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We derive a simple recursion to compute moments of arbitrary order of the duration
of busy periods of MX/G/1/n systems starting with an arbitrary number of customers
in the system.

1. INTRODUCTION

In this article we derive a recursion to compute moments of arbitrary order of the
duration of busy periods in batch arrival MX/G/1/n systems, taking advantage of the
Markov-regenerative structure of the number of customers in these systems.

The M/G/1/n system with finite capacity has been extensively studied and the
analysis of its busy periods has been addressed by many authors; see, for example,
Abramov [1], Harris [3], Miller [7], Peköz, Righter, and Xia [8], Perry, Stadje, and
Zacks [9], and Shanthikumar and Sumita [11]. The traditional approach to study busy
periods is through their Laplace–Stieltjes transforms, and the distribution of the length
of busy periods of M/G/1/n systems has been addressed by Cooper and Tilt [2], Harris
[3], Miller [7], and Shanthikumar and Sumita [11], and references therein. In particular,
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Miller [7] derived a recursive scheme to compute Laplace–Stieltjes transforms of the
distribution of the length of busy periods of M/G/1/n systems, which was enhanced
by Shanthikumar and Sumita [11] for M/G/1/n systems with state-dependent arrival
rates.

Recursions for Laplace–Stieltjes transforms of the length of busy periods might,
in principle, be used to derive forms of computing the associated moments, as stressed
by Miller [7] when computing the mean duration of busy periods of M/G/1/n systems,
but this might become involved for moderate- or large-capacity systems and arbitrary
order moments. We address the computation of moments of arbitrary order for the
duration of busy periods of MX/G/1/n systems in Section 2, and we present numerical
examples in Section 3.

2. MOMENTS OF DURATIONS OF BUSY PERIODS

In this section we address the computation of moments of durations of busy periods in
an MX/G/1/n system (i.e., a single-server queuing system at which customers with
general customer service times arrive in batches, with independent and identically
distributed (i.i.d.) sizes, according to a Poisson process). The sequences of batch sizes
and batch interarrival times are independent, and the system has finite capacity n,
including customers in service—if any. With regard to the customer acceptance policy,
we consider what is known as partial blocking, in which if at arrival of a batch of
l customers there are only m, m < l, free positions available in the system, then m
customers of the batch enter the system and the remaining l − m customers of the
batch are blocked.

We let λ denote the batch arrival rate, (fi)i∈N+ denote the batch size probability
function, A(·) denote the distribution function of a customer service time, and pj denote
the probability that j customers arrive to the system during the service of an arbitrary
customer. Note that

pj =
j∑

l=0

αl f (l)
j , (1)

where f (r) denotes the convolution of order r of the probability vector f and αl denotes
the lth mixed-Poisson probability with arrival rate λ and mixing distribution A(·) (see,
e.g., Kwiatkowska, Norman, and Pacheco [6]),

αl =
∫ ∞

0
e−λt (λt)l

l! A(dt). (2)

In addition, we let X(t) denote the number of customers in the system at time t.
By busy period it is usually meant the period of time that starts when a customer

arrives to an empty system and ends at the first subsequent time at which the system
becomes empty. For convenience, we will use an extended definition of busy period
(that might be) initiated by multiple customers. More precisely, we consider i-busy
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periods, where an i-busy period is a period that starts at an instant at which i customers
are present in the system, with a customer initiating service at that time, and ends at
the next time at which the system becomes empty. This definition is richer and more
natural than the usual one (corresponding to a 1-busy period) when addressing systems
with batch arrivals, and its usefulness can be inferred in particular from Miller [7].
Moreover, the definition of i-busy period is in line with that of remaining busy period
from state i given in Harris [3] and the busy period initiated with i customers studied
in Peköz et al. [8].

Let Bin denote the duration of an i-busy period of the MX/G/1/n system, so that

Bin =st inf{t ≥ 0 : X(t) = 0}|[X(0) = i, X(0−) �= i],
where =st denotes equality in distribution and | denotes conditioning of random vari-
ables. It is known that the number of customers in an MX/G/1/n system constitutes a
Markov-regenerative process (see, e.g., Kulkarni [5]) with embedded Markov renewal
sequence (Xr , Tr)r∈N, where Tr is the rth customer departure instant and Xr is the cor-
responding number of customers left behind in the system by the departing customer.
This, in turn, implies that on {X(0) = i, X(0−) �= i} with i > 1, the time the system
takes to reach state 1—from state i—and the subsequent time it takes to reach state
0—from state 1—are independent.

Moreover, it is a simply matter to argue (simply by taking out of consideration
one of the customers initially present in the system and supposing that such a customer
will be served only when being alone in the system) that on {X(0) = i, X(0−) �= i},
with i > 1, the time the system takes to reach state 1—from state i—has the same
distribution as the duration of an (i − 1)-busy period of an MX/G/1/n − 1 system
with the same parameters as the original MX/G/1/n system, except for the capacity
of the system. Thus, the two previously stated facts lead to the following result.

LEMMA 1: For 1 ≤ i ≤ n,

Bin =st Bi−1,n−1 ⊕ B1n, (3)

with ⊕ denoting the convolution of random variables and B0m ≡ 0.

Equation (3) plays an important role in this article. It implies, by induction, that

Bin =st

n⊕
j=n+1−i

B1j, (4)

an equation that was stated (and used) in Miller [7] for M/G/1/n systems. Note that
Eq. (4) shows that the distribution of the duration of an i-busy period, i ≥ 1, of an
MX/G/1/n system is a direct function of the distribution of the duration of 1-busy
periods of MX/G/1/m systems (n + 1 − i ≤ m ≤ n) with smaller or equal system
capacity but otherwise with the same parameters as the former system. Accordingly,
we will next focus explicitly on the characterization of the distribution of the duration
of a 1-busy period of the MX/G/1/n system.
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To start, we let S denote the duration of the service time of the first customer
served in the 1-busy period and we let C denote the number of customers that arrive
to the system during its service. Conditioning on the value of the random variable C,
we conclude, similarly to Eq. (3), that

[B1n|C = l] =st Sl ⊕ Bmin(l,n−1),n, (5)

where Sl = S|C = l denotes the duration of the service time of the first customer
served in the 1-busy period, given that l customers arrive to the system during its
service.

Now, taking into account that C has probability function (pj), we conclude that

E
[
Bk

1n

] =
∞∑

l=0

plE
[
(Sl ⊕ Bmin(l,n−1),n)

k
]
. (6)

Moreover, as Newton’s binomial formula and the linearity of the expected value
operator imply that, for independent random variables X and Y ,

E[(X ⊕ Y)k] =
k∑

l=0

(
k
l

)
E[Xl]E[

Y k−l
]
, (7)

we can, using Eq. (6), derive the following theorem.

THEOREM 1: The integer moments of the duration of i-busy periods in MX/G/1/n
systems are such that

E
[
Bk

11

] = E[Sk], k ∈ N, (8)

and, for n ≥ 2,

E
[
Bk

1n

] =
⎡
⎣E[Sk] +

n−2∑
l=1

plψ
(k)

ln +
∑

l≥n−1

plψ
(k)
n−1,n +

k−1∑
j=1

(
k
j

) n−2∑
l=1

plE
[
S

j
l

]
E

[
B k−j

ln

]

+
k−1∑
j=1

(
k
j

) ∑
l≥n−1

plE
[
S

j
l

]
E

[
Bk−j

n−1,n

]⎤⎦ p−1
0 (9)

and

E
[
Bk

in

] =
k∑

j=0

(
k
j

)
E

[
B j

i−1,n−1

]
E

[
Bk−j

1n

]
, 2 ≤ i ≤ n, (10)

where the random variables B0m are null with probability 1 and

ψ
(j)
im =

j−1∑
l=0

(
j
l

)
E

[
Bl

1m

]
E

[
B j−l

i−1,m−1

]
. (11)
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PROOF: In view of the total probability law and Eqs. (6) and (7), we have

E
[
Bk

1n

] = p0E
[
S

k
0

]+ n−2∑
l=1

pl

k∑
j=0

(
k
j

)
E

[
S

j
l

]
E

[
Bk−j

ln

] +
∑

l≥n−1

pl

k∑
j=0

(
k
j

)
E

[
S

j
l

]
E

[
Bk−j

n−1,n

]
.

By separating the terms for which j = 0 and j = k from the remaining terms in the

previous equation, taking into account that E[Sk] = ∑
l≥0 plE[Sk

l ] and using once
again Eq. (7), we conclude that

E
[
Bk

1n

] = E[Sk] +
n−2∑
l=1

plE
[
Bk

ln

] +
∑

l≥n−1

plE[Bk
n−1,n]

+
n−2∑
l=1

pl

k−1∑
j=1

(
k
j

)
E

[
S

j
l

]
E

[
Bk−j

ln

] +
∑

l≥n−1

pl

k−1∑
j=1

(
k
j

)
E

[
S

j
l

]
E

[
Bk−j

n−1,n

]
.

The statement of the theorem follows directly from the previous equation by resorting
to the fact that, in view of Lemma 1,

E
[
Bm

ln

] = E[(Bl−1,n−1 + B1n)
m]

=
m∑

j=0

(
m
j

)
E

[
Bj

1n

]
E

[
Bm−j

l−1,n−1

]

= E
[
Bm

1n

] + ψ
(m)

ln

for l = 1, 2, . . . , n − 1, with ψ
(m)

ln defined in Eq. (11). �

An immediate application of Theorem 1 is for the recursive computation of the
mean duration of the usual 1-busy period of M/G/1/n systems, in which case, Eq. (9)
gives

E[B1n] = 1

α0

[
E[S] +

n−2∑
l=1

αl[E[Bln] − E[B1n]] +
∑

l≥n−1

αl[E[Bn−1,n] − E[B1n]]
]

.

Using the fact that, in view of Eq. (4), E[Bln] − E[B1n] = ∑n−1
i=n+1−l E[B1i], the

previous equation leads, after some algebra, to

E[B1n] = 1

α0

[
E[S] +

n−1∑
i=2

E[B1i]
∑

l≥n+1−i

αl

]
, n ≥ 2. (12)

This is the recursive scheme derived by Miller [7] to compute the mean duration of
a classical busy period of an M/G/1/N system—starting from E[B11] = E[S] and
recursively computing E[B1n], n = 2, 3, . . . , N , via Eq. (12).
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With regard to the computation of moments of integer orders strictly larger than 1,
it follows that the moments E[BK

iN ], 1 ≤ i ≤ N , can be computed using Eqs. (9) and
(10), provided one has available the set of analogous moments of durations of busy
periods (E[Bk

in])1≤k≤K−1,1≤i≤n≤N , by first computing E[BK
1N ] using Eq. (9), followed

by the recursive computation of E[BK
iN ], for i = 2, 3, . . . , N , using Eq. (10). However,

in order to compute E[BK
1N ] using Eq. (9), one needs to compute mixed-Poisson

probabilities associated to the service time distribution along with absolute moments
of the conditional random variable Sl.

We note that mixed-Poisson probabilities can be computed in linear time (on
the capacity of the system, N) for a large class of service time distributions that
includes the distributions most commonly used in practice, by means of simple recur-
sive schemes; see, for example, Kwiatkowska et al. [6] and Willmot [12]. Moreover,
the next lemma shows how the absolute moments of the conditional random variable
Sl can be computed.

LEMMA 2: The absolute moment of order k, k ∈ N+, of the conditional random
variable Sl, verifies

plE[Sk
l ] =

l∑
j=0

(k + j)!
λkj! αk+j f (j)

l (13)

for l ∈ N, and, moreover,

∑
l≥n−1

plE[Sk
l ] = E[Sk] −

n−2∑
l=0

l∑
j=0

(k + j)!
λkj! αk+j f (j)

l . (14)

PROOF: For k ∈ N+ and l ∈ N,

plE[S k
l ] = E[Sk1{C=l}]

=
∫ ∞

0
uk

l∑
j=0

e−λu (λu)j

j! f (j)
l A(du)

=
l∑

j=0

(k + j)!
λkj!

∫ ∞

0
e−λu (λu)k+j

(k + j)!A(du) f (j)
l

=
l∑

j=0

(k + j)!
λkj! αk+j f (j)

l

in view of Eq. (2), so that Eq. (13) holds. Finally, Eq. (14) follows from Eq. (13) since

E[Sk] = ∑∞
l=0 plE[Sk

l ], thus implying that
∑

n≥l−1 plE[Sk
l ] = E[Sk] − ∑l

n=0 plE[Sk
l ].
�
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TABLE 1. Expected Value, Coefficient of Variation, Skewness, and Kurtosis of the
Duration of 1-Busy Periods in M/G/1/n Systems With Arrival Rate 0.95 and Unit
Service Rate

M/M(1)/1/n M/D(1)/1/n

n EV1n CV1n SK1n KT1n EV1n CV1n SK1n KT1n

1 1 1 2 9 1 0 — —
2 1.9500 1.2246 2.3238 10.7353 2.5857 0.7831 2.0601 9.2439
3 2.8525 1.4525 2.7064 13.2209 4.2295 1.1130 2.3983 11.1232
4 3.7099 1.6573 3.0727 16.0158 5.7514 1.3688 2.7922 13.7982
5 4.5244 1.8420 3.4149 18.9797 7.1296 1.5846 3.1724 16.8247
6 5.2982 2.0108 3.7354 22.0580 8.3744 1.7736 3.5309 20.0654

11 8.6240 2.6995 5.1128 38.5952 13.0093 2.4914 5.0778 38.3280
16 11.1975 3.2334 6.2691 56.6381 15.7963 2.9953 6.3795 59.2408
21 13.1888 3.6739 7.3009 76.0173 17.4722 3.3691 7.5286 82.2161
26 14.7296 4.0475 8.2491 96.6351 18.4800 3.6485 8.5520 106.5821
31 15.9219 4.3684 9.1339 118.3832 19.0860 3.8555 9.4559 131.5239
36 16.8444 4.6456 9.9655 141.1300 19.4504 4.0068 10.2410 156.1573
41 17.5583 4.8856 10.7498 164.7177 19.6695 4.1158 10.9088 179.6343
46 18.1106 5.0931 11.4895 188.9643 19.8013 4.1929 11.4637 201.2428
51 18.5380 5.2721 12.1859 213.6676 19.8805 4.2468 11.9141 220.4774
∞ 20.0000 6.2450 18.7309 587.7692 20.0000 4.3589 13.3061 298.0526

3. NUMERICAL RESULTS

To end the article, we provide tables of moments of the duration of busy periods of
MX/G/1/n systems obtained through a MATLAB code based on the results of the
article; see [10] for more details. In the examples, we letEVin (VARin,CVin,SKin, and
KTin) denote the expected value or mean (variance, coefficient of variation, skewness,

TABLE 2. Expected Value, Coefficient of Variation, Skewness,
and Kurtosis of the Duration of i-Busy Periods in
MGeo(1/2)/D(1)/1/n Systems With Arrival Rate 1/2 and Unit
Service Rate

n i EVin CVin SKin KTin

5 1 3.6322 1.4989 3.2432 14.2778
2 6.6002 1.0021 2.3416 7.7541
3 8.9063 0.7854 2.0677 6.2996
4 10.5550 0.6699 2.0087 6.0362
5 11.5550 0.6119 2.0087 6.0362

30 1 20.2963 4.3426 8.0145 86.6754
2 39.9259 3.0448 5.6284 42.7967
3 58.8889 2.4655 4.5690 28.2591
4 77.1852 2.1179 3.9385 21.0597
5 94.8148 1.8795 3.5108 16.7979

10 172.9630 1.2837 2.4945 8.7464
20 279.2593 0.8830 1.9965 5.9865
30 318.9650 0.7781 1.9612 5.8354
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kurtosis) of the duration of an i-busy period of an MX/G/1/n system, D(a) denote
a deterministic distribution with value a, and M(μ) denote the exponential distribution
with rate μ.

Table 1 is relative to single-arrivals M/G/1/n systems with arrival rate λ = 0.95
and unit service rate. Table 1 shows how the duration of 1-busy periods evolves as
the system capacity increases; see, for example, Kleinrock [4] for the computation
of the mth central moment of the duration of an 1-busy period of an M/G/1 system
with infinite capacity. Table 2 is relative to MX/D(1)/1/n systems with geometric
batch arrival distribution with parameter (1/2)(Geo(1/2)), arrival rate λ = 1/2, and
unit service rate. Table 2 shows how the duration of i-busy periods evolves in systems
with two different capacities: n = 5 and n = 30.

Acknowledgments
This research was supported in part by Programa de Formação Avançada de Docentes do Ensino Supe-
rior Medida 5/Acção 5.3 (PRODEP III) and the Programa Operacional “Ciência, Tecnologia, Inovação”
(POCTI) of the Fundação para a Ciência e a Tecnologia (FCT), cofinanced by the European Union fund
FEDER, and the projects POSC/EIA/60061/2004 and Euro-FGI.

References

1. Abramov, V.M. (1997). On a property of a refusals stream. Journal of Applied Probability 34(3):
800–805.

2. Cooper, R.B. & Tilt, B. (1976). On the relationship between the distribution of maximal queue length
in the M/G/1 queue and the mean busy period in the M/G/1/n queue. Journal of Applied Probability
13(1): 195–199.

3. Harris, T.J. (1971). The remaining busy period of a finite queue. Operations Research 19: 219–223.
4. Kleinrock, L. (1975). Queueing systems. Vol. 1: Theory. New York: Wiley.
5. Kulkarni, V.G. (1995). Modeling and analysis of stochastic systems. London: Chapman and Hall.
6. Kwiatkowska, M., Norman, G., & Pacheco, A. (2002). Model checking CSL until formulae with

random time bounds. In H. Herman & Segala, R. (eds.), Process algebra and probabilistic methods,
performance modeling and verification. Berlin: Springer

7. Miller, L.W. (1975). A note on the busy period of an M/G/1 finite queue. Operations Research 23(6):
1179–1182.

8. Peköz, E.A., Righter, R., & Xia, C.H. (2003). Characterizing losses during busy periods in finite buffer
systems. Journal of Applied Probability 40(1): 242–249.

9. Perry, D., Stadje, W., & Zacks, S. (2000). Busy period analysis for M/G/1 and G/M/1 type queues
with restricted accessibility. Operations Research Letters 27(4): 163–174.

10. Ribeiro, H. (2007). Customer loss probabilities and other performance measures of regular and
oscillating systems. Ph.D. thesis, Instituto Superior Técnico, Technical University of Lisbon, Lisbon.

11. Shanthikumar, J.G., & Sumita, U. (1985). On the busy-period distributions of M/G/1/K queues with
state-dependent arrivals and FCFS/LCFS-P service disciplines. Journal of Applied Probability 22(4):
912–919.

12. Willmot, G.E. (1993). On recursive evaluation of mixed-Poisson probabilities and related quantities.
Scandinavian Actuarial Journal 2: 114–133.

https://doi.org/10.1017/S026996480800020X Published online by Cambridge University Press

https://doi.org/10.1017/S026996480800020X

