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Abstract. A kinetic theory is used to investigate the theory of a free-electron laser
with a helical wiggler and an ion channel based on the Einstein coefficient method.
The laser gain in the low-gain regime is obtained for the case of a cold tenuous
relativistic electron beam, where the beam plasma frequency is much less than the
radiation frequency, propagating in this configuration. The resulting gain equation
is analyzed numerically over a wide range of system parameters.

1. Introduction

A free-electron laser (FEL) as a continuously tunable
source of intense coherent short-wavelength radiation
enables the generation of laser light at ever shorter
wavelengths, including extreme ultraviolet, soft X-rays
and even hard rays (Seo et al. 1989; Chen and Davidson
1994; Freund and Antonsen 1996; Lambert et al. 2008).
The radiation is generated by the passage of a relativistic
electron beam through a periodic wiggler magnetic field
generated by bifilar current windings. The purpose of the
wiggler field is to provide a coupling between the electron
beam and electromagnetic radiation fields, which results
in a ponderomotive force along the axis of the beam.
A uniform axial magnetic field is often employed to
collimate the relativistic electron beam in the transverse
direction. Also, the ion-channel guiding is used to fo-
cus the electrons against the self-repulsive electrostatic
force generated by the beam itself. The use of the ion-
channel guiding as an effective method for enhanced
focusing of an intense electron beam in a single-pass
FEL was offered by Takayama and Hiramatsu years
ago to improve the system performance (Takayama and
Hiramatsu 1988). To make an ion channel, a relativistic
electron beam is injected into a pre-ionized plasma
channel of uniform density. The interaction results in
the formation of a positive ion core, which has arbitrary
focusing and accelerating properties for electron beams,
by expelling the plasma electrons along the beam. The
use of the ion-channel guiding offers some merit. It is less
expensive than the solenoid magnetic field (Takayama
and Hiramatsu 1988). The use of the ion-channel guiding
approximately solves the transverse beam breakage in-
stability due to an intense electron beam (Jha and Kumar
1998). Another advantage of the ion-channel guiding is
that the effect of the ion channel would also be to
increase both the gain and efficiency of the interaction
(Jha and Kumar 1996; Mahdian and Raghavi 2006;

Mahdian et al. 2008; Hasanbeigi et al. 2011; Su and
Tang 2011; Sadegzadeh et al. 2012); it also permits beam
currents higher than the vacuum limit. The presence of
an ion channel as an electron-beam guiding device is
a cost-effective alternative to the axial guide magnetic
field. So, there should be higher efficiencies and lower
wavelengths for the ion-channel guiding. The electron
trajectories and gain in a magnetostatic helical wiggler
with the ion-channel guiding have been studied by Jha
and Kumar (1996). Experimental results of FEL with
the ion-channel guiding have been reported by Ozaki
et al. (1992) and Yu et al. (1992). The small signal gain
for FEL with the ion-channel guiding has been studied
in the context of quantum regime by solving the Raman–
Nath equation (Mehdian et al. 2012). Mishra described
the kinetic of a low gain FEL by using the Einstein
coefficient method in the helical wiggler and the axial
magnetic field (Mishra 2005). Also, significant progress
in the quantum theory of FEL has been made by using
wave kinetic (Serbeto et al. 2008).

The main purpose of this paper is to investigate the
kinetic description of FEL with a helical wiggler and the
ion-channel guiding by applying the Einstein coefficient
technique to study the gain properties (McMullin and
Davidson 1982). Although this FEL configuration has
been treated previously (Mahdian and Raghavi 2006),
the method employed in the present paper is com-
pletely new and can be used to study the stimulated
emission at higher harmonics. The organization of the
paper is as follows. In Sec. 2, the solution of the
relativistic equation of motion for an electron in the
presence of an ion channel and wiggler magnetic fields is
presented and expanded in terms of Bessel functions. In
Sec. 3, the spontaneous emission in the classical limit has
been obtained and the amplitude gain per unit length
has been calculated in Sec. 4 by using the Einstein
coefficient method. The gain formula is quite general
and can be expressed for the lth harmonic number.
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Finally, the numerical studies and conclusions are given
in Sec. 5.

2. General equation of motion and
steady-state trajectories

Consider a relativistic electron (charge −e, rest mass me,
energy γmec

2) moving with velocity v along the z axis of a
helically polarized wiggler magnetic field with amplitude
Bw and wavenumber k0 = 2π/λ0. Here, for simplicity we
assume that all dynamical quantities depend only on the
axial position z. In most FEL experiments, the initial
beam radius is a small fraction of the wiggler period and
thus this approximation is reasonable. The wiggler field
may be described in one-dimensional approximation by

Bw = Bw(êx cos k0z + êy sin k0z). (1)

The electrostatic field generated by an ion channel,
with its axis coincident with the wiggler z axis, may be
written as

Ei = 2πe ni(êxx+ êy y), (2)

where ni is the density of positive ions with charge e
and mass M. The relativistic equations of motion for
an electron moving with velocity v in these combined
fields also in the steady-state limit and laboratory frame
are

dvx

dt
= −ω2

px+ Ωwvz sin k0z, (3a)

dvy

dt
= −ω2

py − Ωwvz cos k0z, (3b)

dvz

dt
= −Ωw

(
vx sin k0z − vy cos k0z

)
, (3c)

where

Ωw =
eBw

γ0mc
, ω2

p =
2πnie

2

γ0m
and

dγ0

dt
= 0.

Once again, differentiating (3a) and (3b) with respect
to time and supposing that axial velocity and energy
remain constant yields

d2vx

dt2
= −ω2

pvx + Ωwk0v
2
z cos k0z, (4a)

d2vy

dt2
= −ω2

pvy + Ωwk0v
2
z sin k0z. (4b)

The solutions of these equations are

vx = vx0 cosωpt− vy0 sinωpt+
Ωwk0v

2
z

ω2
p − k2

0v
2
z

cos k0z, (5a)

vy = vy0 cosωpt+ vx0 sinωpt+
Ωwk0v

2
z

ω2
p − k2

0v
2
z

sin k0z. (5b)

Substituting (5a) and (5b) into (3c) yields a differential
equation for vz which is solved as

vz = vz0 − Ωwvx0

ωp − k0vz
cos(k0z − ωpt)

− Ωwvy0

ωp − k0vz
sin(k0z − ωpt). (6)

By integrating (6), one obtains

z = z0 + vz0t+ δvx0(sin(k0z − ωpt) − sin k0z)

− δvy0(cos(k0z − ωpt) − cos k0z). (7)

Here, δ = Ωw
(ωp−k0vz )2

. It is evident from (7) that the

wiggler field induces an oscillatory modulation of the
axial orbit which leads to harmonic generation. In order
to determine the transverse motion, (4a) and (4b) are
combined to give

d2v+

d2t
= −ω2

pv+ − Ωw

k0

d2

d2t
eik0z , (8)

where v+ = vx + ivy . Substituting the value of z from (7)
into (8) and using Bessel’s identities,

eik0z = exp i
[
k0z0 + k0δvy0 cos k0z0 − k0δvx0 sin k0z0

]
×

∑ ∑
Jn(k0δvy0)Jm(k0δvx0) exp i [k0vzt

+ (m+ n)(k0z − ωpt)
]
exp

[
−inπ

2

]
, (9)

and integrating (8), one gets

v+ = v+0e
iωpt +

Ωw

k0
Jn(λ1)Jm(λ2)

×
[
k0vz + (m+ n)(k0vz − ωp)

]2

ω2
p −

[
(m+ n)(k0vz − ωp) + k0vz

]2

× exp i[k0z0 + λ1 cos k0z0 − λ2 sin k0z0]exp
[
−inπ

2

]
× exp i

[
k0vzt+ (m+ n)(k0z − ωpt)

]
, (10)

where λ1 = k0δvy0 and λ2 = k0δvx0.

3. Spontaneous emission coefficient
The spontaneous emission coefficient ηw(x, p) is the en-
ergy radiated by an electron per unit frequency interval,
solid angle and time T = L/vz0, where the electron is
accelerated in the field (Bekefi 1977). Here, L is the axial
distance over which the acceleration takes place, i.e. the
length of the interaction region. It is assumed that the
radiation field is propagating in the Z direction with
frequency ω and wavenumber k related by ω ≈ ck in
the tenuous beam limit. For an observation along the Z
axis, the spontaneous emission coefficient in the classical
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limit is given by (Bekefi 1977)

ηω =
1

T

d2I

dωdΩ
=

e2ω2

4π2c3T

×
∣∣∣∣T∫
0

dτ ēz × (ēz × v+) × ei(kz−ωτ)
∣∣∣∣
2

. (11)

Here, d2I/dωdΩ is the energy radiated per unit fre-
quency interval per unit solid angle. Substituting (9) and
(10) into (11) gives

ηω =
e2ω2

8π2c3T

∣∣∣∣
∫ τ

0

dτ

{
v+0exp i[kz0

+ λ3 cos k0z0 − λ4 sin k0z0]jn′ (λ3)Jm′ (λ4)

× exp i[kvzt+ ωpt− ω t+ (m′ + n′) × (k0z + ωpt)]

× exp
[
−in′ π

2

]
+ Jn′ (λ3)Jm′ (λ4)Jn(λ1)Jm(λ2)

×Ωw

k0

[k0vz + (m+ n)(k0vz − ωp)]
2

ω2
p − [(m+ n)(k0vz − ωp) + k0vz]2

× exp i
[
(k − k0)z0 + (λ3 + λ1) cos k0z0

− (λ4 + λ2) sin k0z0] exp[−i(n′ + n)
π

2

]
× exp i[(kvz + k0vz − ω)t+ (m′ + m+ n′ + n)

× (k0z − ωpt)]

}∣∣∣∣2, (12)

where λ3 = kδvy0 and λ4 = kδvx0. For the present
purposes, the spontaneous emission coefficient ηω for a
frequency near the fundamental resonance (m′, m, n′, n =
0) obtained to form

ηω =
e2ω2

8π2c3T

∣∣∣∣ τ

∫
0

dτ

{
v+0

× exp i
[
kz0 + λ3 cos k0z0 − λ4 sin k0z0

]
J0(λ3)J0(λ4)

× exp i
[
(kvz + ωp − ω)t

]
+
Ωw

k0

k2
0v

2
z

ω2
p − k2

0v
2
z

× exp i
[
(k + k0)z0 + (λ3 + λ1) cos k0z0

− (λ4 + λ2) sin k0z0

]
J0(λ3)J0(λ4)J0(λ1) × J0(λ2)

× expi
[
(kvz + k0vz − ω)t

]}∣∣∣∣
2

. (13)

For simplicity, (13) is now considered when the system is
close to the beam resonance (k+k0)vz−ω ∼= 0. Therefore,

ηw =
e2ω2T

8π2c3

{
v2⊥J

2
0 (λ3) J

2
0 (λ4)

sin2[(kvz + ωp − ω)T
2
]((

kvz + ωp − ω
)
T
2

)2

+

(
Ωwv

2
z

ω2
p − k2

0v
2
z

)2

J2
0 (λ3) J

2
0 (λ4) J

2
0 (λ1) J

2
0 (λ2)

×
sin2[(kvz + k0vz − ω)T

2
](

(kvz + k0vz − ω) T
2

)2

}
. (14)

4. Amplitude gain in the tenuous beam limit
The amplitude gain per unit length Γ determined from
the classical limit of the Einstein coefficient method
is given by (Γ > 0 for amplification) (Jacson 1975;
Sprangle and Smith 1980)

Γ =
4π3c

ω2
F

2π

∫
0

dϕ
∞
∫

−∞
dpz

∞
∫
0

dp⊥η̄w
γm

p⊥

×
[(ω

k
− vz

) ∂f0
j

∂p⊥
+ v⊥

∂f0
j

∂pz

]
, (15)

where F is the filling factor; ω = kc has been as-
sumed, vz = pz/γm and v⊥ = p⊥/γm are the axial
and transverse velocities that are related to γ0 as γ0 =
(1 − v2z /c

2 − v2⊥0/c
2)−1/2.

f0
j =

Nb

2πp⊥
δ (p⊥ − γ0mv⊥0) δ (pz − γ0mvz0) , (16)

where f0
j (p

2
⊥, pz) is an equilibrium distribution function,

Nb = ∫ d3pf0
j = constant is the beam density.

Substituting (14) and (16) into (15) and integrating by
parts with respect to pz and p⊥ gives the gain per unit
length which is in the form

Γ =
ω2
bΓ F

8γ0c2

{
J2

0 (λ3)J
2
0 (λ4)

sin2 ψ

ψ2
2

(
c

vz
− 1

)

− 1

v2z

⎛
⎝v2⊥J2

0 (λ4)J
2
0 (λ4)

sin2 ψ

ψ2

(
k0Ωwv

2
z

ω2
p − k2

0v
2
z

)2

× J2
0 (λ3)J

2
0 (λ4)J

2
0 (λ1)J

2
0 (λ2)

sin2 θ

θ2

)

+
1

vz

⎛
⎝v2⊥0 × sin2 ψ

ψ2
+

(
k0Ωwv

2
z

ω2
p − k2

0v
2
z

)2

× J2
0 (λ1)J

2
0 (λ1)

sin2 θ

θ2

)
×

(
2(J0(λ3))

′J0(λ3)J
2
0 (λ4)

+ 2(J0(λ4))
′ × J0(λ4)J

2
0 (λ3)

)
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Figure 1. (Colour online) Graph of the normalized gain as a
function of the normalized wavenumber for several values
of the ion-channel frequency. The chosen parameters are
γ = 3, Ω̄w = 0.1 and ω̄b = 0.07.

+
1

vz

⎛
⎝(

k0Ωwv
2
z

ω2
p − k2

0v
2
z

)2

J2
0 (λ3) × J2

0 (λ4)
sin2 θ

θ2

⎞
⎠

×
(
2(J0(λ1))

′J0(λ1) + 2(J0(λ2))
′J0(λ2)J

2
0 (λ1)

)

+
1

vz
J2

0 (λ3)J
2
0 (λ4) × J2

0 (λ2)
sin2 θ

θ2

⎛
⎝(

k0Ωwv
2
z

ω2
p − k2

0v
2
z

)2
⎞
⎠

′

+
v2⊥0

v2z
× J2

0 (λ3)J
2
0 (λ4)

L

2vz

(
ω

(
1 − vz

c

)
− ωp

)

× ∂

∂ψ

(
sin2 ψ

ψ2

)
+

1

v2z

(
k0Ωwv

2
z

ω2
p − k2

0v
2
z

)2

× J2
0 (λ3)J

2
0 (λ4) × J2

0 (λ1)J
2
0 (λ2)

L

2vz

×
(
ω

(
1 − vz

c

)) ∂

∂θ

(
sin2 θ

θ2

)}
, (17)

where ψ = (kvz + ωp − ω)T
2
, θ = (kvz + k0vz − ω)T

2
and

ω2
b = 4πNbe

2

m
is the non-relativistic electron frequency.

The terms proportional to L in (17) can be neglected
in comparison with other terms. Therefore,

Γ =
ω2
bL

2ωF

16γ0c2

{
v2⊥0

v2z
J2

0 (λ3) J
2
0 (λ4)

∂

∂ψ

(
sin2 ψ

ψ2

)

+

(
k0Ωwvz

ω2
p − k2

0v
2
z

)2

J2
0 (λ3) J

2
0 (λ4) J

2
0 (λ1) J

2
0 (λ2)

× ∂

∂θ

(
sin2 θ

θ2

)}
. (18)

5. Results
In this section, numerical results obtained from the amp-
litude gain equation (18) have been presented. Shown in

Figure 2. (Colour online) Plot of the normalized gain as a
function of the normalized wavenumber for several values
of the wiggler frequency. The chosen parameters are γ = 3,
ω̄i =0.68 and ω̄b = 0.07.

Figure 3. (Colour online) Plot of the normalized gain as a
function of the normalized wavenumber for several values
of the beam frequency, ω̄b. The chosen parameters are
γ = 3, ω̄i =0.68 and Ω̄w = 0.1

Fig. 1 are plots of the normalized gain, Γ̄ = Γ/k0,

versus the normalized wavenumber, k̄, for values of ω̄i

ranging from 0.675 to 0.690. The system parameters in
this figure correspond to Ω̄w = 0.05, F = 0.75, γ0 = 3, and
ω̄b = 0.07. For increasing values of ω̄i corresponding to
the resonance approach, it is found that there is a con-
comitant increase in both the maximum normalized gain
and its corresponding wavelength λ = 2π/k̄. Therefore,
the gain enhancement is obtained due to the ion channel.
It should be noted, however, that such enhancements in
the gain correspond to increases in transverse velocity
and decreases in the axial velocity of electrons due to
the presence of an ion channel. The effect of the wiggler
magnetic field on the gain is shown in Fig. 2, where
the normalized gain is plotted as a function of the
normalized wavenumber, k̄, for several values of Ω̄w
ranging from 0.095 to 0.11. Here, ω̄i = 0.68 and the
system parameters are otherwise identical to Fig. 1. As
evident from this figure, the maximum gain increases
with increasing the normalized wiggler frequency Ω̄w .
On the contrary, the wavenumber corresponding to the
maximum gain decreases as the value of Ω̄w is increased.
Shown in Fig. 3 are plots of Γ̄ versus the normalized
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wavenumber for several values of the normalized beam
frequency, ω̄b, ranging from 0.06 to 0.09. Here, the
values of the ion channel and the wiggler frequency
correspond to 0.68 and 0.1, respectively. It is seen that
as the normalized beam frequency is increased to 0.09,
the maximum gain increases significantly and its cor-
responding wavenumber remains unchanged. Therefore,
the peak gain of FEL exhibits a sensitive dependence
on the beam frequency. Numerical calculation shows
that for a specified value of beam frequency, the gain is
reduced substantially, at least at shorter wavelengths.

In summary, the kinetic model for the gain of FEL
with a helical wiggler and an ion-channel guiding is
explained by using the Einstein coefficient method in
order to explore the dependence of the gain on the
different system parameters. The steady-state electron
trajectories and the gain formula for the case of a cold,
mono-energetic and tenuous relativistic electron beam in
the combined wiggler and ion-channel field have been in-
vestigated for various system parameters. The important
conclusion for the present analysis is that for specified
energy γmc2 and the normalized beam frequency, ω̄b, the
maximum of the normalized gain and its corresponding
wavelength increase as the normalized wiggler frequency
or the ion-channel frequency is increased. On the con-
trary, for increasing beam frequency the maximum gain
increases and its corresponding wavenumber remains
unchanged.
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