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Computational fluid dynamics is increasingly used to investigate the inherently
complicated phenomenon of wave breaking. To date, however, no single model has proved
capable of accurately simulating the breaking process across the entirety of the surf zone
for both spilling and plunging breakers. The present study newly considers the Reynolds
stress–ω turbulence closure model for this purpose, where ω is the specific dissipation rate.
Novel stability analysis proves that, unlike two-equation closures (at least in their standard
forms), the stress–ω model is neutrally stable in the idealized potential flow region beneath
surface waves. It thus naturally avoids unphysical exponential growth of turbulence prior
to breaking, which has plagued numerous prior studies. The analysis is confirmed through
simulation of a progressive surface wave train. The stress–ω model is then applied to
simulate a turbulent wave boundary layer, demonstrating superior accuracy relative to a
two-equation model, especially during flow deceleration. Finally, the stress–ω model is
employed to simulate spilling and plunging breaking waves, with seemingly unprecedented
accuracy. Specifically, the present work marks the first time that a single turbulence closure
model collectively: (1) avoids turbulence over-production prior to breaking, (2) accurately
predicts the breaking point, (3) provides reasonable evolution of turbulent normal stresses,
while also (4) yielding accurate evolution of undertow velocity structure and magnitude
across the surf zone, for both spilling and plunging cases. Differences in the predicted
Reynolds shear stresses (hence flow resistance) are identified as key to the improved inner
surf zone performance, relative to a state-of-the-art two-equation model.
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1. Introduction

Breaking water waves feature a rather amazing variety of fluid mechanics, ranging from
nearly potential flow prior to breaking, to unsteady turbulent boundary layers at the sea
bed, to a turbulent jet flow e.g. during the initial plunge, to a highly complicated and
turbulent multi-phase (air and water) flow throughout the surf zone. Over the past few
decades, significant efforts have been made to better understand the breaking wave process
through both experimental and numerical means.

A large number of experimental studies have been performed, with focus on, for
example, the breaking onset location, turbulence characteristics as well as the undertow
velocity field in the surf zone, which is especially important in nearshore sediment
transport processes. The surf zone is the part of the shoreface from the most seaward wave
breaking point to the most landward broken wave (Van Rijn 1993). The surf zone can be
divided into two subregions, i.e. the outer and the inner surf zone. For spilling breakers,
there has not been a specific definition of the threshold between the two subregions. It
can be considered that the outer surf zone extends from the breaking point up to the part
with rapid changes in wave shape, and the inner surf zone consists of the breaking bores
with slow changes in wave shape. For plunging breakers, the splash point (where the water
pushed upwards by the plunging jet hits the water again) is often used to mark the start of
the inner surf zone. When breaking waves propagate to the shore, a return flow (known as
undertow) beneath the wave trough is generated to compensate the amount of water waves
that is transported shoreward. The undertow velocity is generally strongest in the surf zone
(Svendsen 1984). Most experimental studies have been performed in relatively small-scale
facilities (e.g. Nadaoka, Hino & Koyano 1989; Ting & Kirby 1994, 1996; Chang & Liu
1999; Stansby & Feng 2005; De Serio & Mossa 2006; Lara, Losada & Liu 2006). Among
these, the spilling and plunging breaking wave experiments of Ting & Kirby (1994, 1996)
have been most often used for validating numerical models. Spilling breaking is a rather
gentle breaking at the wave crest and is followed by a gradual dissipation of energy over the
surf zone, while plunging breaking is more violent with the crest curling over and plunging
into the surface as a turbulent jet flow. Recently, several large-scale experimental studies
involving breaking waves over a fixed barred bed profile (e.g. Scott et al. 2005; van der A
et al. 2017; van der Zanden et al. 2018, 2019) have likewise been performed, with detailed
measurements provided for the flow and turbulence fields throughout the surf zone, as well
as in the near-bed bottom boundary layer region (van der Zanden et al. 2018).

With the continual increase in computer power, computational fluid dynamics (CFD)
modelling has been increasingly utilized as an alternative means of studying breaking
waves, due to its lower cost and faster set-up compared to conventional laboratory tests.
Also, CFD can, in principal, overcome scale effects and operation disturbances that exist in
laboratory experiments. Computational fluid dynamics simulations of breaking waves have
typically been conducted based on Reynolds-averaged Navier–Stokes (RANS) equations,
coupled with various turbulence closure models (e.g. Lin & Liu 1998; Bradford 2000;
Chella et al. 2015; Lupieri & Contento 2015; Brown et al. 2016; Derakhti et al. 2016a,b;
Devolder, Troch & Rauwoens 2018; Liu et al. 2020). Additionally, large-eddy simulation
models (LES; e.g. Christensen & Deigaard 2001; Christensen 2006; Zhou et al. 2017)
have also been employed to study wave breaking processes, as have models based on
so-called smoothed particle hydrodynamics (SPH; e.g. Shao 2006; Shadloo et al. 2015;
Wei et al. 2018; Lowe et al. 2019). In recently years, some high-fidelity direct numerical
simulation (DNS) studies have been made on breaking waves with focus on air-entrainment
and bubble statistics (e.g. three-dimensional simulations of Deike, Melville & Popinet
(2016), Wang, Yang & Stern (2016) and Chan et al. (2021)), which have built largely upon
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previous two-dimensional simulations solving the Navier–Stokes equations (e.g. Iafrati
2009, 2011). These high-fidelity simulations are at small length scales and are not yet
practically applicable to surf zone breaking waves due to computational time and costs.
Among those various approaches, RANS models have been those most widely used for
surf zone breaking wave modelling, as they are the most computationally affordable.

Regarding RANS two-equation models, the pioneering work of Lin & Liu (1998)
applied a nonlinear k–ε model for simulating breaking waves (k is the turbulent kinetic
energy density and ε is the dissipation rate). Their simulations showed a pronounced
over-production of turbulence at the most offshore point of their comparison (near the
breakpoint). This is similar to other more recent works (e.g. Brown et al. 2016; Derakhti
et al. 2016a,b; Devolder et al. 2018; Liu et al. 2020) using other two-equation models
such as k–ω and k–ω shear stress transport (SST) models (ω being the specific dissipation
rate). Several of the simulations mentioned just above even clearly demonstrate turbulence
levels prior to breaking that are similar in magnitude to those within the surf zone, which
obviously defies physical explanation as well as measurements. Hsu, Sakakiyama & Liu
(2002) also identified that the k–ε turbulence model tended to predict unrealistically
high turbulence in regions that were supposed to contain low turbulence levels during
their long-time simulations. They suspected that this problem was due to convection
and diffusion mechanisms. To combat this issue they have used an empirical damping
coefficient to reduce the eddy viscosity in such regions.

The persistent problem of over-production of turbulence in the potential flow region
beneath (non-breaking) surface waves in RANS turbulence closure models has only
recently been fully explained and analysed. Building on the proof of conditional instability
of the k–ω closure model of Mayer & Madsen (2000), Larsen & Fuhrman (2018) proved
that nearly all two-equation models in wide use (several k–ω and k–ε variants) are
(asymptotically) unconditionally unstable in such regions. (An exception is the realizable
k–ε model of Shih et al. (1995), which was proved to be conditionally unstable in such
regions by Fuhrman & Li (2020).) Larsen & Fuhrman (2018) devised a simple and general
method for formally stabilizing two-equation models, based on a reformulation of the
eddy viscosity. Their ‘stabilized’ k–ω model was tested on small-scale spilling waves
over a constant slope in Larsen & Fuhrman (2018) and on full-scale plunging waves
over a breaker bar in Larsen et al. (2020). These works have collectively shown that the
stabilized k–ω model leads to marked improvement in the predicted turbulence, undertow
velocity profiles and the bottom boundary layer dynamics in the pre-breaking region and
outer surf zones, likely to be of considerable importance for, for example, breaking wave
hydrodynamics and cross-shore sediment transport predictions. However, even the best
of the models considered in Larsen & Fuhrman (2018) and Fuhrman & Li (2020) were
still rather inaccurate in the inner surf zone (i.e. closer to the shoreline), thus seemingly
requiring yet more advanced methods of achieving turbulence closure. To date, no single
turbulence closure model has demonstrated the ability to accurately simulate the entirety
of the breaking process, from shoaling to the inner surf zone, including accurate prediction
of the undertow velocity structure and magnitude, for both spilling and plunging breaking
waves.

NASA’s CFD Vision 2030 Study white paper (Slotnick et al. 2014) identifies advanced
turbulence modelling based on Reynolds stress models (RSMs) as a priority in the coming
decades. Motivated by this, and especially the persistent shortcomings encountered with
two-equation turbulence closure models noted above, the present study considers novel
applications of a Reynolds stress turbulence model for the simulation of breaking waves.
Specifically, we consider applications of the stress–ω model proposed by Wilcox (2006),
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which has not been utilized previously for this purpose. Unlike two-equation models,
RSMs (e.g. Launder, Reece & Rodi 1975; Wilcox 2006) simulate all components of
the Reynolds stress tensor with their own respective transport equation, eliminating
the need to resort to a Boussinesq eddy viscosity approximation. Therefore, RSMs
are theoretically superior to their two-equation counterparts, while still maintaining
reasonable computational efficiency, compared to turbulence-resolving methods such
as DNS and LES. Comparing with two-equation RANS models, RSMs must provide
closure for a larger number of terms, which can present a challenge. In the present
work, the closure terms and coefficients provided in Wilcox (2006) are adopted. To the
authors’ knowledge, the study of Brown et al. (2016) has been the only one to have
attempted application of a RSM to study breaking waves, in their case utilizing the
Launder–Reece–Rodi (LRR) stress–ε model (Launder et al. 1975). However, they found
a significant overestimation of the turbulent kinetic energy for spilling breakers both pre-
and post-breaking, which was even more pronounced than found with several of their
two-equation closures. Their results suggest that RSMs may share the same problem of
instability in the nearly potential flow region beneath surface waves, leading to unphysical
exponential growth of turbulence. The formal stability of RSMs in the potential flow region
beneath non-breaking surface waves is an open question, which is definitively answered by
the present work. We further aim to establish the ability of the stress–ω model to accurately
simulate coastal fluid mechanics problems involving breaking waves.

The present work is organized as follows. We begin by conducting a novel stability
analysis of the Wilcox (2006) stress–ω model in a region of idealized potential flow
beneath surface waves (§ 2). We prove that this model is formally neutrally stable in such
regions, and therefore ought not give rise to unphysical exponential growth of turbulence.
The stress–ω model (with buoyancy production terms included, as derived in Appendix A)
is then tested in CFD simulations throughout § 3. Here the formal stability analysis is
directly verified through simulations of a progressive surface wave train (§ 3.1). We then
move from the surface to the sea bed, and consider CFD simulations of a turbulent wave
boundary layer, with comparisons made against a two-equation k–ω model (§ 3.2). We
finally test the performance of the stress–ω model in simulations involving both the spilling
(§ 3.3) and plunging (§ 3.4) breaking wave cases of Ting & Kirby (1994, 1996), with direct
comparison made against the best of the k–ω models devised by Larsen & Fuhrman (2018).
The present breaking wave results are discussed relative to those of prior CFD studies in
§ 4, before drawing conclusions in § 5.

Although it is not the primary focus of the present work, for completeness, we similarly
analyse the LRR stress–ε model for stability in Appendix B. Similar to the stress–ω model,
we prove that the stress–ε model is likewise neutrally stable in the potential flow region
beneath non-breaking surface waves. This has also been confirmed through testing with
surface wave trains, as noted there. The likely explanation of the LRR stress–ε model
significantly over-predicting turbulence prior to breaking in the work of Brown et al. (2016)
is also provided there.

2. Stability analysis of the Wilcox (2006) stress–ω turbulence model in the potential
flow region beneath waves

2.1. Turbulence closure model
While computational power has improved immensely in recent decades, for many fluid
mechanics problems, it is still not practically feasible to resolve the small scales required
for either DNS or LES. Rather, it is often necessary in practice to work with a
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Reynolds-averaged description of the flow, with the effects of turbulence on the mean
flow accounted for with the aid of a turbulence closure model. For this purpose, the
present study focuses on the Wilcox (2006) stress–ω model (where ω is again the specific
dissipation rate of turbulence). This model, in a form suitable for a two-phase (water–air)
fluid mixture, consists of the following stress-transport equations:

∂ρ̄τij

∂t︸ ︷︷ ︸
Time variation

+ ūk
∂ρ̄τij

∂xk︸ ︷︷ ︸
Convection

= − ρ̄Pij︸︷︷︸
Production

+ 2
3
ρ̄β∗ωkδij︸ ︷︷ ︸

Dissipation

− ρ̄Πij︸︷︷︸
Pressure-strain

+ ρ̄α∗
b

k
ω

Nij︸ ︷︷ ︸
Buoyancy production

+ ∂

∂xk

[
ρ̄(ν + σ ∗ k

ω
)
∂τij

∂xk

]
︸ ︷︷ ︸

Diffusion

(2.1)

combined with a separate transport equation for the specific rate of dissipation ω:

∂ρ̄ω

∂t︸︷︷︸
Time variation

+ ūj
∂ρ̄ω

∂xj︸ ︷︷ ︸
Convection

= ρ̄α
ω

k
τij

∂ ūi

∂xj︸ ︷︷ ︸
Production

− ρ̄βω2︸ ︷︷ ︸
Dissipation

+ σd
ρ̄

ω

∂k
∂xj

∂ω

∂xj︸ ︷︷ ︸
Cross-diffusion

+ ∂

∂xk

[
ρ̄

(
ν + σ

k
ω

)
∂ω

∂xk

]
︸ ︷︷ ︸

Diffusion

. (2.2)

In the above, xj are the Cartesian coordinates, ūj are the mean (Reynolds-averaged)
components of the velocity, gj is gravitational acceleration, δij is the Kronecker delta, ν

is the kinematic fluid viscosity, ρ̄ is the fluid density and t is time. The specific Reynolds
stress tensor is defined as

τij = −u′
iu

′
j, (2.3)

where a prime denotes turbulent fluctuations and the overbar denotes Reynolds averaging.
The turbulent kinetic energy (per unit mass) is thus

k = −1
2τkk. (2.4)

Buoyancy production (as derived in Appendix A) is included with terms proportional to
the Brunt–Väisälä frequency tensor:

Nij = 1
ρ0

(
gi

∂ρ̄

∂xj
+ gj

∂ρ̄

∂xi

)
, (2.5)

where ρ0 is the constant reference density of the fluid.
The pressure–strain correlation is

Πij = β∗C1ω
(
τij + 2

3 kδij

)
− α̂(Pij − 2

3 Pδij)

− β̂
(

Dij − 2
3 Pδij

)
− γ̂ k

(
Sij − 1

3 Skkδij

)
, (2.6)
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where

Pij = τim
∂ ūj

∂xm
+ τjm

∂ ūi

∂xm
, (2.7)

Dij = τim
∂ ūm

∂xj
+ τjm

∂ ūm

∂xi
, (2.8)

Sij = 1
2

(
∂ ūi

∂xj
+ ∂ ūj

∂xi

)
, (2.9)

P = 1
2 Pkk. (2.10)

The model closure coefficients, taken directly from Wilcox (2006), are defined as
follows:

C1 = 1.8, C2 = 10/19, α̂ = (8 + C2)/11, β̂ = (8C2 − 2)/11,

γ̂ = (60C2 − 4)/55, α = 0.52, β∗ = 0.09, β0 = 0.0708,

β = β0fβ, σ = 0.5, σ ∗ = 0.6, σd0 = 0.125,

⎫⎬
⎭

(2.11)

σd =

⎧⎪⎪⎨
⎪⎪⎩

0,
∂k
∂xj

∂ω

∂xj
� 0

σd0,
∂k
∂xj

∂ω

∂xj
> 0,

(2.12)

fβ = 1 + 85χω

1 + 100χω

, χω =
∣∣∣∣∣ΩijΩjkŜki

(β∗ω)3

∣∣∣∣∣ , Ŝki = Ski − 1
2

∂ ūm

∂xm
δki, (2.13a–c)

with α∗
b = 1.36 (following Larsen & Fuhrman (2018); see also Appendix A). Unless

explicitly stated otherwise, this value is fixed in what follows. A detailed description of
the closure evolution from third-order turbulence correlations to second-order ones can be
found in Wilcox (2006, pp. 41–43) and Launder et al. (1975, their § 3).

Compared with the LRR (Launder et al. 1975) stress–ε model, the ω-based
stress-transport model formulated above reduces the complexity of the diffusion term
and the pressure–strain relation considerably. Moreover, since the ω equation yields
better near-wall behaviour, the pressure–strain relation does not require an artificial
wall-reflection term. (As discussed by Parneix, Laurence & Durbin (1998), the LRR
wall-reflection term is more to mitigate a deficiency in the ε equation than to correctly
or physically represent the pressure-echo process.) We therefore adopt the Wilcox (2006)
stress–ω model as our primary focus for both analysis and applications in what follows.

2.2. Stability analysis
As shown and explained by Mayer & Madsen (2000), Larsen & Fuhrman (2018) and
Fuhrman & Li (2020) (see also § 7.6 of Sumer & Fuhrman (2020)), standard two-equation
turbulence closure models can result in turbulence over-production in the potential flow
core region beneath surface waves. This is due to their inherent instability in such regions,
leading to non-physical exponential growth of the turbulent kinetic energy and eddy
viscosity. Computational results of Brown et al. (2016), who used the LRR stress–ε

turbulence model to simulate breaking waves, demonstrated seemingly similar turbulence
over-production prior to incipient wave breaking. This suggests that RSMs may share the
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same inherent instability in nearly potential flow regions having finite strain. It is therefore
of interest to extend the analysis of Larsen & Fuhrman (2018) to consider the formal
asymptotic stability of RSMs. In what follows in the main text we formally analyse the
Wilcox (2006) stress–ω model. Similar analysis (and findings) of the LRR stress–ε model
is provided in Appendix B for completeness.

Consider now an incompressible fluid region having constant density beneath a
small-amplitude plane surface wave train propagating in the horizontal x1 = x direction,
where the turbulence model described above is active. We will assume the mean flow is
described by linear potential flow (Stokes first-order) wave theory, with velocity fields

ū1 = u = Hσw

2
cosh(kwy)
sinh(kwh)

cos(kwx − σwt), (2.14)

ū2 = v = Hσw

2
sinh(kwy)
sinh(kwh)

sin(kwx − σwt), (2.15)

where the vertical x2 = y axis is placed at the bed, σw is the angular wave frequency, kw is
the wavenumber, h is the water depth and H is the wave height.

Following Mayer & Madsen (2000), Larsen & Fuhrman (2018) and Fuhrman & Li
(2020), diffusive and convective terms are neglected in the analysis, which is reasonable
in the potential flow region. Meanwhile, the buoyancy production term goes to zero in
the region beneath surface waves where the density is again assumed constant. From
the assumptions stated above, (2.1) and (2.2) simplify to the following system of seven
governing equations:

∂τij

∂t
= −Pij + 2

3
β∗ωkδij − Πij, (2.16)

∂ω

∂t
= α

ω

k
τij

∂ ūi

∂xj
− βω2. (2.17)

We may simplify the governing equations yet further by (1) assuming that the turbulence
field under consideration has equivalent normal stresses (such that τ11 = τ22 = τ33), (2)
accounting for both assumed zero mean flow (ū3 = w = 0) and uniformity (∂/∂x3 = 0) in
the transverse x3 = z direction and (3) invoking local continuity ∂ ūi/∂xi = 0. Equations
(2.16) and (2.17) then reduce considerably to the following system of three ordinary
differential equations:

∂k
∂t

= 2τ12S12 − β∗ωk, (2.18)

∂τ12

∂t
=
(

4
3

− 4
3
α̂ − 4

3
β̂ + γ̂

)
kS12 − C1β

∗ωτ12, (2.19)

∂ω

∂t
= 2α

ω

k
τ12S12 − βω2, (2.20)

where (2.18) stems from the trace of (2.16). Notice that even in this reduced form the
resulting RSM differs fundamentally from a simpler k–ω turbulence model (see Larsen &
Fuhrman 2018), with the Reynolds shear stress τ12 governed by its own equation.

For analysis purposes, it turns out to be convenient to introduce a dimensionless utility
variable Ψ = k/τ12. Combining (2.18) and (2.19), while also invoking Ψ into the ω

937 A7-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.92


Y. Li, B.E. Larsen and D.R. Fuhrman

equation (2.20) then leads to

∂Ψ

∂t
=
(

4
3
α̂ + 4

3
β̂ − γ̂ − 4

3

)
︸ ︷︷ ︸

−8/15

Ψ 2S12 + (C1 − 1)β∗Ψ ω + 2S12, (2.21)

∂ω

∂t
= −βω2 + 2α

ω

Ψ
S12. (2.22)

From inspection of (2.21) and (2.22) it is clear that, for any reasonable initial conditions,
i.e. with τ12 (hence Ψ ) and S12 having the same sign, both Ψ and ω will evolve
asymptotically towards equilibrium values such that their respective time derivatives are
zero. A brief mathematical analysis follows. Setting both (2.21) and (2.22) to zero, and
solving for Ψ and ω (discarding the unphysical solution with ω = 0) leads to the following
asymptotic values (so called fixed points):

Ψ∞ = ±
√

6 × (1 − C1)αβ∗ − β

β(4α̂ + 4β̂ − 3γ̂ − 4)
≈ ±2.394, (2.23)

ω∞
S12

= ±α

√
2
3

× 4 − 4α̂ − 4β̂ + 3γ̂

β2 + (C1 − 1)αββ∗ ≈ ±6.135, (2.24)

where the closure coefficients have been invoked to arrive at the constants. For positive
S12, the fixed point is (Ψ∞, ω∞) = (2.394, 6.135S12), while for negative S12 the fixed
point is (Ψ∞, ω∞) = (−2.394, −6.135S12).

Now let us check for formal stability of the fixed points based on the eigenvalues of the
Jacobian matrix for (2.21)–(2.22) which is defined by

J =

⎡
⎢⎢⎣

∂

∂Ψ

(
∂Ψ

∂t

)
∂

∂ω

(
∂Ψ

∂t

)
∂

∂Ψ

(
∂ω

∂t

)
∂

∂ω

(
∂ω

∂t

)
⎤
⎥⎥⎦ . (2.25)

After invoking the right-hand sides of (2.21)–(2.22) in the above, in addition to the model
closure coefficients, this becomes

J =
[−1.067S12Ψ + 0.072ω 0.072ω

−1.04S12ω

Ψ 2 −0.1416ω + 1.04S12

Ψ

]
. (2.26)

By linearizing about (i.e. inserting) the fixed points (Ψ∞, ω∞), the eigenvalues of J are
found to be (−1.99, −0.558)|S12|. As these are negative, the fixed points correspond to
stable nodes (Strogatz 2018). This is also visually demonstrated for the positive quadrant by
the dimensionless stream plot of (1/|S12|∂Ψ/∂t, 1/(S12|S12|)∂ω/∂t) in figure 1, depicting
evolution to a single point in the ω/|S12|–Ψ plane, there indicated by the filled circle. The
plot with Ψ and S12 both having negative sign is symmetric to that shown in figure 1. This
behaviour has been confirmed through numerous numerical simulations of (2.18)–(2.20),
examples of which (with initial conditions for S12 and τ12 having both positive and negative
values) are shown in figure 2. The asymptotic constants found above are likewise consistent
with figure 1.
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ω/|S12|

Ψ

0 5 10 15

10

5

0

15

Figure 1. Dimensionless stream plot of ((1/|S12|)(∂Ψ /∂t), (1/S12|S12|)(∂ω/∂t)) depicting the evolution of
Ψ and ω/|S12| to a single point indicated by the filled circle.

t|S12|

ω/S12

ω/S12

Ψ

Ψ

–12

–8

–4

4

8

12

1 2 3 4 5 6

Figure 2. Simulated development (full lines) and predicted asymptotic values (dashed lines) of Ψ and ω/S12
based on ordinary differential equations of (2.18)–(2.20) for the stress–ω closure model. Here S12 and τ12 are
provided with both positive and negative initial conditions.

Inserting the asymptotic values Ψ∞ and ω∞ back into (2.18) and (2.19) and simplifying
then leads to linearized equations of the form

1
k

∂k
∂t

= 1
τ12

∂τ12

∂t
= Γ∞, (2.27)
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where

Γ∞ = (β − αβ∗)

√
2
3

× 4 − 4α̂ − 4β̂ + 3γ̂

β2 + (C1 − 1)αββ∗ × |S12| ≈ 0.2831 × |S12| (2.28)

defines the asymptotic exponential growth rate of both k and τ12.
It is seen from (2.28) that the exponential growth rate is expressed in terms of the strain

rate:

S12 = 1
2

(
∂u
∂y

+ ∂v

∂x

)
, (2.29)

which has been treated as fixed above at some unknown value for the sake of keeping the
analysis tractable. Note that this is entirely consistent with the prior analysis of the k–ω

model (and several other two-equation turbulence models) made by Larsen & Fuhrman
(2018), who similarly assumed their variable p0 = 2SijSij to be fixed. This was interpreted
in practice, for example, as a period- and depth-averaged value beneath the considered
surface wave field. Adopting a similar approach, we therefore insert (2.14) and (2.15) into
(2.29) and period average. This leads to the rather trivial, but contextually important, result
that

〈S12〉 = 1
T

∫ T

0
S12 dt

= 1
T

∫ T

0

1
2

Hkwσω cos(σωt − kwx) csch(hkw) sinh(kwy) dt

= 0 (2.30)

(where 〈·〉 indicates period averaging), such that the exponential growth rate will, in fact,
be simply (on average) zero.

This thus proves that, under the simplifying assumptions made above, the Wilcox
(2006) stress–ω turbulence model is neutrally stable in the potential flow region beneath
small-amplitude progressive waves. We find similarly for the LRR stress–ε RSM, the
details of which are again provided in Appendix B. These results are in contrast to the
authors’ original expectations, based on the computational results of Brown et al. (2016).
The reason for this discrepancy is likewise explained in Appendix B. The present results
are also in stark contrast to similar analysis made for several two-equation models, most of
which have been proved to be either unconditionally unstable (Larsen & Fuhrman 2018)
or (in the special case of the realizable k–ε model) conditionally unstable (Fuhrman & Li
2020), under the same assumptions as considered here.

For the interested reader, an alternative analysis based on eigenvalues of the Jacobian
matrix for the governing equations (2.18)–(2.20), linearized about the fixed points, is
presented in Appendix C. The alternative analysis confirms the asymptotic growth rate
found in (2.28), and hence the finding of neutral stability above.

2.3. Comparison with analysis of two-equation models
Given the fundamental differences in the formal stability of Reynolds stress turbulence
models compared to their two-equation counterparts, it seems worthwhile to briefly
revisit the prior analysis of these simpler models to pinpoint precisely where these
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differences arise. For this purpose, consider the k equation in (2.18), where the turbulence
production term corresponds to

Pk = 2τ12S12, (2.31)

the form of which is theoretically based (though it is emphasized that this quantity
neglects additional contributions from turbulent normal stresses). With a Reynolds stress
closure model, τ12 is free to evolve naturally based on its own transport equation (2.19).
Conversely, with two-equation closure models it is instead conventionally based on the
Boussinesq approximation

τij = 2νtSij − 2
3 kδij, (2.32)

where νt is the kinematic eddy viscosity. For the conditions specifically analysed in § 2.2,
(2.32) leads to the Reynolds stress τ12 = 2νtS12, such that the turbulence production term
becomes

Pk = p0νt, p0 = 4S12S12, (2.33a,b)

i.e. proportional to p0 rather than simply S12. Similarly, in their analysis of standard
two-equation models, Larsen & Fuhrman (2018) showed that they inevitably lead to
asymptotic values of ω∞ and Γ∞ that are both proportional to

√
p0, rather than S12.

Critically in the present context, in the potential flow region beneath surface waves 〈p0〉 is
finite (Mayer & Madsen 2000; Larsen & Fuhrman 2018), rather than zero as is the case for
〈S12〉; see (2.30).

Thus, this clarifies that it is the Boussinesq approximation of the Reynolds shear stress
in two-equation turbulence closure models that is responsible for their formal instability
in the potential flow region beneath surface waves. Notably, this finding lends credence
to the approach adopted by Larsen & Fuhrman (2018), who utilized a re-formulated eddy
viscosity (to include an additional stress-limiting feature) in order to formally stabilize
such closures.

3. Computational fluid dynamics simulations with the Wilcox (2006) stress–ω model

This section presents a series of CFD simulations, where the Wilcox (2006) stress–ω

model is used as turbulence closure for a numerical model solving incompressible RANS
equations. The selected simulations will build towards the ultimate aim of accurately
simulating breaking surface waves with significantly improved accuracy compared with
existing two-equation closures. Specifically, § 3.1 considers simulation of a simple
progressive non-breaking wave train, as a direct test of the model’s stability in the potential
flow core region (as analysed in the preceding section). We then focus on simulation of the
turbulent wave boundary layer in § 3.2, of fundamental interest beneath both non-breaking
and breaking waves. This section finally culminates with CFD simulations of both spilling
(§ 3.3) and plunging (§ 3.4) breaking waves. All simulations in the present work have been
carried out within the OpenFOAM® v1812 framework. Free surface simulations utilize
the waves2FOAM toolbox (Jacobsen, Fuhrman & Fredsøe 2012) for wave initiation or
generation and absorption.

The free surface is modelled using the volume of fluid method, and the phases in
terms of the two fluids (i.e. air and water) are tracked by a scalar field γ , where γ = 0
denotes pure air and γ = 1 denotes pure water. Any intermediate γ value between 0 and
1 represents a fluid mixture. The γ field is governed by the advection equation (see also
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Sumer & Fuhrman 2020, p. 558):

∂γ

∂t
+ ∂(ūiγ )

∂xi
+ ∂[ūr

i γ (1 − γ )]
∂xi

= 0, (3.1)

where ūr
i is a relative velocity for interface compression according to Berberović et al.

(2009). Any fluid property (represented by Φ) is calculated by

Φ = γΦwater + (1 − γ )Φair, (3.2)

i.e. fluid properties are weighted linearly based on the local value of γ . For modelling
the free surface of breaking waves with strong turbulence, Brocchini & Peregrine (2001)
and Brocchini (2002) also proposed an approach using averaged equations (i.e. mass
and momentum conversation equations along with an equation for the turbulent kinetic
energy), with boundary conditions obtained through integration across the two-phase
surface layer. This may provide a useful alternative for modelling the disturbed free surface
of breaking waves, though this approach will not be pursued here.

3.1. Simulating a progressive wave train
The stability analysis in § 2.2 demonstrates that the Wilcox (2006) stress–ω model is
neutrally stable in the ideal potential flow region beneath surface waves. This is again
in contrast to our original suspicions, since the Reynolds stress CFD simulations of Brown
et al. (2016) demonstrated turbulence over-production prior to breaking. As an initial test
to confirm our stability analysis, we therefore conduct CFD simulations involving the
simple propagation of a theoretically (based on potential flow theory) steady wave train.
For comparative purposes, two simulations are considered, having buoyancy production
either on (α∗

b = 1.36, as indicated in § 2.1) or off (α∗
b = 0). The reason for this comparison

is to elucidate any effects of the buoyancy production term (which will cause a sink
of turbulence near the air–water interface), since it was not considered in the stability
analysis for reasons of simplicity. Following Larsen & Fuhrman (2018), we adopt the
wave properties associated with the incident wave from the spilling breaker experiments
of Ting & Kirby (1994) for the present simulations, corresponding to period T = 2 s
and wave height H = 0.125 m on a constant water depth h = 0.4 m. The numerically
exact stream function wave (potential flow) solution of Fenton (1988) (as implemented
by Jacobsen et al. (2012)) yields the dimensionless depth kwh = 0.664 and steepness
kwH = 0.207. This wave solution is set as the initial conditions on a domain spanning
a single wavelength with periodic left and right boundaries. An initially small turbulence
field is set with τ11 = τ22 = τ33 = −τ12 = −1.33 × 10−6 m2 s−2, such that the initial
turbulent kinetic energy k0 is 2.0 × 10−6 m2 s−2. The set-up utilized (including mesh,
discretization schemes and multi-phase flow solver) is adopted directly from Larsen &
Fuhrman (2018), who performed similar tests utilizing two-equation (k–ω) turbulence
models. Specifically, the maximum Courant number is set to Co = 0.05, and a diffusive
balance scheme as discussed in Larsen, Fuhrman & Roenby (2019) is adopted. The bottom
boundary is modelled as a slip wall, to mimic potential flow as much as possible.

Figure 3 depicts time series of the dimensionless surface elevation as well as the period-
and depth-averaged (note that [·] herein indicates depth-averaging) turbulence level over
a simulated duration of 100T . It is seen in figure 3(a) that the wave propagates with
nearly constant form in both cases (the two results for the free-surface elevations are
indistinguishable). It is seen from figure 3(b) that the case with α∗

b = 0 results in a
growth rate in the turbulent kinetic energy that may indeed be reasonably characterized

937 A7-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.92


Reynolds stress turbulence modelling of breaking waves

–0.5

η/H
0

0.5

1.0

0 10 20 30 40 50 60 70 80 90 100

t/T
0 10 20

α∗
b = 0

α∗
b = 1.36

30 40 50 60 70 80 90 100

(a)

(b)

10–5

10–4

(〈k
/k

0
〉)

10–2

102

100

Figure 3. Computed (a) surface elevation time series and (b) the time- and depth-averaged turbulence level
for the progressive waves with the Wilcox (2006) stress–ω model, with buoyancy production term both off
(α∗

b = 0) and on (α∗
b = 1.36).

as zero. This result is consistent with our simplified analysis of this problem in § 2.2,
again predicting that the model is neutrally stable. Minor deviations (e.g. the initial slow
decay and later rise of [〈k/k0〉]) are relatively insignificant, and are likely due to terms
neglected in the analysis and/or from accumulation of small numerical errors, which may
cause the solution to deviate from the ideal potential flow solution over extended times. It
is likewise seen from figure 3(b) that the buoyancy production term being active instead
leads to a decay in turbulence levels. This is clearly due to the additional sink in turbulence
caused by this term near the air–water interface, which was not considered in the formal
stability analysis. Hence, both simulations largely confirm our analysis, that the Wilcox
(2006) stress–ω model is indeed stable in the ideal potential flow core region beneath
non-breaking surface waves. Note that both results presented in figure 3 differ considerably
from the simulation using the Wilcox (2006) k–ω closure model in its standard form,
as presented in figure 4(a) of Larsen & Fuhrman (2018), which resulted in immediate
exponential growth of the eddy viscosity (hence turbulence) and eventual wave decay, due
to this model’s inherent instability, as shown and discussed therein.

3.2. Simulating the oscillatory turbulent wave boundary layer
We now turn our attention to the performance of the Wilcox (2006) stress–ω model
in the bottom boundary layer region beneath waves, an area of special importance
beneath both non-breaking and breaking waves. (Recall that this region was neglected
in the previous wave train simulations due to the use of a slip condition at the sea
bed.) For this purpose, we consider the experiments of Jensen, Sumer & Fredsøe (1989)
conducted in a full-scale oscillating tunnel facility. We specifically consider their Test 13,
involving the boundary layer beneath a sinusoidally varying free-stream flow (having
velocity magnitude U0m = 2.0 m s−1 and period T = 9.72 s) yielding a Reynolds number
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Re = aU0m/ν ≈ 6 × 106, where a = U0m/σw and ν = 1.14 × 10−6 m2 s−1. The bottom
wall is rough, with Nikuradse’s equivalent roughness ks = 0.84 mm. A model height of
0.145 m corresponding to half of the physical tunnel height (0.29 m) in Jensen et al. (1989)
is used, hence only the bottom boundary layer is simulated. The top boundary is treated
as a frictionless (slip) lid. The bottom boundary is set as a no-slip wall, where the ω

wall function with a viscous–inertial sublayer blending method (Menter & Esch 2001;
Popovac & Hanjalic 2007) is applied, combined with a zero normal gradient condition
for the Reynolds stress. The first cell centre near the bottom wall lies at yc/ks = 0.5. An
oscillatory body force is applied to drive the flow until an equilibrium (periodic in time)
state is reached and comparisons are made.

Computed and experimental results are compared in figure 4 at four phases during the
oscillation cycle: σwt = 0◦ (free-stream flow reversal), 45◦ (flow acceleration due to a
favourable pressure gradient), 90◦ (peak free-stream flow) and 135◦ (flow deceleration
due to an adverse pressure gradient). Results are shown for the dimensionless mean flow
ū/U0m (figure 4a); the turbulent kinetic energy density k/U2

0m (figure 4b), which for the
experiments of Jensen et al. (1989) has been empirically approximated from (Justesen
1991)

k = −0.65(τ11 + τ22); (3.3)

as well as the Reynolds stress components −τ11/U2
0m, −τ22/U2

0m and τ12/U2
0m (figures 4c,

4d and 4e, respectively). Results computed utilizing both the Wilcox (2006) stress–ω and
k–ω models are shown, such that those of the RSM (the primary focus of the present work)
may be compared directly with a simpler two-equation model. Note that for the k–ω model,
the Reynolds stress components are obtained directly from the Boussinesq approximation
(2.32).

From figure 4(a) it is seen that the computed mean flow velocities from both models are
largely similar, and in good agreement with the experiments. The most notable difference
is the slight reduction (and increased accuracy) in the mean flow computed with the
stress–ω model at phase σwt = 135◦ (i.e. during adverse pressure and flow deceleration),
relative to the k–ω model. This difference is explained immediately below. It is seen in
figure 4(b) that the stress–ω model obviously improves the accuracy of the turbulence
kinetic energy k, relative to the k–ω model, especially at phase σwt = 135◦. Note that
Sumer & Fuhrman (2020) have similarly documented relatively poor performance of the
Wilcox (2006) k–ω model in simulating the deceleration stage of the wave boundary
layer (see their figures 5.90–5.92), and this is a well-known deficiency with two-equation
models in general (see e.g. Justesen (1991) for similar finding with a k–ε closure
model). From inspection of the results just discussed in figure 4(a), it is clear that the
over-prediction of ū seen there with the k–ω model is associated with its under-prediction
of k at this phase, i.e. that the k–ω model does not extract enough energy from the mean
flow during the flow deceleration stage. Since the form of the turbulence production term
in the k equation (τij∂ui/∂xj, which simplifies to τ12∂ ū/∂y in the present horizontally
uniform case) is theoretical (hence exact if its determination is free of error), it is then clear
that this shortcoming must be due to inaccuracy of τ12 from the Boussinesq approximation
(2.32).

The individual Reynolds stress component profiles at each stage are presented in
figure 4(c–e). It is seen that the stress–ω model captures the dynamics of both the turbulent
normal and shear stress components with better accuracy compared to the k–ω model,
although τ11 and τ12 at σwt = 135◦ are still slightly under-predicted in the near-bottom
region. It is seen in figure 4(c,d) that τ11 and τ22 predicted by the k–ω model (blue
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Figure 4. Comparison of computed and measured vertical profiles for (a) ū/U0m, (b) k/U2
0m, (c) −τ11/U2

0m,
(d) −τ22/U2

0m, (e) τ12/U2
0m and ( f ) Uf /U0m for the oscillatory wave boundary layer case of Jensen et al. (1989,

their Test 13). The depicted CFD simulations utilize both the Wilcox (2006) stress–ω and k–ω turbulence
models.
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dashed lines) are identical and deviate from the experimental measurements. This is simply
because application of the Boussinesq approximation (2.32) for the present case leads
simply to

τ11 = τ22 = −2
3

k, τ12 = νt
∂ ū
∂y

, (3.4a,b)

the former of which is well known to be incorrect, even in the simpler case of a steady
horizontally uniform turbulent boundary layer flow; see e.g. Chapter 3 of Sumer &
Fuhrman (2020). In line with the discussion above, it is notable that τ12 (figure 4e) is
indeed under-predicted by the k–ω model at σwt = 135◦. Overall, the Wilcox (2006)
stress–ω model is demonstrated to be superior to the k–ω model in simulating the
turbulence dynamics for the oscillatory wave boundary layer flows, as measured by Jensen
et al. (1989).

The measured and modelled friction velocity Uf is likewise presented in figure 4(f).
In the experiment of Jensen et al. (1989), the friction velocity was determined by fitting
straight lines to the logarithmic-layer portion of the mean velocity distribution (see Sumer
& Fuhrman 2020, § 5.4.1). It is noted that the difference in the measurements for two
half cycles are quite obvious, and are due to apparent asymmetries that occurred in the
experiment, which are avoided in the numerical simulations. It is seen that both stress–ω

and k–ω model results match the friction velocity closely for the first half cycle. The
friction velocity simulated with the stress–ω model is identical to that with the k–ω model
in the flow acceleration stage, while being slightly larger than that with the k–ω model in
the peak and deceleration stages. As the difference in the measurements over the two half
cycles is larger than that of the two numerical results, both numerical model results are
considered acceptable.

3.3. Simulating spilling breaking waves
The preceding preliminary simulations have demonstrated potential advantages of using
a stress–ω model (rather than a traditional two-equation k–ω turbulence closure) for
applications relevant to non-breaking waves, ranging from the free surface (the progressive
wave train) to the sea bottom (the turbulent wave boundary layer). Let us now apply the
model to simulate breaking wave hydrodynamics, the primary aim of the present paper.
For this purpose, we first consider the spilling breaking wave experiment of Ting & Kirby
(1994, 1996), to be followed by their plunging breaking wave experiment in the following
subsection.

The numerical set-up for simulation of the experiments of Ting & Kirby (1994, 1996)
is shown in figure 5, where a tan β = 1/35 constant slope is connected to a region having
constant still water depth h0 = 0.4 m. The origin is placed at the same water depth (h =
0.38 m) as in the experiments, for consistency. A relaxation zone (Jacobsen et al. 2012)
of one wavelength is set at the inlet for wave generation, which also serves to absorb
any reflected waves. A no-slip condition along with standard smooth bed wall functions
are employed as the bottom boundary conditions, since in the experiments of Ting &
Kirby (1994) and Ting & Kirby (1996) a roughness value was not explicitly indicated.
The computational mesh utilized is identical to that used previously by Larsen & Fuhrman
(2018). Dimensional and dimensionless wave properties utilized for the simulation of both
spilling and plunging breaking wave cases are indicated in table 1, where a numerically
exact stream function (potential flow) theory is used for specification of the generated wave
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Figure 5. Computational domain set-up for plunging and spilling breaker cases corresponding to the
breaking wave experiments of Ting & Kirby (1994).

Case T (s) H (m) h0 (m) xb (m) kwH kwh ξ0

Spilling 2 0.125 0.4 6.400 0.208 0.664 0.20
Plunging 5 0.128 0.4 7.795 0.076 0.238 0.60

Table 1. Wave properties for breaking wave simulations. Parameter xb is the measured breaking point in Ting
& Kirby (1994) and ξ0 is the surf similarity parameter.

at the inlet. In table 1, xb denotes the position of incipient breaking and

ξ0 = tan β√
H0/L0

(3.5)

is the surf similarity parameter, where L0 = gT2/(2π) is the deep-water wavelength and

H0 = H

√
tanh(kwh)

(
1 + 2kwh

sinh(2kwh)

)
(3.6)

is the deep-water wave height, calculated according to linear wave theory. The breaking
wave simulations are initially run for 50T to reach equilibrium, followed by a subsequent
50T which is utilized for period-averaging purposes. The simulated spilling breaking case
with the stress–ω model required approximately 12 days to run in parallel on 16 processors
on the supercomputing cluster at the Technical University of Denmark (DTU). Note that
the total computational time using the stress–ω model is approximately 15 % more than
that using the k–ω model.

To elucidate differences between the Wilcox (2006) stress–ω and two-equation k–ω

turbulence closure models, simulations utilizing a stabilized version of the Wilcox (2006)
k–ω model, as proposed by Larsen & Fuhrman (2018) (with stress-limiter coefficients
λ1 = 0.2 and λ2 = 0.05, as suggested there and in their notation), are also considered for
comparison. This model will hereafter be called the LF18 k–ω model. Note that results
based on the LF18 k–ω model have been re-simulated for presentation herein, to ensure
full consistency with the stress–ω results. This ensures that any effects associated, for
example, with the specific OpenFOAM software version or boundary treatment are fully
controlled for. (Such effects have not been found to be very significant, but this accounts
for subtle differences in the results presented herein compared to those originally presented
in Larsen & Fuhrman (2018).)
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Figure 6. Snapshot of the spilling breaker turbulent kinetic energy simulated with the Wilcox (2006)
stress–ω model at t/T = 100.

To begin our investigation, figure 6 depicts a snapshot of the spilling breaker turbulent
kinetic energy (here presented dimensionless as k/(gh0), where h0 = 0.4 m is the constant
still water depth prior to the slope) simulated with the Wilcox (2006) stress–ω model
at t/T = 100. It is observed that there is no sign of turbulence over-production prior
to breaking, indicating that the Wilcox (2006) stress–ω model is indeed stable, i.e. free
of unphysical exponential growth of turbulence in nearly potential flow regions. This is
once again consistent with our analysis of this model (§ 2) as well as our previous CFD
simulations involving a progressive wave train (§ 3.1). The present result is in stark contrast
to those stemming from two-equation models (both k–ω and k–ε variants) in their standard
forms; see e.g. Brown et al. (2016), Larsen & Fuhrman (2018, their figure 6a,b), Larsen
et al. (2020) and Fuhrman & Li (2020, their figure 7a).

Figure 7 shows the surface elevation envelopes for the spilling breaker simulations,
where 〈η〉 is the period-averaged mean water level (over the final 50T), and ηmax and ηmin
are respectively the averaged maximum and minimum surface elevations. Results from
both the stress–ω and LF18 k–ω models are shown separately. The grey shaded regions
depict plus and minus one standard deviation, hence indicating the degree of wave-to-wave
variability. Good agreement is observed in figure 7(a) between the simulation with
the Wilcox (2006) stress–ω model and the measurements of Ting & Kirby (1994).
The predicted breaking point (where ηmax − 〈η〉 is the highest) is consistent with the
experimental measurement. The surface elevation envelopes predicted by the LF18 k–ω

model are also similarly in line with the experimental measurement (figure 7b), consistent
with previous demonstrations.

Figure 8(a–d) compares the computed phase-averaged surface elevations with the
experimental measurements of Ting & Kirby (1994) at four post-breaking cross-shore
locations, where η̄ denotes the phase-averaged surface elevation and 〈η〉 denotes the
period-averaged surface elevation. Additionally, the two model results are compared
even further onshore (x = 9.725 m) in figure 8(e), for completeness. (Although the
phase-averaged surface elevations from the experiments were not directly reported at this
position, velocity and turbulence profiles were, to be presented in what follows.) It is seen
that the numerical predictions with both turbulence models are generally in line with the
experimental data for the three positions furthest offshore (figure 8a–c). Further onshore,
the stress–ω model maintains this accuracy. However, it is seen in figure 8(d,e) that the
wave front computed with the LF18 k–ω model is well ahead of what was measured. This
was also noticed by Larsen & Fuhrman (2018), indicating that the breaking bore travels
too rapidly in the inner surf zone. Larsen & Fuhrman (2018) (see their figure 10) showed
clearly that this problem was due to the conventional stress-limiter on the eddy viscosity
(controlled by the λ1 coefficient in their notation) within the Wilcox (2006) k–ω model.
Simulations where this feature was on (λ1 > 0) resulted in significantly improved results
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Figure 7. Period-averaged surface elevation envelopes for the spilling breaker simulated with (a) the Wilcox
(2006) stress–ω model and (b) the LF18 k–ω model, comparing with the experimental measurement of Ting &
Kirby (1994). Grey shaded areas are the plus and minus one standard deviation.

(in terms of undertow velocity and turbulence profiles) in the outer surf zone, but at the
expense of reduced accuracy in the inner surf zone. The stress–ω model, on the other hand,
breaks free of the eddy viscosity concept altogether, and hence avoids this issue entirely.

Let us now turn our attention to the turbulence quantities beneath the spilling breaking
waves. Ting & Kirby (1994, 1996) have reported results for

√〈k〉, 〈√−τ11〉 and 〈τ22〉/〈τ11〉
at each measurement position. Although the measurements for 〈τ22〉 were not directly
reported, they can be obtained from their reported

√〈k〉 and 〈τ22〉/〈τ11〉 values. In Ting
& Kirby (1994), because the transverse velocity component was not measured, k was
estimated empirically by

〈k〉 = −1.33
2 (〈τ11〉 + 〈τ22〉) , (3.7)

which is also utilized for the experimental k values presented in what follows. For the
LF18 k–ω model, the Reynolds stress components are again obtained directly from the
Boussinesq approximation (2.32).

Figures 9 and 10 compare specific period-averaged Reynolds normal stress
(non-dimensionalized −τ11 = u′u′ and −τ22 = v′v′ period-averaged over the final
simulated 50T; results are similarly period-averaged in several forthcoming figures)
profiles at each of the measured cross-shore positions. Figure 11 similarly presents a
comparison of computed and measured period-averaged turbulent kinetic energy density k
profiles. From these figures, it can be surmised that both the Wilcox (2006) stress–ω model
and the LF18 k–ω model predict Reynolds normal stress components that are reasonably,
though not perfectly, in line with the measurements. It is noted that the stress–ω model
predicts streamwise normal stresses (τ11) significantly better than vertical ones (τ22).
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Figure 8. Phase-averaged surface elevation for the spilling breaker from the experimental measurement of
Ting & Kirby (1994) and the present simulations. (a–c) The outer surf zone; (d,e) the inner surf zone.

This might be attributed to the simple formulation of pressure–strain closure in the Wilcox
(2006) stress–ω model, as the streamwise normal stresses (τ11) are dominated by the
production term P11 while τ22 is mainly driven by the pressure–strain correlation Π22. It is
seen in figure 11(d–h) that there is also a tendency for the LF18 k–ω model to predict more
accurate turbulence near the free surface, where the stress–ω model predicts slightly higher
turbulence than the k–ω model. This can also be attributed to the standard Wilcox (2006)
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Figure 9. Period-averaged Reynolds normal stress −τ11 for the spilling breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations. (a,b) The pre-breaking region; (c–e) the
outer surf zone; ( f –h) the inner surf zone.
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Figure 10. Period-averaged Reynolds normal stress −τ22 for the spilling breaker from the experimental
measurement of Ting & Kirby (1994, 1996) and the present simulations.

stress-limiting feature in the k–ω model, as shown through systematic testing by Larsen &
Fuhrman (2018, compare e.g. Cases 3 and 5 in their figure 12).

Let us now similarly investigate the computed Reynolds shear stresses τ12 = −u′v′,
which can be expected to play a much more important role in terms of flow resistance
than the turbulent normal stresses. Figure 12 compares the period-averaged τ12 (again
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Figure 11. Period-averaged turbulent kinetic energy k for the spilling breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations.

over the final simulated 50T) profiles from both models at all eight measurement positions
considered previously. Note that this quantity was not reported by Ting & Kirby (1994),
and thus we are not able to compare directly with their measurements; nevertheless,
important differences between the two models are revealed. It is seen from figure 12(a–d)
that neither model predicts significant Reynolds shear stress prior to breaking (as should
be expected) or in the outer surf zone. However, further shoreward the Reynolds shear
stress predicted with the Wilcox (2006) stress–ω model is significantly larger than with the
LF18 k–ω model, particularly in the upper part of the water column i.e. near the surface.
These differences can also be seen directly in figure 13, which compares (phase-averaged)
snapshots of the specific Reynolds shear stress (τ12) field beneath breaking bores computed
with both models in the inner surf zone. The instant shown has been selected such that
the surface breaking wave front is approximately at the innermost measurement position
(x = 9.725 m). The increased Reynolds shear stresses with the stress–ω model will in turn
increase flow resistance in the upper part of the water column. Although we again cannot
compare directly with measurements of τ12 in the present case, it is now evident that
it is this increased flow resistance that is responsible for slowing the propagation of the
breaking wave front in the inner surf zone, bringing the resulting (phase-averaged) surface
elevation time series computed with the stress–ω model in line with that measured (see
again e.g. figure 8d). In Larsen & Fuhrman (2018), the flow resistance was represented
through the eddy viscosity νt, as shown in their figure 14. A higher eddy viscosity in
the upper part of the flow extracts more energy from the mean flow, which reduces the
mean flow velocities. However, the stress–ω model does not utilize the eddy viscosity
assumption. Therefore, we compare the flow resistance between two turbulence models
through Pk, as given in (2.31) and (2.33a,b), which represents the rate at which kinetic
energy is transferred from the mean flow to the turbulence (Wilcox 2006, p. 109). For the
stress–ω model, the turbulence shear production is in the form of τ12S12 which is seen to
be the rate at which work is done by the mean shear strain rate against the Reynolds shear
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Figure 12. Period-averaged specific Reynolds shear stress τ12 for the spilling breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations.
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Figure 13. Phase-averaged τ12 at t/T = 0.08 for the spilling breaker case computed with the (a) Wilcox
(2006) stress–ω model and (b) LF18 k–ω model. Results are scaled using the depth h = 0.102 m at

x = 9.725 m.

stress. Therefore, Pk is an indicator of flow resistance that is induced by the Reynolds
shear stress τ12. For the two-equation model, Pk is calculated based on νt, as is presented
in (2.33a,b). As shown in figure 14 in the upper part of the flow (right beneath the breaking
bore), the shear production of turbulence with the stress–ω model is larger than with
LF18 k–ω model, indicating higher flow resistance near the broken wave surface with
the stress–ω model. The related effects on the period-averaged undertow velocity profiles
are considered in the next paragraph.

As hinted immediately above, figure 15 compares computed and measured
period-averaged undertow velocity profiles. It is seen that the stabilized LF18 k–ω model
provides accurate undertow velocity profiles before wave breaking and in the outer
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Figure 14. Period-averaged Pk for the spilling breaker from the present simulations.

surf zone (figure 15a–e), generally consistent with the earlier findings of Larsen &
Fuhrman (2018). Once reaching the inner surf zone (figure 15f–h), however, the LF18 k–ω

model yields exaggerated undertow velocities. In contrast, the stress–ω model maintains
consistent accuracy in the computed undertow velocity profile across the entirety of the
measured surf zone, resulting in a significant increase in accuracy. These differences seem
clearly linked to the increased flow resistance near the surface shown in figure 12(e–h)
and figure 13, and the related increased accuracy of the breaking bore propagation evident
from figure 8(d). As the Reynolds shear stress in two-equation turbulence closure models
is computed based on the Boussinesq approximation, it seems clear that this classical
assumption utilized within two-equation models (even in their stabilized form) fails to
yield the correct evolution of the flow resistance in the inherently complicated inner surf
zone, which further leads to locally inaccurate undertow predictions.

The accurate prediction of undertow velocities is of major importance in the fluid
mechanics of the surf zone, as they are important drivers of fluid, pollutants and sediment
transport in nearshore coastal regions. Despite this importance, the problem of inaccurate
undertow velocity profiles has consistently plagued RANS CFD simulations of breaking
waves over the past two decades. The present results utilizing the Wilcox (2006) stress–ω

model are novel, in that they represent the first time that consistent quantitative accuracy
in the computed undertow has been maintained throughout the entirety of the nearshore
wave breaking process, i.e. during shoaling (prior to breaking), to the outer surf zone and
all the way into the inner surf zone. Other RANS models (typically using two-equation
turbulence closure) yield incorrect undertow structure prior to breaking and in the outer
surf zone (e.g. Lin & Liu 1998; Brown et al. 2016; Devolder et al. 2018; Liu et al. 2020) or
exaggerated undertow in the inner surf zone (e.g. Jacobsen et al. 2012; Larsen & Fuhrman
2018; Larsen et al. 2020), or both. A detailed discussion of the results and problems in
previous works is presented in § 4.
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Figure 15. Period-averaged undertow velocity profiles for the spilling breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations.

3.4. Simulating plunging breaking waves
We now employ the Wilcox (2006) stress–ω model to simulate the plunging breaking
wave experiments of Ting & Kirby (1994, 1996). For these simulations the numerical
set-up and protocol are identical to that used for spilling breakers in § 3.3, with the wave
parameters as indicated in table 1. The simulation of the plunging breaking waves required
approximately 25 days to run in parallel on 16 processors on the supercomputing cluster
at DTU. As before, comparison is made with the LF18 k–ω model (Larsen & Fuhrman
2018), which again represents a stabilized form of the basic model presented by Wilcox
(2006). As much of the story to follow bears similarity to that in § 3.3, it will be told with
far greater brevity in the present subsection.

Figure 16 depicts a snapshot of the dimensionless turbulence field k/(ων) for the
plunging breaking case, computed with the stress–ω model at a time instant of t/T =
50.825, similar to figure 6. This time instant has been chosen, as it corresponds to wave
over-turning just prior to the subsequent plunge. Similar to our findings in the spilling
breaking case, there is no turbulence over-production prior to wave breaking. This should
by now be expected as we have definitively established that the stress–ω model is stable
in nearly potential flow regions beneath surface waves. It can be noted that this plunging
case is not nearly as prone to significant turbulence over-production prior to breaking as
the spilling case, because the unstable growth rate is much smaller due to a small value of
[〈p0〉], as discussed by Larsen & Fuhrman (2018).

Figure 17 compares the surface elevation envelopes from the model simulations with
the experimental measurements, similar to figure 7. A reasonable match is again achieved.
Both the Wilcox (2006) stress–ω and LF18 k–ω models predict the breaking point,
and subsequent wave decay, reasonably. The set-up in the mean water level is likewise
similarly well predicted. It is noted that right after the breaking point (at x ≈ 8 m), the
maximum surface elevation predicted with both numerical models has small deviations
from the experimental measurement (with the stress–ω model result being slightly closer
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Figure 16. Snapshot of the plunging breaker turbulent kinetic energy simulated with the Wilcox (2006)
stress–ω model at t/T = 100.
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Figure 17. Surface elevation envelopes for the plunging breaker simulated with (a) the present Wilcox (2006)
stress–ω model and (b) the LF18 k–ω model, comparing with the experimental measurement of Ting & Kirby
(1994). Grey shaded areas are the plus and minus one standard deviation.

to the measurement). This deviation could be due to the plunging jet splashing down
and causing turbulent mixture of the surface layer (as discussed in Brocchini (2002))
which makes accurate modelling challenging. However, our numerical models are able
to show reasonable consistency with the measurements, with minor deviations in the
splash region. Comparisons of computed and measured phase-averaged time series of the
surface elevation at several measurement positions are additionally provided in figure 18.
Interestingly, apart from the deviations near the crest in figure 18(c–e) with the k–ω model,
the computed wave front in the present plunging case does not propagate noticeably faster
with the k–ω model in the inner surf zone. This differs from our findings in the spilling
case (see figure 8d,e), and is explained later in this subsection.
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Figure 18. Phase-averaged surface elevation for the plunging breaker from the experimental measurement of
Ting & Kirby (1995) and the present simulations. (a–c) The outer surf zone; (d,e) the inner surf zone.

Computed and measured (when available) period-averaged (over the final 50T , as
before) turbulent normal stress profiles are compared in figures 19 (for −τ11) and 20
(for −τ22), with profiles for the turbulent kinetic energy density k similarly presented in
figure 21. In the experiments, k was again estimated from (3.7). As Ting & Kirby (1994)
did not provide measurement data for 〈−τ22〉 or 〈τ22〉/〈τ11〉 for their plunging case, only
model results are shown in figure 20. From these figures it is seen that the two models
seem to provide comparable accuracy for the turbulent normal stresses, similar to what
was shown in our prior simulations involving spilling breaking waves. The results for k are
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Figure 19. Period-averaged specific Reynolds normal stress −τ11 profiles for the plunging breaker from the
experimental measurement of Ting & Kirby (1994) and the present simulations. (a,b) The pre-breaking region;
(c–e) the outer surf zone; ( f –h) the inner surf zone.

somewhat more accurate with the stress–ω model specifically at x = 9.795 m (figure 21g),
though this increased accuracy is not consistent throughout the surf zone as a whole. The
overall predictions for k in the inner surf zone with both turbulence models are larger than
the measurement with a maximum factor of two (figure 21g). The reason remains uncertain
to the authors. However, it is worthwhile to mention that the experimental study of Scott
et al. (2005) presented k profiles post-processed with three different turbulence separation
methods, with results varying by up to a factor of two to six from one another. The vertical
gradient of their largest prediction is much higher than that of the lowest prediction (as
shown in their figure 5). Therefore, the difference between our numerical results and the
measurement of Ting & Kirby (1994) might still be considered reasonable.

Figure 22 presents the computed phase-averaged τ12 field in the surf zone for the
plunging case with both models, in a fashion similar to figure 13. The phase plotted has
been selected to capture the propagation of the breaking wave front in the inner surf zone.
Similar to our findings in the spilling case, it is clearly seen that the stress–ω model predicts
turbulent shear stresses that are significantly larger in the inner surf zone than that with
the k–ω model. It can thus be expected to result in increased flow resistance in this region.
From comparison of figures 22 and 13 it is also seen that the increased turbulent shear
stresses in the plunging case are spread more uniformly throughout the water column than
in the spilling case, where they were more concentrated near the surface. This is likely due
to the more violent surf zone initiated by the plunging breaking, and thus also explains
why the breaking surface front propagates at approximately the same speed in the inner
surf zone with both models in the present case (see again figure 18). The flow resistance
indicated by Pk for the plunging breaker is likewise presented in figure 23. It is clearly seen
that in the upper part of the flow, Pk predicted with the stress–ω model is much larger than
that predicted with the LF18 k–ω model, indicating higher flow resistance and therefore
smaller magnitude of mean flow velocity with the stress–ω model.
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Figure 20. Period-averaged specific Reynolds normal stress −τ22 profiles for the plunging breaker from the
present simulations.
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Figure 21. Period-averaged turbulent kinetic energy k profiles for the plunging breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations.

Figure 24 finally compares computed and measured undertow velocity profiles. It is seen
that before wave breaking (figure 24a–c), the numerical simulations with both turbulence
models are almost identical, and are in line with the experimental measurement. This is as
expected, since both model variants considered herein are formally stable in the potential
flow regions beneath surface waves; hence the choice of turbulence model has little impact
prior to breaking. Results are also similar in the outer surf zone, as seen in figure 24(d,e).
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Figure 22. Phase-averaged τ12 at t/T = 0.30 for the plunging breaker case computed with the (a) Wilcox
(2006) stress–ω model and (b) LF18 k–ω model. Results are scaled using the depth h = 0.083 m at x =
10.395 m.
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Figure 23. Period-averaged Pk for the plunging breaker from the present simulations.

Much more significant differences become apparent once the inner surf zone is reached,
as seen in figure 24( f –h). Consistent with the previously considered spilling breaking case
(figure 15), in the inner surf zone the LF18 k–ω model results in undertow velocity profiles
that are much larger than were measured. The LF18 turbulence model similarly yielded
over-predicted undertow velocities in the simulation of large-scale plunging breakers made
by Larsen et al. (2020). It is thus now evident that this is a consistent shortcoming with this
model, which stems from the inclusion of the traditional stress-limiter within the Wilcox
(2006) k–ω model (see again the comparisons made by Larsen & Fuhrman (2018), with
this feature switched on and off). The stress–ω model, on the other hand, reduces this
exaggeration considerably, though not completely. The undertow profiles predicted with
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Figure 24. Period-averaged undertow velocity profiles for the plunging breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations.

this model in the inner surf zone are much more uniform, having a similar structure to
what has been measured. The reduction in the undertow magnitudes computed with the
stress–ω model is consistent with the increased flow resistance in the inner surf zone, as
illustrated in figures 22 and 23.

Though a substantial improvement of the predicted undertow in the inner surf zone
is seen with the stress–ω model, there are still some disagreements between the
stress–ω model prediction and the experimental measurement for the plunging breaker
(figure 24f –h). The reasons are, as yet, uncertain to the authors. One possible reason could
be the simplistic formulation of the pressure–strain terms in the Wilcox (2006) stress–ω

model, for which more complex closures for pressure–strain terms could potentially make
further improvement for the undertow predictions in the complicated inner surf zone
of plunging breakers. Another possible reason could be air bubbles entrained in the
plunging surf zone. The present study has not specifically employed a model for the air
bubbles/pockets. The bubble-mass cascade phenomena (Chan et al. 2021) and the bubble
breakup in the inner surf zone may further increase the flow resistance. These may be
interesting to investigate in future work.

4. Discussion

The present work represents the first time that such accurate prediction of the breaking
point, turbulence characteristics and evolution of the undertow structure from pre-breaking
to the inner surf zone has been achieved with a single turbulence closure model for both
the spilling and plunging breaking cases of Ting & Kirby (1994, 1996), which have widely
served as the basis for validating breaking wave models over the past two decades. In
what follows, we provide a discussion of the results and problems encountered in previous
studies which have attempted to model breaking waves with comparable CFD models.
Such results mainly fall into three categories:
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(i) Over-production of turbulence prior to breaking, especially in the spilling case.
Models in this category become polluted due to unphysical turbulence over-production
during the shoaling process, i.e. before the wave breaking process even starts, and therefore
cannot claim to have modelled correctly the processes leading up to and including the
surf zone. Results in this category typically stem from two-equation closure models in
their standard forms, as the analysis of Larsen & Fuhrman (2018) has proved that these
are (asymptotically) unconditionally unstable in nearly potential flow regions beneath
non-breaking surface waves. Numerous examples include wave breaking simulations using
standard formulations of the k–ε turbulence model (e.g. Lin & Liu 1998; Bradford 2000;
Xie 2013; Brown et al. 2016; Derakhti et al. 2016b). Results using the ‘non-stabilized’
(standard) variant of the realizable k–ε model to simulate breaking waves by Fuhrman
& Li (2020) also fall into this category. The same problem is also evident in SPH
simulations coupled with a k–ε model (e.g. Shao 2006). Likewise, results from k–ω or
k–ω SST closure models have also demonstrated the same turbulence over-production
problem (e.g. Brown et al. 2016; Devolder et al. 2018; Liu et al. 2020). Results using
‘non-stabilized’ variants of the k–ω model by Larsen & Fuhrman (2018), i.e. those having
λ2 = 0 (their notation), would similarly fall into this category. In some other works
employing standard two-equation models, the undertow velocity profiles and turbulence
were simply not presented. For example, Lupieri & Contento (2015) utilized the k–ω SST
model, but did not present undertow and turbulent kinetic energy predictions. However,
the phase-averaged surface elevations for both spilling and plunging breakers near the
breaking point were significantly under-predicted, which would be consistent with a
polluted pre-breaking region, causing the simulated waves to decay prematurely. Similarly,
Chella et al. (2015) utilized a standard k–ω model to simulate breaking waves, but did not
present detailed predictions of either undertow or turbulence. As turbulence models of
this type were shown by Larsen & Fuhrman (2018) to be formally unstable, combined
with the numerous simulations with similar models leading to turbulence over-production
noted above, there would seem to be little doubt as to the inherent instability in the nearly
potential flow leading up to wave breaking in their model. It is worth mentioning that
some recent notable works using two-equation turbulence closure models have attempted
to improve the accuracy of breaking wave modelling by focusing on the air–water interface
region near the surface. For example, Devolder et al. (2018) added buoyancy production
terms to the k–ω and k–ω SST models, to account for density gradients near the air–water
interface. Additionally, Liu et al. (2020) applied a free-surface jump condition to the k–ω

SST model, while also separately considering a variant incorporating buoyancy production
as in Devolder et al. (2018), to simulate the experiments of Ting & Kirby (1994, 1996).
Their works showed that such features could improve prediction of the breaking point
relative to standard models without these features. However, over-production of turbulence
prior to breaking still clearly persists in these models, which is especially apparent in
the spilling case, as can clearly be seen, for example, in figure 17 of Liu et al. (2020).
This is also clear from results of Larsen & Fuhrman (2018) and Larsen et al. (2020)
using ‘non-stabilized’ models, but where buoyancy production was still included, as also
discussed by Fuhrman & Larsen (2020). These results thus collectively indicate that,
while inclusion of buoyancy production will cause a local sink of turbulent kinetic energy
near the free surface (and thus may be beneficial), it does little to stabilize two-equation
turbulence models (and hence avoid turbulence over-production) in the nearly potential
flow core region prior to breaking as a whole.

(ii) Turbulence over-production eliminated prior to breaking, but undertow poorly
predicted in the inner or outer surf zone. This category consists of CFD simulations using

937 A7-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.92


Reynolds stress turbulence modelling of breaking waves

turbulence models which avoid turbulence over-production prior to breaking, but typically
yield poor undertow velocity structure and/or magnitude in either the outer or the inner surf
zone (e.g. Mayer & Madsen 2000; Jacobsen et al. 2012; Jacobsen, Fredsoe & Jensen 2014;
Larsen & Fuhrman 2018; Fuhrman & Li 2020). This category can be further subdivided
into those turbulence closure models which incorporate a conventional stress-limiter on the
eddy viscosity (corresponding to λ1 > 0 in the notation of Larsen & Fuhrman (2018)) and
those which do not (corresponding to λ1 = 0, again in their notation). Mayer & Madsen
(2000) made the first attempt to control the instability inherent in the standard k–ω model
through ad hoc modification of the production terms (i.e. the production terms in the k and
ω equations were modified to be based on the rotation-rate tensor instead of the strain-rate
tensor). Jacobsen et al. (2012, 2014) adopted the modification of Mayer & Madsen (2000),
such that the turbulence over-production in the potential flow region prior to breaking
was avoided, while also incorporating a conventional stress-limiter on the eddy viscosity.
The resulting model yielded reasonable prediction of the undertow velocity structure in
the spilling breaking case of Ting & Kirby (1994), both prior to breaking and in the
outer surf zone, but unfortunately resulted in exaggerated undertow magnitudes (by a
factor of approximately two) in the inner surf zone. Larsen & Fuhrman (2018) discussed
theoretical inconsistencies with the modification proposed by Mayer & Madsen (2000)
(namely, that it leaves the Reynolds stress tensor doubly defined) and instead formally
stabilized two-equation models through re-formulation of the eddy viscosity. Fuhrman
& Li (2020) adopted a similar approach and stabilized the realizable k–ε model. The
‘stabilized’ model results of Larsen & Fuhrman (2018) with the conventional stress-limiter
on (λ1 > 0) were qualitatively similar to those of Jacobsen et al. (2012), with undertow
velocity profiles quite accurate prior to breaking and in the outer surf zone, but exaggerated
in the inner surf zone. Larsen & Fuhrman (2018) additionally conducted simulations where
their ‘stabilized’ closure models had the conventional stress-limiter switched off (λ1 = 0
in their notation). This variant produced quite accurate undertow profiles in the inner
surf zone, but at the expense of grossly over-predicted turbulence levels and erroneous
undertow structure in the outer surf zone. From this comparison, it seems clear that
the classical Boussinesq approximation utilized within two-equation turbulence closure
models (even with advanced features, such as stress-limiters) is not capable of yielding
the correct evolution of the flow resistance beneath breaking waves over the entirety of
the surf zone, even in the relatively calm conditions associated with spilling breaking.
Experience with ‘stabilized’ closure models in the CFD simulation of plunging breaking
waves (Larsen et al. 2020; Sumer & Fuhrman 2020) has likewise produced results that are
generally consistent with those described above. As such, while the models cited above
avoid over-production of turbulence in potential flow regions prior to the onset of breaking,
none can reasonably claim to have accurately simulated the breaking process (including
accurate evolution of the undertow velocity profile) across the entirety of the surf zone in
either the spilling or plunging cases of Ting & Kirby (1994, 1996).

(iii) Results simulated with other CFD approaches such as LES and SPH with
a subgrid-scale turbulence model. We finally discuss results from a third category,
consisting of models not working within the confines of RANS equations. Watanabe
& Saeki (1999) applied LES with a subgrid-scale model to simulate breaking waves.
However, their model was only qualitatively validated. Christensen (2006) simulated both
spilling and plunging breaking wave experiments of Ting & Kirby (1994, 1996) with
LES and two different subgrid-scale models, one in terms of the Smagorinsky model
and the other based on the k equation. However, compared with the present results, the
breaking points were not accurately captured and the turbulence levels were in general
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too high compared with experiments of Ting & Kirby (1994, 1996). Zhou et al. (2017)
also conducted LES with a Lagrangian dynamic subgrid closure model. Their model
over-predicted the turbulent intensity especially near the surface. The undertow velocities
were more or less similar to those of the work of Jacobsen et al. (2014) which have been
classified into category (ii) above. Makris, Memos & Krestenitis (2016) applied a SPH
approach with a Smagorinsky-type subparticle-scale approach, which is similar to the
LES concept. Their study on a weakly plunging breaker showed clear underestimation
of the ensemble-averaged surface elevation at the incipient breaking region compared
with the experiment of Stansby & Feng (2005). Lowe et al. (2019) also conducted a
SPH simulation for breaking waves, and it was found that the turbulent kinetic energy
was over-predicted with this approach, even with no subparticle-scale turbulence closure
models included. This over-prediction was even greater with inclusion of a subgrid-scale
model. They specifically highlighted the need for further improvement in subgrid-scale
turbulence models within the surf zone.

In contrast to those models discussed above, the present study marks the first time that
the Wilcox (2006) stress–ω RSM has been utilized to simulate the multi-phase wave
breaking process. As can be seen from the results presented and discussed above, this
approach solves several of the problems which have consistently plagued other comparable
models of breaking waves over the past two decades. Most notably, the present results
have demonstrated, for both spilling and plunging breaking cases: (1) no turbulence
over-production prior to breaking, (2) accurate prediction of the breaking point, (3)
reasonable (though certainly not perfect) evolution of turbulence quantities within the surf
zone and (4) undertow velocity profile structure and magnitudes for the spilling breaker are
in line with measurements from pre-breaking regions all the way to the outer and inner surf
zones, while for the plunging breaker the undertow results are largely improved compared
with the best two-equation model of Larsen & Fuhrman (2018), especially in the inner
surf zone. Hence, the present model seemingly provides the most accurate and consistent
(for both spilling and plunging cases) description of the turbulent wave breaking process
achieved with CFD models to date.

Indeed, many of the issues faced by the comparable CFD models discussed above are
rather naturally avoided with the stress–ω turbulence closure. As proved in § 2, this model
is formally (neutrally) stable in the potential flow region beneath non-breaking surface
waves. Hence, it avoids (without any modification) the over-production of turbulence
prior to breaking plaguing the standard two-equation models in category (i) above.
Following Devolder et al. (2018) and Larsen & Fuhrman (2018), we have additionally
added buoyancy production to this model, such that these benefits are likewise retained.
Finally, the stress–ω model breaks free of the Boussinesq approximation, and hence the
eddy viscosity concept (and associated complications such as stress-limiters) altogether.
Rather, the Reynolds stress is allowed to evolve according to its own governing equation,
resulting in a model that is both theoretically superior, and more capable of predicting
the dynamic variations in the flow resistance that arise between the outer and inner surf
zones. This freedom seems to solve the problem consistently encountered by the models
falling into category (ii) above, where users were seemingly faced with having to choose
between accurate undertow profiles in either the outer or inner surf zone. It is finally worth
mentioning that, by still working within the confines of Reynolds-averaged equations,
the stress–ω model additionally avoids the practical resolution issues that are commonly
faced and raised in LES applications, while also avoiding any need for subgrid-scale
modelling, as described in relation to category (iii) above. It would thus seemingly offer
an attractive compromise that has been under-utilized to date, providing a turbulence
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model that is dynamic enough to handle the inherently complicated surf zone at reasonable
computational expense.

5. Conclusions

The present work has considered the Reynolds stress–ω model of Wilcox (2006), as a new
candidate for providing turbulence closure in the CFD simulation of breaking waves with
RANS equations. We have first conducted novel stability analysis of this model, formally
proving that it is neutrally stable in the potential flow region beneath non-breaking surface
waves. Unlike simpler two-equation models in their standard forms (see Larsen & Fuhrman
2018), this model should therefore not lead to unphysical exponential growth of turbulence
during the shoaling process leading up to incipient breaking. Comparison with prior
analysis of two-equation models has also definitively shown that their instability arises
as a result of the widely utilized Boussinesq approximation. The stability of the stress–ω

model in potential flow regions has been directly confirmed through CFD simulations
involving a progressive surface wave train.

As coastal waves (both breaking and non-breaking) also involve a wave boundary layer
at the sea bottom, the stress–ω model has subsequently been applied to simulate unsteady
oscillatory turbulent wave boundary layer flow, as measured by Jensen et al. (1989). The
computational results are generally in line with those measured, with notable improvement
over two-equation turbulence closures apparent in the deceleration stage, where, for
example, the k–ω turbulence model fails to accurately capture the turbulence kinetic
energy and the Reynolds shear stress distribution. The stress–ω model has improved the
accuracy for predicting the anisotropic Reynolds normal stress and Reynolds shear stress
components within the wave boundary layer.

This work has culminated with CFD simulations employing the stress–ω turbulence
closure model in the simulation of both the spilling and plunging breaking wave cases
of Ting & Kirby (1994, 1996). Surface elevation envelopes, turbulence characteristics
and undertow velocity profiles have been predicted with consistent accuracy maintained
from pre-breaking all the way into the inner surf zone in both cases. Comparison with
the stabilized k–ω model of Larsen & Fuhrman (2018) demonstrates that both models
predict Reynolds normal stresses (and turbulent kinetic energy) that are reasonably in line
with measurements. Both models likewise predict similar undertow velocity profiles prior
to breaking and in the outer surf zone. In the inner surf zone, however, the Larsen &
Fuhrman (2018) k–ω model predicts undertow velocity profiles that are exaggerated by
a factor of approximately two in magnitude relative to measurements, a feature that has
similarly plagued several other two-equation turbulence closure models in the literature.
The stress–ω model, on the other hand, generally results in undertow velocity profiles that
are reasonably accurate (in both the uniformity of structure and magnitude) throughout the
surf zone. These differences have been shown to stem from predictions in the Reynolds
shear stresses within the inner surf zone, which are significantly larger with the stress–ω

model (near the surface in the spilling case, more distributed across the depth in the
plunging case). This in turn results in greater flow resistance in the inner surf zone.
Based on a survey of previous CFD simulations of breaking waves in the literature, we
conclude that the stress–ω model considered herein is seemingly the first demonstrating
the collective ability to: (1) naturally avoid turbulence over-production prior to breaking,
(2) accurately predict the breaking point, (3) provide reasonable evolution of turbulent
normal stresses across the surf zone, while also providing (4) accurate undertow structure
and magnitude from pre-breaking regions all the way to the outer and inner surf zones for
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the spilling breaking waves, and improvement for the plunging breaking waves compared
with previous numerical simulations. It may therefore be useful for other studies involving
various aspects of breaking waves, as it seems to have been under-utilized in the literature
to date. The authors are freely releasing their source code implemented in the OpenFOAM
framework, to hopefully help make such applications more accessible, as described in
more detail in the next section.

While the present work has focused primarily on analysis and applications of the Wilcox
(2006) stress–ω model, a stability analysis of the Launder et al. (1975) (LRR) Reynolds
stress–ε turbulence closure model in the potential flow region beneath non-breaking waves
is also newly considered in Appendix B, for completeness. Similar to our findings for the
stress–ω model, the stress–ε model is likewise proved to be neutrally stable. This has
similarly been confirmed through CFD simulation of a propagating wave train, similar to
§ 3.1. The likely explanation of the turbulence over-production experienced by Brown et al.
(2016) is also provided there.

Availability of source codes

The source code implemented and utilized in the present work is publicly available
at: https://github.com/LiYZPearl/ReynoldsStressTurbulenceModels. This includes our
implementations of all turbulence models utilized within, namely the Wilcox (2006)
stress–ω and k–ω models, for use in both single- and two-phase flow simulations
(including buoyancy production terms). In the case of the k–ω model, the two-phase flow
implementation also includes stabilization of the model as described in Larsen & Fuhrman
(2018), deemed the LF18 model within. The OpenFOAM set-ups for the simulations
presented herein of the turbulent wave boundary layer, as well as both spilling and plunging
breaking wave cases, are likewise provided as tutorials.
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Appendix A. Buoyancy production term for the Wilcox (2006) stress–ω model

In this appendix we derive the buoyancy production term for use in the Wilcox (2006)
stress–ω turbulence closure model equation (2.1). The derivation of the buoyancy
production term starts from the exact form given in Burchard (2002, p. 18):

Bij = 1
ρ0

(
giu′

jρ
′ + gju′

iρ
′
)

. (A1)
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Following Burchard (2002, p. 37), the correlation between the fluctuating velocity and
density can be written as

u′
jρ

′ = −α∗
b

k
ω

∂ρ̄

∂xj
, (A2)

where k/ω here effectively plays the role of the eddy viscosity. Invoking (A2) within (A1),
the buoyancy production term becomes

Bij = −α∗
b

k
ω

Nij, (A3)

where Nij is from (2.5). This matches the term seen within (2.1).
Note that taking half the trace of Bij above leads to

Bk = −1
2

Bii = α∗
b

k
ω

N2, N2 = gi

ρ0

∂ρ̄

∂xi
. (A4a,b)

This matches the buoyancy production term utilized in the k–ω turbulence closure model
by Larsen & Fuhrman (2018). They showed that requiring the steady-state Richardson
number to be smaller than 0.25 (Schumann & Gerz 1995; Burchard 2002) corresponds
to a minimum value α∗

b = 1.36. This value has similarly been adopted within the Wilcox
(2006) stress–ω model (which did not originally include a buoyancy production term) in
the present work.

Appendix B. Stability analysis of the Launder et al. (1975) stress–ε model

The stress–ε closure model of Launder et al. (1975) (called the LRR stress–ε model in the
present work), with additional buoyancy production terms (derived similar to above), may
be written in full as

∂ρ̄τij

∂t︸ ︷︷ ︸
Time variation

+ ūk
∂ρ̄τij

∂xk︸ ︷︷ ︸
Convection

= − ρ̄Pij︸︷︷︸
Production

+ 2
3
ρ̄εδij︸ ︷︷ ︸

Dissipation

− ρ̄Πij︸︷︷︸
Pressure-strain

+ ρ̄
Cμ

Pr

k2

ε
Nij︸ ︷︷ ︸

Buoyancy production

− Cs
∂

∂xk

[
ρ̄k
ε

(
τim

∂τjk

∂xm
+ τjm

∂τik

∂xm
+ τkm

∂τij

∂xm

)]
︸ ︷︷ ︸

Diffusion

, (B1)

∂ρ̄ε

∂t︸︷︷︸
Time variation

+ ūj
∂ρ̄ε

∂xj︸ ︷︷ ︸
Convection

= ρ̄C1ε

ε

k
τij

∂ ūi

∂xj︸ ︷︷ ︸
Production

− ρ̄C2ε

ε2

k︸ ︷︷ ︸
Dissipation

− ρ̄C1εC3εCμ

1
Pr

ε

k
N2

︸ ︷︷ ︸
Buoyancy production

− Cε

∂

∂xk

[
ρ̄k
ε

τkm
∂ε

∂xm

]
︸ ︷︷ ︸

Diffusion

, (B2)

where

Πij = C1
ε

k

(
τij + 2

3
kδij

)
− α̂

(
Pij − 2

3
Pδij

)
− β̂

(
Dij − 2

3
Pδij

)

− γ̂ k
(

Sij − 1
3

Skkδij

)
+
[

0.125
ε

k

(
τij + 2

3
kδij

)
− 0.015(Pij − Dij)

]
k3/2

εn
. (B3)
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The last term on the right-hand side of (B3) is the LRR stress–ε wall-reflection term,
where n is the distance normal to the surface. In the above, ε is the turbulence dissipation
rate and Pij and Dij are respectively defined in (2.7) and (2.8). The closure coefficients are
(Gibson & Launder 1978)

Cμ = 0.09, C1 = 1.8, C2 = 0.60,

α̂ = (8 + C2)/11, β̂ = (8C2 − 2)/11, γ̂ = (60C2 − 4)/55,

Cs = 0.11, Cε = 0.18, C1ε = 1.44,

C2ε = 1.92, C3ε = −0.33, Pr = 0.85,

⎫⎪⎬
⎪⎭ (B4)

with C3ε = −0.33 and (the Prandtl number) Pr = 0.85 adopted from the standard k–ε

closure model.
Similar to the Wilcox (2006) stress–ω model, the governing equations for the LRR

stress–ε model defined in (B1) and (B2) can be simplified for stability analysis purposes
in the two-dimensional potential flow region beneath propagating surface water waves. An
additional assumption is made that the term for the near-wall effect in the pressure–strain
correlation is negligible. This is justifiable in the potential flow region above the bottom
boundary layer. Following the derivation in § 2.2, the analogous resulting simplified k, τ12
and ε equations for the LRR stress–ε model are

∂k
∂t

= 2τ12S12 − ε, (B5)

∂τ12

∂t
=
(

4
3

− 4
3
α̂ − 4

3
β̂ + γ̂

)
kS12 − C1

ε

k
τ12, (B6)

∂ε

∂t
= 2C1ε

ε

k
τ12S12 − C2ε

ε2

k
. (B7)

To perform a stability analysis on the three-equation system above, it turns to be
convenient to utilize two utility variables, namely Ψ = k/τ12 and Ξ = ε/τ12. The
equations for these quantities work out to be

∂Ψ

∂t
= ∂(k/τ12)

∂t
=
(

4
3
α̂ + 4

3
β̂ − γ̂ − 4

3

)
︸ ︷︷ ︸

−8/15

Ψ 2S12 + (C1 − 1)Ξ + 2S12, (B8)

∂Ξ

∂t
= ∂(ε/τ12)

∂t
=
(

4
3
α̂ + 4

3
β̂ − γ̂ − 4

3

)
︸ ︷︷ ︸

−8/15

Ψ ΞS12 + (C1 − C2ε)
Ξ2

Ψ
+ 2C1ε

Ξ

Ψ
S12.

(B9)

Setting both (B8) and (B9) equal to zero, their (constant) asymptotic equilibrium values
can be found as

Ψ∞ = ±
√

6 × C1 + C1ε − C1C1ε − C2ε

(C2ε − 1)(4α̂ + 4β̂ − 3γ̂ − 4)
≈ ±2.277, (B10)

Ξ∞
S12

= 2(C1ε − 1)

C2ε − 1
≈ 0.957. (B11)

Thus the fixed points for the nonlinear ordinary differential equations (B8)–(B9) are
(Ψ∞, Ξ∞) = (±2.277, 0.957S12). To check for formal stability of these two fixed points,
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the Jacobian matrix for (B8)–(B9) is defined as

J =

⎡
⎢⎢⎣

∂

∂Ψ

(
∂Ψ

∂t

)
∂

∂Ξ

(
∂Ψ

∂t

)
∂

∂Ψ

(
∂Ξ

∂t

)
∂

∂Ξ

(
∂Ξ

∂t

)
⎤
⎥⎥⎦ . (B12)

After invoking the right-hand sides of (B8)–(B9) in the above, in addition to the model
closure coefficients, this becomes

J =
⎡
⎣ −1.067S12Ψ 0.8

0.12Ξ2

Ψ 2 − 0.533S12Ξ − 2.88S12Ξ

Ψ 2 −0.533Ψ S12 + 2.88S12

Ψ
− 0.24Ξ

Ψ

⎤
⎦ .

(B13)

After linearizing about the fixed points (Ψ∞, Ξ∞), the eigenvalues of J are found to be
(−2.012, −0.4663)|S12|. As these are negative, the fixed points correspond to stable nodes,
similar to what was found for the stress–ω model.

Now inserting these fixed points (Ψ∞, Ξ∞) back into (B5) and (B6) and simplifying,
then leads to the following linearized equation for the exponential growth rate for k:

Γ∞ = 1
k

∂k
∂t

= 2S12 − Ξ∞
Ψ∞

. (B14)

Substituting the closure coefficients finally yields

Γ∞ = (C2ε − C1ε)

√√√√2
3

×
(

4α̂ + 4β̂ − 3γ̂ − 4
)

(C2ε − 1)(C1 + C1ε − C1C1ε − C2ε)
× |S12| ≈ 0.458 × |S12|.

(B15)

As discussed in § 2.2, since 〈S12〉 = 0 in the idealized potential flow region beneath
propagating waves, then Γ∞ will (on average) likewise be zero. Therefore, this
proves that, similar to the Wilcox (2006) stress–ω model, the LRR stress–ε model
is neutrally stable in the ideal potential flow region beneath non-breaking surface
waves.

While the model analysed above has not been the main focus of the present work,
for the sake of completeness the progressive wave train simulations from § 3.1 have
also been repeated using the LRR stress–ε model, maintaining the same schemes and
settings as before (maximum Courant number Co = 0.05). The results for the free-surface
elevations are presented in figure 25(a) (simulated with buoyancy production terms on)
and figure 25(b) (with buoyancy production terms off). They are unsurprisingly identical
and similar to those from the Wilcox (2006) stress–ω model (figure 3a). The period- and
depth-averaged k/k0 time series are presented in figure 25(e). The black solid line (with
buoyancy production terms on) has an immediate decrease of k, while the black dashed line
(with buoyancy production terms off) has a zero growth of k in the early stage and then
decreases at the same rate as the solid line. Both simulations are stable, confirming our
analysis. It is noted that the simulations with the Wilcox (2006) stress–ω model and LRR
stress–ε model are essentially consistent with buoyancy production terms on (comparing
figures 3 and 25 in the black solid lines). Conversely, the wave trains simulated with
buoyancy production terms off are different in the growth rate, i.e. the Wilcox (2006)
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stress–ω model has a zero growth rate in general (figure 3b, black dashed-dotted line),
while the LRR stress–ε model has a zero growth in the beginning and a decreasing k later
on (figure 25e, black dashed line). This slight difference may due to the wall-reflection
term in the LRR stress–ε model which could be interesting to investigate in detail in
future work. These results, combined with those in the main text, thus demonstrate that
RSMs (both stress–ω and stress–ε variants) are generally (neutrally) stable in the idealized
potential flow region beneath non-breaking surface waves. They should therefore not be
expected to suffer from the problem of unphysical over-production (exponential growth) of
turbulence in potential flow regions prior to wave breaking, common to many two-equation
turbulence closure models in their standard forms, as shown by Larsen & Fuhrman
(2018).

A final remaining open question (which we shall now attempt to close) is: Why then
did Brown et al. (2016) experience pronounced over-production of turbulence prior to
spilling breaking in their CFD simulation using the LRR stress–ε model? In this context,
it is important to emphasize that for the analysis (predicting neutral stability) above to
hold in practice, a CFD model must maintain the nearly potential flow region beneath a
surface wave with sufficient accuracy such that 〈S12〉 ≈ 0. If this is not the case, since
Γ∞ ∼ |S12| in (B15), then our analysis suggests RSMs may, in fact, still be prone to
unphysical exponential growth of turbulence beneath non-breaking waves, if they do
not solve the flow with sufficient accuracy. We hypothesize that this is precisely what
has occurred in the simulation of Brown et al. (2016) mentioned just above. Note that
Brown et al. (2016) utilized a significantly larger maximum Courant number (Co = 0.2,
hence numerical time step) than considered herein (the present results have uniformly
used Co = 0.05). Moreover, Larsen et al. (2019) have specifically demonstrated that such
large Courant numbers can indeed lead to pronounced inaccuracies in the resulting flow
kinematics (hence S12), even beneath computed free surfaces that may otherwise appear
reasonable. To test this hypothesis, we repeat our simulation of the wave train above,
but now with Co = 0.2, while also switching schemes to those stated by Brown et al.
(2016). We consider two otherwise identical simulations, having buoyancy production
terms both on (Pr = 0.85, as before) and off (Pr = ∞, as in Brown et al. (2016)). These
results are respectively also shown as the pink (dashed-dotted) and blue (dashed) lines
in figure 25. For the case believed to most resemble the set-up used by Brown et al.
(2016) (blue dashed lines in figure 25d,e) it is seen that, due to accumulated numerical
errors in the velocity kinematics, the turbulence indeed begins to grow exponentially
already by t/T = 10. By t/T = 20 the turbulence has reached several hundred times
the initial level, becoming large enough to cause unphysical decay of the wave train.
A similar (but delayed) process occurs for the case with buoyancy production terms on
(figure 25c,e, pink dashed-dotted lines). Based on these results, it seems clear that the
over-production of pre-breaking turbulence experienced by Brown et al. (2016) with the
LRR stress–ε model can be attributed to numerical inaccuracies in the velocity kinematics
(hence S12) during their simulated shoaling stage. These inaccuracies can be attributed
to the larger Courant number used, in accordance with what has been shown previously
(there without a turbulence model) by Larsen et al. (2019). Because buoyancy production
terms create a sink of turbulence in the air–water interface region, their inclusion may
delay the onset of this problem, but will not eliminate it. Similar issues could be
expected with the stress–ω model if accurate velocity kinematics are not maintained in
nearly-potential flow regions beneath surface waves, since similarly Γ∞ ∼ |S12| in (2.28),
though the predicted growth rate would be smaller due to the lower coefficient in front
of |S12|.
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Figure 25. Computed time series of (a–d) surface elevations and (e) depth- and period-averaged turbulent
kinetic energy beneath wave trains simulated with the LRR stress–ε model. The results depicted as blue dashed
lines in (d,e), with Co = 0.20 and without buoyancy production terms, are chosen to match most closely those
used by Brown et al. (2016).

Appendix C. Alternative stability analysis of the stress–ω model using eigenvalues

During the peer review process of the present paper, it became apparent that the stability
of the turbulence closure models could be equivalently analysed based on eigenvalues of
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the Jacobian matrix, after linearizing about the fixed points. We will hence briefly outline
this procedure in what follows for the stress–ω closure model.

The Jacobian matrix for the simplified stress–ω model governing equations in
(2.18)–(2.20) is defined by

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂k

(
∂k
∂t

)
∂

∂τ12

(
∂k
∂t

)
∂

∂ω

(
∂k
∂t

)
∂

∂k

(
∂τ12

∂t

)
∂

∂τ12

(
∂τ12

∂t

)
∂

∂ω

(
∂τ12

∂t

)
∂

∂k

(
∂ω

∂t

)
∂

∂τ12

(
∂ω

∂t

)
∂

∂ω

(
∂ω

∂t

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C1)

After invoking the right-hand sides of (2.18)–(2.20) in the above, in addition to the model
closure coefficients, this becomes

J =

⎡
⎢⎢⎢⎣

−0.09ω 2S12 −0.09k

0.53̄S12 −0.162ω −0.162τ12

−1.04S12τ12ω

k2
1.04S12ω

k
1.04S12τ12

k
− 0.1416ω

⎤
⎥⎥⎥⎦ . (C2)

Further invoking k = Ψ τ12 and linearizing about (i.e. inserting) the fixed points from
(2.23)–(2.24), the eigenvalues of J are found to be (−1.675, −0.5891, 0.2831)|S12|. It is
seen that the critical (third) eigenvalue matches precisely the asymptotic growth rate Γ∞
from (2.28), confirming our analysis in the main text.

Although we do not present full details for the sake of brevity, we have also conducted
an analogous stability analysis of the LRR stress–ε model equations defined in (B5)–(B7).
Should the interested reader wish to repeat said analysis, we find that the eigenvalues of
the Jacobian matrix, after linearizing about the fixed points for this system, correspond
to (−1.555, −0.008060, 0.4583)|S12|. It is again seen that the critical (third) eigenvalue
matches precisely the growth rate Γ∞ from (B15).
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