
2 iff ||A|| = 1

2 , and for all ε there is a δ > ε with |A|β = 1 for
each β ∈ [δ, δ + α), and |A|δ+α �= 0.

Proof. A simple consequence of Lemmas 2.4 and 2.7. �
We can now give sharp conditions for a sentence to be ineffable. First, the formal

definition:13

DEFINITION 2.9. A sentence W is ineffable just in case ||W|| = 1
2 but ||Dα̇W|| = 1

2 for all
notations α̇ (relative, of course, to some fixed ground model M).

Next, the condition for ineffability. Intuitively (but roughly!), what it says is that a
sentence is ineffable when it gets ultimate value 1

2 , but takes the value 1 for a sequence
of α successive stages arbitrarily late for every α that has a notation.

THEOREM 2.10. A is ineffable iff ||A|| = 1
2 , and for every α with a notation (over M) and

all ε, there is a δ > ε with |A|β = 1 for each β ∈ [δ, δ + α), and |A|δ+α �= 0.

Proof. This follows by the definition of ineffability together with Lemma 2.8. �
It follows that in order to prove there is an ineffable sentence, it suffices to (1) show that
there are only notations over a given M up to some ordinal νM , and (2) then to show
that there is a sentence with ultimate value 1

2 on M which takes the value 1 unboundedly
beneath νM , and on unboundedly long sequences of stages. We intend to pursue this two
part strategy in the next section.

§3. Ineffability. In this section I present a proof that ineffable sentences exist that
relies heavily on the methods of Welch in [9], but that is slightly simpler in ways that may
turn out to be of some philosophical significance (as I suggest in §4).

In [9], Welch establishes several results relating the Field expansion of M to the M-
relative constructible sets. Recall that the latter are defined by:

LM
0 = M

13 It is worth noting that Welch himself does not give such a general definition of ineffability: his
idea is to find ineffable liars, primarily, that are diagonalized sentences. As I hope will become
clear (especially in §4), the more general characterization is logically and philosophically useful.
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LM
α+1 = Pdef LM

α

LM
λ =

⋃

α<λ

LM
α .

Where Pdef X is the set of all subsets of X definable (in the language of set theory) over X
with parameters from X. Recall also that M is a �2-elementary substructure of N, written
M ≺�2 N, just in case any �2 formula φ with parameters only from M that is true in N is
also true in M.14

Probably the most fundamental result of Welch’s here, for our purposes at least, is the
following.15

THEOREM 3.1. Let M be a structure for L. Then �M
0 (the least acceptable point over M)

is the least ordinal ρ0 such that LM
ρ0

≺�2 LM
ρ1

for ρ1 > ρ0.

The basic idea of the proof is as follows. Let τα enumerate the admissible ordinals
(always relative to M, though to keep the notation succinct I will drop reference to M where
no confusion is possible; see the note for a brief explanation and further references).16

Welch begins by proving that one can define the semantic value of any sentence A at stage
α over Lτα by a �2 formula. This is possible because, as is hinted by the syntactic form of
(1), (2), the definition of |A|α is a �2 recursion, and the L-ranks of M-admissible ordinals
satisfy enough set theory to carry it out. (Going into full detail would take us too far afield
here; a more detailed sketch is in the next note.)17 For admissible limits of admissibles
τλ, then, |A|γ is definable by a �0 formula (only bounded quantifiers) over Lτλ whenever
γ < τλ. Since ρ0 = τρ0 (as Welch shows in [7, Lemma 2.1]), we have that ρ0 is an
admissible limit of admissibles, and hence that |A|γ is �0-definable over Lτρ0

= Lρ0 for
γ < ρ0, and that |A|ρ0 is �2 definable over Lρ0 .

These facts allow us to infer Theorem 3.1. To show that ρ0 is acceptable it suffices to
show that |A|ρ0 = 1 if and only if ||A|| = 1, and similarly for 0. For the right to left
direction, note that because |A|ρ0 is �2 definable over Lρ0 and Lρ0 ≺�2 Lρ1 , we must have
|A|ρ0 = |A|ρ1 for any sentence A. Hence observe |A|ρ0+α = |A|ρ1+α for all α. In particular
we find (using ρ0 + ρ1 = ρ1) that

∀α[|A|ρ1·α = |A|ρ0 ].

14 Recall also that a formula (in the language of set theory) is said to be �0, �0 or �0 (indifferently)
iff all its quantifiers are bounded; �n+1 (�n+1) if it is of the form ∀xφ(x,�z) (∃xφ(x,�z)) where
φ(x,�z) is �n (�n). Where such complexity classes are used in this paper, I shall always be
referring to formulas of the language of set theory, possibly expanded to include the language of
whatever ground model is under consideration.

15 This is Theorem 2.1 of [7].
16 An ordinal τ is admissible over M if LM

τ is a model of a certain weak set theory (Kripke Platek
with Urelements from M). See [1] for more details.

17 First, because the Kripke construction can be given an inductive definition in the sense of [6],
the first level of the construction can be given by a �1 definition over LM

τ1
(as proven e.g., in

Barwise, [1, 215]). But then the next valuation for conditionals can easily be decoded from this,
and so if we have a further admissible we can define another round of the Kripke construction with
‘access’ to that valuation, gnerating the finite stages of the construction (always by a �1 formula
over Lτn , since only the previous valuation for conditionals is relevant). At limits, however, we
need to use the �2 clauses corresponding to (1), (2) to get the λth valuation for conditionals, as
well as the �1 truth definition, so in general the complexity is �2. More detail can be found in [8]
and [9].
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Since multiples of ρ1 are unbounded we must therefore have ||A|| = 1 implies |A|ρ0 = 1.
For the left to right, we need to show that |A|ρ0 = 1 implies ||A|| = 1. In fact we

prove this result only for a conditional sentence C; the result then follows for arbitrary
formulas by a routine induction, using the fact that the values for arbitrary sentences
follow mechanically via the Kripke construction. For this in turn it suffices to show (on the
assumption |C|ρ0 = 1) that |C|γ = 1 for all γ ∈ [ρ0, ρ1), since the by the reasoning of the
previous paragraph the values of formulas will constantly ‘loop’ in the same pattern from
there. Towards the the latter claim, note that |C|ρ0 = 1 implies (since C is a conditional)
that there is δ < ρ0 with |C|γ = 1 for γ ∈ [δ, ρ0]; hence it follows that

Lρ0 |� ∀γ > δ[|C|γ = 1] (8)

using the definability of |C|γ in Lρ0 . Now, suppose for reductio that there is γ ∈ (ρ0, ρ1)
for which |C|γ �= 1. Then we have

Lρ1 |� ∃γ > δ[|C|γ �= 1],

again using the definability result. But this is a �1 assertion true in Lρ1 with parameters
from Lρ0 , and so must reflect down to be true in Lρ0 , contradicting (8) and completing
the reductio. An exactly analogous argument serves to establish the analogous claim for 0,
and hence that |A|ρ0 = ||A|| for all A. Thus, ρ0 is an acceptable point. Finally, a similar
‘reflection argument’ can be given to the effect that ρ0 is the least such. Thus, we infer that
ρ0 = �0, the least ordinal for which |A|� = ||A||. Similar reasoning serves to establish
that �α = ρα for all α, where ρα = ρ0 + ρ1 · α.

This result has two important consequences (both due to Welch again). The first is

COROLLARY 3.2 (Stability mirage). There is a sentence W such that:

• ||W|| = 1
2• There are unboundedly many pairs of ordinals α < ι < ρ0 such that (a) ι is

additively indecomposable, and (b) |W|β = 1 for every β ∈ [α, ι].

Proof. Define rk(A) to be the least ordinal γ (if it exists) such that the semantic value
of A is constant on 1 from stage γ on in the Field construction. The notion of rk(A) makes
sense when relativized to any stage σ of the (M-)constructible hierarchy: rkσ (A) is the least
ordinal γ < σ (if it exists) at which the semantic value of A is constant on 1 from γ on
from the point of view of Lσ (that is, iff Lσ |� rk(A) = γ ). ||A|| = 1, then, if and only if
rkρ0(A) is defined (and so necessarily is < ρ0).

Corollary 3.2 then follows from the following lemma.

LEMMA 3.3 (Overspill). There is a sentence W and ordinals

ν0 < ν1 ∈ (ρ0, ρ1)

such that

• ν1 = τν1• rkν1(W) = ν0.

The lemma says that W appears to take a constant value on 1 for a sequence of stages
of length ν1 > ρ0 only starting after ρ0. Of course this implies that ||W|| = 1

2 , since all
sentences that actually have absolute value 1 take that value on constantly before ρ0 and
retain it forever more.
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For a sketch of the proof: Welch shows that for every γ < ρ0 there is a sentence Cγ with
rk(Cγ ) = γ [9, Lemma 1.6]. So if the Overspill lemma is false, the following expression

x = τx, and every ordinal α less than x has some sentence S with rkx(S) =
α, and moreover for no y > x with τy = y is there a sentence S with
rky(S) > x

would be a �1 (and hence �2) definition of ρ0 over Lρ1 (for no y > x. . . ), which is
impossible given Lρ0 ≺�2 Lρ1 .18

But now Corollary 3.2 follows. Taking δ < ρ0 < ν0 we can infer

Lρ1 |� ∃ι[ι = τι ∧ rkι(W) > δ]

since this is a �1 truth over Lρ1 with the parameter δ from Lρ0 , we infer

Lρ0 |� ∃ι[ι = τι ∧ rkι(W) > δ] (9)

and since δ is arbitrary <ρ0, and the ι must be additively indecomposable, the result
follows. �

For an intuitive gloss, note that the result implies that for arbitrarily large additively
indecomposable ordinals ι < ρ0, the sentence W appears to have a rank (that is, to take on a
value constant on 1 up to ι); but ultimately the sequence of 1s is always interrupted by other
values, since ||W|| = 1

2 . The sentence W can be construed as a sort of ‘stability mirage’:
as we progress through the construction, it appears to stabilize on value 1 for longer and
longer sequences <ρ0, but these always ultimately break down and the sentence ultimately
does oscillate unboundedly in its value.

It follows (by Theorem 2.10) that such a sentence will be ineffable so long as we can
show that there are only notations for ordinals <ρ0. And, as the reader might have guessed,
Welch has proven this, once again by a reflection argument. Indeed, the result is the other
“important corollary” to Theorem 3.1 I mentioned:

COROLLARY 3.4. The longest possible bivalently defined prewellorder over a given
ground model has type �0 = ρ0 (relative to M, of course). Hence there are only notations
α̇ for α < �0.

This time I entirely omit the argument. Roughly, the idea is that if there were a bivalently
defined prewellordering of type �0, we could show �0 = ρ0 to be �2 definable over Lρ1

with parameters from Lρ1 , which is a contradiction, as in note 18. See [9] Lemma 1.7 for
more details here.

We now have

COROLLARY 3.5. The sentence W from Corollary 3.2 is ineffable (over the ground
model M).

Proof. By Theorem 2.10, Corollary 3.2, and Theorem 3.4. Explicitly: fix an α with a
notation over M. By Theorem 3.4, α < �M

0 . By Corollary 3.2 there are arbitrarily large
ι > ν ∈ [α, �M

0 ) such that is ι is additively indecomposable, and for all γ ∈ [ν, ι)|W|γ =
1. Because ι is additively indecomposable, it follows that there is a proper sub-interval
[ν, ν + α] on which W takes the value 1. (Hence |DαW|ν+α = 1.) Since α stands for

18 Any ordinal Lρ1 definable by a �2 formula without parameters (such as the above) in Lρ1 must
belong to Lρ0 , and so in particular is not identical to ρ0.
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an arbitrary notation over M and such ι are unbounded below �M
0 , the result follows by

Theorem 2.10. �
I will conclude this section with some observations on the nature of ineffability and the

relation between the results presented here and those of [9].
When a sentence has ultimate value 1

2 in the Field construction – so that its value is
neither eventually constant on 1 or 0 – its sequence of values will always loop in a fixed
period α in the following sense: there will be some ordinal α such that |A|δ = |A|δ+α for
any sufficiently large δ. For example, the determinacy liars

Qα ≡ ¬DαT�Qα�

eventually take the value 1
2 , followed by α 1s, followed by the value 1

2 again, and so on
repeating; such sentences have period α + 1 when α is a successor, and α otherwise. As
a matter of fact, all of the ‘natural’ sentences one thinks of with ultimate value 1

2 can be
assigned some such period <�M

0 ; but W obviously can be assigned no fixed period beneath
ρM

0 . Indeed, since (9) implies

Lρ0 |� ∀δ∃ι[ι = τι ∧ rkι(W) > δ]

which is �2 over Lρ0 , this must (as Welch observes) reflect up to be true in Lρ1 , i.e.,

Lρ1 |� ∀δ∃ι[ι = τι ∧ rkι(W) > δ]

so that W cannot be assigned any period <�M
1 . (In fact this will be true for any sentence

with no period <�M
0 , by essentially this argument.) Necessarily, of course, no sentence

can have period >�M
1 in the Field expansion of M, so we conclude that W has period

exactly �M
1 .

Welch calls such sentences ‘sporadic’, and uses them in [9] to index special determi-
nateness hierarchies DC (for sentences C) that can in turn be used to furnish ineffable liars.
The indexing by sentences works because the ‘stability ordering’ on sentences, holding
between two sentences when they both ultimately get value 1 (or, as I will say, ‘stabilize’)
but the one takes on its constant value no later than the other, is internally (and bivalently,
in the sense of Definition 2.2) definable by a formula in the language of the construction;19

so any sentence that really stabilizes acts as a notation for an ordinal, and can be used as an
index for a determinacy hierarchy. The sentence W above then is then an apparent notation
arbitrarily late in the construction, but ultimately is no notation at all; Welch exploits this
to show that a diagonalized liar sentence QW equivalent to ¬DWQW is ineffable.

19 It was at this point that the small mistake arose in Welch’s original presentation; roughly, Welch
originally claimed that there was a formula of the language P(x, y) that took ultimate value 1 if x
and y coded sentences that stabilize and x stabilized no later than y, value 0 if they code sentences
that stabilize and x stabilized later than y, and 1

2 otherwise. In fact this is inconsistent. Welch’s
solution (cf. [10]) is to only have P take the value one on x and y if either y does not stabilize, or
x stabilizes before y; P takes the value 1

2 on x and y in all other cases.
In the process of thinking through the same problem, I arrived at this alternative solution,

which does not seem to require the internal definability of the stability hierarchy (or this P).
In this respect the argument is simpler. It also has shows that the ineffable sentences can be
characterized in terms of their having a distinctive type of semantic value in Field’s ‘fine-grained’
algebraic semantics of [4], Chapter 17, though a proper examination of this would be the topic
for another paper.
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The arguments just given show that this detour through diagonalization is not necessary
if ineffability is the goal, because (by Theorem 2.10 and Corollary 3.4) any such sporadic
sentence over a given model will itself be ineffable; and as we have seen, there will always
be such sporadic sentences. One upshot of the above analysis, then, is that ineffability
really just is sporadicness.

§4. Concluding remarks. In [7] and [8], Welch has suggested that the existence of
ineffable sentences may bear on the revenge immunity of Field’s theory of truth. How
might such a thought be made out? One natural idea would be that the ineffable sentences
might constitute ‘intuitively paradoxical’ sentences that escape classification as defective at
any level of the determinateness hierarchies available in the language of Field’s theory.20 If
so, this would suggest an expressive weakness to that language, and threaten new revenge
problems.

Of course a lot of the difficulty in framing the revenge problem here will be making sense
of the idea that sentences like W are indeed ‘intuitively paradoxical’ in some meaningful
sense of the term. I think a good case might be constructed for the claim that an ineffable
sentence W should be considered intuitively paradoxical on Field’s theory if at least one of
the following two conditions are met:

1. There are absolutely ineffable sentences, in the sense that there are ineffable sen-
tences that are ineffable over any ground model in the relevant language.

2. There is some paradoxical pattern of inference associated with such a W given a
plausible set of rules and axioms ‘read off’ from Field’s model theory.

On the first, the idea is that if ineffability is not absolute in this sense then it might seem
plausible that the ineffability of a given sentence is really a reflection of necessary Tarskian
constraints on given ground models for the language. For example, if ineffable sentences
in ‘smaller’ models of set theory could be shown to be effable relative to ‘bigger’ ones,
one would have some reason to believe that the ineffability phenomenon was somehow
reflecting the restrictions imposed by the model constructions. On the other hand if inef-
fability is absolute in this sense one might be able to make a serious case that there really
is a property of the sentence and its construction out of → and T that demands, but does
not receive, treatment in the logic. To my knowledge, the question of the absoluteness of
ineffability is open at present.21

On the second, it is helpful to compare the situation with the standard liar in the Kripke
construction (from [5]), which is sometimes suggested to be an example of a revenge
problem for a theory. Suppose we use Kripke’s model theory to axiomatize a truth theory,
taking as axioms the rules of strong Kleene logic, the rule

A/T�A�
and its converse, together with a reasonably strong syntactic theory. Using these elements
we can produce Q0 and derive the rule

Q0/¬Q0

and its converse. This is a particular sentence we have effective means to produce ‘inside’
the theory that exhibits what might naturally be construed as a paradoxical pattern of

20 There’s a notion of purely formal paradoxicality that might be identified with ‘having value 1
2 in

a given model’ that the ineffable sentences certainly have; but it is unclear what the philosophical
significance of this is, for reasons that will become clear below.

21 Welch has informed me that he has a sentence that works for all countable models; but the general
case is still open.
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inference. Nevertheless, we know that any logic based on the Kripke theory must remain
pretty much silent on the status of Q0.22 In particular, if the logic is encoded in a recursively
enumerable validity relation �K , we will have �K Q0, �K ¬Q0, and so on. But then (the
worry goes) surely this �K notion, which seems to be doing a lot of work in avoiding the
nasty consequences of Q0, should be expressible in the object language. And if we allow
this, we might find ourselves saddled with paradoxes very similar to the ones we set out
from.

Of course this is a very rough sketch and there are numerous points at which this case
might be questioned. But something like this might be taken to be problematic for the
Kripke theory; does W provide anything similar for Field’s? Our foregoing observations
suggest that there are considerable differences between W and Q0: in particular, ineffable
sentences are not primarily produced by diagonalization, and indeed the methods of argu-
ment presented do not provide any way of constructing an ineffable sentence W internally
to the language of the theory, by means parallel to Gödel-Tarski diagonalization argument.
(It would be a mistake to believe that Welch’s QW ≡ ¬DWQW was a counterexample; for
actually producing such a sentence QW requires producing a sentence W that is sporadic,
but the arguments above show that this is really no advance on the problem of producing
an ineffable sentence.) So it is somewhat unclear whether or not we can even produce an
ineffable sentence step-by-step using Ts and →s, and indeed whether we could in principle
identify one on that basis if we saw one. Perhaps the only way of identifying them is in
terms of the set-theoretic metatheory.

Even if we did find some ingenious way of combining Ts and →s to produce an ineffable
sentence, and even if that sentence was absolutely ineffable for set-theoretic models of
the kind described above, this still would not settle the question of whether there is a
distinctively paradoxical pattern of inference associated with W over some ‘core rules’ for
Field’s theory, comparable to that for Q0. After all, what’s valid on the standard model
theory above is extraordinarily complex, and so any recursively enumerable validity re-
lation �F ‘read off’ from that model theory will be weaker. It is therefore possible that
such a �F would be consistent with accepting W and/or its negation as an axiom. If this
could be shown (by modeling the chosen ‘core rules’ and an ineffable W), then we would
have that W is consistent with the chosen ‘core rules’, and so (plausibly) not intuitively
paradoxical from the point of view of the Field theory. In contrast, Q0 cannot be accepted as
an axiom on the Kripke theory without violating basic rules of the logic, basically because
Q0 �K ¬Q0 on any reasonable axiomatization for �K .

To conclude, I would suggest that settling the two questions raised above, and especially
the second, is an important open problem for assessing the revenge immunity of Field’s
theory of truth.
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22 This applies whether we take strong Kleene or Supervaluation logic, though the situation is
certainly starker when it comes to strong Kleene.
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