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Abstract

In this work, proton stopping due to free and bound electrons in a plasma target is analyzed. The stopping of free electrons
is calculated using the dielectric formalism, well described in previous literature. In the case of bound electrons, Hartree-
Fock methods and oscillator strength functions are used. Differences between both stopping, due to free and bound
electrons, are shown in noble gases. Then, enhanced plasma stopping can be easily estimated from target ionization.
Finally, we compare our calculations with an experiment in xenon plasmas finding a close agreement.
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INTRODUCTION

Electronic stopping due to free electrons can be analyzed
through dielectric formalism. In dielectric formalism,
random phase approximation (RPA) has been used exten-
sively, which consist of considering the effect of the incident
particle as a perturbation, so that the energy loss was pro-
portional to the square of its charge. Then slowing-down
was simplified to a treatment of the properties of the
medium only, and a linear description of these properties
may then be applied.
But in this work we will study all kinds of plasmas, even

coupled plasmas where target electron interactions have to be
kept in mind. RPA does not consider these electron inter-
actions, whereas it is well-known that in real materials these
interactions exist. Mermin (1970) derived an expression for
the dielectric function caring for the plasma electron collisions
but only preserving the local particle density. Mermin dielec-
tric function has been successfully applied to solids (dense de-
generate electron gas) (Barriga-Carrasco et al., 2004), for
classical plasmas (nondegenerate electron gas) (Selchow
et al., 1999; Gerike, 2002; Barriga-Carrasco et al., 2006) and
also for partially degenerate plasmas (Barriga-Carrasco, 2007).
Recently, we have been able to obtain a dielectric function

that includes all conservation laws (density, momentum, and
energy) when we take into account plasma electron-electron

collisions for plasmas at any degeneracy (Barriga-Carrasco
2010; 2011). This full conserving dielectric function
(FCDF) reproduces former RPA and Mermin ones, for not
collisions and for collisions only considering electronic den-
sity conservation, respectively. Differences are as maximum
around 5% between FCDF values and the Mermin ones, and
only around 2% between the FCDF ones and RPA ones for
plasmas with high enough collision frequency. It is not sur-
prising that as we include more conservation laws the behav-
ior of the dielectric functions yields back the RPA, a model
with every conservation laws enforced. The meaning of the
fact that FCDF results are similar to the RPA ones, a dielec-
tric function that does not consider electron-electron col-
lisions, is that latter collisions are not important for energy
loss calculations. Whether from previous investigations it
was inferred the opposite, this was because electron col-
lisions were usually taken into account through a Mermin di-
electric function which does not consider momentum and
energy conservation. Then we will use the RPA dielectric
function to calculate electronic stopping of free electrons in
this work.

But, on the other hand, we must also consider stopping
power due to electron bound to the target plasma atoms.
This study can be performed using the mean excitation
energy, I, that appears in the renowned expression of the
Bethe logarithm

− dE

dx
= 4πZ2e4

mev2
ne ln

2mev2

I
. (1)
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Mean excitation energies can be determined through Hartree-
Fock method or through oscillator strength.
Only for hydrogen atom or hydrogen-like atoms, there are

analytical solutions of Schrödinger equation. However, there
are no exact solutions for atoms with more than one electron,
for this reason, we must use other approximating methods to
estimate the atomic properties of many electrons atoms. The
main idea of the Hartree-Fock method is to reduce the
many-electron problem to one-electron problem. It is called
the independent particle model, according to which each
electron moves in an effective potential that takes into ac-
count the attraction of the nucleus and the average effect of
the repulsive interactions due to the other electrons. The
whole wave-function of the atom is antisymmetric because
electron is a fermion that obeys the Pauli exclusion principle.
This antisymmetric requirement is the generalization of Har-
tree’s theory known as Hartree-Fock method (Bransden &
Joachain, 1983; Haken & Wolf, 2005; Frank et al., 2010).
Alternatively, I can also be considered through atomic

oscillator strength. A fast charge passing through an atomic
system has an effect like an electromagnetic radiation includ-
ing the excitation and ionization of atoms and ions. (Dalgar-
no, 1960; Fano & Cooper, 1968). Within this framework, I, is
calculated for every subshell of noble gases (Bell & Dalgar-
no, 1966; Bell et al., 1972) and for all of the elements from
Z= 1 to Z= 36 (Meltzer et al., 1990). Some authors have
studied by means of generalized oscillator strength, proton
stopping in aluminum and nickel ions, and in argon, krypton
and xenon atoms (McGuire et al., 1982; McGuire 1983;
1991).
Mean excitation energy could also be estimated using the

local plasma approximation (Lindhard & Scharff, 1953). The
local plasma approximation consists of averaging over den-
sity of the inhomogeneous fluid of bound electron around a
target ion (Garbet et al., 1987). Then I could be determined
using

ln I = ∫ ln γh− ωp(r) ρb(r) dr
[ ]

, (2)

with ω2
p(r)= 4πρb(r)e

2/me, γ = ��
2

√
and ρb(r) is the bound

electron density. A simple analytic formula for I, was pro-
posed through a variational method (Garbet et al., 1987).

I =
�����
2K
〈r2〉

√
. (3)

This equation is obtained in the next section.
It is easy to calculate mean ionization energies for noble

gases owing to their monatomic nature. Then it allows study-
ing electronic stopping for any degree of ionization from cold
gas to plasma state without difficulty. In case of cold gas,
only bound electrons contribute to electronic stopping,
while in plasma case, stopping of free electrons has to be
taken into account. In the results section, we estimate this
stopping for all noble gases and we study specifically the

case of xenon. We will use atomic units (a.u.), e= ħ=
me= 1, to simplify formulas.

ELECTRONIC STOPPING DUE TO FREE
ELECTRONS

RPA dielectric function is developed in terms of the wave
number k and of the frequency ω provided by a consistent
quantum mechanical analysis. The RPA analysis yields to
the expression (Lindhard, 1954)

εRPA (k, ω) = 1 + 1
π2k2

∫ d3k′
f (�k + �k′) − f (�k′)

ω + iυ − (E�k+�k′ − E�k′ )
, (4)

where E�k = k2/2. The temperature dependence is included
through the Fermi-Dirac function

f (�k) = 1
1 + exp [β(Ek − μ)]

, (5)

being β= 1/kBT and μ the chemical potential of the plasma
with electron density ne and temperature T. In this part of the
analysis, we assume the absence of collisions so that the col-
lision frequency tends to zero, υ→ 0.
Analytic RPA dielectric function for plasmas at any de-

generacy can be obtained directly from Eq. (4) (Gouedard
& Deutsch, 1978; Arista & Brandt, 1984)

εRPA(k, ω) = 1 + 1
4z3π kF

[g(u + z) − g(u − z)] , (6)

where g(x) corresponds to

g(x) = ∫
∞
0

ydy

exp (Dy2 − βμ) + 1
ln

x + y

x − y

( )
,

u= ω/knF and z= k/2kF are the common dimensionless
variables (Lindhard, 1954). D= EFβ is the degeneracy par-
ameter and nF = kF = �����

2EF
√

is Fermi velocity in a.u.
Finally, electronic stopping of free plasma electrons will

be calculated in the dielectric formalism as

Spf (v) = 2Z2

πv2
∫
∞
0
dk
k
∫
kv
0 dωω Im

−1
εRPA (k, ω)

[ ]
(a. u.),

where Z is the charge and v is the velocity of the projectile.

ELECTRONIC STOPPING DUE TO BOUND
ELECTRONS

In order to determine electronic stopping due to bound elec-
trons, we use analytical formulas in the limit of low and high
projectile velocities and, an interpolating expression is
derived for intermediate velocities. For a plasma target with
atomic density nat, bound electron density for each populated
atomic shell is ni= Pinat, where Pi is the average electron
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population in the shell of a target atom (Barriga-Carrasco &
Maynard, 2005). We can estimate electronic stopping for a
proton beam in the form

Sp = 4πnat
v2

Lb, (7)

the stopping number Lb being defined as

Lb =
∑
i

PiLi, (8)

where Lb is the stopping number for whole bound electrons
of atom or ion and Li is the stopping number for bound elec-
trons of each shell.
We reckoned Lb by interpolating between the asymptotic

formulas valid either for low or for high projectile velocities
(Maynard & Deutsch, 1985)

Lb(v) =
LH(v) = ln

2v2

I
− 2K

v2
forv> vint

LB(v) = αv3

1+ Gv2
forv ≤ vint

⎧⎪⎪⎨
⎪⎪⎩ , (9)

vint =
������������
3K + 1.5I

√
, (10)

where G is given by LH(vint)= LB(vint), K is the electron kin-
etic energy, I is the excitation mean energy, and α is the fric-
tion coefficient for low velocities. Eq. (3) is used to
determine the mean excitation energy of each shell (Garbet
et al., 1987)

I =
����������
2K / 〈r2〉

√
,

where 〈r2〉 is the average of the square of the radius, for the
electron in the i shell. Within the hydrogenic approximation,
the friction coefficient of each shell is given by
α = 1.067

��
K

√
/I (Garbet et al., 1987).

Using this approximation, we can easily estimate I from
the atomic parameters K and 〈r2〉. These late quantities are
been determined by two methods: (1) Hartree-Fock calcu-
lations (Fischer, 1987) and (2) oscillator strength sums
(Bell et al., 1972).

Hartree Fock Method

The Hartree-Fock equations for an electron i with coordinate
Ri is:

− 1
2
∇2

i − Z

ri
+ Vi(ri)

[ ]
ψQi

(Ri)

−
∑
j
j≠i

∫
ψ∗

Qj
(Rj)ψQi

(Rj)

ri − rj
∣∣ ∣∣ dτj · ψQj

(Ri) = EψQi
(Ri), (11)

where the first term in the bracket is the kinetic energy, the
second the potential energy due to the nucleus, the third

the Coulomb interaction energy with all the other electrons
and the last term of the first member is called the exchange
term, which includes the antisymmetry of the wave-function.

Furthermore, the wave-function of the one electron, could
be expressed with all its quantum numbers, including spin
(Fischer et al., 1997)

ψQj
(Rj) = Rnl (rj) Ylml (θ, φ) χms

(σj). (12)

It is necessary to obtain kinetic energy and mean square
radius from this wave-function, in order to solve Eq. (3).
We estimate K and

〈r2〉 through the integration of the following radial func-
tions

Knl = − 1
2
∫
∞
0 Pnl (r)

d2

dr2
− l (l + 1)

r2

[ ]
Pnl (r) dr , (13)

where

Rnl (r) = 1
r
Pnl (r) , (14)

satisfying normalization condition (Fischer et al., 1997)

∫
∞
0 P2

nl (r) dr = 1. (15)

The general formula to obtain mean powers of radius is
(Bransden & Joachain, 1983)

〈rp〉nlm = ∫
∞
0 Rnl (r)| |2 r p+2dr , (16)

substituting 2 instead of p in this particular case. These
equations are solved for any atom at the ground state using
a Fortran 95 code (Fischer & Tachiev, 2009), including K
and 〈r2〉.

Oscillator Strength Sum Rules

Several important atomic properties like polarizability, mean
excitation energy, stopping power, and straggling are deter-
mined from a useful, dimensionless quantity, the oscillator
strength (Dehmer et al., 1975). It is defined by

f0n = 2E0n

N
〈
∑N
i=1

Zi

∣∣∣∣∣
∣∣∣∣∣0〉, (17)

where the excitation energy is E0n, calculated for transitions
{0}→ {n} in a given atom or ion with N bound electrons, and
the nuclear charge is Z (Garbet et al., 1987).

Oscillator strengths satisfy the following important iden-
tity, known as the Thomas-Reiche-Khun sum rule (Bransden
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& Joachain, 1983)

∑
n

f0n = N (18)

where N is the total number of atomic electrons.
The momenta S(μ) and L(μ) are calculated using the oscil-

lator strength sum rules (Fano & Cooper, 1968)

S (μ) =
∑
n

f0nE
μ
0n, (19)

L (μ) =
∑
n

f0nE
μ
0n ln E0n| |. (20)

The physical meaning of this sums are given by μ. For
example, when μ= 0 Eq. (19) was simplified into Eq. (18)

S (0) =
∑
n

f0nE
0
0n =

∑
n

f0n = N. (21)

When μ=−1

S (− 1) = 2me

3h− 2 a20〈
r

a0

( )2

〉, (22)

then S(−1) is proportional to square radius. If atomic units
are used it is reduced to the expression

〈r2〉 = 3
2
S (− 1). (23)

Substituting μ= 1 in Eq. (19), an expression proportional to
the kinetic energy is obtained

S(1) = 4
3
〈0

p2

2me

∣∣∣∣
∣∣∣∣0〉 , (24)

using atomic units

2K = 3
2
S(1) . (25)

The quantity L(0) is related with the mean excitation energy,
I

ln I = L(0)
S(0)

= L(0)
N

, (26)

moreover, InI, S(0), S(1), and S(−1) are related by (Garbet
et al., 1987)

ln I = 1
2
ln

S (1)
S (− 1)

[ ]
. (27)

Substituting Eq. (23) and Eq. (25) into Eq. (27) Eq. (3) is
obtained.
The parameters S(−1) and S(1) have been obtained for all

shells of noble gases (Bell et al., 1972). In Table 1, the

quantities K, <r2> and I are listed for all shells of xenon
using Hartree-Fock and oscillator strength methods. Both
methods show how kinetic and ionization energies decrease
when the main quantum number n rises. For n constant, kin-
etic energies increase when secondary quantum number l
(s= 0, p= 1, d= 2…) increases.
In the next section, we will show the differences between

electronic stopping of free and bound electrons for all noble
gas plasmas, afterward we will estimate the enhanced plasma
stopping in the case of xenon. Finally, using results in
Table 1, we will compare our calculated electronic stopping
of protons in xenon plasmas with experimental data.

RESULTS

Electronic Stopping of Noble Gases Plasmas

To study influence of the number of bound electrons in elec-
tronic stopping, we compare plasmas with the same tempera-
ture, 10 eV, and ionization,Q= 1. For this reason, we choose
the same atomic density, nat, as electron density, ne, both
equal to 2 × 1020 e−/cm3. With this ionization, we can con-
trast the stopping with noble gases, starting with only one
bound electron, N= 1, the case of helium, and finishing
with N= 85, the case of radon. Then, we can estimate how
stopping increases due to bound electron when atomic
number does, remaining free electron density constant.
Figure 1 show free and bound electron stopping. The stop-

ping of free electrons is the same for all plasmas, because
they have the same ionization, Q= 1 and electron density,
ne= 2 × 1020 e−/cm3. As we see, total stopping for low
velocities, is mainly due to free electrons, while for high vel-
ocities, main contribution is provided by bound electrons.
Only for helium, the stopping of bound electrons is below
the stopping of free for any velocity. Furthermore, stopping
of bound electrons increases when the number of bound elec-
tron does. In the case of radon, the maximum stopping for
free electrons is very close to the maximum for bound. It
means how dominant the stopping of free electrons is, be-
cause Rn+ has 85 bound electrons and only one free.

Enhanced Plasma Stopping

As it is shown in the last section, electronic stopping in plas-
mas is mainly due to free electrons. Then, when a monatomic
gas ionizes into plasma state, increases its electronic stopping
(Deutsch et al., 2010). This effect, named enhanced plasma
stopping (EPS), cannot be neglected even when a particle
beam heat a material upon plasma state.
Figure 2 shows how electronic stopping of xenon hugely

increases from cold gas (N= 54) to plasma state (N= 52
and Q= 2). For both cases, cold gas and plasma, we
choose the same atomic density, nat= 1.45 × 1019 at/cm3

and xenon plasma ionization equal to 2 in order to compare
with a realistic experimental case (Mintsev et al., 1999). We
can see the EPS along all velocities and a maximum at v= 1
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a.u. By v= 10 a.u., both, gas and plasma, stoppings are
similar. Then, EPS becomes important only at low projectile
velocities (v< 4 a.u.), since the stopping of free electrons is
not so dominant at higher velocities.

Calculations and Experimental Data for Xenon Plasma

They are only few experiments with proton beams through
fully characterized, stables and uniform plasmas. We found
an experimental case with these characteristics (Mintsev
et al., 1999). In this experiment, the authors measure the
stopping power of xenon plasmas for a 3 MeV proton
beam, v≈ 11 a.u. They use two different methods in order
to obtain energy loss of the proton beam: time of flight
(TF) method and displacement of the position of the spot
image (SI) method. The plasma was generated by a shock
wave created by explosives. Due to the shock wave, xenon
was heated and ionized. Its properties were measured by
spectroscopic techniques. Plasma parameters and proton
energy loses are placed in Table 2. Cases 2 and 3 repeat

conditions of temperature, density and ionization for TF
and SI measurement methods. In case 3, authors obtain
different stopping for both measurement methods.

Plasma thickness is 10 mm, then it is easy to estimate elec-
tronic stopping:

Sp (a.u.) = ΔE(a.u.)
Δx(a.u.)

. (28)

Figure 3 show a close agreement between calculated and
experimental stopping. Their theoretical model (Basko
et al., 1984) is analogous to our oscillator strength method
confirming our results. Only for cases 4 and 5 from
Table 2, there are significant deviations where experimental
stopping is lower than calculated. Mintsev et al. (1999) al-
leged that it is because of non-ideality of the plasma at
high densities. We affirm that it could be because at the
same time xenon plasma density increases, proton deposited
energy also does, then plasma temperature raises and so
proton stopping diminishes. Anyway, values using oscillator
strength method are lower than values using Hartree-Fock

Table 1. Quantities K, <r2> and I are listed for every shell of xenon using HF and oscillator strength methods

XENON Hartree-Fock (a.u.) Oscillator Strength (a.u.)

Shell K <r2> I K <r2> I
1s 2859.046 0.001 2391.253 2196.750 0.000 4353.704
2s 605.624 0.017 266.927 533.813 0.001 894.899
2p 1814.592 0.013 528.364 898.163 0.005 580.297
3s 182.406 0.116 56.080 163.433 0.005 247.295
3p 532.038 0.111 97.910 349.354 0.026 164.431
4s 51.220 0.626 12.792 43.466 0.019 68.053
3d 839.280 0.926 42.576 514.238 0.141 85.279
4p 140.070 0.685 20.223 89.618 0.066 52.285
5s 8.114 4.440 1.912 6.012 0.036 18.294
4d 182.170 0.881 20.336 116.651 1.417 12.832
5p 17.580 6.277 2.367 12.291 7.119 1.858

Fig. 1. Electronic stopping as a function of proton velocity. Solid line: stop-
ping of free electrons. Dashed lines: stopping of bound electrons for each
noble gas.

Fig. 2. Electronic stopping as a function of proton velocity for xenon cold
gas and plasma.
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one, being closer to experimental data. Then, as oscillator
strength method is similar to their theoretical results and
closer to their experimental data, we can conclude that the
oscillator strength technique is a bit more realistic concerning
energy loss calculations.

CONCLUSIONS

In this work, proton stopping in plasmas caused by the stop-
ping of free and bound electrons was analyzed. It is shown
that the increase of bound electron stopping with atomic
number Z in plasmas of noble gas. Free electron stopping
has been shown to be more relevant than bound electron
one at low velocities with low or medium Z number. But
for high proton velocities bound electron stopping has to
be taken into account.
Related with the previous matter, EPS has been calculated

for xenon. It has been observed an important difference be-
tween the stopping in cold gas and plasma state in chosen
proton velocity range. The EPS has been estimated to be
more important at proton velocities lower than 4 a.u. This
is because, in this range, the stopping due to plasma free elec-
trons is higher than the one due to bound electrons in cold

gas. However, at high velocities, stopping differences be-
tween cold and hot matter become negligible, since free
and bound stopping are similar.
Finally, we have compared our calculations with exper-

imental data. Proton stopping wasmeasured in xenon plasmas
at high velocities, by v= 11 a.u., resulting that bound elec-
trons were responsible of main energy loss. We have found
an excellent agreement between our simulation and real data.
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