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Map-matching is widely used in automotive navigation systems to locate vehicle positions on
a given digital road map. Various map-matching algorithms have been developed focusing on
different application needs. Within the Ghosthunter project, a weighting-function-based map-
matching algorithm has been developed for detecting wrong-way driving in order to improve
road safety, particularly in Autobahn entrance and exit areas. This paper aims at exploring the
potential use of lane-level attributes and height data in improving the success rate of the pre-
viously presented algorithm. This algorithm performs well in entrance and exit areas to the
Autobahn, with a high success rate of 99.5% in identifying the road on which the vehicle is
actually travelling. In the enhanced algorithm presented in this paper the weight coefficients
used for computing the total weighting score of candidate roads are adjusted with the aid of one
or both kinds of these precise data. The results confirmed that the usage of these precise data can
effectively help to detect and correct mismatches at junctions and overpasses.
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1. INTRODUCTION. A driver going the wrong way in a lane causing an incident has
become one of the major concerns for road safety. It may cause hazardous traffic situa-
tions and thus, lead to serious accidents. There are nearly 2,000 wrong-way drivers on the
German Autobahn each year that travel against the traffic flow (General German Automo-
bile Club, 2015). They caused around 80 accidents and 20 fatalities in 2015. To improve
road safety in an effective way, a “wrong-way” driver detection system based on kinematic
Global Navigation Satellite System (GNSS) positioning, digital road maps and map-
matching techniques is being developed within the Ghosthunter research project (Wang
et al., 2017). For detecting wrong-way driving, a weighting-function-based map-matching
algorithm was proposed in Wang et al. (2017). This algorithm considered standard map
attributes such as direction of travel and street name in the map-matching processes. In
order to improve the success rate of this algorithm, this paper aims at exploring the poten-
tial use of lane-level attributes and Advanced Driver Assistance Systems (ADAS) height
data in the map-matching processes.
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The digital road network data used for testing the performance (success rate and time
consumption) of the map-matching algorithm is provided by the commercial mapmaker
HERE. The designated investigation areas in this paper are the entrance and exit areas on
the German Autobahn A81 surrounding the city of Stuttgart.

The remainder of the article is structured as follows. Section 2 gives a detailed overview
of existing map-matching algorithms. Section 3 explains how the commercial digital
road map data is digitised and highlights general characteristics of standard and precise
attribute information. The proposed enhancement of the map-matching algorithm by tak-
ing advantage of lane-level attributes and ADAS height data is presented in Section 4. In
Section 5, the map-matching results are evaluated based on adequate sets of real-world
and simulated vehicle trajectories. Section 6 concludes the paper and points out future
challenges.

2. RELATED WORK. Wrong-way drivers usually cause serious accidents or distract
other traffic participants. Often, innocent road users are involved. Safety countermeasures
to prevent wrong-way driving incidents have become a matter of public concern. Before
the authors started the Ghosthunter research project in 2015, there were already some meth-
ods for preventing wrong-way driving incidents. The preventive actions undertaken by
motorway operators were mostly implemented at the infrastructure level by reinforcing
traffic signs and road markings on highway entrances and exit ramps (Vicedo, 2006; Babic
and Valic, 2010). For the last ten years, wrong-way driver detection systems based on
equipment such as radio sensors, video surveillance cameras, magnetic loops and Doppler
sensors have been developed and applied (Hassan et al., 2013; Krausz, 2013; Baillemont
and Dumas, 2017). However, these countermeasures can be costly and for full coverage a
large amount of equipment is needed. An innovative solution based on GNSS positioning
and digital road maps, developed by the authors within the Ghosthunter research project,
is more cost effective than the above-mentioned methods, since both a GNSS receiver
and digital road maps are included in current automotive navigation systems. Thus, no
additional hardware costs are incurred.

Map-matching is a technique that is widely used in current driver assistance sys-
tems to unambiguously assign vehicle positions to the correct road links. With the
rapid progress in the fields of driver assistance and safety systems, map-matching is
becoming increasingly important. Various algorithms have been developed during the
past decade focusing on different application needs. In this section an overview of
existing map-matching algorithms with emphasis on their limitations and problems is
presented.

The general map-matching algorithm without a decision-making process can be roughly
divided into three steps. The first step involves selecting candidate roads from the under-
lying digital road network. This step is usually simplified and accelerated by limiting the
number of candidate roads using a buffer around the (estimated) vehicle position (Hashemi
and Karimi, 2016). The second step involves identifying the correct road segment among
candidates using suitable matching criteria. The third step involves determining the vehicle
location on the selected road segment, for example by using orthogonal projection (Velaga
et al., 2009).

As described in Blazquez et al. (2018), map-matching has been widely studied for
decades and existing algorithms have usually been classified depending on the level of
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complexity. Quddus et al. (2007) categorised map-matching approaches in the literature
into four groups: geometric, topological, probabilistic and advanced algorithms. Hashemi
and Karimi (2016) preferred to group existing map-matching methods into simple, weight-
based and advanced. A more precise and comprehensive classification was presented in
Wang et al. (2018): geometric, topological and attribute-based. Moreover, taking stochas-
tic and decision-making methods into account, map-matching processes can be further
optimised.

In early map-matching studies, for example Bernstein and Kornhauser (1996) and
Czommer (2000), solely geometric information that describes the absolute position and
the shape of the vehicle trajectories or the digital road segments, was used. The three
most common geometric map-matching methods are “point-to-point”, “point-to-curve”
and “curve-to-curve” (Quddus et al., 2007). Such simple algorithms are easy to imple-
ment and fast, but mostly unreliable. For example, “point-to-curve” matching determines
the most likely road segment on which the vehicle is traveling purely by the shortest
distance measure between a single vehicle position and the road segments. However,
due to the inaccurate matching criterion, a map-matching error may occur frequently,
particularly when the vehicle is crossing a complex intersection, travelling on high-
ways with parallel roads, or in urban environments with poor GNSS signal quality.
To improve the performance of the conventional “point-to-curve” matching algorithm,
Oran and Jailet (2013) proposed a more precise criterion that considers the cumulative
distribution function over an entire road segment in computing a point-wise proximity
weight instead of the classical shortest distance measure. Although the shortest distance
(closeness) criterion can be effectively improved in this way, performance of a purely
geometric map-matching algorithm in urban scenarios is still limited, due to high road
density.

Topological map-matching methods additionally take advantages of topological con-
straints such as road connectivity, contiguity and turn restrictions to minimise the map-
matching error. As stated in Blazquez et al. (2018), topological map-matching algorithms
are most commonly applied for vehicle localisation and navigation. They usually employ
different matching criteria (for example closeness, heading difference and link connectiv-
ity) and the corresponding weight coefficients to identify the most probable segment among
candidates (Hashemi and Karimi, 2016; Quddus and Washington, 2015). However, unsuit-
able weight coefficients can result in performance degradation of map-matching. Velaga
et al. (2009) identified the best weight coefficients by repeating map-matching processes
with random values between 1 and 100 for urban, suburban and rural areas. In the cur-
rently proposed map-matching algorithm, the three selected criteria (heading, closeness
and link connectivity) are equally weighted (see Section 4). This algorithm performed well
in Autobahn entrance and exit areas and it was verified to be robust, reliable and efficient
by extensive experimentation (Wang et al., 2017).

Map-matching algorithms can be further optimised with the consideration of map
attributes (such as direction of travel and street name), or by combining with stochastic
approaches (Kalman filters, particle filtering and Hidden Markov models) and decision-
making processes (Fuzzy Logic, Bayesian inference and multi-hypothesis techniques)
(Wang et al., 2018).

In this paper, an enhanced map-matching algorithm is presented by adding lane-level
attributes and height data. This algorithm is expected to correctly determine the road
segment that the vehicle is actually travelling on.
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3. DIGITAL ROAD NETWORK DATA. This section provides detailed information
about the digital road network data of the commercial map provider HERE. This was first
used for testing the performance of the proposed map-matching algorithms in Wang et al.
(2017) and afterwards in this paper. Wang et al. (2017) focused mainly on the applied
weighting-function related to heading, closeness and link connectivity criteria and gave
illustrative results on GNSS-based real-world and simulated vehicle trajectory datasets. The
aim of this paper is to investigate whether the precise attribute information (lane-level and
ADAS height) can contribute effectively to improving the proposed algorithm introduced
in Wang et al. (2017) in terms of success rate and computational time.

3.1. Road network digitisation and standard map attributes. Vector map data con-
sists of sequentially ordered pairs of the World Geodetic System 1984 (WGS84) geographic
coordinates (latitude, longitude) which are transformed into Universal Transverse Mercator
(UTM) coordinates, further used as inputs for the map-matching algorithm.

Figure 1 illustrates an example of a junction that connects the Autobahn A81 and a
tertiary road. The Autobahn junctions that involve data errors (highlighted with yellow
arrows and ellipses in Figure 1), need special consideration in the map-matching process.
Such map data errors often result in a failure of map-matching. The missing road links in
the digital road network are also quite challenging to deal with. Generally, the complete-
ness and correctness of the digital road network data depends significantly on functional
classification of roads defined by each map provider. A certain number of roads of lower
functional classifications like tertiary and quaternary roads are often not included in the
database (HERE, 2015). In addition to geometric data, map attributes (for example direc-
tion of travel, ramp type and street name) provide additional traffic-relevant information
that is required by most automotive navigation systems. The inaccuracies in the digital
road map data, for example roads with simplified geometry and inaccurate map attributes,
may greatly impact on the performance of map-matching algorithms.

3.2. Data elimination for wrong-way driver detection. The digital road network
database contains auxiliary files related to road markings, traffic signs, restricted and pro-
hibited driving manoeuvres, etc, which generally need to be considered for route planning
(HERE, 2015). Nevertheless, the driving restrictions cannot be used for detecting wrong-
way driving, since it cannot be assumed that all the vehicles travel in directions normally
allowed in real traffic situations.

Figure 2 illustrates two example scenarios of wrong-way driving: in scenario A, the
vehicle has crossed over the divider (maybe solid line or shaded area markings in real
situations) from an entrance ramp and entered the Autobahn through an exit ramp; in sce-
nario B, the vehicle has performed a 180 degree rotation to travel in the opposite direction
(Beckmann et al., 2017).

Both driving manoeuvres shown in Figure 2 are hazardous and may lead to extremely
serious accidents. The implemented map-matching algorithm in the desired wrong-way
driving detection system does not assume that the vehicle always travels legally on the
road. The digital map data associated to driving restrictions such as prohibited directions
of travel, turn restrictions and lane crossing restrictions are not taken into account in the
map-matching process, but later on for wrong-way driving detection.

3.3. Precise map attributes. In this subsection, lane-level attributes and the ADAS
product provided by HERE are introduced. The HERE lane-level attribute table con-
sists of 16 different types of lane-level information, such as lane type, lane divider and
lane direction (HERE, 2015). HERE’s ADAS product is supplied as an extension to the
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Figure 1. Autobahn junction Hildrizhausen (digital road map of HERE in comparison with Google Satellite
Maps).

Figure 2. Wrong-way driving scenario A and B, right-hand traffic example (Beckmann et al., 2017).

standard map products. It contains WGS84 coordinates (geographic three-dimensional
(3D): latitude, longitude and ellipsoidal height) and precise geometric information (cur-
vature, heading direction and angle of slope) for road segments with enhanced geometry.
A road link for which ADAS data is available means that it satisfies the requirements of
ADAS applications, with an absolute positional accuracy of 5 m and a shape accuracy of
1 m (HERE, 2015).

Figure 3 illustrates a road link (an entrance ramp to the German Autobahn A81 with
orange arrowheads indicating the direction of traffic flow) marked with a black arrow in
the right panel of the figure, while its spline representation in the HERE map data is shown
as a thin solid red line on the left. The shape of this road link cannot be regarded as convex
or concave, but fluctuates from being convex to concave at one inflection point, and then
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Figure 3. Shape points from No. 1 to 18, and nodes A and B of an example road link (left) along with its
geometric representation in HERE map data (right), in comparison with the Google Satellite Maps (middle).

from being concave to convex at the other inflection point, in contrast to the connecting
line between the nodes A and B (the blue line in the left panel) with a length of more than
300 m. More precise information on direction change can be acquired by using this ADAS
product. This data is commonly used in driver assistance systems, for example to trigger
warnings of dangerous curves, in addition to road signs. In this paper, only the ADAS
height coordinates are integrated into the map-matching algorithm to test if the desired
improvement can be achieved.

4. MAP-MATCHING ALGORITHM ENHANCEMENT. In this paper, an enhance-
ment is proposed by considering lane-level attributes and ADAS height data in the
map-matching processes. The original algorithm is the weighting-function-based topo-
logical map-matching algorithm presented in Wang et al. (2017). It employed heading,
proximity (closeness) and link connectivity as similarity criteria to localise the vehicle
position on the most probable candidate road link in a given digital road network, after
Quddus and Washington (2015) and Velaga et al. (2009).

As shown in Figure 4, the heading angle �α is determined as the heading difference
between the vehicle’s driving direction and the direction of a candidate road link, while
the proximity (closeness) criterion uses the perpendicular distance D from a point to a road
link to find the nearest one (Wang et al., 2017).

The third matching criterion takes the link connectivity X between the candidate road
links of the current vehicle position (the red dot in the orange buffer zone) and the previ-
ous matched road link (marked blue) additionally into account in order to compensate the
shortcomings of the first two criteria (Wang et al., 2017).

Additionally, Wang et al. (2017) imposed three conditional validation processes by using
empirically determined threshold values to reduce matching errors: (1) a threshold maxi-
mum value of 11 m for the perpendicular distance between the candidate road link and the
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Figure 4. Heading and proximity (closeness) criterion

Figure 5. Illustration of the link connectivity criterion after Wang et al. (2017).

vehicle position; (2) a threshold maximum value of 39◦ for the difference between the vehi-
cle headings at two consecutive epochs (one-second interval); (3) a threshold maximum
value of 5 m for the difference between the height coordinates of the current measured
vehicle position and its projected position on the identified digital road link. The afore-
mentioned three matching criteria are integrated into a weighting-function for computing
the Total Weighting Score (TWS) for each successive vehicle position (see Equation (1)).
Since the heading angle of the first fixed vehicle position may be inaccurate, it is not used in
the algorithm; therefore the map-matching process begins with the epoch number i = 2. As
the second vehicle position has no previously matched road link, the parameter X defined
for link connectivity is considered from i = 3. The variable b represents half of the side
length of the square buffer zone (see the orange square in Figure 5).

TWSi =
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It should be noted that the three selected matching criteria (heading, proximity and link
connectivity) are equally weighted in the map-matching processes. This has been empiri-
cally proven to be the most appropriate weighting method for map-matching in Autobahn
entrance and exit areas where wrong-way driving is most likely to occur. Through exten-
sive experimentation with real-world and simulated trajectories, this algorithm is verified
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Figure 6. An illustrative example of the benefits of using lane-level attributes in a map-matching
process: a top view of the German Autobahn junction Stuttgart in Google Satellite Maps (upper left),
geometric representation of a selected junction area including a Y-shaped bifurcation in the digital road
network of HERE (lower left), a closer look at the selected area in Google Satellite Maps (right).

to be robust. The results in Wang et al. (2017) showed that the vehicle position can still be
matched to the correct road segment even if digital road map data or GNSS measurements
are inaccurate. Nevertheless, the weighting method may need to be optimised in other spe-
cific environmental settings such as dense urban or rural areas. Calibration methods for
identifying well-performing or optimal weight parameter values are described in Blazquez
et al. (2018), Oran and Jailet (2013) and Velaga et al. (2009).

In this paper, the efficiency of applying lane-level attributes and ADAS height data
in enhancing the success rate of matching results is to be discussed and demonstrated
through extensive testing based on both real-world and simulated vehicle trajectory data.
The lane-level attributes and height data aid in identifying the correct road link for the
vehicle position. Before comparing the computed probability values of the defined TWS
function of all candidate road links selected using a buffer zone, additional tests should be
performed to facilitate positive identification of the correct road link on which the vehicle
is currently travelling (Wang et al., 2017). Details will be presented in Sections 4.1 and 4.2.

4.1. Enhancing the algorithm using lane-level attributes. The digital road maps used
in this paper are not precise lane-level road maps. This means that the roads are not digitised
separately for each lane. For example, a two-lane unidirectional ramp is represented by a
single solid line in the digital road map (see Figure 6 lower left). Figure 6 gives an example
of a situation in which lane-level attributes are essential for avoiding matching errors. As
shown in Figure 6, a Y-shaped bifurcation (commonly known as a “Y-junction”) consists of
three road links, numbered 1, 2, and 3. It would be quite challenging to correctly identify
the corresponding road link in this case, especially when the vehicle moves between the
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Figure 7. An illustrative example of the benefits of using ADAS height data in a map-matching pro-
cess: an overpass segment that crosses over a bidirectional country road named L429, with a top view in
Google Satellite Maps on the upper left corner.

road links 1 and 2 (see Figure 6) after entering the junction. By using lane-level attributes
such as lane types and lane divider types, this Y-junction problem can be efficiently solved.
A result example is given in Section 5.1.

4.2. Enhancing the algorithm using ADAS height data. Another problematic situ-
ation, as mentioned in Velaga et al. (2009), in which matching errors may occur, is in
underpass/overpass areas. As presented in Figure 7, on the southwest corner of the German
Autobahn junction Tuningen, the divided Autobahn A81 (marked with yellow arrows)
crosses above a country road (marked with a white arrow) which belongs to the third
class of roads in the HERE digital road map database. If the information about the driv-
ing restrictions is not taken into account for wrong-way driver detection (as mentioned in
Section 3.2), it is difficult to distinguish whether an overpass exists or whether these two
roads intersect. So, the identification of the proper candidate road link, which represents
the correct road link, can hardly be performed by applying standard digital road map data.

To tackle the problem, one potential method is to use HERE ADAS height data to
attempt to support the map-matching algorithm. Without consideration of height data of
roads or other related information, the map-matching algorithm allows impossible moves
like jumps between overpasses and streets. To avoid such matching errors, an attempt was
made to determine an empirical threshold value of 5 m for checking whether one road
crosses over another one or two road links actually intersect. That is to say, if a vehicle
goes up through the overpass, its height coordinate (WGS84 ellipsoidal height) should
differ at least 5 m from the other roads (Wang et al., 2017).

5. ALGORITHM EVALUATION. In this section, the performance evaluation of the
proposed map-matching algorithm based on real-world and simulated vehicle trajectory
data is described in detail. Since the success rate of the original algorithm was discussed
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Figure 8. An illustrative example of map-matching results: without (left) and with (right) use of lane-level
attributes.

in Wang et al. (2017), this section focuses on illustrating the algorithm improvement
achieved by using lane-level attributes and ADAS height data. Furthermore, the computa-
tional time needed for identifying the correct road link for the vehicle position is compared
and analysed.

5.1. Matching results. This section shows two examples associated with the potential
use of precise attribute information (described in Sections 4.1 and 4.2) for improving the
success rate of the proposed map-matching method.

Figure 8 depicts the map-matching results at a German Autobahn junction, where the
five-lane Autobahn (the road link No. 3 in Figure 6) diverges into two adjacent roads: one
two-lane exit ramp (the road link No. 2 in Figure 6) and one three-lane auxiliary Autobahn
(the road link No. 1 in Figure 6). In this situation, the link connectivity criterion would lead
to unexpected matching errors (see Figure 8, left panel, the blue line marked with a red
arrow).

The actual driving direction is derived from the GNSS-based vehicle position of G29
and the heading angle of the wrongly identified road link consequently differ little from
each other and both the correct and the incorrectly identified roads are connected to the
previously matched road. To distinguish if the vehicle is located at a junction, lane types
and lane divider types are utilised as additional information. In this case, the link con-
nectivity between the previously identified road link and each candidate road link should
not be considered so that the weights for the other two matching criteria - heading and
proximity (closeness) - can be increased from 1/3 to 1/2. Thus, the computed TWS of the
road link No. 2 is raised from 54·02% to 80·32% (greater than the TWS of the road link
No. 1). In this way, the matching error is corrected effectively by adjusting the weight
coefficient values. However, the influence of a change in the weight coefficients on the
TWS also depends considerably on the other matching criteria (heading angle �α and the
perpendicular distance D).

In the example in Figure 9, one of several new simulated vehicle trajectories was used to
prove the necessity of the ADAS height data for enhancing the success rate of the proposed
algorithm. As mentioned in Section 4, additional tests regarding the empirically determined
threshold value of 5 m enable the algorithm to distinguish if the vehicle is travelling on an
overpass. As illustrated in Figure 9, the vehicle positions denoted with black asterisks that
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Figure 9. An illustrative example of map-matching results: without (left) and with (right) use of ADAS height
data.

are matched to a wrong road link are depicted with a red arrow. It can obviously be seen
that the matching error (red arrow in Figure 9, left panel) at the simulated vehicle position
G12 is eliminated. The correct road link is identified by employing ADAS height data (blue
arrow in Figure 9, right panel).

The examples in Figures 8 and 9 demonstrate the fact that map-matching errors occur-
ring at junctions and overpasses can be tackled in a quite effective way by applying
lane-level attributes and ADAS height data. The proposed map-matching algorithm per-
forms well in entrance and exit areas to highways, and it has attained a high level of success
rate (99·5% with real-world vehicle trajectories, see Table 1) in identifying the road on
which the vehicle is travelling, compared with other existing map-matching algorithms, for
example presented in Blazquez et al. (2017), Quddus and Washington (2015) and Velaga
et al. (2010) with 97·9%, 98·6% and 97·8% chances of success. Additionally, as can be
seen in Table 1, the accuracies of vehicle positioning data may strongly impact the per-
formance of map-matching algorithms. The success rate of the algorithm has been slightly
reduced (98·2%) due to inaccuracies of the simulated vehicle positions. The algorithm’s
improvement on success rate of approximately 0·06% is observed when compared against
the previous version. Although the percentage of the performance improvement delivered
by the proposed algorithm is small, it is of greater importance in correcting map-matching
errors at junctions and overpasses and thus ensures algorithm’s reliability, especially for
safety-critical applications.

5.2. Performance evaluation results. For reliable wrong-way driver detection in real
time, it should be ensured that the vehicle position at each epoch (of 1 second) is matched
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Table 1. Map-Matching results.

Number of used Mismatch Correct link Horizontal
Vehicle trajectory vehicle positions percentage identification accuracy

Real-world (GNSS) 3950 0·51% 99·49% <10 cm
Simulated 2943 1·80% 98·20% 1 cm–20 m

Figure 10. Analysis of time consumption of the proposed map-matching algorithm based on a simu-
lated trajectory dataset: with consideration of both lane-level attributes and ADAS height data (upper
panel), neither of them (lower panel).

to the correct road link as quickly as possible. Therefore, another relevant aspect for real-
time applications is its response time. To state if the proposed map-matching algorithm is
suitable for real-time execution, performance evaluation regarding its computational time
for each epoch is presented in this section. For this purpose, simulated vehicle trajectory
data was created based on a Google Earth path. This passes through three junctions on the
German Autobahn A81 and includes 950 consecutive vehicle positions at 1 s time inter-
vals. The major advantage of the trajectory simulations is that the sampling rate can be set
individually. For instance, a simulated vehicle trajectory with sampling rates of 5 Hz and
10 Hz can be derived from the original one at 1 Hz.

The plots depicted in Figure 10 show the computational time needed to identify the
correct corresponding road link of each vehicle position. The computational time is mainly
dependent on the number of candidate road links and the complexity of the local road
connectivity. In principle, at junctions or in overpass/underpass areas, more computational
time is required to perform the map-matching procedure.

Table 2 gives a summary of the results illustrated in Figure 10. Due to computational
simplicity of the proposed algorithm, it consumes less than 0·15 s on average. However,
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Table 2. Performance evaluation in summary.

Map-matching with/without lane-level attributes with both lane-level attributes and ADAS height data

Time consumption t for each epoch (1 Hz sampling rate )
Maximum 0·173 s 2·329 s
Minimum 0·142 s 0·123 s
Mean value 0·146 s 0·541 s
Standard deviation 0·002 s 0·231 s

while integrating ADAS height data into the map-matching process, the algorithm is more
than four times slower at selecting the correct road link. The data structure of the ADAS
attribute tables must be optimised to reduce the computational time.

Whether the proposed map-matching algorithm is appropriate for hard or soft real-time
systems or not depends on the required temporal constraints which should be investigated
while developing a prototype for the desired wrong-way driver detection system. The
amount of lane-level information is small compared to the ADAS attributes, so the time
needed for accessing the lane-level data can be neglected. In comparison with the sampling
interval of 1 second, the mean computational time of 0·146 seconds can be considered
acceptable for the map-matching process in real time.

6. CONCLUSION AND FUTURE RESEARCH TRENDS. An enhanced map-
matching algorithm is proposed for wrong-way driving detection on the German Autobahn,
which takes advantage of lane-level map attributes and ADAS height data. The perfor-
mance (success rate and computational time) have been verified and compared with the
weighting-function-based topological map-matching algorithm introduced in the authors’
previous paper. The experimental results show that the enhanced map-matching algorithm
performs quite well in the Autobahn entrance and exit areas, with high success rates of
99·5% and 98·2% in identifying the road on which the vehicle is travelling while real-
world and simulated vehicle trajectories are used. These results also confirm that the usage
of lane-level map attributes and ADAS height data can effectively help to detect and correct
mismatches at junctions and overpasses. The algorithm’s improvement on success rate of
approximately 0·06% is observed when compared against its previous version. Although
the percentage of the performance improvement delivered by the proposed algorithm
is small, it is of greater importance in correcting map-matching errors at junctions and
overpasses and thus ensures the algorithm’s reliability, especially for safety-critical appli-
cations. Moreover, experimental results indicate that the average computational time of
the proposed algorithm is under 0·15 seconds which is considered acceptable for real-time
map-matching processes with 1 Hz vehicle positioning data. However, the ADAS height
data is not suitable for real-time map-matching processes, due to excessive computational
time.

It should be noted that the real-time performance of the proposed map-matching
algorithm needs to be tested under real-world traffic conditions. More effort is still required
to develop a functional prototype for the desired wrong-way driver detection system in a
hard real-time environment under strict temporal constraints. To avoid consuming exces-
sive computational time used for performing a lookup in large database tables, the data
structure of the ADAS attribute tables must be optimised and this also represents future
work.
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