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Abstract

Let A =
⊕

i∈Z Ai be a finite-dimensional graded symmetric cellular algebra with a homogeneous
symmetrizing trace of degree d. We prove that if d , 0 then A−d contains the Higman ideal H(A) and
dim H(A) ≤ dim A0, and provide a semisimplicity criterion for A in terms of the centralizer of A0.
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1. Introduction

Cellular algebras were introduced by Graham and Lehrer [14] in 1996, motivated by
the work of Kazhdan and Lusztig [18]. Their work provides a systematic framework
for studying the representation theory of many interesting and important algebras
coming from mathematics and physics, such as Schur algebras, Temperley–Lieb
algebras, Brauer algebras [14], partition algebras [28], Birman–Wenzl algebras [29],
and Hecke algebras of finite types [12].

(Z-)gradings are a subtle structure on a finite-dimensional algebra, playing an
important role in Lie theory and the representation theory (see [3, 10, 11, 27] for
details). Motivated by the works of Brundan, Kleshchev (and Wang) [4–6], Hu and
Mathas [15] introduced graded cellular algebras, which include the Khovanov diagram
algebras and their quasihereditary covers [7, 8], the level-two degenerate cyclotomic
Hecke algebras [1], graded walled Brauer algebras [9], and Temperley–Lieb algebras
of types A and B [26] (see references in [16, 17]).

Recall that the Auslander–Reiten conjecture [2] claims that if the stable categories
of two Artin algebras are equivalent then they have the same number of nonprojective
simple modules up to isomorphism. Recent work by Liu, Zhou and Zimmermann [25]

Li is supported by the Natural Science Foundation of Hebei Province, China (A2017501003) and the
Science and Technology support program of Northeastern University at Qinhuangdao (No. XNK201601).
Zhao is supported partly by NSFC 11571341, 11671234, 11871107.
c© 2019 Australian Mathematical Publishing Association Inc.

349

https://doi.org/10.1017/S1446788719000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000223


350 Y. Li and D. Zhao [2]

indicates that the projective center is the main obstruction to attacking the Auslander–
Reiten conjecture. A point that should be noted is that the projective center of
a symmetric algebra is exactly its Higman ideal. It is natural and interesting to
investigate the Higman ideal of the center of a symmetric algebra.

The aim of this note is to study the Higman ideal and semisimplicity criterion of
graded symmetric cellular algebras by applying the dual basis method which has been
used in [19–24]. More precisely, assume that A =

⊕
i∈Z Ai is a finite-dimensional

graded symmetric cellular algebra over a field K with a homogeneous symmetrizing
trace of degree d. We denote by {Cλ

S ,T | λ ∈ Λ, S , T ∈ M(λ)} the homogeneous cellular
basis and by {Dλ

T,S | λ ∈ Λ,S ,T ∈ M(λ)} the homogeneous dual basis of A, respectively.
Then A−d contains the Higman ideal

H(A) :=
{ ∑
λ∈Λ, S ,T∈M(λ)

Cλ
S ,T aDλ

T,S | a ∈ A
}
,

and dim H(A) ≤ dim A0 whenever d , 0 (Theorem 3.4).
For any c ∈ Z, we define

Hc(A) :=
{ ∑
λ∈Λ, S ,T∈M(λ)

deg(S )+deg(T )=c

Cλ
S ,T aDλ

T,S | a ∈ A
}

and eλ,c :=
∑

deg(S )=c

Cλ
S ,S Dλ

S ,S .

Let Hgr(A) be the K-space spanned by Hc(A), c ∈ Z, and let Lgr(A) be the K-space
spanned by eλ,c, λ ∈ Λ, c ∈ Z. By adapting the argument of [19], we show that
Hgr(A) ⊆ Lgr(A) ⊆ ZA(A0) (Theorem 4.6). As an application of Lgr(A), we prove that
A is semisimple if and only if Lgr(A) =ZA(A0) (Theorem 4.13).

This paper is organized as follows. In Section 2 we briefly review some known
results on symmetric algebras, graded algebras and cellular algebras. In Section 3
we study the Higman ideal of finite-dimensional graded symmetric cellular algebras
and prove Theorem 3.4. Section 4 is devoted to extensively investigating Hgr(A) and
Lgr(A), enabling us to prove Theorems 4.6 and 4.13.

2. Preliminaries

In this section we briefly review the notation and some known results which are
needed in the following sections.

2.1. Symmetric algebras. Let K be a field and let A be a finite-dimensional K-
algebra. Recall that a bilinear form f : A × A→ K is nondegenerate if the determinant
of the matrix ( f (xi, x j))xi,x j∈B is invertible for some basis B = {x1, . . . , xn} of A and f is
associative if f (ab, c) = f (a,bc) for all a,b, c ∈ A. We say that A is a symmetric algebra
if there is a nondegenerate associative bilinear form f on A such that f (x, y) = f (y, x)
for all x, y ∈ A. In this case, we can define a linear map τ by

τ : A→ K, a 7→ f (a, 1),

which is called the symmetrizing trace of A induced by f .
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Let A be a finite-dimensional symmetric algebra with a basis B = {x1, . . . , xn} and
denote by D = {y1, . . . , yn} the dual basis of B, that is, D is a basis of A satisfying
τ(xiy j) = δi j for all i, j = 1, . . . , n. Then the Higman ideal H(A) of A is

H(A) :=
{∑

i

xiayi | a ∈ A
}
,

which is independent of the choice of τ and the basis of A.
For 1 ≤ i, j ≤ n, write xix j =

∑
k ri jk xk,where ri jk ∈ K. The first named author proved

the following lemma.

Lemma 2.1 [21, Lemma 2.2]. In the above notation,

xiy j =
∑

k

rki jyk and yix j =
∑

k

r jkiyk.

2.2. Graded symmetric algebras. By a graded space we mean a Z-graded K-space
V , namely a K-space with a decomposition into subspaces V =

⊕
i∈Z Vi. A nonzero

element v of Vi is said to be a homogeneous element of degree i and denoted by
deg(v) = i. We will view the field K as a graded space concentrated in degree 0. Given
two graded spaces V and W, the K-space HomK(V,W) of all K-linear maps from V to
W is a graded space with HomK(V,W)i consisting of all the K-linear maps α : V →W
such that α(V j) ⊆ W j+i for all i, j ∈ Z. A nonzero element of HomK(V,W)i will be
called a homogeneous map of degree i.

By a graded algebra A we always mean a finite-dimensional Z-graded associative
K-algebra with identity, that is, A is a graded space A =

⊕
i∈Z Ai such that AiA j ⊆ Ai+ j

for all i, j ∈ Z.

Definition 2.2. A graded algebra A is said to be a graded symmetric algebra if there
is a homogeneous symmetrizing trace τ : A→ K of degree d for some d ∈ Z.

Remark 2.3. For a finite-dimensional algebra equipped with an anti-automorphism ∗
of order 2, Hu and Mathas [15] gave another definition of a graded symmetric algebra.
It is equivalent to Definition 2.2. We omit the details here.

2.3. Cellular algebras. Now we recall the definitions of cellular algebras, Gram
matrices and cell modules.

Definition 2.4 [14, Definition 1.1]. An associative unital K-algebra is called a cellular
algebra with cell datum (Λ,M,C, ∗) if the following conditions are satisfied.

(GC1) The finite set Λ is a poset. Associated with each λ ∈ Λ, there is a finite set
M(λ). The algebra A has a K-basis {Cλ

S ,T | S ,T ∈ M(λ), λ ∈ Λ}.
(GC2) The map ∗ is a K-linear anti-automorphism of A such that (Cλ

S ,T )∗ = Cλ
T,S for

all λ ∈ Λ and S ,T ∈ M(λ).

https://doi.org/10.1017/S1446788719000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000223


352 Y. Li and D. Zhao [4]

(GC3) If λ ∈ Λ and S ,T ∈ M(λ), then for any element a ∈ A,

aCλ
S ,T ≡

∑
S ′∈M(λ)

ra(S ′, S )Cλ
S ′,T mod A(< λ),

where ra(S ′, S ) ∈ K is independent of T and A(< λ) is the K-submodule of A
generated by {Cµ

U,V | U,V ∈ M(µ), µ < λ}.

Let λ ∈ Λ. For arbitrary elements S ,T,U,V ∈ M(λ), Definition 2.4 implies that

Cλ
S ,TCλ

U,V ≡ Φ(T,U)Cλ
S ,V mod A(< λ),

where Φ(T,U) ∈ K depends only on T and U. It is easy to check that Φ(T,U) =

Φ(U, T ) for arbitrary T,U ∈ M(λ). For each λ ∈ Λ, fix an order on M(λ). The
associated Gram matrix G(λ) is the symmetric matrix

G(λ) = (Φ(S ,T ))S ,T∈M(λ).

Note that det G(λ) is independent of the choice of the order on M(λ).
Given a cellular algebra A, we note that A has a family of modules defined by its

cellular structure.

Definition 2.5 [14, Definition 2.1]. Let A be a cellular algebra with cell datum
(Λ, M,C, ∗). For each λ ∈ Λ, the cell module W(λ) is a K-module with basis {CS |

S ∈ M(λ)} and the left A-action defined by

aCS =
∑

S ′∈M(λ)

ra(S ′, S )CS ′(a ∈ A, S ∈ M(λ)),

where ra(S ′, S ) is the element of K defined in Definition 2.4(GC3).

2.4. Symmetric cellular algebras. Let A be a symmetric cellular algebra with cell
datum (Λ,M,C, ∗). Fix a symmetrizing trace τ of A. We denote by

D = {Dλ
S ,T | S ,T ∈ M(λ), λ ∈ Λ}

the dual basis determined by

τ(Cλ
S ,T Dµ

U,V ) = δλµδS VδTU .

Set eλ =
∑

S∈M(λ) Cλ
S ,S Dλ

S ,S . The first named author [19] introduced the

L(A) :=
{∑
λ∈Λ

rλeλ | rλ ∈ K
}

ofZ(A), and proved that H(A) ⊆ L(A).
For any λ, µ ∈ Λ, S ,T ∈ M(λ), U,V ∈ M(µ), write

Cλ
S ,TCµ

U,V =
∑

ε∈Λ,X,Y∈M(ε)

r(S ,T,λ),(U,V,µ),(X,Y,ε)Cε
X,Y .

The following lemma is important for our purposes.
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Lemma 2.6 [21, Lemma 3.1]. Let A be a symmetric cellular algebra with a cell
datum (Λ, M,C, ∗) and τ a given symmetrizing trace. For arbitrary λ, µ ∈ Λ and
S ,T, P,Q ∈ M(λ), U,V ∈ M(µ), the following results hold.

(1) Dµ
U,VCλ

S ,T =
∑
ε∈Λ,X,Y∈M(ε) r(S ,T,λ),(Y,X,ε),(V,U,µ)Dε

X,Y .

(2) Cλ
S ,T Dµ

U,V =
∑
ε∈Λ,X,Y∈M(ε) r(Y,X,ε),(S ,T,λ),(V,U,µ)Dε

X,Y .

(3) Cλ
S ,T Dλ

T,Q = Cλ
S ,PDλ

P,Q.

(4) Dλ
T,S Cλ

S ,Q = Dλ
T,PCλ

P,Q.

(5) Cλ
S ,T Dλ

P,Q = 0 if T , P.
(6) Dλ

P,QCλ
S ,T = 0 if Q , S .

(7) Cλ
S ,T Dµ

U,V = 0 if µ � λ.
(8) Dµ

U,VCλ
S ,T = 0 if µ � λ.

Denote by G′(λ) the Gram matrices defined by the dual basis. The first named
author [21, Lemma 3.6] showed that G(λ)G′(λ) = kλE for some kλ ∈ K, where E is the
identity matrix.

The following facts on the constants kλ (λ ∈ Λ) will be used later.

Lemma 2.7 [21, Lemma 3.3]. Let A be a symmetric cellular algebra. Then
(Cλ

S ,S Dλ
S ,S )2 = kλCλ

S ,S Dλ
S ,S for arbitrary λ ∈ Λ and S ∈ M(λ).

Lemma 2.8 [23, Theorem 4.4]. For any λ ∈ Λ, the cell module W(λ) is projective if and
only if kλ , 0.

Lemma 2.9 [21, Corollary 4.7]. Let A be a finite-dimensional symmetric cellular
algebra. Then the following statements are equivalent.

(1) A is semisimple.
(2) kλ , 0 for all λ ∈ Λ.
(3) {Cλ

S ,T Dλ
T,T | λ ∈ Λ, S ,T ∈ M(λ)} is a basis of A.

3. Graded symmetric cellular algebras

Let A be a cellular algebra. Following Hu and Mathas [15], A is a graded cellular
algebra if it is a Z-graded algebra satisfying the following condition:

(GCd) Let deg :
∐

λ∈Λ M(λ) → Z be a function. Each basis element Cλ
S ,T is

homogeneous of degree deg(Cλ
S ,T ) = deg(S ) + deg(T ).

A graded cellular algebra A is called a graded symmetric cellular algebra if it
is graded symmetric. Let us remark that finite-dimensional semisimple algebras are
graded symmetric cellular algebras with nontrivial gradings, which is a generalization
of [15, Example 2.2] (see Section 4 for details).

We now give an example of a graded symmetric cellular algebra that is not
semisimple.
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Example 3.1. Let K be a field and A = K[x]/〈x2〉 with deg(x) = 2. Then A is not
semisimple and is a graded symmetric algebra with a nondegenerate homogeneous
trace form τ of degree −2 defined by τ(1) = 0 and τ(x) = 1, and {x, 1} is the
homogeneous dual basis of {1, x} with respect to τ.

The following easily verified fact implies that the dual bases of the homogeneous
bases of graded symmetric algebras are homogeneous.

Lemma 3.2. Let A be a graded symmetric algebra with homogeneous symmetrizing
trace τ of degree d and let B = {xi | i ∈ 1, . . . , n} be a homogeneous basis of A. Then
the dual basis D = {yi | τ(xiy j) = δi j, i, j ∈ 1, . . . , n} of A is homogeneous of degree
deg(yi) = −d − deg(xi).

Combining Lemma 3.2 with [20, Theorem 2.5], we get the following corollary.

Corollary 3.3. Let A be a graded symmetric cellular algebra with a homogeneous
symmetrizing trace τ of degree d. Then the dual basis is a graded cellular basis if and
only if d is even and τ(a) = τ(a∗) for all a ∈ A.

Proof. ‘⇒’ It follows from [20, Theorem 2.5] that if {Dλ
S ,T | λ ∈ Λ, S , T ∈ M(λ)} is a

cellular basis, then τ(a) = τ(a∗) for all a ∈ A. Since the dual basis is graded cellular,
condition (GCd) implies that there is a function codeg :

∐
λ∈Λ M(λ)→ Z such that

deg(Dλ
S ,S ) = 2 codeg(S ). Thanks to Lemma 3.2, d = −2(deg(S ) + codeg(S )) is even.

‘⇐’ Suppose τ(a) = τ(a∗) for all a ∈ A. Then [13] or [20, Theorem 2.5], and
Lemma 3.2 imply that the dual basis is cellular and homogeneous. Now we define

codeg :
∐
λ∈Λ

M(λ)→ Z and codeg(S ) = − deg(S ) −
d
2
.

Applying Lemma 3.2, deg(Dλ
S ,T ) = −d − deg(S ) − deg(T ) = codeg(S ) + codeg(T ).

This completes the proof. �

We are now in a position to give the main result of this section.

Theorem 3.4. Let A be a finite-dimensional graded symmetric cellular algebra with a
homogeneous symmetrizing trace τ of degree d , 0.

(1) If ρ is a homogeneous symmetrizing trace of degree d′, then d = d′.
(2) None of the cell modules are projective.
(3) H(A) ⊆ L(A) ⊆ A−d and dim H(A) ≤ dim A0.

Proof. (1) Let {Dλ
S ,T | λ ∈ Λ, S ,T ∈ M(λ)} and {dλS ,T | λ ∈ Λ, S ,T ∈ M(λ)} be dual bases

determined by τ and ρ, respectively. It follows from Lemma 3.2 that deg(Cλ
S ,S Dλ

S ,S ) =

−d and deg(Cλ
S ,S dλS ,S ) = −d′ for arbitrary S ∈ M(λ). According to [21, Lemma 2.3],

dλS ,S =
∑

ε∈Λ,X,Y∈M(ε)

τ(Cε
X,YdλS ,S )Dε

Y,X
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and therefore

Cλ
S ,S dλS ,S =

∑
ε∈Λ,X,Y∈M(ε)

τ(Cε
X,YdλS ,S )Cλ

S ,S Dε
Y,X

=
∑

X∈M(λ)

τ(Cλ
X,S dλS ,S )Cλ

S ,S Dλ
S ,X

=
∑

X∈M(λ)

τ(dλS ,S Cλ
X,S )Cλ

S ,S Dλ
S ,X

= τ(Cλ
S ,S dλS ,S )Cλ

S ,S Dλ
S ,S ,

where the second and last equalities follow by applying Lemma 2.6. Clearly,
τ(Cλ

S ,S dλS ,S ) , 0 and this forces d = d′.
(2) Suppose that W(λ) is a projective cell module. Then Lemma 2.8 implies

kλ , 0 and thus k−1
λ Cλ

S ,S Dλ
S ,S is an idempotent of A for arbitrary S ∈ M(λ) due

to Lemma 2.7. This forces deg(Cλ
S ,S ) + deg(Dλ

S ,S ) = 0, while Lemma 3.2 shows
deg(Cλ

S ,S ) + deg(Dλ
S ,S ) = −d , 0. This is a contradiction and the proof is complete.

(3) According to Lemma 3.2, we have L(A) ⊆ A−d. Note that Li [19] proved that
H(A) ⊆ L(A). So H(A) ⊆ A−d and we only need to prove dim H(A) ≤ dim A0. In fact,
For each Cε

X,Y with deg(Cε
X,Y ) , 0, it follows from H(A) ⊆ A−d and Lemma 3.2 that∑

λ∈Λ,S ,T∈M(λ)

Cλ
S ,TCε

X,Y Dλ
T,S = 0.

This implies that H(A) is a K-span of{ ∑
λ∈Λ,S ,T∈M(λ)

Cλ
S ,TCε

X,Y Dλ
T,S | C

ε
X,Y ∈ A0

}
and consequently, dim H(A) ≤ dim A0. �

Remark 3.5. Hu and Mathas [15] proved that the blocks H Λ
β of the cyclotomic Hecke

algebras of type G(m, 1, n) are graded symmetric cellular algebras with homogeneous
trace form of degree −2defβ. Now Theorem 3.4 implies that the degree −2defβ is the
only one making H Λ

β graded symmetric cellular and the (ungraded) cell modules of
H Λ

β are nonprojective when defβ , 0.

The following example given in [19] shows that in Theorem 3.4(3) equality may
occur.

Example 3.6. Let K be a field with CharK - n + 1 and Q the quiver

•
α1 //

•
α2 //

1 α′1 2
oo • · · · •

3α′2

oo
αn−1 //

•
α′n−1n−1 n

oo

with relation ρ given as follows:

(1) all paths of length at least 3;
(2) α′iαi − αi+1α

′
i+1, i = 1, . . . , n − 2;

(3) αiαi+1, α′i+1α
′
i , i = 1, . . . , n − 2.
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Then A = K(Q, ρ) is a graded algebra in a natural way. Now we define the
homogeneous symmetrizing trace τ of A by:

(1) τ(e1) = · · · = τ(en) = 0;
(2) τ(αi) = τ(α′i) = 0, i = 1, . . . , n − 1;
(3) τ(αiα

′
i) = τ(α′iαi) = 1, i = 1, . . . , n − 1.

Then the degree of τ is −2, τ(a) = τ(a∗) for all a ∈ A, and A0 = {
∑

kiei | ki ∈ K}.
Furthermore, A is a graded symmetric cellular algebra with a homogeneous cellular
basis {Ck

i, j | 1 ≤ k ≤ n + 1, 1 ≤ i, j ≤ 2} given by

e1;
α1α

′
1 α1

α′1 e2
;
α2α

′
2 α2

α′2 e3
; · · · ;

αn−1α
′
n−1 αn−1

α′n−1 en
; α′n−1αn−1,

and the Higman ideal H(A) is generated by

{2α1α
′
1 + α2α

′
2, α1α

′
1 + 2α2α

′
2 + α3α

′
3, α2α

′
2 + 2α3α

′
3 + α4α

′
4, . . . ,

αn−3α
′
n−3 + 2αn−2α

′
n−2 + αn−1α

′
n−1, αn−2α

′
n−2 + 2αn−1α

′
n−1}.

It is easy to check that H(A) ⊂ A2 and dim H(A) = dim A0 = n.

4. Centralizer of A0

Assume that A is a finite-dimensional graded symmetric K-algebra with a
homogeneous symmetrizing trace τ of degree d. For any integer c, we set

Hc(A) :=
{ ∑

deg(xi)=c

xiayi | a ∈ A
}

and define

Hgr(A) := spanK{Hc(A) | c ∈ Z}.

Proposition 4.1. LetZA(A0) be the centralizer of A0 in A. Then Hgr(A) ⊆ ZA(A0).

Proof. Clearly, we only need to prove Hc(A) ⊆ ZA(A0) for each integer c. Assume
that deg(x j) = 0. Thanks to Lemma 2.1,∑

deg(xi)=c

x jxiayi =
∑

deg(xi)=c

∑
k

r jik xkayi,

where r jik = 0 when deg(xk) , c. This implies that∑
deg(xi)=c

x jxiayi =
∑
i,k

deg(xi)=deg(xk)=c

r jik xkayi. (∗)

Lemma 2.1 also implies ∑
deg(xi)=c

xiayix j =
∑

deg(xi)=c

∑
k

r jkixiayk,
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where r jki = 0 if deg(xk) , c and thus∑
deg(xi)=c

xiayix j =
∑
i,k

deg(xi)=deg(xk)=c

r jkixiayk. (∗∗)

Comparing equalities (∗) and (∗∗), we complete the proof. �

Now let A be a finite-dimensional graded symmetric cellular K-algebra with a
homogeneous symmetrizing trace τ of degree d and define

eλ,c :=
∑

deg(S )=c

Cλ
S ,S Dλ

S ,S .

Applying Lemmas 2.6 and 2.7, we get the following lemma.

Lemma 4.2. In the above notation eλ,ceµ,c′ = δλµδcc′kλeλ,c.

Define
Lgr(A) :=

{ ∑
λ∈Λ,c∈Z

rλ,ceλ,c | rλ,c ∈ K
}
.

Using an argument similar to the proof of [19, Propositition 3.3 (1)], we can show that
Lgr(A) is independent of the choice of τ.

Lemma 4.3. In the above notation, Lgr(A) ⊆ ZA(A0).

Proof. Clearly, we only need to prove eλ,c ∈ ZA(A0). Let Cµ
U,V be a basis element of

degree 0. Then by Lemma 2.6,∑
deg(S )=c

Cλ
S ,S Dλ

S ,S Cµ
U,V =

∑
deg(S )=c

∑
ε∈Λ,

X,Y∈M(ε)

r(U,V,µ),(X,Y,ε),(S ,S ,λ)Cλ
S ,S Dε

Y,X

=
∑

deg(S )=c

∑
X∈M(λ)

r(U,V,µ),(X,S ,λ),(S ,S ,λ)Cλ
S ,S Dλ

S ,X

=
∑

deg(S )=deg(X)=c

r(U,V,µ),(X,S ,λ),(S ,S ,λ)Cλ
S ,S Dλ

S ,X ,

where the second equality follows from Definition 2.5 and Lemma 2.6(7), and the last
one follows by comparing the degrees of both sides.

On the other hand, we have

Cµ
U,V

∑
deg(S )=c

Cλ
S ,S Dλ

S ,S =
∑

deg(S )=c

∑
ε∈Λ,

X,Y∈M(ε)

r(U,V,µ),(S ,S ,λ),(X,Y,ε)Cε
X,Y Dλ

S ,S

=
∑

deg(S )=c

∑
X∈M(λ)

r(U,V,µ),(S ,S ,λ),(X,S ,λ)Cλ
X,S Dλ

S ,S

=
∑

deg(S )=deg(X)=c

r(U,V,µ),(S ,S ,λ),(X,S ,λ)Cλ
X,S Dλ

S ,S ,

where the second and third equalities follow form Lemma 2.6(5, 7) and thus eλ,c ∈
ZA(A0) as required. �
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Notice that in Example 3.6, a direct computation yields Ck
i,iD

k
i,i ∈ ZA(A0) for i = 1,2,

k = 1, . . . , n + 1, whileZA(A0) cannot be spanned by these elements. Indeed, we have
the following fact.

Corollary 4.4. If d , 0 then Lgr(A) $ZA(A0).

Proof. Note that Lgr(A) ⊆ A−d. HenceZ(A0) is not contained in Lgr(A). �

The relationship between Hgr(A) and Lgr(A) is given by the following lemma, which
can be proved by an argument similar to the proof of [19, Theorem 3.2].

Lemma 4.5. In the above notation, Hgr(A) ⊆ Lgr(A).

Combining Lemmas 4.3 and 4.5 yields the following result.

Theorem 4.6. In the above notation, Hgr(A) ⊆ Lgr(A) ⊆ ZA(A0).

For a graded symmetric cellular algebra A, we note that Lgr(A) =ZA(A0) provides
a criterion of semisimplicity for A.

As a first step, we show that split semisimple K-algebras are graded symmetric
cellular algebras. Let S n be the symmetric group on n letters and A = Mn(K). For
σ1, σ2 ∈ S n, we set ei j = Cσ1(i)σ2( j), 1 ≤ i, j ≤ n, where ei j is the n × n matrix with only
one nonzero (i, j)-entry 1.

Proposition 4.7. Define σ = σ1σ
−1
2 and let deg be a function from {1, 2, . . . , n} to Z.

Then the basis {Ci, j | 1 ≤ i, j ≤ n} is graded cellular if and only if:

(1) σ2 = id;
(2) deg(i) = −deg(σ(i)) for 1 ≤ i ≤ n.

Proof. ‘⇒’ For all 1 ≤ j ≤ n, the cellularity of Ci, j shows

ei je jk = Cσ1(i)σ2( j)Cσ1( j)σ2(k)

= Cσ1(i)σ1( j)Cσ2( j)σ2(k)

= ei,σ−1
2 σ1( j)eσ−1

1 σ2( j),k,

which implies σ−1
2 σ1( j) = σ−1

1 σ2( j) for 1 ≤ j ≤ n, that is, (σ−1
1 σ2)2 = id. The degree

of σ−1
1 σ2 equals that of σ = σ2σ

−1
1 . Hence σ2 = id.

Since eii is an idempotent of A for all i, Cσ1(i),σ2(i) is also an idempotent. Thus
deg(σ1(i)) = −deg(σ2(i)) for all 1 ≤ i ≤ n and

deg(i) = deg(σ1(σ−1
1 (i))) = −deg(σ2(σ−1

1 (i))) = −deg(σ(i)).

‘⇐’ Firstly, we prove (GC2). We need to check that the linear map ∗ sending Ci j to
C ji is an anti-morphism of A. Note that

e∗i j = C∗σ1(i),σ2( j) = Cσ2( j),σ1(i) = eσ−1
1 σ2( j),σ−1

2 σ1(i),
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which implies (ei jekl)∗ = δ jke∗il = δ jkeσ−1
1 σ2(l),σ−1

2 σ1(i). Also

e∗kle
∗
i j = eσ−1

1 σ2(l),σ−1
2 σ1(k)eσ−1

1 σ2( j),σ−1
2 σ1(i)

= δσ−1
2 σ1(k),σ−1

1 σ2( j)eσ−1
1 σ2(l),σ−1

2 σ1(i).

Now σ2 = id = (σ−1
2 σ1) makes σ−1

2 σ1 = σ−1
1 σ2 and therefore j = k if and only if

σ−1
2 σ1(k) = σ−1

1 σ2( j), that is, δ jk = δσ−1
2 σ1(k),σ−1

1 σ2( j). As a consequence, (ei jekl)∗ =

e∗kle
∗
i j. This completes the proof of (GC2).

Secondly, we prove (GC3). According to the definition of Ci j, easy computations
yield Ci jCkl = δσ−1

2 ( j),σ−1
1 (k)Cil.

Finally, assume that Ci jCkl , 0. Then σ−1
2 ( j) = σ−1

1 (k), that is, σ( j) = k. Then
deg( j) = −deg(σ( j)) = −deg(k) implies deg(Ci jCkl) = deg(Cil). �

Corollary 4.8. In the notations of Proposition 4.7, if σ(i) = i then deg(i) = 0.

Using Proposition 4.7, A = Mn(K) is a graded symmetric cellular algebra: Λ = {�},
M(�) = {1, 2, . . . , n}. Set Ci j = ei,n− j+1 for all 1 ≤ i, j ≤ n. Then Ci jCkl = δk,n− j+1Cil

shows {Ci j | 1 ≤ i, j ≤ n} is a cellular basis of A.
Now if n > 1 is odd then we define

deg(i) =



i, i ≤
n − 1

2
,

0, i =
n + 1

2
,

i − n − 1, i ≥
n + 3

2
.

If n is even then we define

deg(i) =


i, i ≤

n
2
,

i − n − 1, i >
n
2
.

This makes {Ci j | 1 ≤ i, j ≤ n} a graded cellular basis of A. Now we define a
homogeneous K-linear map τ from A to K by

τ(Ci j) =

1, deg(Ci j) = 0,
0, otherwise.

Then τ(Ci jCkl) = δk,n− j+1δi,n−l+1 = τ(CklCi j) implies that τ(ab) = τ(ba) for all a, b ∈ A.
Clearly τ is nondegenerate. As a consequence, τ is a homogeneous symmetrizing trace
of degree 0.

Proposition 4.9. Let A =
⊕

Mni (K) be a split semisimple algebra with some ni , 1.
Then A is a graded symmetric cellular algebra with a nontrivial grading.
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Let A be a split semisimple algebra with a homogeneous symmetrizing trace of
degree d and let {Cλ

S ,T | λ ∈ Λ,S ,T ∈ M(λ)} be a homogeneous cellular basis of A. Then
k−1
λ Cλ

S ,S Dλ
S ,S is an idempotent of A (Lemma 2.7); its degree is of course 0. Lemma 3.2

gives that the degree of k−1
λ Cλ

S ,S Dλ
S ,S is −d. Hence d = 0, and we have proved the

following lemma.

Lemma 4.10. The degree of all symmetrizing traces τ of semisimple algebras is 0.

Lemma 4.11. Let A be a semisimple K-algebra with a homogeneous symmetrizing
trace τ. Then Lgr(A) =ZA(A0).

Proof. It follows from Theorem 4.6 that we only need to proveZA(A0) ⊆ Lgr(A). Since
A is semisimple, we have from Proposition 4.9 that A is graded symmetric cellular. Let
{Cλ

S ,T | λ ∈ Λ,S ,T ∈ M(λ)} be a homogeneous cellular basis of A. Note that Lemma 2.9
shows {Cλ

S ,S Dλ
S ,T | S ,T ∈ M(λ), λ ∈ Λ} is a basis of A. Assume that

a =
∑

S ,T∈M(λ),λ∈Λ

rS ,T,λCλ
S ,S Dλ

S ,T ∈ ZA(A0).

Combining Lemmas 4.10 and 3.2, deg(Cε
X,XDε

X,X) = 0 and Cε
X,XDε

X,X ∈ A0 for ε ∈ Λ,
X ∈ M(ε), and therefore∑

P∈M(ε)

rP,X,εkεCε
P,PDε

P,X =
∑
λ∈Λ,

S ,T∈M(λ)

rS ,T,λCλ
S ,S Dλ

S ,TCε
X,XDε

X,X

= Cε
X,XDε

X,X

∑
λ∈Λ,

S ,T∈M(λ)

rS ,T,λCλ
S ,S Dλ

S ,T

=
∑

Q∈M(ε)

rX,Q,εkεCε
X,XDε

X,Q,

where the first and last equalities follow by Lemmas 2.6 and 2.7.
Since A is semisimple, kε , 0 according to Lemma 2.9. Thus rP,X,ε = 0 if P , X for

ε ∈ Λ, P, X ∈ M(λ), that is, a =
∑
λ∈Λ,S∈M(λ) rS ,λCλ

S ,S Dλ
S ,S .

Now assume that P,Q ∈ M(ε) and deg(P) = deg(Q). Then Lemmas 3.2 and 4.10
imply deg(Cε

P,PDε
P,Q) = 0. Thus aCε

P,PDε
P,Q = Cε

P,PDε
P,Qa. By employing the same

argument as above, one obtains rP,ε = rQ,ε . So a ∈ Lgr(A), that is,ZA(A0) ⊆ Lgr(A). �

Lemma 4.12. Let A be a finite-dimensional graded symmetric cellular algebra and
Lgr(A) =ZA(A0). Then A is semisimple.

Proof. Since Lgr(A) = ZA(A0), we assume that 1 =
∑
ε∈Λ,c∈Z rε,ceε,c. For λ ∈ Λ, S ∈

M(λ), Lemma 4.2 implies eλ,c0 = rλ,c0 kλeλ,c0 , where c0 = deg(S ). Clearly, eλ,c0 , 0 and
consequently kλ , 0. Thus A is semisimple owing to Lemma 2.9. �

Combining Lemmas 4.11 and 4.12, we obtain the following result.

Theorem 4.13. Let A be a finite-dimensional graded symmetric cellular algebra. Then
A is semisimple if and only if Lgr(A) =ZA(A0).
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