Synthesis and X-ray diffraction crystallographic characterization of compound 2-(α -naphtyl)-3-(α -pyridinyl)-1,3-thiazolidin-4-one

J. L. Pinto,^{a)} J. A. Henao,¹ and V. Kouznetsov²

¹Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia

²Laboratorio de Química Orgánica y Biomolecular (LQOBio), Centro de Investigación en Biomoléculas (CIBIMOL), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia

(Received 6 September 2016; accepted 16 March 2018)

Thiazolidinones present a wide range of useful applications especially in the biological aspect. Based on these facts, the compound of interest 2-(α -naphthyl)-3-(α -pyridinyl)-1,3-thiazolidine-4-one (C₁₈H₁₄N₂OS), was synthesized via multi-component reaction with the aim of obtaining a compound that would show activity against fungi and bacteria. The synthesis of 2-(α -naphthyl)-3-(α -pyridinyl)-1,3-thiazolidine-4-one, was carried out from the respective α -aminopyridine with α -naphthylaldehyde and α -mercaptoacetic acid, under reflux in dry toluene for 8 h, obtaining a solid compound. Molecular characterization of the compound was carried out by infrared spectrometry, mass spectrometry, and nuclear magnetic resonance. The study of the crystallization and the calculation of the unit-cell constants were determined by the technique of X-ray diffraction of polycrystalline samples. It was determined that the compound crystallizes in a monoclinic system with space group $P2_1/c$ [No. 14] and the constants of the unit cell a = 11.958 (3), b = 9.675 (4), c = 12.661 (4) Å, $\beta = 96.960^{\circ}$ (2), V = 1454.01 (Å³). © 2018 International Centre for Diffraction Data. [doi:10.1017/S0885715618000453]

Key words: crystallographic characterization, X-ray powder diffraction, thiazolidinones

I. INTRODUCTION

Five member heterocyclic compounds are known for their multiple applications which have motive their wide study. Among this group of heterocycles, thiazolidinones have performed a wide range of biological activity (antifungal, antibacterial, analgesic, pesticide, herbicide, antitubercular, local anesthetic, and antimicotic) (Brown, 1961; Singh, 2014). The biological meaning of this class of compounds stimulates the study upon the synthesis and properties of our compound of interest 2-(α -naphtyl)-3-(α -pyridinyl)-1,3-thiazolidin-4-one, because several protocols have been developed for the synthesis of these kind of materials (Kouznetsov *et al.*, 2006; Pânzariu *et al.*, 2016). Thiazolidinone of interest was synthesized via multicomponent reaction in order to obtain a new compound with prominent antifungal and antibacterial activity.

II. EXPERIMENTAL

A. Synthesis

225

Compound 2-(α -naphtyl)-3-(α -pyridinyl)-1,3-thiazolidin-4-one (4) was synthesized by means of a multicomponent reaction promoted by glacial acetic acid in stoichiometric quantities between α -aminopyridine (1), α -naphtylaldehyde (2), and α -mercaptoacetic acid (3), employing anhydride toluene as solvent to reflux for 8 h. The preparation route of the interest compound is shown in Figure 1.

Once the synthesis process was accomplished, the melting point (measured on a Fisher Johns melting point apparatus) and density (by floating method) were determined, and the molecular characterization of the compound was developed through instrumental methods of infrared spectrometry (IR) employing a Lumex Infralum FT-02 (KBr) spectrophotometer, gas chromatography coupled to mass spectrometry (GC– MS) using a gas chromatograph Agilent Technologies 6890 with an interface to a mass selective detector Agilent Technologies MSD 5963, and nuclear magnetic resonance (NMR) with a Bruker AM-400 or AC-300.

B. Powder data collection

A small amount of the compound, $C_{18}H_{14}N_2OS$ was gently ground in an agate mortar and sieved to a grain size of <38 µm. The specimen was mounted on a zero-background

Figure 1. Synthesis of 2- $(\alpha$ -naphtyl)-3- $(\alpha$ -pyridinyl)-1,3-thiazolidin-4-one via multicomponent reaction.

^{a)}Author to whom correspondence should be addressed. Electronic mail: jolpinto@uis.edu.co

Figure 2. X-ray powder diffraction pattern of 2-(*α*-naphtyl)-3-(*α*-pyridinyl)-1,3-thiazolidin-4-one.

TABLE I.	X-Ray	diffraction	data for	the compound	2-(α -naphtyl)-3-(α-p	yridinyl)-1,3	-thiazolidin-4-one.
----------	-------	-------------	----------	--------------	-----------------------	----------	---------------	---------------------

$2\theta_{\rm obs}$ (°)	d _{obs} (Å)	(I/I ₀) _{obs}	h	k	L	$2\theta_{\text{calc}}$ (°)	d_{calc} (Å)	$\Delta 2\theta$ (°)
7.445	11.8646	3	1	0	0	7.442	11.8699	-0.003
11.784	7.5039	71	-1	1	0	11.791	7.4995	0.007
13.276	6.6637	11	-1	1	1	13.266	6.6686	-0.010
14.086	6.2823	59	0	0	2	14.083	6.2838	-0.003
14.197	6.2334	38	1	1	1	14.197	6.2334	0.000
15.125	5.8530	2	-1	0	2	15.121	5.8547	-0.004
16.784	5.2780	14	0	1	2	16.810	5.2698	0.026
17.692	5.0136	26	-1	1	2	17.692	5.0090	0.016
19.084	4.6468	14	1	1	2	19.093	4.6446	0.009
19.253	4.6064	32	-2	0	2	19.271	4.6020	0.018
19.562	4.5343	10	2	1	1	19.565	4.5336	0.003
19.645	4.5153	9	0	2	1	19.648	4.5147	0.003
20.712	4.2851	7	-1	2	1	20.726	4.2822	0.014
21.351	4.1582	26	1	2	1	(21.342	4.1600	-0.009
			-2	1	2	21.363	4.1558	
21.784	4.0766	3	2	0	2	21.791	4.0752	0.007
22.458	3.9557	88	3	0	0	22.453	3.9566	-0.005
23.172	3.8354	24	0	2	2	23.185	3.8332	0.013
23.841	3.7293	15	-1	2	2	23.841	3.7293	0.000
24.240	3.6688	5	-2	2	1	(24.225	3.6710	-0.015
			3	1	0	24.284	3.6622	
24.524	3.6270	9	-3	1	1	24.524	3.6270	0.000
24.923	3.5698	14	1	2	2	24.912	3.5714	-0.011
			-3	0	2	25.081	3.5476	
25.111	3.5435	100	1	1	3	25.110	3.5436	-0.001
25.315	3.5154	10	2	2	1	25.280	3.5201	-0.035
26.162	3.4035	5	-2	1	3	26.159	3.4039	-0.003
26.725	3.3330	27	-2	2	2	(26.715	3.3343	-0.010
			-3	1	2	26.743	3.3308	
28.154	3.1670	2	0	2	3	(28.156	3.1668	0.002
			0	0	4	28.384	3.1419	
28.460	3.1337	9	-1	0	4	(28.469	3.1326	0.009
			-1	2	3	28.475	3.1321	
28.690	3.1091	2	1	3	0	28.660	3.1122	-0.030
29.095	3.0667	1	3	2	0	29.134	3.0627	0.039
			1	3	1	(29.768	2.9988	
29.851	2.9907	15	1	2	3	29.835	2.9923	-0.016
			0	1	4	29.876	2.9883	

Continued

$\frac{1}{2\theta_{obs}}$ (°)	$d_{\rm obs}$ (Å)	$(I/I_0)_{obs}$	h	k	L	$2\theta_{\rm calc}$ (°)	$d_{\rm calc}$ (Å)	$\Delta 2\theta$ (°)
30.097	2 9668	30	4	0	0	30.090	2 9675	-0.007
30.722	2.9000	<1	_2	2	3	30,734	2.9073	0.007
31.269	2.8583	3	-3	2	2	31.240	2.8608	-0.029
31.521	2.8360	9	4	1	0	(31.509	2.8370	-0.012
			-2	3	0	31.547	2.8337	
			-4	1	2	(33.078	2.7060	
33.112	2.7033	7	4	1	1	33.141	2.7010	0.029
33.814	2.6487	1	2	0	4	33.833	2.6473	0.019
34.015	2.6335	1	0	2	4	33.996	2.6349	-0.019
35.421	2.5322	1	-4	2	1	(35.440	2.5308	0.019
			4	2	0	35.460	2.5295	
35.645	2.5168	1	1	2	4	35.616	2.5187	-0.029
35.890	2.5001	1	-3	3	0	35.894	2.4998	0.004
36.024	2.4911	1	-3	3	1	(36.063	2.4885	0.039
			-4	1	3	36.092	2.4866	
38.816	2.3181	3	1	4	1	38.804	2.3188	-0.012
			-5	1	1	38.842	2.3166	
39.038	2.3055	3	-5	1	0	(39.036	2.3156	-0.002
			-3	2	4	39.068	2.3038	
39.804	2.2628	2	3	1	4	J 39.811	2.2625	0.007
			0	4	2	39.905	2.2573	
			-1	4	2	f 40.311	2.2355	
40.381	2.2318	3	4	1	3	40.377	2.2320	-0.004
			0	4	3	f 43.152	2.0947	
43.166	2.0941	2	0	0	6	43.155	2.0946	-0.11
43.471	2.0801	2	2	4	2	∫ 43.471	2.0800	0.002
			-4	2	4	43.518	2.0779	
			1	1	6	{ 45.826	1.9785	
45.843	1.9778	1	6	0	0	45.831	1.9783	-0.012
16.100	1 0 5 5 0		-6	0	2	{ 46.381	1.9561	0.017
46.402	1.9553	1	5	2	2	(46.419	1.9546	0.017
17 205	1.01//		-6	1	2	{ 47.376	1.9173	0.000
47.395	1.9166	4	0	4	4	(47.395	1.9166	0.000
50.275	1.8134	1	-6	2	2	50.271	1.8135	-0.001
51.883	1.7601	2	4	4	2	51.909	1.7601	0.026
			0	5	3	52.010	1./30/	
			0	5	0	(52.018	1.7500	
52 411	1 7444	2	-1	4	3	52.372	1.7430	0.012
32.411	1./444	2	-0	1	4	(52.399	1./44/	-0.012
53.569	1.7094	1	3	5	1	53.561	1.7096	-0.008
			-5	3	4	53.582	1.7090	
			-7	1	1	{ 54.508	1.6821	
54.573	1.6803	1	5	2	4	(54.554	1.6808	0.007
55.107	1.6652	1	-6	2	4	55.101	1.6654	-0.006
			4	4	3	(55.136	1.6644	
56.000	1 (294	.1	2	3	6	56.042	1.6396	0.020
50.089	1.0384	<1	2	1	/	(56.050	1.6394	-0.039

specimen holder (Buhrke *et al.*, 1998) for the respective measurement. The data were collected at 298 K using a Rigaku model D/MAX IIIB diffractometer with a graphite monochromator operating in Bragg–Brentano geometry equipped with an X-ray tube (CuK α radiation: $\lambda = 1.5406$ Å, 40 kV and 35 mA), a NaI (Tl) scintillation detector, and fixed scatter and divergence slits of 1° and 0.03 mm receiving slit. The scan range was from 2 to 70° 2 θ with a step size of 0.02° 2θ and a counting time of 15 s step⁻¹.

POWDERX program (Dong, 1999) was used to remove the background (Sonneveld and Visser, 1975), smooth the data (Savitzky and Golay, 1964), eliminate the $K\alpha_2$ component (Rachinger, 1948), and to determine the positions and intensities of the diffraction peaks, using the second derivative method.

III. RESULTS AND DISCUSSION

A. Synthesis

Compound 2-(α -naphtyl)-3-(α -pyridinyl)-1,3-thiazolidin-4-one was obtained with a 62% yield, with a melting point of 141–143 °C, and a measured density of 1.32 g cm⁻³. Molecular characterization of the compound was developed by IR spectrometry: tension C(sp^3)–H (3054.74); tension C (sp^2)–H (3000.75); vibration tension C(=O)–N (1689.37); vibration tension C(sp^2)–C (1581.37); enlargement C–N (1432.22); asymmetric tension C(sp^2)–O (1288.24); deformation vibration C(sp^2)–H (779.11), deformation vibration C–S (685.33); GC–MS: m/z = 306.38 (M⁺) and NMR: ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.39 (1H, d, J = 8.4 Hz, 14-H),

TABLE II. Crystal data for $2-(\alpha-naphtyl)-3-(\alpha-pyridinyl)-1,3-thiazolidin-4-one via multicomponent reaction.$

a (Å)	11.958 (3)
<i>b</i> (Å)	9.675 (4)
<i>c</i> (Å)	12.661 (4)
β (°)	96.960 (2)
$V(Å^3)$	1454.01 (1)
Ζ	4
Space group	<i>P2</i> ₁ / <i>c</i> [No. 14]
M_{20}	29.1
F_{30}	48.6 (0.018, 57)
D_{m}	1.32 g cm^{-3}

8.12 (1H, d, J = 4.1 Hz, 4-H), 8.05 (1H, d, J = 8.4 Hz, 12-H), 7.89 (1H, d, J = 8.0 Hz, 10-H), 7.74 (2H, t, J = 8.4 Hz, 11-H, 13-H), 7.68 (1H, s, 3-H), 7.63 (1H, t, J = 7.6 Hz, 7-H), 7.55 (1H, t, J = 7.4 Hz, 7-H), 7.30 (1H, t, J = 7.7 Hz, 9-H), 7.19 (1H, d, J = 7.1 Hz, 6-H), 6.97 (1H, t, J = 6.0 Hz, 5-H), 3.97 (1H, d, J = 16.1 Hz, 1-H), 3.79 (1H, d, J = 16.1 Hz, 2-H). ¹³C NMR (101 MHz, DMSO) δ 172.19, 151.04, 147.96, 137.98, 136.19, 134.30, 129.92, 129.24, 128.68, 126.73, 126.19, 125.21, 122.83, 121.00, 120.57, 116.08, 59.84, 34.51.

B. X-ray diffraction of polycrystalline samples

The X-ray powder diffraction (XRPD) pattern of 2-(α naphthyl)-3-(α -pyridinyl)-1,3-thiazolidine-4-one is shown in Figure 2; a small amount of amorphous component in the background was observed because of the type of mount since paraffin was used as a support, which results in some discrepancies in peak intensities of the reflection list, compared with the simulated pattern, using a Le Bail refinement. The peak list for this compound are given in Table I. The XRPD pattern was successfully indexed using the DICVOL06 program (Boultif and Louër, 2006) on a monoclinic cell with an absolute error of $\pm 0.03^{\circ}2\theta$ in the calculations. The space group, $P2_1/c$ [No. 14] was estimated by the CHEKCELL program (Laugier and Bochu, 2002), which was compatible with the systematic absences and the crystal density, 1.320 g cm^{-3} . The unit-cell parameters were refined with the NBS*AIDS83 program using the total observed reflex ions (Miguell et al., 1981). The crystal data, X-ray density, as well as figures of merit M_{20} (de Wolff, 1968) and F_{30} (Smith and Snyder, 1979) are compiled in Table II.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be found at https://doi.org/10.1017/S0885715618000453

ACKNOWLEDGEMENTS

This work was supported by grant 1102-05-17590 Colciencias (Patrimonio Autónomo del Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación, Francisco José de Caldas).

- Boultif, A. and Louër, D. (2006). "Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method," J. Appl. Crystallogr. 37, 724–731.
- Brown, F. C. (1961). "4-Thiazolidinones," Chem. Rev. 61, 463-521.
- Buhrke, V., Jenkins, R., and Smith, D. (1998). Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York), pp. 141–142.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern indexing," J. Appl. Crystallogr. 1, 108–113.
- Dong, C. (1999). "POWDERX: windows95 based program for powder X-ray diffraction data processing," J. Appl. Crystallogr. 32, 833–838.
- Kouznetsov, V., Amado, D., Bahsas, A., and Amaro, J. (2006). "Synthesis and spectral data of new 1,2-*bis*-(2-hetaryl-4-oxothiazolidin-3-yl) ethanes and 1,4-*bis*-(2-hetaryl-4-oxothiazolidin-3-yl) butanes," J. Heterocyclic Chem. 43, 447–552.
- Laugier, J. and Bochu, B. (2002). CHEKCELL. "LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments," ENSP/ Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www. ccp14.ac.uk/tutorial/lmgp/.
- Miguell, A. D., Hubbard, C, R., and Stalick, J. K. (1981). "NBS* AIDS83: A FORTRAN program for crystallographic data evaluation," National Bureau of Standards (USA), Tech. Note 1141.
- Pânzariu, A. T., Apotrosoaei, M., Vasicu, I. M., Drăgan, M., Constantin, S., Buron, F., Routier, S., Profire, L., and Tuchilus, C. (2016). "Synthesis and biological evaluation of new 1,3-thiazolidine-4-one derivates of nitro-L-aginine methyl ester," Chem. Cent. J., 10, 6.
- Rachinger, W. A. (**1948**). "A correction for the $\alpha_1 \alpha_2$ doublet in the measurement of widths of X-ray diffraction lines," J. Sci. Instrum. **25**, 254–255.
- Savitzky, A. and Golay, M. J. (1964) "Smoothing and differentiation of data by simplified least squares procedures," Anal. Chem. 36, 1627–1639.
- Singh, T. (2014). "Synthesis and evaluation of thiazolidine-4-one for their antibacterial activity," J. Pharm. Sci. Biosci. Res. 4, 110–113.
- Smith, G. S. and Snyder, R. L. (**1979**). " F_N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing," J. Appl. Crystallogr. **12**, 60–65.
- Sonneveld, E. J. and Visser, J. W. (1975). "Automatic collection of powder diffraction data from photographs," J. Appl. Crystallogr. 8, 1–7.