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Abstract
We study the detection and the reconstruction of a large very dense subgraph in a social graph with n
nodes and m edges given as a stream of edges, when the graph follows a power law degree distribution, in
the regime whenm=O(n. log n). A subgraph S is very dense if it has �(|S|2) edges. We uniformly sample
the edges with a Reservoir of size k=O(

√
n. log n). Our detection algorithm checks whether the Reservoir

has a giant component. We show that if the graph contains a very dense subgraph of size �(
√
n), then the

detection algorithm is almost surely correct. On the other hand, a random graph that follows a power law
degree distribution almost surely has no large very dense subgraph, and the detection algorithm is almost
surely correct. We define a newmodel of random graphs which follow a power law degree distribution and
have large very dense subgraphs. We then show that on this class of random graphs we can reconstruct
a good approximation of the very dense subgraph with high probability. We generalize these results to
dynamic graphs defined by sliding windows in a stream of edges.

Keywords: dense subgraphs; clustering; streaming; probabilistic analysis; random graphs; approximation

1. Introduction
We study the efficient detection of large dense subgraphs in social graphs, given as a stream of
edges, by looking at only a small fraction of the stream. Our viewpoint comes from two con-
straints. First, given the massive size of social networks, our algorithms cannot store the graph in
memory: the space used must be sublinear. Second, the dynamic feature corresponds to the evo-
lution of the social network and our algorithms have to take a single pass over the stream. Given
those two constraints, what kind of structure can be detected algorithmically?

Large dense subgraphs. Social networks such as Twitter evolve dynamically, and dense sub-
graphs appear and disappear over time as interest in particular events grows and wanes. How
can we detect large dense subgraphs efficiently? The classical density is the ratio ρ = |E[S]|/|S|,
where E[S] is the set of edges internal to S. In the case of a stream of edges, the approximation of
dense subgraphs is well studied in Bhattacharya et al. (2015), Epasto et al. (2015), Esfandiari et al.
(2015), McGregor et al. (2015) and an �(n) space lower bound is known Bahmani et al. (2012).
Social graphs define a specific regime for which we propose a streaming algorithm which uses
O(

√
n. log n) space. Our density objective is however different.

Definition 1.1. The (γ , δ)-large very dense subgraph problem, where γ ≤ 1, takes as input a graph
G= (V , E) and decides whether there exists an induced subgraph S⊆V such that |S| > δ

√
n and

|E[S]| > γ |S|(|S| − 1)/2.
∗A preliminary version was presented at FODS 2020 (Foundations of Data Science) Conference
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A very dense subgraph, also called a γ -clique, is a subset S such that the condition |E[S]| >
γ |S|(|S| − 1)/2 holds. If you consider two random nodes of S, they are connected by an edge with
probability γ . Observe that γ -cliques have the following nice structure, which does not hold for
the usual measure |E(S)|/|S|: if S is a γ -clique then for any 2≤ i≤ |S|, there exists a set of size i
that is a γ -clique. In fact, a random subset of S has this property on average. The (γ , δ)-large very
dense subgraph problem is NP-hard and hard to approximate (Hastad, 1996), as it contains the
maximum clique problem as the special case when γ = 1. This leads us to use a new notion of
approximation, adapted to a specific distribution of the inputs.

Degree distribution and the Configuration model. A scale-free network is a network whose
degree distribution asymptotically follows a power law: the fraction of nodes with degree d is
proportional to d−O(1) for d tending to infinity. Many real-world networks are thought to be scale-
free. In this article, we focus on social network models with a fixed degree sequence following a
power law d−2, which is such that the total number of edges ism=O(n. log n). The configuration
model takes a feasible degree sequence and generates a multigraph with that degree sequence. Let
μ denote the distribution of simple graphs obtained with the configuration model applied to the
power law degree distribution d−2. (We defer the discussion of how to get a simple graph from the
multigraph to Section 3.1). The configuration model is a standard model used already in sociology
in 1938 in a directed version (Moreno & Jennings, 1938), and also for modeling the World Wide
Web (Newman et al., 2001), public opinion formation (Watts & Dodds, 2007), etc. There are other
generative models such as the Preferential Attachment model (Barabasi & Albert, 1999), the Copy
model (Kleinberg et al., 1999), andmany others, see Kumar et al. (2000), Albert & Barabási (2000),
Aiello et al. (2000), Newman (2010) for example.

One-sided-stochastic approximation. We relax the definition of a randomized algorithm A,
with a one-sided approximation, where for Yes instances we consider the worst case, but for No
instances we only consider random inputs for μ. Indeed, a standard way to relax a decision prob-
lem would be to design an ε-tester that decides whether the input is a Yes instance or is ε-far from
Yes instances, i.e. within edit distance at least εm from any Yes instance; but for our problem, no
graph is ε-far from Yes instances, so the notion of ε-tester is not the right one here.

A one-sided stochastic randomizedReservoir algorithmA for a language L satisfies the following
two conditions:

• For all x ∈ L, Prob�[A(x) accepts]≥ 1− ε

• If x �∈ L is drawn from μ, Probμ×�[A(x) rejects]≥ 1− ε

where � is the set of possible Reservoirs (subsets of edges with prescribed cardinality), with a
uniform distribution. We design a one-sided randomized streaming algorithm for the (γ , δ)-large
very dense subgraph problem and believe that this approximation for a distribution of inputs can
also be useful in some other contexts.

Static results. We study how to decide the presence of large very dense subgraphs with a
Reservoir sampling (Vitter, 1985) and how to reconstruct such a very dense subgraph from the
samples.1 We study the existence of giant components in the Reservoir using random graph tech-
niques, adapted to graphs with this degree distribution. Indeed, the Reservoir is a random uniform
sample of a power law graph, whereas the Erdös-Renyi model is a random uniform sample of the
complete graph. If the graph has a very dense subgraph S of size �(

√
n), then a Reservoir of size

�(
√
n. log n) has a giant component (Theorem 4.1). In order to detect the existence of a very

dense subgraph, our first Algorithm DETECT(γ , δ) simply checks whether there is a large enough
connected component in the Reservoir. The analysis relies on a Theorem by Molloy and Reed on
asymptotic sequences, but there are additional difficulties here, due to the fact that our sequences
are not deterministic but random.
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We then analyze the situation when the graph does not have a large very dense subgraph: we
take the configuration model of random graphs which follow a power law degree distribution
(Newman, 2010, see also next section). We observe that in this case there is no giant compo-
nent in the Reservoir (Lemma 3.1) and that Algorithm DETECT(γ , δ) is correct (Theorem 4.2). In
Corollary 5.2, we show an �(

√
n) space lower bound.

Given a graph that has a very dense subgraph, how can we not only detect its existence but also
reconstruct it? We propose a simple algorithm (Algorithm 2) that uses the 2-core of the largest
connected component of the Reservoir. We define a variant of the configuration model, giving a
preference to edges inside a certain subset of the vertices, so that the graph contains a very dense
subgraph, and show that in this case Algorithm 2 reconstructs an approximation of the very dense
subgraph (Theorem 6.1.)

Social networks dynamics and dynamic results. We consider “bursty" windows when the
number of edges in each window varies. Uniform sampling in a window is the Reservoir sam-
pling (Vitter, 1985) and it has been generalized to overlapping windows in Babcock et al. (2002),
Braverman et al. (2009).We turn to the dynamic case with sliding windows.We show in Corollary
7.1 that we can detect the existence of a large very dense subgraph by generalizing Algorithm
DETECT(γ , δ) (Algorithm 3). The configuration model can be generalized to dynamic ran-
dom graphs (Section 7.1), and then none of the successive Reservoirs have a giant component,
Corollary 7.2. In the concentrated case for some time interval �, the random graphs during that
interval have a very dense subgraph S and Algorithm 4 approximates S, Corollary 7.3.

Plan of the paper. In Section 2, we review the large dense subgraphs, Reservoir sampling for
dynamic graphs, and random graphs. In Section 3, we describe random graphs which follow a
power law degree distribution with or without large very dense subgraph. In Section 4, we present
the Algorithm DETECT(γ , δ) and its analysis on positive and random instances. In Section 5, we
study the space lower bounds. In Section 6, we show how to reconstruct a good approximation of
large very dense subgraph from the samples. In Section 7, we generalize the approach to dynamic
graphs defined by sliding windows.

2. Preliminaries
Throughout the article, we ignore the rounding of our parameters to the nearest integer, when it
only has an impact on second-order terms. For example, we look for a very dense subgraph with
at least δ

√
n nodes. We approximate the existence of a very dense subgraph in the regime where

m=O(n. log n), observed in social graphs.

2.1 Large dense subgraphs
There are several definitions of a cluster in a graph (Aggarwal & Wang, 2010) and our Definition
1.1 assumes a large γ -clique, as setting the value of the parameter γ to 1 corresponds to a clique
for S. Studies of the Web graph have previously used large bipartite cliques as a defining marker
of web communities (Kleinberg et al., 1999). This differs from a common definition of dense sub-
graph according to which the average degree within the subgraph, ρ(S)= E(S)/|S|, must be greater
than some fixed threshold λ. A classical NP-hard (Khuller & Saha, 2009) optimization problem is
to approximate ρ∗ =MaxS{ρ(S)} and to find possible witnesses S∗ for ρ∗, in particular when the
graph is given as a stream of edges (McGregor et al., 2015; Bhattacharya et al., 2015; Esfandiari
et al., 2015). If the entire graph is known, there are several classical techniques to find large
γ -clique subgraphs. In this context, it is hard to approximately detect subgraphs Swith large value
of |E(S)|/|S|: an �(n) space lower bound is known Bahmani et al. (2012) based on the multiparty
Disjointness problem (Bar-Yossef et al., 2004; Chakrabarti et al., 2003). As we are interested in
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large dense subgraphs, i.e. |S| ≥ �(
√
n), we observe in Corollary 5.1 that in this case the space

lower bound is reduced to �(
√
n).

For a large very dense subgraph, we show in Corollary 5.2 that the same space lower bound
�(

√
n) applies. For a comparison, our algorithm uses space O(

√
n. log n).

2.2 Sampling social graphs and dynamic graphs
Social graphs have a specific structure: a specific degree distribution (a power law), and some very
dense subgraphs. In our framework, we do not store the entire graph as we sample the edges and
will only approximate these very dense subgraphs. For example, imagine that the entire graph is a
complete graph S. Each edge is selected in the Reservoir with probability k

m , so the Reservoir fol-
lows the Erdös-Renyi model G(n, p) (see next section) where n= |S| and p= k

m . It is well-known
that there is a phase transition at p= 1/n, for the emergence of a giant component. We first show
that for a γ -clique subgraph, a giant component emerges at p= 1/γ .n. We then study sufficient
conditions to observe a giant component in the Reservoir.

Dynamic graphs and models of densification in social graphs have been studied in Leskovec
et al. (2005). Dynamic algorithms approaches are presented in Demetrescu et al. (2010). We con-
sider sliding windows defined by two parameters: the time length τ , and the time step λ < τ such
that λ divides τ . In a stream of edges e1, e2, ....ei..., each edge has a timestamp. Let t1 = τ and
ti = τ + λ.(i− 1) for i> 1. Let Gi denote the graph defined by the edges whose timestamps are
in the time interval [ti − τ , ti]. The graphs Gi+1 and Gi share many edges: old edges of Gi are
removed and new edges are added to Gi+1. We write G(t) for the sequence G1,G2, ....Gi until we
reach time t.

A Reservoir sampling (Vitter, 1985) reads a stream of edges e1, e2, ...ei, ...en and selects k edges
uniformly (k≤ n), i.e. each edge is chosen with probability k

m . It first initializes the Reservoir to
e1, e2, ....ek. Then for each i such that k< i≤ n, it selects ei with probability k/i. If ei is selected,
it replaces a random element of the Reservoir, selected with probability 1/k. In a dynamic win-
dow wi, we assume we can maintain k uniform samples in each Reservoir Ri, using techniques
presented in Babcock et al. (2002), Braverman et al. (2009).

2.3 Random graphs
2.3.1 Erdös-Renyi graphs
The classical Erdös-Renyi model G(n, p) (Erdös & Renyi, 1960), generates a random graph with n
nodes and edges are taken independently with probability p where 0< p< 1. The degree distri-
bution is close to a Gaussian centered on n.p. A giant component is a connected component with

(n) vertices. A classical study is to find sufficient conditions so that the random graph has a giant
component. In the Erdös-Renyi model G(n, p), it requires that p> 1/n. If p= c/n with c> 1, we
can be more precise on the size of the giant component C and the size of the 2-core(C).

Definition 2.1. The 2-core(C) is obtained from C by removing nodes of degree 1, iteratively.

Theorem 2.1 (6 from Pittel &Wormald, 2005). Let c> 1 be fixed. Consider the Erdös-Renyi model
G(n, p) with p= c/n. Let C denote the largest connected component and 2-core(C) its 2-core. There
exists b, t such that t.e−t = c.e−c and b= 1− t/c such that:

limn→∞IE|C|/n= b

limn→∞IE|2-core(C)|/n= b · (1− t)

In addition, variables |C| and |2-core(C)| are both Gaussian in the limit.
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We will use this result in Section 6. A similar result (Theorem 5.1) is given in Ding et al.
(2014). When c is a large constant (tending slowly to infinity), t is close to 0, 
(ce−c), and so
b= 1− 
(e−c) tends to 1, therefore both C and 2-core(C) have size tending to n with high proba-
bility. We use the following result which generalizes the Erdös–Renyi condition to observe a giant
component of an arbitrary non-empty graph G. Let du be the degree of a node u.

When we write that a property holds almost surely, we mean that the probability is at least
1− o(1) as n goes to infinity. 2

The existence of giant components on dense graph sequences has been studied in Bollobas
et al. (2010) and the phase transition occurs when p= 1/λn where λn is the largest eigenvalue
of the adjacency matrix. A direct consequence which we will use in Section 4.1 is the following
lemma:

Lemma 2.1. Let ε > 0 be fixed. If S is a γ -clique and p> 1+ε
γ .|S| then the random subgraph Ŝ obtained

in G(|S|, p), almost surely has a giant component.

Proof. It is well known that λn ≥ γ .n on γ -dense graphs of size n, the average degree. Using
Bollobas et al. (2010)’s result on the phase transition on a γ -clique graph S, we directly obtain:

1
λn

≤ 1
γ .|S| <

1+ ε

γ .|S|
We conclude that if p> 1+ε

γ .|S| , the random subgraph Ŝ almost surely has a giant component.

2.3.2 Power-law graphs
Most of the social graphs have a degree distribution close to a power law (such as a Zipfian dis-
tribution distribution where Prob[d = j]= c/j2). The preferential attachment or the configuration
model (Newman, 2010) provide models where the degree distribution follows such a power law.

In the configuration model, the degree distribution can be an arbitrary distribution D : given
n nodes, we fix the number d1, d2, ...dmax of nodes of degree 1, 2, ... where dmax is the maximum
degree.

Definition 2.2. Given n, let c> 0 be such that
∑

i≥1�nc/i2� = n (c is approximately 6/π2). In the
Zipf degree sequence, there are di(n)= �nc/i2� nodes of degree i for each i> 1. The number of
nodes of degree 1 is either �nc� or �nc� − 1, chosen so that the sum of degrees is even; in the former
case, all nodes have degree at least 1; in the latter case, there is one node of degree 0.

Lemma 2.2. For all n, the Zipf degree sequence is feasible: there exists a graph with that degree
sequence.

Proof. The definition of the degree sequence guarantees that the sum of degrees is even, and it is
easy to see that the sequence then satisfies the Erdös-Gallai condition (Erdós & Gallai, 1960).

Lemma 2.3. The Zipf degree sequence satisfies the following elementary properties.

• The maximum degree is dmax= √
cn.

• The total number m of edges satisfies∣∣∣∣m− cn ln (cn)
4

∣∣∣∣≤ cn
2

https://doi.org/10.1017/nws.2021.17 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2021.17


408 C. Mathieu and M. de Rougemont

and the average vertex degree satisfies∣∣∣∣IE(du)− c ln (cn)
2

∣∣∣∣≤ c

• Let d = δ
√
n= dmax/

√
a with a= c/δ2. The number of nodes of degree greater than or equal

to δ
√
n is

√
cn

[a−1∑
1

1√
i
− a− 1√

a

]
+O(1).

3. Graphs with and without large very dense subgraphs
In this section, we consider random graphs with a power-law degree distribution, first without
large very dense subgraphs and then with such a subgraph.

3.1 Uniform configurationmodel
Consider an edge (u, v). If we cut it, it defines two half-edges also called stubs, attached to each
node u and v.

Definition 3.1. The configurationmodel generates a multigraph from a given degree sequence. The
model constructs a uniform random perfect matching π between stubs as a symmetric permutation
without fixed points: if π(i)= j, meaning that stub i maps to stub j, then j �= i and π(j)= i. To
construct π , we greedily match stubs at random. We obtain a multigraph.3

For a given degree sequence, letD denote the random variable equal to the degree of a uniform
random node, and G denote the multigraph obtained from the degree sequence according to the
configuration model.

Definition 3.2. Let di(n) denotes the number of vertices of degree i in an n-vertex graph. We define
a well-behaved asymptotic degree distribution (di(n))i,n:

1. It is feasible: for each n, there exists a graph with degree distribution (di(n))i.
2. It is smooth: for each i, �i = limn→∞ di(n)/n exists.
3. The convergence of i(i− 2)di(n)/n to its limit �i is uniform: ∀ε ∃N ∀n>N ∀i |i(i− 2)

di(n)/n− �i| < ε.
4. L(D)= limn→∞

∑
i i(i− 2)di(n)/n exists and the convergence is uniform:

∀ε ∃i0 ∃N ∀n>N |∑i≤i0 i(i− 2)di(n)/n− L(D)| < ε.

Theorem 3.1. (1(b) from Molloy–Reed, 1998) Consider an asymptotic degree sequence such that:

1. the asymptotic degree sequence is well-behaved,
2. Q(D)=∑

i (i2 − 2i)�i is less than a constant less than 0,
3. the maximum vertex degree is less than n1/9, and
4. the average vertex degree is O(1).

Then the following holds almost surely in the configuration model: the largest connected component
of G has size at most Bn1/4 for some constant B depending on Q(D); no connected component of G
has more than one cycle; and there are at most 2Bn1/4 cycles.
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As noted in Molloy & Reed (1998), for a well-behaved sequence we have

L(D)= lim
n→∞

∑
i

i(i− 2)di(n)/n=
∑
i

i(i− 2) lim
n→∞ di(n)/n=Q(D)

We will apply Theorem 3.1 to the Reservoir R to bound the size of its largest connected
component.

First we prove a simple property of the uniform configuration model.

Lemma 3.1. In the uniform configuration model, G almost surely does not have a γ -clique of size
�(

√
n).

Proof. Assume, for a contradiction, that there exists a set S of size c
√
n which is γ -dense. Let T

denote the set of vertices of S of degree less than (γ /2)(|S| − 1)/2 and let S1 = S \ T. E(S1) contains
at least (γ /2)|S|(|S| − 1)/2 edges, and all vertices of S1 have degree at least (γ /2)c

√
n in V . Let A

denote the set of vertices of V of degree at least (γ /2)c
√
n in V . Its edge set contains E(S1), so

|E(A)| ≥ γ c2n/4. Using the degree distribution, |A| = θ(
√
n) and A is γ ′ dense. This event occurs

with small probability asm= θ(n. log n) edges. The probability that a random edge, created by the
random stub-matching algorithm, is in E(A) is θ(n/n. log n)= θ(1/ log n). The expected number
of edges internal to A is at most θ(n/ log n) and the expected density |E(A)|/|A|2 = θ(1/ log n),
i.e. o(1). By Markov’s inequality, the probability that A is γ ′-dense is O(1/ log n), hence we obtain
a contradiction.

3.2 Models with a large very dense subgraph
The configuration model generates a random graph which follows a power law degree distribu-
tion, as explained in Section 2.3.2, with a uniform matching between the stubs. With a power
law degree distribution, the random graph G has a giant component almost surely. We show in
Theorem 4.2 that the Reservoir almost surely does not have a giant component and that G does
not have a large very dense subgraph.

We now define a concentrated model, a stochastic power law model that defines a graph that
contains a large very dense subgraph. In Theorem 6.1, we will prove that in that case, there
is an algorithm, Algorithm 2, that not only decides but also reconstructs (approximately) the
underlying very dense subgraph.

Our model for a random graph with a very dense subgraph (concentrated model) is as follows.
Let δ ≤ √

c/2 and 0< γ ≤ 1 be fixed. We now construct a graph with a γ -clique .

• We attach d stubs (half-edges) to each node v of degree d of the distribution D ,
• Let S be a set of δ

√
n nodes chosen arbitrarily among all nodes that have degree at least δ

√
n.

• For each vertex u of S, we mark δ
√
n− 1 stubs of u at random. For each pair of marked stubs

between different vertices, we put in the graph the edge between those stubs independently
and with probability γ , creating a random graph over S distributed as the Erdös-Renyi model
G(|S|, γ );

• The remaining unmarked stubs of V and the marked stubs not chosen in (1) are matched
uniformly.

By Lemma 2.3, for δ ≤ √
c/2 there are at least δ

√
n nodes of degree at least δ

√
n, so there exist

such subsets S. Let 0< γ ≤ 1 be fixed. Notice that the second procedure may add some edges in S.
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4. Existence of a large very dense subgraph
Let C be the largest connected component of the Reservoir of size k= 
(α

√
n log n). In order to

decide the graph property P: is there is a γ -clique of size greater then δ.
√
n? Consider this simple

algorithm, where α > 1/γ δ is an auxiliary parameter.

Algorithm 1:
1 Algorithm DETECT(γ , δ)
2 Input: a stream of edges of a graph G.
3 Output: whether G contains a large very dense subgraph
4 Let α = 
(1/(γ δ)).
5 • Use Reservoir sampling to maintain a reservoir R of size k= 
(c.α

√
n log n)/4).

6 •Let C denote the vertices of the largest connected component of R.
7 • Accept iff |C| ≥ 
(n1/8 log2 n)

The bound n1/8 log2 n is a direct application of the Molloy-Reed Theorem 3.1. The sampling
rate k

m = c.α
√
n log n/4

cn. log n/4 = α√
n . We show the correctness of this algorithm in two steps. In Section 4.2,

we show in Theorem 4.2 that Algorithm DETECT(γ , δ) rejects almost surely in the uniform case.
In the next section, we show in Theorem 4.1 that Algorithm DETECT(γ , δ) accepts almost surely
if there is a large γ -clique .

4.1 Analysis when there is a large very dense subgraph
In this section, we analyze the size of the largest connected component C of the Reservoir used
for the detection of a very dense subgraph (Algorithm DETECT(γ , δ) ). The following theorem
formalizes the fact that Algorithm DETECT(γ , δ) is correct with high probability on any graph
that contains a large γ -clique and hasm= cn. log n/4 edges.

Theorem 4.1. Assume that G contains a γ -clique on S where |S| > δ.
√
n and has m= cn. log n/4

edges. If α > (1+ε)
γ .δ , then Algorithm DETECT(γ , δ) accepts almost surely.

Proof. If S is a γ -clique and G hasm= cn. log n/4 edges:
k
m

= α√
n

>
(1+ ε)
γ .|S|

By Lemma 2.1 there is a giant component as
k
m

>
(1+ ε)
γ .|S|

Hence Algorithm DETECT(γ , δ) accepts almost surely.

The above theorem shows that on positive instances, Algorithm DETECT(γ , δ) is almost surely
correct. What about negative instances? We observe that there exists an input graph G that does
not have a γ -clique of size strictly greater than ε

√
n, yet which Algorithm DETECT(γ , δ) (incor-

rectly) accepts. G consists of a clique K of size ε
√
n and of a path of size n− |K|. With high

probability, the Reservoir contains a component of size at least 90% ofK, and will therefore accept,
incorrectly.

However this input is somewhat pathological. In Theorem 4.2, we will prove that, assuming
that G is drawn from the following stochastic power law model, the algorithm is correct onG with
high probability.
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4.2 Analysis in the uniform case
Theorem 4.2. In the uniform configuration model (Subsection 2.3.2), Algorithm
DETECT(γ , δ) Rejects almost surely.

The Reservoir R is constructed by a three-step process, which we call the Configuration-first
process:

1. Take the Zipf degree sequence (Definition 2.2).
2. Use the configuration model (Definition 3.1) to generate a multigraph G from the Zipf

degree sequence
3. Take a random uniform sample (without replacement) of k edges from G to define the

Reservoir R.

Instead, we will analyze the following process, which we call the Configuration-last process:

1. Take the Zipf degree distribution (Definition 2.2) as the degree sequence of the overall
graph G.

2. Take a random uniform sample (without replacement) of 2k stubs, determining the degree
sequence in R.

3. Use the Configuration model (Definition 3.1) to generate a random multigraph R from
that degree sequence.

Lemma 4.1. The above two processes give the same distribution for multigraph R.

Proof. The configuration model is simply a greedy matching of stubs.

Proof. (of Theorem 4.2) By Lemma 4.1, we will analyze the second process for generating R. The
plan is to apply Theorem 3.1 to the configuration model generated from the degree sequence of R.
One difficulty is that that degree sequence is not deterministic but random. Theorem 3.1 assumes a
deterministic degree sequence for each n. In our setting, we have a distribution of degree sequences
for each n.

We analyze the properties of the random degree sequence in R, so as to prove that with proba-
bility 1− o(1) it satisfies the assumptions of Theorem 3.1. We define one degree sequence for each
n. We will prove that this asymptotic sequence satisfies the assumptions of Theorem 3.1.

The proof relies on a series of technical Lemmas, that are deferred to the next subsections.
The degree distribution of the Reservoir is well-behaved: the first property (feasibility) holds by
definition. The second property (smoothness) holds by Lemma 4.3 for i= 1 and by Lemma 4.4 for
i≥ 2. The third property (uniform convergence) also holds by Lemma 4.6. The fourth property
(uniform limit) holds by Lemma 4.8. Thus the degree sequence is well-behaved. As to the other
assumptions of Theorem 3.1, the second one (Q negative) follows from the previous Lemmas,
the third one (maximum degree) from Lemma 4.5, and the fourth one (average degree) from
Lemma 4.7.

By Theorem 3.1, we then have that, with probability 1− o(1), the largest connected component
of R has size O(n1/4R log nR). Since nR =O(

√
n log n), this is O(n1/8 ln5/4 n), and then Algorithm

DETECT(γ , δ) rejects.

4.2.1 Degree distribution in the Reservoir
Let DR denote the distribution of degrees in R. Let NR denote the number of nodes spanned
by the edges of R, with expectation nR = IE[NR], and let Xi be the random variable equal to the
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number of nodes of degree i in R, with expectation xi = IE[Xi], where the expectation is over the
Configuration-last process. We will use the following basic fact:

Lemma 4.2. If n≥ 0 and 0≤ x≤ 1 then (1− x)n ≥ 1− nx.

Lemma 4.3. In the Reservoir R:

• X1 ≤NR ≤ 2k.
• IE(X1)= x1 ≥ 2k

(
1−O

(
ln ln n
ln n

))
.

• Let η > 0. Then, with probability at least 1− η we have: X1 ≥ 2k
(
1−O

(
ln ln n
η. ln n

))
.

• The limit in probability of the ratio X1/NR exists and is equal to �1 = 1: that is,
plimn→∞X1/NR = 1.

Proof. The first statement is obvious: the number of vertices of degree 1 is at most the toal number
NR of vertices spanned by the k edges of R, which is at most 2k.

For the second statement, we start from an exact expression for the expected number of nodes
of degree 1 in R. A vertex that has degree j in G has degree 1 in R if and only if the Reservoir picks
exactly one of its j edges, which has probability j · (α/

√
n)(1− α/

√
n)j−1. Since there are �cn/j2�

vertices of degree j in G, we can write:

x1 =
√
c.n∑

j=1

⌊
c.n
j2

⌋
· j α√

n

(
1− α√

n

)j−1
.

Let ε = 2 ln ln n
α
√
c ln (n) . We use Lemma 4.2 to write:

(
1− α√

n

)j−1
≥
⎧⎨⎩ 1− εα

√
c if j≤ ε

√
cn

0 otherwise.

Thus

x1 ≥ (1− εα
√
c)

ε
√
c.n∑

j=1

⌊
c.n
j2

⌋
· j α√

n
.

On the other hand, since 2k equals the expected sum of the degrees of vertices in R, and a vertex
of degree j in G has expected degree j · α/

√
n in R, we can therefore write

2k=
√
c.n∑

j=1

⌊
c.n
j2

⌋
· j α√

n

and

x1 ≥ (1− εα
√
c)

⎛⎝2k−
√
c.n∑

j=ε
√
cn+1

⌊
c.n
j2

⌋
· j α√

n

⎞⎠ .

Now we can bound the last term by
√
c.n∑

j=ε
√
cn+1

⌊
c.n
j2

⌋
· j α√

n
≤ c

√
nα

∫ √
c.n

ε
√
cn

dt
t

= c
√
nα ln (1/ε).
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Recall that k=mα/
√
n andm∼ cn ln (n)/4, so that 2k∼ c

√
nα ln (n)/2. We obtain:

x1 ≥ 2k
(
1− 2

ln (1/ε)
ln (n)

)
(1− εα

√
c).

Substituting the value of ε, we obtain x1 ≥ 2k
(
1−O

(
ln ln n
ln n

))
.

For the third statement, we use Markov’s inequality on Y1 = 2k− X1. We have: Y1 ≥ 0, and
IE(Y1)= 2k− x1 ≤ 2kO

(
ln ln n
ln n

)
by Lemma 4.3, so Pr (Y1 > IE(Y1)/η)< η, hence the result.

For the fourth statement, observe that X1/NR ≤ 1 always. Let η = ( ln ln n)2/ ln n. Then, by the
previous statement, with probability 1− η = 1− o(1) we have

X1
NR

≥ X1
2k

≥ 1−O (ln ln n/ ln n)
1
η

= 1−O (1/ ln ln n) , i.e.

Pr
(

| X1
NR

− 1| ≥ ε

)
=O

(
ln ln n
ε ln n

)
,

hence for all ε we have limn→∞ Pr
[
| X1
NR

− l1| ≥ ε
]
= 0, therefore plimn→∞ X1

NR
= 1.

Lemma 4.4. In the Reservoir R:

• for i≥ 2, the expected number of nodes of degree i satisfies IE(Xi)= xi ≤ (α
√
c)i

i!.i−1 .
√
c.n.

• The limit in probability of the ratio Xi/NR exists and is equal to �i = 0: that is,
plimn→∞Xi/NR = 0.

Proof. For the first statement, consider that a vertex that has degree j in G has degree i in R if and
only if the Reservoir picks exactly i of its j edges; since there are �c.n/j2� vertices of degree j in G,
we can write:

xi =
√
c.n∑

j=i

⌊
c.n
j2

⌋
.
(
j
i

)
.
(
k
m

)i
.
(
1− k

m

)j−i

Since
(
1− k

m

)j−i ≤ 1 and
(j
i
)≤ ji/i!,

xi ≤ c.n.
(
k
m

)i
.
1
i!

√
c.n∑

j=i

1
j2
.ji.

We use
∑√

c.n
j=i ji−2 ≤ ∫ √

cn
0 ti−2dt = 1

i−1
√
cni−1.

xi ≤ c.n.
(

α√
n

)i
.

1
i!(i− 1)

√
cni−1 =

(
α
√
c
)i

i!(i− 1)
√
cn,

hence the first statement. The second statement follows from Xi ≤NR − X1 and the fact that
plimn→∞X1/NR = 1.

Lemma 4.5. Let η > 0. Let i∗ denote the maximum vertex degree in the Reservoir R. Then:

• With probability at least 1− η, we have i∗ ≤ log (n/η)/ log log (n/η).
• IE(i∗)=O( log n/ log log n).
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Proof. Consider the first statement. For any i we have Pr (i∗ < i)= 1− Pr (∃v of degree ≥ i). Let
i≥ 2α

√
c. With the union bound, we compute:

Pr
(∃v of degree ≥ i

)≤
∑

i≤j′≤√
cn

⌊
cn
j2

⌋ ∑
i≤j≤j′

(
j′

j

)(
k
m

)j
(1− k

m
)j

′−j.

A short calculation ensues:
(j′
j
)≤ j′j/j!, and 1− k/m≤ 1. Exchanging the order of summation, the

right hand side is bounded by
√
cn∑

j=i

cn(k/m)j

j!

√
cn∑

j′=j
j′j−2 ≤

√
cn∑

j=i

cn(k/m)j

j!
1

j− 1
√
cnj−1.

Substituting k/m= α
√
c, the right-hand side is bounded by

√
cn

√
cn∑

j=i

1
j− 1

(α
√
c)j

j! .

Since j≥ i≥ 2α
√
c, we have α

√
c/j≤ 1/2, and so we can use bound the sum by the first term times

(1+ 1/2+ 1/4+ · · · )≤ 2:

√
cn

√
cn∑

j=i

1
j− 1

(α
√
c)j

j! ≤ 2
√
cn

1
i− 1

(α
√
c)i

i
.

Fix η > 0. The right-hand side is less than η for i= lg (n/η)
lg lg (n/η) .

Consider the second statement. We write

IE(i∗)=
∑
i≥1

Pr (i∗ ≥ i)≤ i0 +
∑
i≥i0

Pr (∃v of degree ≥ i).

For any i0 ≥ 2α
√
c, again we can write

IE(i∗)≤ i0 +
∑
i≥i0

√
cn

√
cn∑

j=i

1
j− 1

(α
√
c)j

j! ≤ i0 + 2
∑
i≥i0

√
cn

1
i− 1

(α
√
c)i

i!

≤ i0 + 4
√
cn

1
i0 − 1

(α
√
c)i0

i0!
Minimizing the right-hand side over i0 ≥ 2α

√
c gives IE(i∗)=O( lg n/ lg lg n).

Lemma 4.6 (Uniform convergence).

plimn→∞
∑
i≥2

i(i− 2)Xi
NR

= 0.

Proof. Wemust prove that for all ε > 0, we have Pr
(∑

i≥2 i(i− 2)Xi/NR > ε
)= o(1).

Let η > 0. We first use NR ≥ X1 to infer i(i− 2)Xi/NR ≤ (i(i− 2)Xi/X1.

• By Lemma 4.3, with probability at least 1− η we have X1 ≥ 2k(1− (1/η) ln ln n/ ln n).
• By Lemma 4.5, with probability at least 1− η, the maximum degree i∗ satisfies i∗ =
O( log n/ log log n).
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• Let 2≤ i≤ i∗. By Markov’s inequality, with probability at least 1− η we have:∑
i≥2 i(i− 2)Xi ≤∑

i≥2 i(i− 2)xi/η. Using Lemma 4.4, this implies:∑
i≥2 i(i− 2)Xi ≤∑

i≥2
(α

√
c)i

(i−1)! .
√
c.n 1

η
≤ α

√
ceα

√
c√cn/η.

Combining, with probability 1−O(η), all the above statements hold, implying:∑
i≥2

i(i− 2)
Xi
NR

≤ α
√
ceα

√
c√cn

1
η

1
2k(1− (1/η) ln ln n/ ln n)

Since α, c= 
(1) and k= θ(
√
n log n), the above equation means that with probability at least

1−O(η): ∑
i≥2

i(i− 2)
Xi
NR

≤ O(1)
η log n− log log n

Let η = (1/ε + log log n)/ log n= o(1). Then

Pr

⎛⎝∑
i≥2

i(i− 2)Xi/NR ≤O(ε)

⎞⎠= 1−O(η)= 1− o(1)

Lemma 4.7. In the Reservoir R, with probability at least 1− o(1), the average vertex degree is at
most 2. Here we take expectations over the Configuration.last model, and then compute the average
degree over all vertices in the Reservoir.

Proof. The average vertex degree in R equals 2k/NR. The probability that it exceeds 2 equals the
probability that NR < k, which is at most the probability that X1 < k, which by Lemma 4.3 is
O( log log n/ log n)= o(1).

We now consider the last condition for a well-behaved degree sequence: the limit L(DR)=
plimn→∞

∑
i i(i− 2)Xi/NR exists, is equal to −1, and the convergence is uniform: ∀ε∃i0∃N∀n>

N |∑i≤i0 i(i− 2)Xi/NR − L(DR)| < ε. We will take i0 = 2.

Lemma 4.8 (Uniform limit). The limit L(DR)= plimn→∞
∑

i i(i− 2)Xi/NR exists and is equal to
−1. Moreover, the convergence is uniform: Let η > 0. Then, for every n>N, with probability at least
1− η we have: ∣∣∣∣∣

i=2∑
i=1

i(i− 2)
Xi
NR

− L(DR)

∣∣∣∣∣< O( ln ln n)
η log n

= o(1)

and

∣∣∣∣∣∣
∑
i≥3

i(i− 2)
Xi
NR

∣∣∣∣∣∣< O(1)
η log n− log log n

= o(1)

Proof. This follows from Lemmas 4.3 and 4.6.

4.2.2 High probability analysis for sequences of degree distributions
We now consider a sequence of degrees indexed by both i and n, where for each n: we pick a
random degree sequence in R obtained by the second step of the Configuration.last process. We
use the following construction to couple the degree sequences as n varies.

Given n and a degree sequence in the Configuration.last process, let us write i∗ for the maxi-
mumdegree and

(
X(n)
i

)
for the degree sequence

(
X(n)
1 , X(n)

2 , ...X(n)
i∗

)
.We define a function dwhose
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value is small with high probability and whose is value is 1 when two of the Molloy–Reed condi-
tions are not satisfied: the maximum degree is greater then N1/9

R and the average degree 2k/NR is
greater than 2.

d((X(n)
i ))=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if i∗ >N1/9
R

or 2k/NR > 2

max

(∣∣∣∣X(n)
1
NR

− 1
∣∣∣∣ ,
∣∣∣∣∣∑i≥2

i(i− 2)X
(n)
i
NR

∣∣∣∣∣
)
otherwise.

In Lemma 4.8, we separated the two expressions
∣∣∣∣X(n)

1
NR

− 1
∣∣∣∣ and

∣∣∣∣∣∑i≥2
i(i− 2)X

(n)
i
NR

∣∣∣∣∣ whose limits are

small. For each n, we sort the degree sequences in increasing order according to d, producing an
order on those degree sequences,

(
X(n,1)
i

)
,
(
X(n,2)
i

)
, . . ..

To each number 0< t < 1, we associate the unique sequence
(
X(n,r)
i

)
such that:∑

j<r
Pr

((
X(n,j)
i

))
< t <

∑
j≤r

Pr
((

X(n,j)
i

))
Note that r is a function of t and n. This provides the desired coupling: for each t, as n spans the
natural integers we obtain a collection of degree sequences, one for each n. We wish to apply the
Molloy–Reed Theorem (Theorem 3.1) to the resulting sequence of degree sequences

(
X(n,r)
i

)
and

conclude.

Proof of theorem 4.2. Consider a sequence indexed by both i and n, generated as above. We
check that this asymptotic degree sequence is almost surely well-behaved and the other three
assumptions of the Molloy–Reed Theorem hold.

First, it is well-behaved: it is feasible by construction. The smoothness condition, i.e. the exis-
tence of plimn→∞X(n,r)

i /NR is proved in the Lemma 4.3 for i= 1 and in the Lemma 4.4 for i> 1.

The uniform convergence of plimn→∞
∑

i≥2
i(i−2)X(n,r)

i
NR

is proved in the Lemma 4.6. The existence

and uniform convergence of
∑

i≥1 i(i− 2)X
(n,r)
i
NR

is proved in the Lemma 4.8. The condition on the
maximum degree, less than N1/9

R , is proved in the Lemma 4.5 and the condition on the average
degree in the Lemma 4.7. The coeffcient Q is −1 and we can therefore apply the Molloy–Reed
Theorem 3.1. The conclusion, i.e. the bound on the size of the largest connected component C
holds almost surely. There exists a constant B such that: Prt[|C| ≤ B.NR ≤ B.k1/4]= 1. Hence:

PrConfiguration.last[|C| ≤ B.k1/4]= Prμ·�[|C| ≤ k1/4]→n→∞ 1

The algorithm DETECT(γ , δ) tests if |C| ≤ k1/4 ≤ n1/8 log2 n, hence it is correct with h.p. �

5. Space lower bounds
We reduce a hard problem for the one-way communication complexity to the existence of an
(1, δ)-large very dense subgraph and assume the reader familiar with the concepts of communica-
tion complexity (Kushilevitz & Nisan, 1997). The multiparty disjointness problem in the one-way
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communication model is defined as follows. There are q players and for each j= 1, ...q, player j
has an n-bit vector xj = xj,1 . . . xj,n. In the restricted problem:

• either all vectors xj are pairwise distinct (i.e. there is no j, j′, i such that xj,i = xj′,i = 1),
• or there exists a unique i∗ such that

∧
j xj,i∗ = 1, and all vectors xj are otherwise pairwise

distinct (i.e. there is no j, j′, i �= i∗ such that xj,i = xj′,i = 1).

In the one-way communication model, information is only sent from a player j to a player j′ such
that j′ > j, and the last player, player q, must decide whether there is an i such that

∧
j xj,i = 1.

Lemma 5.1 ((Chakrabarti et al., 2003)). The restricted multiparty disjointness problem with one-
way communication and q players requires communication complexity �(n/q).

This lower bound is used to obtain other lower bounds for a range of problem. An �(n) lower
bound is presented in Bahmani et al. (2012) for the α-approximation of the maximum density
ratio ρ∗, i.e. to find a subgraph with a vertex S such that ρ(S)≥ ρ∗/α.

Lemma 5.2 ((Bahmani et al., 2012)). An
√
q/2-approximation streaming algorithm for the

maximum density ratio requires space �(n/q).

We keep the same reduction presented in Bahmani et al. (2012): it reduces the restricted
multiparty disjointness problem with one-way communication and q players to the

√
q/2-

approximation of the maximum density ratio ρ∗. Consider an instance of the restricted
q-party disjointness problem with 1-way communication. Player j holds boolean variables
xj,1, xj,2, · · · , xj,n, for each j= 1, 2, . . . , q. We construct a graph G such that:

• G is the union of n disjoint graphsG1, ...Gn, each over q vertices. For i= 1, 2, . . . , n, the nodes
of Gi are denoted u1,i, u2,i, ...uq,i.

• If xj,i = 1, we add the q− 1 edges from the node uj,i to all the other nodes uj′,i of Gi, for j′ �= j.

For a Yes instance of the multiparty disjointness problem, i.e.
∧

j xj,i∗ = 1, the graph Gi∗ is a
clique of size q and the maximum density ratio is therefore ρ∗ = (q− 1)/2. For a No instance,G is
a forest where each tree is of depth 1 and the maximum density ratio is ρ∗ = (q− 1)/q= 1− 1/q.

Let an input stream with the edges of player 1, then of player 2, ... then of player q coming last.
A streaming algorithm for ρ∗ with approximation less than

√
q/2 and space o(n/q) could decide

between a Yes and a No instance of the q-multiparty disjointness problem. If we assume that S
must be large, let q= δ

√
n and we obtain:

Corollary 5.1. A n1/4-approximation streaming algorithm for the maximum density ratio for S of
size at least 2

√
n requires space �(

√
n).

If we consider the very dense criterium, i.e. γ = 1, we obtain our lower bound:

Corollary 5.2. The detection of a (γ , δ) large very dense subgraph requires �(
√
n) space.

Proof. Let q= δ
√
n in the reduction of Lemma 5.2 in Bahmani et al. (2012). A Yes (resp. No)

instance of the multiparty disjointness problem is reduced to a Yes (resp. No) instance of the
(1, δ)-Large very dense subgraph problem. It implies the space lower bound of 5.1.
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Algorithm 2:
1 Static very dense subgraph estimation.
2 • Let C be the largest connected component of the reservoir R.
3 • If |C| < n1/8 ln2 n then Reject, else output 2-core(C).

6. Concentrated case: Reconstructing a complete subgraph
In this section, we propose an algorithm (Algorithm 2) to approximately reconstruct a very dense
subgraph. We show that in the Concentrated model with a clique S (a γ -clique with γ = 1), the
output approximates S with high probability.

To reconstruct a clique, based on AlgorithmDETECT(γ , δ) , it would be tempting to output the
largest connected component in the Reservoir. However, in the Concentrated model with a clique
S, such an algorithmwould overestimate the size of S and output many vertices besides the vertices
of S. Instead, we observe that many of the extraneous vertices appear to be leaves of the connected
component of the Reservoir, and can thus be eliminated by outputing the 2-core instead of the full
connected component. Formalizing this intuition leads to the following algorithm and result.

We now assume that the parameter α depends on n and slowly grows to infinity. For example
α =O( ln ln ln n) so that the analysis of the previous sections still hold. If α is constant, we just
approximate S within a constant factor.

Theorem 6.1. Assume the concentrated model (Section 3.2) with a clique S, and let Ŝ= 2-core(C)
denote the output of Algorithm 2. If 1/δ = o(α) and α =O( ln ln ln n/

√
c), then |S \ Ŝ| and |̂S \ S|

almost surely are both o(|S|).

Since S is a clique in this section, the edges of the reservoir R that are internal to S are exactly
distributed according to G(n, p). Notice that:

• If v ∈ S, then the degree of v is O(
√
n)

• The degree of v in the Reservoir is log n

Recall Theorem 2.1 which gives us an estimate on the size of |C| (|C| � b.n) and of its 2-core(C)
(|2-core(C)| � b.(1− t).n). If S is a clique, we can use this result and conclude that the 2-core(C)
is of size O(n) and in S with high probability. The proof follows the successive steps, where results
are taken with high probabilities:

• The Reservoir has no cycle disjoint of S, Lemma 6.1 ,
• The 2-core(C) consists of elements of S and possibly elements ofV − Swhich belong to cycles
that go through S,

• Lemmas 6.2 and 6.3 show that very few nodes of V − S belong to such cycles.

Lemma 6.1. With high probability, in the restriction of the Reservoir to V − S, the total size of
connected components that have a cycle is at most O(n1/4).

Proof. Use Molloy-Reed, Theorem 3.1.

Nodes of S have a high degree. Some nodes in V − S have also a high degree. Let us study false
positives for S, that is, vertices u that belong to 2-core(C) but not to S.

μ = Pr [(u ∈V − S∧ u ∈ 2-core(C))]
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One possibility is that u is connected to 2-core(C)∩ S by two disjoint paths. We first consider the
case where those paths have length 1.

Lemma 6.2. Let Z denote the number of vertices u in V − S incident to two edges of R into S,
(v1, u) ∈ R and (v2, u) ∈ R with v1, v2, ∈ S. Then:

IE[Z]≤ √
n

O(α2)
( log n)2

Proof. By linearity of expectation, the desired quantity is equal to:

A=
∑

u∈V−S
Pr [there exist v1, v2 ∈ S such that (v1, u), (u, v2) ∈ R].

Edges (v1, u) and (v2, u) are border edges of S. By definition of S-concentrated dynamics and of
the size of R, S has O(α

√
n) border edges in R. By construction of the power law graph, each of

those edges is attached to a random stub of V − S. Since there are ∼ cn log n/2 stubs in V − S, the
probability that such an edge is attached to a stub of u is 
(du/(n log n)). We will also use

∑
u∈V−S

d2u ∼
i=√

cn∑
i=1

c.n.i2/i2 =
i=√

cn∑
i=1

c.n= c
√
c.n.

√
n= 
(n3/2).

A=
∑

u∈V−S

(
O(α

√
n)

2

)
(
(du/n. log n))2 = O(α2)

n.( log n)2
∑

u∈V−S
d2u

= O(α2)
√
n

( log n)2

Lemma 6.3. Given i≥ 2, let Y denote the number of chains (v, u1, u2, . . . , ui, v′) ∈ S× (V \ S)×
· · · × (V \ S)× S of R. Then:

IE[Y]≤ √
n

O(αi+1)
( log n)i+1 .

Proof. We will give the full proof for i= 2, and the generalization to i≥ 2 is immediate. Fix two
nodes u1, u2 ∈V − S.

Pr [(u1, u2) ∈ R]= Pr [(u1, u2) ∈G] Pr [(u1, u2) ∈ R|(u1, u2) ∈G]

∼ du1 .du2
m

.
O(α)√

n
For u1, the probability to be connected to S is:

Pr [∃v ∈ S:(v, u1) ∈ R]= du1
m

O(α)
√
n.

Similarly for ui,

Pr [∃v′ ∈ S:(ui, v′) ∈ R]= dui
m

O(α)
√
n.

Combining, the probability that there exists v, v′ ∈ with a path (v, u1, u2, v′) in R is bounded by

Pr (∃v, v′ ∈ S:(v, u1, u2, v′) path in R)= d2u1d
2
u2

m3 O(α3)
√
n.
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Algorithm 3:
1 Dynamic very dense subgraph detection (t):
2 • let Ci be the largest connected component of the reservoir Ri of size k= 
(α

√
n log n) at time

ti ≤ t.
3 • If there is an i such that |Ci| ≥ n1/8i ln2 ni Accept, else Reject.

Summing over u1, u2 ∈V − S and recalling that
∑

u d2u =O(n3/2) and that m= 
(n log n), we
obtain that the expected number of chains, for i= 2, is

√
n

O(α3)
( log n)3

.

The generalization to i> 2 is straightforward.

Proof of Theorem 6.1. We use Theorem 2.1 to prove that 2-core(C) contains a large fraction of the
elements of S. Indeed, the theoremmeans that |2-core(C)∩ S| ≥ |S|b(1− t) with b= 1− t/c1 and
te−t = c1e−c1 , where the probability that an edge of S is put in the Reservoir is c1/|S|. We have
|S| = δ

√
n and α/

√
n= c1/|S|. Hence c1 = α.δ.

Assume α >> 1/δ. Then c1 → ∞, so t → 0 and b→ 1, and then |S|b(1− t)∼ |S|, so |S \ Ŝ| =
o(|S|).

To analyze |̂S \ S|, observe that the nodes of V − S that belong to 2-core(C) either have two
disjoint paths leading to S, or belong to a cycle of V − S.

The nodes that belong to a cycle of V − S are few in number, O(n1/4) by Lemma 6.1.
Concerning the nodes that have two disjoint paths leading to S, Lemmas 6.2 and 6.3 give: The

number of nodes u in V − S that have two disjoint paths leading to S is at most:∑
i≥1

i
√
n

O(αi+1)
( log n)i+1 � √

n
O(α2)
( log n)2

.

Thus the expected total number of nodes of V − S that belong to 2-core(C) is o(|S|).

7. Dynamic graphs
Consider the sequence of graphs Gi defined by the edges in each window wi. We keep a Reservoir
Ri but only store the 2-core of the large connected components. We extend our model of random
graphs with or without a very dense subgraph to the dynamic case.

Let P be the graph property: there is a γ -clique of size greater than δ.
√
n. How do we decide

♦ P(t), i.e. there is a window wi at some time ti ≤ t such that Gi has a γ -clique of size greater than
δ.

√
n? Recall that α = 
(1/γ .δ) as in the static case.
Consider the following Dynamics applied to a given graph G: remove q≥ 2 random edges,

uniformly on the set of edges of G, freeing 2.q stubs. In the case of the uniform Dynamics, we
generate a new uniform matching on these free stubs to obtain G′.

In the case of the S-concentrated Dynamics, we have fixed some subset S of size δ.
√
n among

the nodes of high degre and some γ . Consider the q edges that we remove. Partition then into
internal edges E(S), external edges in E(S̄) and cut edges of E(S, S̄). There are three cases and the
analysis generalizes the static case.

7.1 Dynamic models
For the S-concentrated Dynamics, we have fixed some subset S of size δ.

√
n among the nodes of

high degre and some γ . Partition the q removed edges into internal edges E(S), external edges in
E(S̄) and cut edges of E(S, S̄). There are three cases:
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1. The graph G had a γ -clique subgraph and we will maintain such a very dense subgraph.
We rematch the corresponding stubs of each class with a uniform matching. We conserve
the same number of edges in E(S), E(S̄) and E(S, S̄) and maintain a γ -clique subgraph.

2. The graph had no γ -clique subgraph. Let q′ be the number of edges in E(S, S̄). With �q′/2�
new edges in S, we don’t have a γ -clique subgraph. If q′ is even, we match uniformly all
the stubs in S. If q′ is odd, we only take q′ − 1 stubs, match uniformly all the stubs in S and
leave one edge in E(S, S̄).

3. The graph had no γ -clique subgraph but with q′′ < �q′/2� edges, we reach a γ -clique sub-
graph. We take the q′′ stubs in S, match uniformly all the stubs in S, and match the other
edges in E(S, S̄) uniformly.

How does the distribution of random graphs evolve in time? Consider the Markov chainM where
nodes are the possible graphs and transition probabilitiesM(i, j) are the probabilities to obtain Gj
from Gi with the process of removing random q edges from Gi and recombining the 2q stubs with
the uniform or the S-concentrated Dynamics.

Lemma 7.1. For the uniform Dynamics, the stationary distribution of the Markov chain M is uni-
form. For the S-concentrated S-Dynamics, the stationary distribution of the Markov chain M is
uniform among all the graphs with a γ -clique S.

Proof. By definition of the Markov chain, for all i,
∑

j M(i, j)= 1. The transition from Gi to Gj
can also occur backwards from Gj to Gi, and similarly for many Gk which lead to Gi. Therefore
for all j,

∑
i M(i, j)= 1 as it sums all possible transitions starting from Gj. The matrix M is then

doubly stochastic and ergodic. Hence the stationary distribution is uniform. Fo the S-concentrated
dynamics, we reach a γ -clique subgraph with the right number of edges. Each transformation of
a γ -clique subgraph into another one is reversible. Hence the matrix M is also doubly stochastic
and the stationary distribution is uniform.

7.2 Deciding properties of dynamic random graphs
A general Dynamics is a function which chooses at any given time, one of the two strategies:
either a uniform Dynamics or an S-concentrated Dynamics for a fixed S. An example is the Step
Dynamics: apply the uniform Dynamics first, then switch to the S-dynamics for a time period �,
and switch back to the uniform Dynamics. Notice that during the uniform Dynamics phase, there
are no large components in the Reservoir. For the step phase, we store some components which
will approximate S.

A stream G(t) has a large γ -clique subgraph if there is Gi and Si such that |Si| > δ.
√
n and

α > (1+ε)
γ .δ for a ti ≤ t. Assume Prob[ Algorithm 1 accepts ]≥ 1− η in Theorem 4.1. We now

show that the detection error of Algorithm 3 decreases.

Corollary 7.1. For a stream which has a large γ -clique (which satisfies the conditions of Theorem
4.1) during a time interval � ≥ τ , Algorithm 3 is such that Prob[ Algorithm 3 accepts ]≥ 1−
η�/τ .

Proof. There are �(� − τ )/λ� different windows but ��/τ� independent windows, i.e. win-
dows with no overlap. The samples are then independent and we can then amplify the success
probability.

For the random graphs generated by the uniform Dynamics, the situation is different and the
error will increase. If we assume that: Prob[ Algorithm 1 Rejects ]≥ 1− η′, the detection error
of Algorithm 3 is given by:
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Algorithm 4:
1 Dynamic very dense subgraph estimation Algorithm 4 (t, ε).
2 • Let Ŝ= ∅. Consider the first independent I = log (ε)/ log (ρ) windows wi when Ci, the largest
connected component of the reservoir Ri at time ti < t is such that |Ci| > n1/8i ln2 ni.

3 • Then Ŝ= Ŝ∪ 2-core(Ci).

Corollary 7.2. For a stream of random graphs which follow the uniform Dynamics, Algorithm 3 is
such that:

Prob[ Algorithm 3 Rejects ]≥ 1−
(
t − τ

λ

)
.η′

Proof. There are
⌊ t−τ

λ

⌋
windows and the error probability is less than the sum of the errors for

each window.

7.3 Dynamic estimation of S
Consider random graphs generated by a step Dynamics, i.e. a strategy which maintains an S
concentration during a time interval� ≥ τ . In this case, we can improve the quality of the approx-
imation of Theorem 6.1. Assume |S \ Ŝ| ≤ ρ.|S| for Algorithm 2, where ρ ≤ 1. Let ε be an arbitrary
tolerated error, and say that Ŝ ε-approximates S if |S \ Ŝ| ≤ ε.|S|

Corollary 7.3. For a stream generated by the step Dynamics during a time interval � ≥ I.τ ,
Algorithm 4 will ε-approximate S almost surely.

Proof. There are at least I independent windows where we have a large connected component.
For each element in S, there is a probability ρ not to be selected in Ŝ for each window. For I
independent windows, the probability not to be selected is ρI = ε, hence a point is selected with
probability 1− ε. By Theorem 6.1 very few nodes of V − S are in Ŝ.

7.4 Implementation
An implementation of the method, in de Rougemont &Vimont (2018), considers streams of edges
defined by Twitter graphs4 associated with tags (for example #bitcoin or #cnn). With windows of
length τ = 1 hour and step λ = 30 mins, there werem= 20.103 edges per window and the size k of
the Reservoir was 500, of the order of

√
m. The #bitcoin stream has a unique giant component C

in the Reservoir with approximately 100 edges, i.e. a compression factor of approximately 2.102.
In practice, a giant component in the Reservoir is the witness of a large γ -clique, even though
the coefficient γ can be small. The analysis of the variations of the sizes of the giant components
over time is one of the motivations for the dynamic random graphs introduced in this article.
Classical methods (Aggarwal & Wang, 2010) to detect communities in social graphs use Modules
and Spectral techniques, which require to store the entire graph.
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Notes
1 In this article, whenever we speak of a “dense subgraph”, we mean a large very dense subgraph, where the minimum size to
qualify as large is specified in the theorem statements.
2 In some other contexts, it is sometimes called asymptotically almost surely.
3 Note that the distribution of themultigraph thus obtained is not uniform in general.We can obtain simple graphs, i.e. with-
out self-loops or multi-edges by rejection sampling, and they satisfy the same properties. Since, for each simple graphs with
that degree distribution, the number of executions leading to that simple graph is the same, the restriction of the distribution
to simple graphs yielded by rejection sampling is uniform. (Molloy & Reed, 1998).
4 The nodes of a Twitter graph are the tags, either @x or #t. A tweet sent by @x which contains the tags @y and #t generates
the edges (@x, @y) and (@x, #t). Given a tag or a set of tags, Twitter sends in a stream all the tweets which contain one of the
selected tags. The stream of tweets is transformed into a stream of edges.
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