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Shoe mounted Inertial Measurement Units (IMU) are often used for indoor pedestrian
navigation systems. The presence of a zero velocity condition during the stance phase enables
Zero Velocity Updates (ZUPT) to be applied regularly every time the user takes a step. Most
of the velocity and attitude errors can be estimated using ZUPTs. However, good heading
estimation for such a system remains a challenge. This is due to the poor observability of
heading error for a low cost Micro-Electro-Mechanical (MEMS) IMU, even with the use of
ZUPTs in a Kalman filter. In this paper, the same approach is adopted where a MEMS IMU
is mounted on a shoe, but with additional constraints applied. The three constraints proposed
herein are used to generate measurement updates for a Kalman filter, known as ‘Heading
Update’, ‘Zero Integrated Heading Rate Update’ and ‘Height Update’.

The first constraint involves restricting heading drift in a typical building where the user is
walking. Due to the fact that typical buildings are rectangular in shape, an assumption is
made that most walking in this environment is constrained to only follow one of the four main
headings of the building. A second constraint is further used to restrict heading drift during a
non-walking situation. This is carried out because the first constraint cannot be applied when
the user is stationary. Finally, the third constraint is applied to limit the error growth in
height. An assumption is made that the height changes in indoor buildings are only caused
when the user walks up and down a staircase. Several trials were shown to demonstrate the
effectiveness of integrating these constraints for indoor pedestrian navigation. The results
show that an average return position error of 4·62 meters is obtained for an average distance
of 1557 meters using only a low cost MEMS IMU.
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1. INTRODUCTION. Navigating in GPS denied environments such as urban
canyons and indoors using GPS technology is often very difficult (Lachapelle, 2004).
This is due to the absence of direct line of sight to GPS satellites to acquire GPS
signals. As a result, the quality of the received signal (if it can be received) deteriorates
largely due to multipath or weakened signal power. Although High Sensitivity GPS
(HSGPS) receivers can be used to detect weak signals, often the signal is not reliable

THE JOURNAL OF NAVIGATION (2012), 65, 15–28. © The Royal Institute of Navigation
doi:10.1017/S0373463311000518

https://doi.org/10.1017/S0373463311000518 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463311000518


enough to produce an accurate position solution. An example was demonstrated
(Odijk and Kleijer, 2007, 2008) where the use of HSGPS produced corrupted solutions
in an indoor environment due to weak and reflected signals.
Resorting to different types of navigation technology that do not use Radio

Frequency (RF) signals is therefore a potential alternative. Inertial sensors satisfy
this criterion because they do not receive or transmit any signals. Furthermore, the
advent of low cost MEMS inertial sensors suits the requirement for low cost consumer
applications such as pedestrian navigation. MEMS Inertial Measurement Units
(IMU) normally consist of accelerometers and gyros that produce measurements
(acceleration and attitude rate) in a body coordinate frame. Attitude parameters are
then used to transform these measurements into a desired frame such as the navigation
frame and from these, one can work out the position of the system. However, due to its
low cost nature, it is prone to errors (Pang and Liu, 2001; Godha, 2006; Park and Gao,
2006) that eventually cause large position errors.
One idea to reduce the solution error is to strap the IMU on a user’s foot or shoe to

perform Zero Velocity Updates (ZUPT) (Jiemenez et al., 2009; Skog et al., 2010; Hide
et al., 2009; Foxlin, 2005). Due to the strap-down configuration, it has the advantage
of measuring the foot’s velocity directly. It is therefore valid to assume that during the
stance phase (zero velocity) of a walking gait, the IMU should produce zero velocity
measurements for the foot’s velocity. In practise however, this is not entirely true
because of the inherent errors of the inertial sensors. Therefore, the non-zero velocity
measurement from the strapped-down IMU during this period is considered as an
error, and can be subsequently corrected. For example, this can be performed by
feeding back this error to a control system. Furthermore, if this measurement update is
used in an estimation filter such as Kalman filter, it can not only be used to correct the
user’s walking velocity, but also help restrict the position and attitude errors, and
estimate the sensor bias errors. This is because the Kalman filter uses an inertial error
model that builds up information on the correlation between the states modelled such
as position, velocity, attitude and sensor biases. A 15-state Kalman filter estimating
position, velocity, attitude, gyro bias and accelerometer bias errors is used for the
work in this paper as described in Abdulrahim et al. (2011).
Nonetheless, heading drift is still a major concern in low-cost-self-contained-IMU

systems, even with the use of ZUPT measurements. Although frequent use of ZUPTs
consistently bounds many IMU errors, optimal estimation of heading becomes a
difficult process because there is no direct correlation between velocity and heading
(Godha and Lachapelle, 2008). Therefore there is a need to have other measurement
updates that have high correlation with heading angle to aid the estimation process.
In Abdulrahim et al. (2011), we presented an approach of using heading aiding

using very basic information derived from maps or aerial images. This alleviates
the need for detailed room-level maps of the inside of buildings which are typically
unavailable, particularly for private buildings. The heading measurements are able to
maintain accurate heading without the need for any additional sensors such as
magnetometers. This paper describes the developed algorithm that constrains a walk
in a typical building to only walking in cardinal headings. It is shown to consistently
and effectively restrict heading drift for all test datasets, resulting in a significant
improvement in an INS-only positioning.
This paper describes further developments to the indoor positioning algorithm. An

additional measurement is applied to address the problem of heading drift when the
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user is stationary since the cardinal heading algorithm is only applicable when the
user is moving. The measurement is termed Zero Integrated Heading Rate (ZIHR)
(Shin, 2005) where knowledge of previous and current heading rates are used to
constrain the drift. To the authors’ knowledge, ZIHR has never been used before
in pedestrian navigation to constrain heading drift during prolonged stop. Most
of the results in the literature demonstrate walking without stopping in an extended
period of time, which is slightly unusual for pedestrians. Another measurement is
also introduced to restrict vertical position drift when the pedestrian is inside
buildings.
Trials have taken place at the University of Nottingham using a low cost MEMS

inertial sensor to show the effectiveness of combining the constraints. This paper
demonstrates that using the constraints described, average position error is
consistently kept below 5 meters while walking for an average distance of
approximately 1·5 kilometres. To conclude, this paper presents an effective approach
to restrict heading drift and vertical drift using constraints in a typical low cost indoor
pedestrian navigation system. The improvement made in estimating heading error
with the use of this approach will be analysed. It is envisaged that self-contained
inertial navigation could be made possible in a longer duration, at least in typical
indoor environments.

2. HEADING CONSTRAINT DURING WALKING. This section
describes the algorithm developed (Abdulrahim et al., 2010, 2011) where a
measurement is derived to constrain heading drift as a pedestrian walks around a
building. The underlying idea is that when a pedestrian walks through a building, most
of their motion is constrained to one of four principle (termed cardinal) directions.
This is due to the simple construction of most buildings which are typically
rectangular in shape and have the rooms and corridors aligned with the outer walls.
The orientation of the building can be derived from maps or aerial images and a
database can be constructed that can be used to aid navigation. For this work, it is
helpful to highlight that building orientation will be consistent with the Course Over
Ground (COG) direction that the user walks as opposed to heading or yaw which is
the true orientation of the x-axis of the IMU with respect to North.
The algorithm makes two important assumptions. Firstly, it is assumed that the

pedestrian will typically (but not always) walk in a direction that is consistent with
the orientation of the outer walls of the building. Secondly, it is assumed that the
difference between the COG (calculated from the difference in position of two steps)
and the outer orientation of the building is the result of heading drift plus
some uncertainty due to the pedestrian not walking in a straight line. This second
assumption is only valid because there is a large acceleration caused by the foot
moving through a step. Because there is a large acceleration, the heading error is
observable through the position difference since heading is used to determine the
orientation of the accelerometer axes. For other applications such as vehicle
navigation, it is not possible to use this assumption since the vehicle may be travelling
at constant velocity and therefore heading has no effect on position.
The algorithm can be described using Figure 1. The COG is computed using

a tan 2 dE
dN

( )
where dN and dE are the change in position in North and East axes

respectively caused by a step being made between epochs k and k+1. To remove steps
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that are not consistent with the building orientation we introduce the condition,

C1 = 1, COG 4 tCOGmax

0, otherwise

{
(1)

where tCOGmax is an empirically derived threshold that is used to exclude steps that are
not consistent with the building such as when walking around corners or not walking
straight along a corridor. The threshold has to be large enough to accommodate the
heading drift of the IMU as well as small variations in COG that are caused by the
pedestrian not walking exactly in straight lines.
A second condition is also used,

C2 = 1, tdmin 4 d 4 tdmax

0, otherwise

{
(2)

where d=[dN2+dE2]0·5 is the footstep length. This threshold is used to ensure that
only steps of a typical stride length are used to compute COG. If both C1 and C2

return true (logical 1), then a measurement is added to the Kalman filter, otherwise, no
update is sent to the Kalman filter.
The measurement used for the Kalman filter is the difference between the COG

calculated from the change in position between steps and the orientation of the
building. A measurement update is applied by forming the observation,

δφ = δφ

δϕN

δφ

δϕE

δφ

δϕD

[ ]
ϕ+ nk (3)

where nk is the measurement noise with covariance Rk=E(nknk
T) which is large enough

to accommodate steps that are not consistent with the building (which is closely
related to the value used for tCOGmax); the partial derivatives are formed with respect
to ϕ which is a vector of attitude errors in the navigation frame as modelled in the
Kalman filter. See (Shin, 2005) for details including derivation of the partial
derivatives) and,

δφ = φbuilding − COG (4)
where, δφ is the IMU heading error and φbuilding is the current ‘building’ orientation.

Figure 1. Illustration of the heading measurement at each epoch.
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The heading measurement is tested by walking along a straight line (next to a
straight road). Figure 2 shows the values for δφ that are used in the Kalman filter. The
values comprise the Inertial Navigation System (INS) heading error, other small INS
drift, and also the variations of the user’s step in relation to the true COG.
A Microstrain 3DM-GX3 inertial sensor is used with the accelerometer bias stability
quoted as ±0·01 g, and for the 300 degree/s model, the gyro biases are specified as
±0·2 degree/s. The particular IMU used has a limit of 1200 degree/s for angular
rotation and 18 g for acceleration. The standard deviation of heading difference is only
1·54° while the maximum heading difference is 7·58° (which corresponds to the 10°
threshold used).
Figure 3 shows the position error after approximately 3 minutes of walking in a

straight line. The blue line represents the position error using the heading algorithm
while the black line represents position error without using the algorithm. Using the
heading update, the final North position error is 1·25 m whereas the end position error
is 49·77 m if the algorithm is not used. Further results in more realistic situations are
described towards the end of this paper.

3. HEADING CONSTRAINT DURING STOP. In this paper, an
approach proposed (Shin, 2005) to constrain heading drift for a wheeled vehicle
when it stops is adopted for our pedestrian navigation system. This is because during a
stationary condition, roll and pitch errors can be constrained by applying ZUPTs, but
not the heading error due to its poor observability. The algorithm is known as Zero
Integrated Heading Rate (ZIHR) and it uses the knowledge of previous and current
heading rate to stop the accumulation of heading drift error. The measurement
equation is written as follows:

φk − φk−1

Δtk
≈ 0 sec θ sin ϕ sec θ cos ϕ

[ ]
bg + nk (5)
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Figure 2. Heading error for walking in a straight walk.

19SHOE MOUNTED INDOOR PEDESTRIAN NAVIGATIONNO. 1

https://doi.org/10.1017/S0373463311000518 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463311000518


where φk is the INS heading; roll (ϕ) and pitch (θ) are considered as constants over the
time interval Δtk; bg is the vector of body frame gyro biases; nk is the remaining noise
term; and k is the epoch. Due to the term sec θ, ZIHR cannot be applied when pitch is
close to ±90°. For this algorithm, the epochs k and k+1 correspond to times either
side of a step.
Before the ZIHR measurement model can be used in the Kalman filter, we

introduce two conditions that need to be satisfied. First, a zero velocity condition is
checked to ensure that the system is stationary (i.e. the pedestrian has stopped
walking). If this event returns true, a second check is performed by checking whether
the foot is rotating or not. This is important to highlight a case when the pedestrian
stops walking and rotates his foot at the same time. The conditions can be written as:

C3 = 1, |Vk| 4 tVmax

0, otherwise

{
(6)

C4 = 1, |ωk| 4 tωmax

0, otherwise

{
(7)

where Vk is the three dimensional velocity of the IMU and ωk is the three dimensional
rotation determined by the gyros. The logical “1”s in equations (6) and (7) mark the
detected stance phase (ZUPT event) and non-rotating foot respectively. If both C3

and C4 return true (logical 1), then the ZIHR measurement model is used to update
attitude in the Kalman filter, otherwise, no update is sent to the Kalman filter. The
threshold tωmax must be set to be larger than the expected total gyro bias and yet small
enough to ensure the IMU is not physically rotating.
A static test is first conducted to illustrate the result of using the ZIHRmeasurement

using the Microstrain 3DM-GX3 sensor used in the previous test. The IMU is put on a
stationary table for 16 minutes and is initialised with a known position and attitude to
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Figure 3. Position with and without heading update.
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represent a condition where pedestrian stops walking for a long period. A comparison
is made between using ZUPT only (normal approach) and using ZUPT with ZIHR
applied. Figure 4 shows the heading solution and it clearly shows that the heading
drifts quite considerably if only ZUPT is used. After 60 seconds a heading error of 5° is
observed, which then grows to about 100° after 900 seconds. When the ZIHR
constraint is applied, an accuracy of better than 0·04° is achieved.
An alternative to using ZIHR is to fix the heading whenever conditions C3 and

C4 are true. However, this would not make full use of the measurement as achieved
using ZIHR where full correlation between states is exploited. Alternatively a yaw
measurement can be applied using Equation 3 where δφ is computed as the difference
between the current yaw and the yaw estimate before conditions C3 and C4 are true.
However, if a heading measurement is used directly, it will result in an over optimistic
estimate of the uncertainty of the attitude states. Consider an example where initial
heading uncertainty and heading measurement noise are set to 10° and 1° respectively.
Figure 5 shows the standard deviation of the down axis attitude error state, ϕD. Here
we see that the standard deviation for the yaw measurement case drops to a small
value which is unrealistic as the measurement is not a true measurement (such as from
an external sensor). Instead we are only wishing to stop the heading error increasing
and we wish to preserve the covariance in the Kalman filter. Thus, ZIHR is able
to make full use of the measurement while preserving the covariance in the Kalman
filter.

4. HEIGHT CONSTRAINT. A height measurement is also introduced
for our pedestrian navigation system to restrict the IMU height drift in indoor
environments. Without the availability of height measurements from sensors such as
GPS, the height of the INS solution will drift to some extent due to accumulation of
errors in the inertial sensors that are not fully removed through ZUPT measurements.
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Figure 4. Heading errors during static test for ZUPT and ZUPT/ZIHR.
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Therefore, we make use of the knowledge that in most indoor environments, the
floor will be level, and we assume that changes in height in indoor environment would
only be caused by walking up or down the staircases. Since it is reasonable to assume
that a pedestrian’s foot lies on the floor during every stance phase of walking event, we
create a predetermined height threshold that represents steps height, to limit the height
error growth that gets updated in every stance phase. A change in height over one step
is calculated and if it is below the threshold, the height from previous epoch
calculation is maintained and projected to the next epoch. Thus, a fifth condition (C5)
is used:

C5 = 1, |δh| 4 thstep
0, otherwise

{
(8)

where |δh|= |hk−hk−1| (where epochs k and k−1 correspond to different steps) with
empirical threshold, thstep=0·05 m. If both C3 and C5 return true (logical 1), then
height at the last epoch is preserved to update the position state vector in the
Kalman filter, otherwise no update is applied. Using the measurement in this way
unfortunately results in an over optimistic covariance of the height due to the issues
discussed in regard to yaw measurements in the previous section. Although not strictly
rigorous, the benefits of applying the height correction indoors are thought
to outweigh any issues caused by an overoptimistic height covariance estimate.
A measurement update is applied by forming the observation:

δh = 0 0 −1
[ ]

δp+ nk (9)
where δp is the IMU position error state vector with measurement noise nk.
A height constraint test is carried out by walking down and up a staircase.

A pedestrian walked from the top to the bottom of the stairs, then walked up
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Figure 5. Down attitude error standard deviation for ZIHR and Heading Constraint.
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again and stopped at the same starting position. The stairs consist of 42 steps
with ±16·5 cm each in height (measured using steel tape and assumed to be the
truth), totalling 6·93 m in height. Figure 6 shows the INS height, with and without
height constraint, and Figure 7 shows the period when the height constraint was
performed.
From Figure 6, when height constraint is used, the end position error for this trial is

6·6 cm, and it correctly identified 42 steps. In contrast, without height constraint,
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Figure 6. IMU height output with and without height constraint.
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the end position error has drifted to 45 cm. The start of the data in Figure 6 is
further magnified and shown in Figure 7. It clearly shows that when height constraint
is performed (green marker), height error does not grow as opposed to when height
constraint is not used (red plot). However it is important to highlight that for height
constraint to hold true, changes in height in indoor buildings are assumed to be caused
by staircases. Therefore, the height constraint will not work as expected if we consider
other situations where the height change between epochs might not be as big, such as
when walking on a ramp on the floor.

5. FULL TRIALS. Several field trials have been conducted in Nottingham,
UK. The IMU used was a Microstrain 3DM-GX3 as described earlier in this paper.
Table 1 summarises the output of the walks. ‘Return Height Error’ represents the

Figure 8. Example of position output from Trial 8.
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difference in height while ‘Return Position Error’ represents the difference in position,
after returning to the same location. The ‘Constraint’ column consists of results that
use all the proposed constraints, while the ‘No Constraint’ column represents results
that use only ZUPT as measurement update. From these eight field trials that use
proposed constraints, it was found that for an average duration of 23·79 minutes and
an average total distance travelled of 1557 m, the average return height error is 0·39 m,
and the average return position error is 4·62 m. In contrast, trials that do not use the
proposed constraints have an average error in height and position error of 40·38 m and
153·62 m respectively. Figures 8, 9 and 10 show the visualisation of three outputs from
Table 1 trials, where heading drift errors have been reduced significantly. In the
Figures, the yellow star marks the start and end of the walking trials, the red line
marks the position output without using constraints and the green line shows
the position output when constraints are applied.

Figure 9. Example of position output from Trial 8.
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6. CONCLUSIONS. This paper proposed an improved version of using
‘building’ heading information in the Kalman filter to restrict heading drift error.

Figure 10. Example of position output from Trial 8.

Table 1. Comparison of errors for proposed system with and without constraints applied.

Trial
Duration
(minutes)

Distance
(m)

Return Height Error Return Position Error

Constraints
(m)

No
constraints

(m)
Constraints

(m)

No
constraints

(m)

1 15·7 496·8 *0·00 5·58 6·25 270·42
2 12·7 902·8 *0·00 0·32 3·96 28·63
3 40·0 3000·0 *0·00 71·46 4·42 34·58
4 30·4 1973·7 0·98 16·21 4·23 109·6
5 21·9 1443·9 0·15 0·75 7·60 518·24
6 38·8 2665·3 *0·00 26·34 3·11 204·21
7 16·0 918·8 0·20 85·08 6·20 38·73
8 14·8 1058·4 0·23 117·35 1·19 24·52

AVERAGE 23·8 1557·5 0·39 40·39 4·62 153·62
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Previously the authors have demonstrated an effectiveness of using ‘building’ heading
to correct heading drift for a low cost shoe mounted IMU system. It was however
tested in a 2-dimensional environment excluding vertical position errors. Therefore
this work extended the approach by considering a 3-dimensional situation. Further-
more this work highlights the importance of implementing the ZIHR algorithm where
the user might stop walking for a long period of time, which is quite common
for normal pedestrian walking. This is because a previous algorithm resulted in a
significant problem with heading drift during prolonged stationary periods.
Full trials with an improved version of the algorithm were carried out in typical

buildings and environments such as a car park. It was shown to give an average return
position error of 4·62 m in 24 minutes of IMU-only navigation. For the vertical
channel, a maximum height error of only 0·39 m was found. However, note that these
figures represents the return position error (difference between start and end position),
and not the accuracy of the system throughout the trial. Analysis was performed using
a forward running Kalman filter only, which means that such results are achievable in
real-time.
Future work will attempt to address several aspects of the system. Firstly, future

work will examine the use of lower cost inertial sensors for navigation. The algorithm
described is able to provide regular updates of velocity and heading which should
enable the use of lower performance sensors since the errors can be continually
estimated. While the sensor used in these trials is typically termed ‘low cost’, it is still
substantially too expensive to be considered for consumer applications. Secondly,
augmentation with other sensors such as GPS (when available) and magnetometers
(which are typically available in low cost inertial sensor assemblies) will be explored.
GPS will provide an essential source of position measurements in the environments
where the signals are available and of sufficient quality to improve the position
solution. The magnetometer may provide some additional measurements to correct
the INS in environments where magnetic disturbances are low or buildings are not of a
conventional shape. Finally, two situations have been identified where the algorithm is
likely to fail: lifts and escalators. In these situations, it is likely that the zero velocity
detection will provide a false positive and hence the algorithm will fail. Use of other
sensors (such as a barometer), or additional measurements such as constant velocity
may help to address these issues.
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