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Finite-element analysis of infinite and
finite arrays

john b. manges, john w. silvestro and kezhong zhao

This paper considers and compares the numerical characterization of regular planar antenna arrays from two viewpoints. In
the case where the array is sufficiently large, the well-known infinite array idealization applies and a very efficient simulation
method is presented which combines array theory with a specialized form of the finite-element method called the transfinite
element method (TFEM). Alternatively, a more direct approach is discussed in which the entire antenna array is simulated as
a finite structure using recent advances in the domain decomposition method (DDM). Taken together, the two methods
provide a comprehensive simulation method for regular arrays from small order to very large order.
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I . I N T R O D U C T I O N

Due to their complexity and large electrical size, phased array
antennas are challenging structures for numerical full-wave
simulation. Given their unique ability to redirect radiated
energy quickly and without mechanical motion, phased
arrays are prevalent, particularly in military applications.
Although specifications for military hardware are not typically
published, visual inspection of publically available images
reveals that a 50 element ×50 element array is not unusual.
Given a nominal element size of 0.5 wavelength, this means
an effective electrical area of 625 square wavelength beyond
the capacity of current full-wave solvers.

The infinite array is an effective idealization when a large
planar array is regular – that is, the array elements are
arranged in a periodic lattice. Fortunately, since the regularity
assumption allows a single-element design, such arrays are
common. The analysis of the array may then be reduced to
a single representative unit cell. A number of successful
numerical approaches have been demonstrated for analysis
of the unit cell. Among those employing the finite-element
method representative examples are [1, 2].

Despite the success of the unit cell approach, its field solution
neglects the “edge effect” – variation in the cell-by-cell field sol-
ution due to the finite size and termination of the array lattice.
This is especially true for array sizes less than 10 × 10. For
this reason, a simulation encompassing the entire finite array
is desired. Also, in a commercial implementation the ability to
simulate an entire finite array is desirable since setup and extrac-
tion of antenna metrics do not require certain technical aspects
of array theory required in the infinite array case. Thus, the

technical burden is shifted from the user to the software and
the array analysis becomes more accessible for a non-specialist.

In recent years, the domain decomposition method (DDM)
[3, 4] has emerged as a powerful and attractive technique due to
its inherent parallelism and capability of taking advantage of
periodicity in antenna arrays. The basic idea of DDM is to
decompose the original problem into smaller non-overlapping,
and possibly repetitive, sub-domains and prescribe appropriate
boundary conditions at domain interfaces to enforce tangential
electric and magnetic field continuity. Each sub-domain
problem is then solved in parallel to obtain initial solutions.
These initial solutions are refined in parallel and the entire
assembly is solved iteratively until equilibrium is reached
between all domains. It can be proved that when the appropri-
ate interface condition is employed, the iterative process in
DDM will converge to the solution of the original problem
[5]. Also, the interface conditions should be chosen so that
each sub-domain problem is well-posed and the convergence
of the DDM algorithm is optimal. Compared with the tra-
ditional finite-element method, the DDM solver offers much
better parallel scalability while demanding much less memory.

In the present paper, we have extended the discussion of [6]
to connect and compare the classical infinite array analysis with
that of finite arrays afforded by the DDM. Analysis of both types
will be shown with data generated by the commercial finite-
element field solver, High Frequency Structure Simulator
(HFSS). In the conclusion of this paper, we make a recommen-
dation for a design flow combining the two methods.

I I . I N F I N I T E A R R A Y A N A L Y S I S V I A
T H E T R A N S F I N I T E - E L E M E N T
M E T H O D ( T F E M )

The TFEM [7], a specialization of the three-dimensional
finite-element method, has proven to be an efficient and
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robust tool for analyzing the unit cell of an infinite array. The
method is distinguished by its discretization of modal bound-
ary conditions using specially constructed global basis func-
tions. The application to the unit cell of Fig. 1 may be
summarized as follows.

The unit cell is terminated below and above by ports
through which energy enters and leaves the cell volume.
Below, at the array element feed port, the modal fields
consist of incident and reflected guided-wave modes. Above,
at the radiating end of the cell, is a “Floquet port” where the
modal fields are plane waves with propagation direction deter-
mined by the array periodicity.

The sidewalls of the unit cell form “linked” boundaries that
enforce the field periodicity determined by the array lattice.
This is achieved by matching the meshes on master and
slave surfaces.

The discrete field solution Eh is formed using a tetrahedral
volume mesh in concert with two kinds of basis functions.
Those representing interior fields are the standard tangential
vector elements Wm. Thematic to the TFEM, additional
special basis functions en

h are constructed to represent the
port fields. Thus,

Eh =
∑

m

EmWm +
∑

n

(an + bn)eh
n. (1)

Here the unknowns Em represent the interior fields and an

and bn represent incident and emerging modal fields on the
port boundaries. Appropriate normalization of the functions
en

h allows elimination of an and bn in favor of entries of a
modal scattering matrix [S]. Since [S] is computed for a
unit cell in an infinite periodic structure all incident mode
sources are implicitly repeated throughout the infinite array
and consequently [S] is an “active” scattering matrix.

Discretization of Maxwell’s equations using (1) then leads
to a matrix equation AX ¼ B. The fact that two types of
basis functions, interior and port are used implies that this
equation has a 2 × 2 block structure with internal unknowns
E and port (modal) unknowns [S].

A11 A12

A21 A22

[ ]
E

[S]

[ ]
= B1

B2

[ ]
. (2)

Solution of the matrix equation then directly yields the
scattering matrix interrelating port unknowns and Floquet
modes without any post-processing. Using the notation “F”
to represent feed ports and “S” to represent Floquet ports,
the (active) scattering matrix is partitioned in the following
manner:

[S] = SFF SFS

SSF SSS

[ ]
. (3)

By appealing to classical array theory results, the scattering
matrix elements may be used to determine important aspects
of array performance, subject to the infinite array idealization.
In particular:

(1) The active element pattern (AEP) of the array is pro-
portional to the coupling between the port modes and
the specular (TE00 and TM00) Floquet modes [8]. The
AEP is defined as the radiated field pattern of the array
with a single element excited and the remaining elements
match-loaded. Its significance in array analysis is well
known. The particular entries of SSF, which relate port
modes to the TE00 and TM00 Floquet modes, are pro-
portional to the AEP.

(2) The composite array pattern for prescribed array exci-
tations may be determined as the product of the AEP
and a known factor depending only on array lattice geo-
metry and frequency [9].

(3) The passive port-coupling matrix of the array may be
determined by a Fourier transform of the active reflection
coefficient SFF as a function of scan angle [10].

(4) The submatrices SFS and SSS contain the array response to
incident plane waves, but will not be discussed further
here.

I I I . A E P F O R I N F I N I T E A R R A Y

For an array element driven by a single feed mode, the precise
relationship between the SSF entries STE00,1, STM00,1, and the
spherical components of the AEP Gf, Gu is

Gw(u, w) = −j

�����
4pA
l2

√
STE00,1

������
cos u

√
, (4a)

Fig. 1. Portion of an infinite array of square horns along with two views of a unit cell showing matching meshes.
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Gu(u, w) = j

�����
4pA
l2

√
STM00,1

������
cos u

√
, (4b)

where A is the unit cell area and l is the wavelength in the
global environment, typically vacuum. The pattern here is
normalized to 1 Watt of incident feed power. The form of
this relation also depends on the normalization selected for
the Floquet modal functions. In this paper, the modal func-
tions are normalized so that the specular modes carry 1
Watt of array normal-directed power at each scan angle.

As a demonstration of the interplay of the active reflection
and the AEP, the unit cell of an array of square flared horn
array elements was analyzed for a sweep of scan direction
extending from boresight to endfire. The horn element,
shown in Fig. 1, has an aperture of 0.65l × 0.65l and the
elements are spaced 0.70l in both directions. This is the
same array as described in Section 8.2 of [11]. Two Floquet
modes, the TM00 and the TM210, were used to represent the
Floquet port fields on the basis that each one is propagating
for at least one scan angle in the 0–908 range. Floquet
modes that were not included each had at least 18.5 dB of
attenuation per unit length along the cell.

Figure 2 shows the computed results. The horizontal-axis
doubles both as scan angle for the array and as pattern angle
for the AEP, and extends from 0 (array normal direction) to
908 (array endfire), though this is much greater than the
working range of most practical array elements. S-parameter
magnitudes for active reflection and the port coupling to the
TM210 Floquet mode are plotted on the right vertical axis
and the AEP, equal to the scaled coupling to the TM00

Floquet mode, is plotted on the left axis. The data shown in
the figure match the results presented in Figure 8.2 of [11].

Several phenomena are apparent in the figure. The bore-
sight active element realized gain is 7.65 dB and active reflec-
tion level is approximately 213 dB. As the scan angle is
increased, a scan blindness condition at ≈238 is apparent

from near-unity port reflection and the sharp dip in active
element gain at the same pattern angle. At about 168 a
grating lobe begins to appear in the form of the TM-10
Floquet mode. The TM-10 mode moves from cut-off to pro-
pagating just beyond the scan blindness angle. Since energy
is then shared between the grating lobe (TM-10) and the
main lobe (TM00), the main lobe diminishes and correspond-
ingly the AEP gain reduces. Finally at endfire the original
main lobe recedes and energy is balanced between reflection
and grating lobe radiation.

Note that since the unit cell boundary conditions change as
a function of scan angle, a separate field simulation is required
for each scan angle considered in the figure. The time require-
ment for a scan angle sweep can be considerably reduced by
using the adaptive interpolation method described in [6].
Also, when multiple cores or CPUs are available, the simu-
lations for different scan angles may proceed in parallel.

I V . D O M A I N D E C O M P O S I T I O N F O R
F I N I T E A R R A Y S

Next, we turn to the topic of simulating a finite array in its
entirety. In this section, a DDM with non-overlapping
Schwarz algorithm is described. To apply the DDM, the orig-
inal problem domain V is first partitioned into N non-
overlapping sub-domains:

V = V1 < V2 · · · < VN . (5)

In an antenna array problem, each element will naturally
be a domain. In the ith domain Vi, the boundary value
problem (BVP) is written as

In Vi:

∇ × 1
mri

∇ × �E n( )
i − k21ri�E

n( )
i = −jkh�Ji. (6)

Fig. 2. Scan angle sweep for E-plane of horn array unit-cell showing realized gain (left-axis), active reflection and coupling to TM-10 mode (right-axis).
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On the interface Gi:

�j (n)
i − jk�e (n)

i = −�g (n−1)
i . (7)

Note that an additional unknown carrying the physical
meaning of electric current on the boundary, namely
�ji = n̂i × (1/mri)∇ × �Ei is introduced on the domain interface
Gi. Also note that �Ei is the electric field inside domain Vi,
�ei = n̂i × �Ei × n̂i is the electric field on the boundary surface
of Vi, and n̂i is the outward normal of the ith domain. The
superscript n stands for nth iteration of the alternating
Schwarz algorithm. Finally, k, h, 1ri, and mri are the free-space
wave number, impedance, relative permittivity, and per-
meability of the medium in the ith domain, respectively.
Equation (7) is generally known as the Robin transmission
condition. Its right-hand side is defined as

�g (n−1)
i = �j (n−1)

neig(i) + jk�e (n−1)
neigh(i), (8)

where neigh(i) indicates the neighboring domains of
domain i. The above system corresponds to a Schwarz-type
iteration scheme. We remark that the role of the Robin trans-
mission is to enforce the necessary continuity of electromag-
netic fields at the interfaces between adjacent sub-domains.
For vector wave problems, it has been proved in [5] that the
Robin-type transmission condition is necessary to ensure
well-posed local problems and convergence of domain
decomposition algorithm. For a recent comprehensive
review on present DDMs, we refer interested readers to [4]
and the references therein.

The system of equations (6,7) is appropriately tested
through a Galerkin testing procedure, resulting in a matrix
equation of the form

K iu
(n)
i = yi + g (n−1)

i , ∀i = 1, . . .N , (9)

where Ki, yt are the system matrix and excitation vector for
Vi, respectively. Ki resembles a system matrix derived from
traditional finite element method using a first-order absorbing
boundary condition (ABC). The solution vector and right-
hand side updating vector are given, respectively, as

u(n)
i = E(n)

i e(n)
i j(n)

i

( )T
, (10)

g n−1( )
i =

0 0 0
0 0 0
0 Cje

ij Cjj
ij

⎛
⎝

⎞
⎠

0
e n−1( )

j

j n−1( )
j

⎛
⎜⎝

⎞
⎟⎠. (11)

Note that at each iteration, the right-hand side of (9) (cf.
(11)) is updated using only the information of surface
unknowns. Thus, by introducing additional surface unknowns
the information in the entire volume of a domain is translated
into information on the boundary surface, resulting in a tre-
mendous reduction in memory requirements. Furthermore,
for an array problem where each array element is identical
in terms of geometry, the system matrix Ki and excitation
vector yi also remain the same for all domains that further
reduces the memory requirements.

The iterative process in (9) is trivially parallelizable as new
right-hand side (11) only requires information from the

previous iteration. Significantly, the formulation presented
here allows both conformal and non-matching meshes
across interfaces between adjacent sub-domains. In our
implementation, we have used matching surface meshes on
master and slave boundaries similar to those used in the infi-
nite array solver.

To illustrate the accuracy and efficiency of this new pro-
cedure, consider the simple patch array shown in Fig. 3. The
element is a square patch with side length of 32 mm and trun-
cated corners. It is fed by a coaxial line. The substrate is
5-mm-thick with relative dielectric constant of 3.27. The
simulation frequency is 2.45 GHz and the array has equal
spacing of 0.6 l0 in both x and y directions with 8 rows and
8 columns. For comparison, a complete model that contains
the full 64-element array was also created. This model
uses the same elements, but was simulated as a single
domain. The E-plane pattern for the case of all elements
excited with equal amplitude and 08 phase (broadside scan)
is shown in Fig. 4. The single-domain simulation results are
shown as a solid curve and the symbols show the results
from the DDM simulation. The agreement is excellent.

The DDM simulation was performed on a Linux cluster
using 100 engines. The average memory per engine was 336
MB and the total elapsed time was less than 15 min. To simu-
late the model on a single engine using the standard approach
approximately 25 GB was needed and elapsed time was 6 h.
This demonstrates that very large arrays can be simulated
accurately and efficiently using the DDM.

V . I N F I N I T E A R R A Y R E S U L T S
V E R S U S F I N I T E A R R A Y R E S U L T S

We now present a comparison of results from the infinite
array and finite array approaches.

A) Convergence of AEP
The square horn array of Fig. 1 can be used to demonstrate the
proportionality between the Floquet transmission coefficient
and the AEP. To provide a comparison, using the DDM
method the E-plane cut was computed for a singly excited

Fig. 3. Finite patch array.
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central element in a succession of finite arrays of increasing
size. Figure 5 compares these pattern cuts with the
port-to-TM00 Floquet mode coupling as a function of scan
angle computed using the TFEM and unit cell. In particular,
it can be noted how the sequence of finite arrays exhibits
pattern dips of increasing depth at the null location predicted
by the infinite array result shown in Fig. 2.

B) Composite array pattern calculation
Using the AEP with a standard array factor (see [9]), one can
rigorously compute the composite pattern of an infinite array
with a finite number of elements excited and the rest
match-loaded. Since mutual coupling effects are included, this
composite pattern acts as an accurate approximation of that
of the finite array. In contrast, the use of an isolated element
pattern instead of the AEP in this procedure should not be as
accurate since the mutual coupling effects are not included.

However, use of the infinite array AEP does have a limit-
ation. It does not rigorously include the edge effect and as
seen in Fig. 5 the sharpness of the null at the scan blindness
angle is more pronounced in the infinite array simulation
than it appears in a finite array. Both of these effects
become less important as the array increases in size.
Therefore, one would expect the infinite array model to be
reasonable for medium-sized arrays, and to be more accurate
when considering very large arrays.

To show this, a medium-sized 10 × 10 array was con-
sidered. The same patch element described in Fig. 3 was
used. For this element, there is a dip in the array pattern
that appears at scans of ≈+ 408. The 10 × 10 array results
for both 0 and 2408 scans were computed and are shown

Fig. 4. Patch array E-plane patterns for a uniformly excited array.

Fig. 5. Active element realized gain for infinite array and center element of
finite arrays.

Fig. 6. Realized gain for boresight steer. Computed using array factor with
AEP and isolated element pattern and compared with DDM finite array
solution.
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in Figs 6 and 7a, respectively. The DDM approach was used
to simulate the full finite array and those patterns are shown
as the data labeled “10 × 10”. The corresponding patterns
found using the array factor and the AEP and using the
array factor and the isolated element pattern are also
included. Even for this small array size it can be seen that

the AEP with the array factor does show better agreement
with the DDM array simulation results than the isolated
element patterns with array factor. Neither the DDM array
simulation results nor the isolated element pattern with
array factor exhibit the sharp null seen in the AEP with
array factor however.

Fig. 7. Realized gain for 2408 steer. (a) Computed using array factor with AEP and isolated element pattern and compared with DDM finite array solution for a
10 × 10 array. (b) Computed using array factor with AEP and isolated element pattern and compared with DDM finite array solution for a 40 × 40 array where
only the middle 10 × 10 section is excited.
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To investigate this issue further, a second DDM model was
simulated. An array of 40 × 40 patch elements was simulated.
The middle 10 × 10 section of elements was excited to
produce a 2408 scan. The remaining elements in the array
were terminated in matched loads. The resulting pattern is
shown in Fig. 7b along with the AEP times the array factor
and the isolated pattern times the array factor. As can be
seen the new DDM simulation does agree quite well with
the AEP pattern, showing the appearance of the null and its
effect on the pattern in the range about the scan angle. In
addition, there is improved agreement with the AEP generated
plot for angles in the range from 280 to +808. It can be seen
that for the patch element a much larger finite array simu-
lation is needed to correlate with the infinite array model
than was required for the flared horn model used to generate
the data shown in Fig. 5.

C) Array element coupling matrix
The coupling matrix interrelating element feed ports of a finite
array is of great interest to the array designer. The entries in
the coupling matrix are measured by injecting energy at the
feed port of a chosen element and measuring the energy emer-
ging from all array element ports under match-loaded con-
ditions. When a finite array is analyzed using the DDM
described earlier, this array element coupling matrix naturally
emerges from the analysis.

In the case of the infinite array, extraction of the array
element coupling matrix from the unit cell is more involved.
Note that the computed SFF is an “active” reflection in that
it incorporates the effects of simultaneous excitations of all
elements in the array. This is physically distinct from the
passive coupling interrelating pairs of array ports when only
a single element is excited. However, the two quantities are
related [10]. Consider a rectangular infinite array with unit
cell of size a × b. Let S[00][mn] denote the passive coupling
between a reference element [00] and a second element
[mn] displaced m elements in the first lattice direction and
n elements in the second. By superposition, the active reflec-
tion SFF at the reference may be expressed as a sum of the
passive coupling matrix entries weighted as a function of
scan angle.

SFF(u, v) =
∑M

m=−M

∑N

n=−N

S[00][mn]e
−jkmaue−jknbv. (12)

Reduced angular variables u and v are defined as u ¼ sin u×
cos f and v ¼ sin u×sin f. Here the summation limits M and
N set the number of elements in each lattice direction beyond
which the passive coupling is negligible. This equation has
the form of a Fourier series and in the standard way
S[00][mn] may be expressed as

S[00][mn] =
ab
l2

∫l/2b

−l/2b

∫l/2a

−l/2a

SFF(u, v)ej(kmau+knbv)dudv, (13)

for m ¼ 2M, . . ., M and n ¼ 2N, . . ., N. Therefore, knowl-
edge of SFF(u, v) in a rectangular region of the u 2 v-plane
allows computation of the passive couplings. Due to the
finite upper limits in (12), SFF (u, v) is band limited, allowing

exact numerical evaluation of the integral (13) through a dis-
crete Fourier transform.

Consider the calculation of S[00][mn] for a rectangular
array of slot antennas. The unit cell is pictured in Fig. 8.
Part of the results of a convergence study for computation
of the array element couplings are shown in Table 1. The
coupling quantities computed are identified in column 1 of
the table and the relative positions of the reference and sec-
ondary element for these couplings are shown in Fig. 8.

Three sets of SFF(u, v) data were computed, one with
spacing Du ¼ 0.1l/a, Dv ¼ 0.1l/b, one with Du ¼ 0.05 l/a,
Dv ¼ 0.05 l/b, and the third with Du ¼ 0.025l/a, Dv ¼
0.025l/b. Since exact evaluation of the integral in (13) requires
(Nyquist sampling) Du , (1/2 M)l/a and Dv , (1/2 N)l/b
the two sample spacings correspond to an assumption that
coupling is negligible beyond spacings of 5, 10, and 20
elements apart, respectively.

The last column of data in Table 1 is generated as central
element couplings for a 21 × 21 array analyzed using the
DDM method. This size was selected with the expectation
that couplings between the central elements would effectively
equal that of an infinite array. The complete set of table data
demonstrates convergence of the infinite array results to the
DDM result as the sampling interval in u and v is reduced.

V I . C O N C L U S I O N

In this paper, we have discussed two different methods for
array analysis. Both are fundamentally based on the

Table 1. Passive coupling magnitude (dB) infinite array versus DDM.

Infinite array:
Du 5 0.1l/a,
Dv 5 0.1l/b

Infinite array:
Du 5 0.05l/a,
Dv 5 0.05l/b

Infinite array:
Du 5 0.025l/a,
Dv 5 0.025 l/b

21 3 21
array
DDM

S[00][00] 26.1 26.8 26.4 26.4
S[00][10] 213 213 213 213
S[00][20] 217 222 220 221
S[00][30] 225 222 222 223
S[00][01] 217 220 220 220
S[00][11] 220 224 223 223
S[00][02] 222 224 225 225
S[00][03] 221 224 223 223

Fig. 8. Unit cell for slot array and element locations for coupling results.
Length and opening of the slot taper are 0.7l0 and 0.25l0, substrate is
0.045l0 thick with 1r ¼ 2.2 and spacing is 0.37l0.

finite-element analysis of infinite and finite arrays 363

https://doi.org/10.1017/S1759078712000463 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078712000463


finite-element method, but very different approaches are
taken. The first method is an optimized implementation of
the classical infinite array model and the extraction of array
performance from finite-element solutions of this model was
discussed. A second approach is based on the DDM and its
ability to harness the power of multiple CPUs to analyze
entire finite arrays was discussed. Results from the two
methods were compared and the differences ascribed to
arise from the fundamental model assumptions of infinite
versus finite array.

Finally, having looked at array simulation from the stand-
point of analyzing a given configuration, we may also consider
the issue of array synthesis, in other words the viewpoint of a
design engineer tasked to design an array to a set of specifica-
tions. A natural approach is to create and optimize an initial
design using a fast tool employing an idealized model.
Having established the candidate design its performance
may then be accurately verified for selected scenarios using
the precise model. In particular, areas of concern predicted
by the fast model may be assessed for their true impact.

Based on these considerations, we conclude by proposing
the following design flow for a regular array of large order:

(1) Design the array lattice geometry and the radiating
element in the infinite array environment using
finite-element analysis of the unit cell as discussed above.

(2) Optimize the composite array pattern by varying element
excitations in an array factor combined with the AEP
determined in step (1).

(3) Simulate the finite array using the DDM for selected scan
angles and excitations. Based on these results, possibly
modify edge treatment or the design of the radiating
elements near the edge of the array.

(4) Complete the array characterization by computing the
passive coupling matrix for the finite array.
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