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Liquid–bubble interaction, especially in complex two-phase bubbly flow under
breaking waves, is still poorly understood. In the present study, we perform a
large-eddy simulation using a Navier–Stokes solver extended to incorporate entrained
bubble populations, using an Eulerian–Eulerian formulation for a polydisperse bubble
phase. The volume-of-fluid method is used for free-surface tracking. We consider
an isolated unsteady deep water breaking event generated by a focused wavepacket.
Bubble contributions to dissipation and momentum transfer between the water and air
phases are considered. The model is shown to predict free-surface evolution, mean and
turbulent velocities, and integral properties of the entrained dispersed bubbles fairly
well. We investigate turbulence modulation by dispersed bubbles as well as shear- and
bubble-induced dissipation, in both spilling and plunging breakers. We find that the
total bubble-induced dissipation accounts for more than 50 % of the total dissipation
in the breaking region. The average dissipation rate per unit length of breaking crest
is usually written as bρg−1c5

b, where ρ is the water density, g is the gravitational
acceleration and cb is the phase speed of the breaking wave. The breaking parameter,
b, has been poorly constrained by experiments and field measurements. We examine
the time-dependent evolution of b for both constant-steepness and constant-amplitude
wavepackets. A scaling law for the averaged breaking parameter is obtained. The
exact two-phase transport equation for turbulent kinetic energy (TKE) is compared
with the conventional single-phase transport equation, and it is found that the former
overpredicts the total subgrid-scale dissipation and turbulence production by mean
shear during active breaking. All of the simulations are also repeated without the
inclusion of a dispersed bubble phase, and it is shown that the integrated TKE in
the breaking region is damped by the dispersed bubbles by approximately 20 % for
a large plunging breaker to 50 % for spilling breakers. In the plunging breakers, the
TKE is damped slightly or even enhanced during the initial stage of active breaking.

Key words: multiphase and particle-laden flows, turbulence modelling, wave breaking

1. Introduction
Surface wave breaking is a complex two-phase flow phenomenon that plays an

important role in numerous environmental processes, such as air–sea transfer of
gas, momentum and energy, and in a number of technical applications such as

† Email address for correspondence: derakhti@udel.edu
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Bubble entrainment and liquid–bubble interaction 465

acoustic underwater communications and optical properties of the water column.
Wave breaking is a highly dissipative process, limiting the maximum height of
surface waves. It is also a source of turbulence which enhances transport and mixing
in the ocean surface layer. It entrains a large volume of air in bubbles which rapidly
evolves into a distribution of bubble sizes which interacts with liquid turbulence
and organized motions. Several experimental studies in a vertical bubble column
(e.g. Lance & Bataille 1991) have revealed that the motion of the bubbles relative
to the liquid causes velocity fluctuations in the latter and increases the energy of
liquid motion at the scales comparable with the bubble diameter. This additional
bubble-induced turbulence, commonly called ‘pseudo-turbulence’, is more noticeable
during active breaking in which the Kolmogorov length scale is much smaller than
the mean diameter of the entrained bubbles. At larger scales, the presence of bubbles
can modify liquid turbulence by changing the velocity gradients and the associated
change in turbulence production. In addition, work done by the inhomogeneous
interfacial forces on the water column can modify larger-scale turbulent motions. In
shallow water and nearshore regions, this process becomes more complicated when
bottom effects and sediments alter the flow field. Bubble plume kinematics and
dynamics, and the structure of the turbulent bubbly flow under breaking waves are
the two main factors that come into play in all of the abovementioned processes
(Melville 1996). While the former is well studied experimentally, the liquid–bubble
interaction, i.e. the effects of dispersed bubbles on organized and turbulent motions,
is still poorly understood. There are several important reviews on the topic of wave
breaking (Banner & Peregrine 1993; Melville 1996; Duncan 2001; Kiger & Duncan
2012). Recently, Perlin, Choi & Tian (2012) summarized the different aspects of
deep water breaking waves such as geometry, breaking onset and energy dissipation.
To summarize the relevant literature on deep water breaking waves, we first review
experimental studies of bubble void fraction as well as velocity field and turbulence,
and then discuss relevant numerical studies.

Many previous researchers have measured the air void fraction in bubbly flow under
breaking waves (Lamarre & Melville 1991, 1994; Deane & Stokes 2002; Blenkinsopp
& Chaplin 2007; Rojas & Loewen 2007, 2010). Using a conductivity probe, Lamarre
& Melville (1991, hereafter referred to as LM) and Lamarre & Melville (1994)
measured time-dependent void fraction distributions in breaking waves generated
by dispersive focusing. They calculated the area, volume, mean void fraction and
centroids of the entrained dispersed bubbles (hereafter bubble plume). It was shown
that these integral properties evolved as a simple function of time and scaled fairly
well from small two-dimensional (2D) to larger three-dimensional (3D) laboratory
breaking waves. The results showed that the degassing rate was rapid, and less than
5 % of the initial entrained bubbles remained in the water column one period after
breaking. They found that the potential energy of the bubble plume can be 30–50 %
of the total energy dissipated by breaking, but this number is likely to be large due
to inadequate spatial resolution and an inappropriate choice of reference state for
the potential energy calculation. Blenkinsopp & Chaplin (2007) used two optical
fibres to measure the time-dependent void fraction under breaking waves generated
by propagating regular waves over a submerged sloping reef structure. They also
found that the integral properties of the bubble plume evolved as a simple function
of time. They showed that the bubble plume volume grew linearly to a maximum and
then decayed exponentially in time. They estimated that the work required to entrain
bubbles against buoyancy was approximately 4–9 % of the total dissipation. Rapp &
Melville (1990, hereafter referred to as RM) used a laser doppler velocimetry (LDV)
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466 M. Derakhti and J. T. Kirby

and measured ensemble-averaged mean and turbulent velocities on a regular grid
in the breaking region of a focused wavepacket. They found energy dissipation by
breaking from 10 % to more than 25 % of pre-breaking wave energy for spilling and
plunging breakers respectively. Drazen & Melville (2009) used a digital particle image
velocimetry and investigated the post-breaking velocity field and turbulence. Results
were reported starting approximately three periods after breaking in which nearly
all of the entrained bubbles were degassed and most of the energy was dissipated.
Ensemble-averaged quantities such as mean and turbulent velocity, turbulent kinetic
energy (TKE) and Reynolds stress were presented.

Previous experimental studies of bubble-induced turbulence and liquid–bubble
interaction have mostly been made in a vertical bubble column with a homogeneous
swarm of bubbles released at the bottom of a tank. Numerical models, on the other
hand, make it possible to study liquid–bubble interaction under breaking waves. In
general, we can divide Eulerian–Eulerian numerical models of bubbly flows into
discrete and continuum models. In the discrete models, the interface between an
individual bubble and the liquid is resolved, with the possible resolved bubble
diameters limited to the grid resolution. To account for bubble size distribution
under breaking waves, we need to have a very fine grid resolution about two orders
of magnitude smaller than typical large-eddy simulation (LES) resolution. In the
continuum models, instead, the interface between an individual bubble and the liquid
is not resolved, and the interfacial momentum transfers are considered using statistical
closure models. A critical issue in this approach, especially under breaking waves,
is accurate introduction of air bubbles into a model using a bubble entrainment
formulation (Moraga et al. 2008; Shi, Kirby & Ma 2010; Ma, Shi & Kirby 2011).

As summarized by Perlin et al. (2012), most two-phase numerical simulations for
deep water breaking waves are limited to the evolution of a periodic unstable wave
train with relatively low Reynolds numbers (∼104) and short wavelengths (<0.3 m)
(Chen et al. 1999; Song & Sirviente 2004; Lubin et al. 2006; Iafrati 2009, 2011).
This artificial way of leading a wave train to breaking has an advantage in that it
represents a more compact computational problem. However, it is not possible to
make comparisons with experimental data, except in a qualitative sense. In addition,
it is well known that, at such a short scale, surface tension significantly affects the
breaking process and fragmentation of bubbles and droplets. Furthermore, although
wave breaking is initially a fairly 2D event, the entrainment process is highly 3D
even in the case of a small-scale plunger where surface tension appears to be playing
a strong role, as shown by Kiger & Duncan (2012). Thus, 2D frameworks cannot
accurately account for the development of the turbulent flow or the bubble transport
and vorticity evolution during and after breaking. These issues suggest that the
extension of the results to larger scales has to be carried out rather cautiously. In
these discrete numerical studies, the Navier–Stokes equations are solved in both air
and water with a relatively fine spatial resolution that can resolve cavity fragmentation
to some extent. Iafrati (2009) made a 2D direct numerical simulation (DNS) of the
two-fluid Navier–Stokes equations combined with a level-set method to capture
the interface. He examined the effects of breaking intensity (with initial steepness
over the range 0.2–0.65) on the resulting flow. It was concluded that the majority
of energy dissipation occurs locally in the region of small bubbles generated by
the fragmentation of the air cavity entrapped by the plunging jet. Iafrati (2011)
continued his previous work with a focus on the early stage of breaking. The different
contributions to energy dissipation were estimated for different initial steepnesses. He
found, in the plunging cases, that a fraction of between 10 % and 35 % of the energy
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Bubble entrainment and liquid–bubble interaction 467

dissipated during breaking was spent in entraining the air cavity against the action
of buoyancy force, and most of it was dissipated by viscous effects when the cavity
collapsed.

The first attempt to use a continuum type model for studying bubbly flow under
surface breaking waves was made by Shi et al. (2010). They used a 2D volume-
of-fluid (VOF)-based mixture model, with a k–ε turbulence closure, to study bubble
evolution in an isolated unsteady breaking wave in a laboratory-scale event. Here,
k represents the turbulent kinetic energy, and ε represents the turbulent dissipation
rate. They used a bubble entrainment formula which connected shear production at
the air–water interface (Baldy 1993) and the bubble number density with the bubble
size distribution suggested by Deane & Stokes (2002). The bubble velocities were
calculated directly by adding the rise velocities to the liquid velocity. They argued that,
with an appropriate parameter in the bubble entrainment formula, the model is able to
predict the main features of bubbly flows, as evidenced by reasonable agreement with
the measured void fraction. Ma et al. (2011) incorporated a polydisperse two-fluid
model into the VOF-based Navier–Stokes solver TRUCHAS (Rider & Kothe 1998).
They proposed an entrainment model that connected the bubble entrainment with ε
at the air–water interface. The model was tested against the laboratory experimental
data for an oscillatory bubble plume and the bubbly flow under a laboratory surf zone
breaking wave using 2D simulations with a k–ε turbulence closure in conjunction with
additional terms to account for bubble-induced turbulence. The exponential decay in
time of the void fraction observed in the laboratory experiments was captured by the
model. The kinematics of the bubble plume as well as the evolution of the bubble size
spectrum over depth were investigated. Kirby et al. (2012) and Ma (2012) extended
the model to an LES framework with a constant Smagorinsky subgrid formulation
for turbulence closure. They investigated surf zone breaking waves and found that the
presence of bubbles suppresses liquid phase turbulence and enstrophy.

Here, we extend the Eulerian–Eulerian polydisperse two-fluid model of Ma et al.
(2011) to an LES framework with the dynamic Smagorinsky subgrid formulation for
turbulence closure. To carefully validate the model against the detailed experimental
studies as well as decrease the scale effects, the laboratory-scale breaking waves
generated by a focused wavepacket are selected. In this paper, we concentrate
on spanwise-averaged quantities. Dispersed bubble effects on the organized and
turbulent motions and the different dissipation mechanisms are investigated. The 3D
characteristics of the process, including breaking-induced coherent structures and
their interaction with the entrained bubbles, are left for a subsequent paper. A more
detailed description of convergence tests and model verifications may be found in
Derakhti & Kirby (2014).

In § 2, the mathematical formulations and main assumptions are discussed. In § 3,
the corresponding experiments and model set-up for the 3D simulations are explained.
In § 4, the results of the 3D simulations are presented. Conclusions are given in § 5.

2. Mathematical formulation and numerical method
Using the multi-group approach explained by Carrica et al. (1999), bubbles are

divided into NG groups with a characteristic diameter, and the filtered polydisperse
two-fluid model is derived based on the filtered monodisperse two-fluid model of
Lakehal, Smith & Milelli (2002). In this section, we quickly review the traditional
two-fluid model as well as work by Lakehal et al. (2002), and then the extension
to the polydisperse two-fluid model and the corresponding main assumptions are
discussed.
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468 M. Derakhti and J. T. Kirby

2.1. The filtered two-fluid equations
The filtered two-fluid model is obtained by applying a certain averaging process on
the microscopic instantaneous equations governing each phase evolving in the mixture.
The conservation laws for each phase can be written using the phase indicator function
χ(x, t) at time t and point x, defined by (Drew 1983),

χ k(x, t)=
{

1 if x lies in phase k at time t,
0 otherwise,

(2.1)

to determine the volumes occupied by each phase. Here, k refers either to the gas
phase or to the liquid phase. In the absence of heat and mass transfer, the continuity
and momentum equations for each phase can be written as

∂

∂t
(χ kρk)+ ∂

∂xj
(χ kρkuk

j )= 0, (2.2)

∂

∂t
(χ kρkuk

i )+
∂

∂xj
(χ kρkuk

i u
k
j )= χ k ∂

∂xj
Π k

ij + χ kρkgi, (2.3)

where ρk is the phase density, uk is the phase velocity and g is the gravitational
acceleration. The phase net stress, composed of the pressure contribution, pk, and the
viscous stress σ k

ij , is defined by Π k
ij =−pkδij + σ k

ij . In a Newtonian fluid,

σ k
ij = ρkνk

(
∂uk

i

∂xj
+ ∂uk

j

∂xi

)
, (2.4)

where νk is the phase kinematic viscosity. Within the LES framework, a filtering
process is utilized which is defined by

f (x)=
∫

D
G(x− x′;∆)f (x′)d3x′, (2.5)

where D is the domain of the flow, G(x− x′;∆) represents a spatial filter and ∆ is the
filter width which should strictly be larger than the characteristic length scale of the
dispersed phase. On the other hand, ∆ should be small enough to resolve mean flow
and at least 80 % of the TKE. To meet the latter in LES of small-scale breaking events,
as in the present study, we need to have ∆∼O(1 cm), which is close to the bubble
diameters of the upper range of the typical observed bubble size distribution. At larger-
scale breaking events, however, larger values for the filtered width may be chosen, and
thus the whole range of bubble diameters can be considered using the polydisperse
approach. With this operator, the volume fraction of phase k can be defined by

αk(x)= χ k(x). (2.6)

As carried out by Lakehal et al. (2002), the filtered equations are obtained by adopting
a component-weighted volume-averaging procedure, in which

f̃ k = χ
kf k

χ k
= χ

kf k

αk
. (2.7)
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By applying the above definition to (2.2) and (2.3) and ignoring surface tension effects,
the filtered Eulerian–Eulerian equations are obtained (Lakehal et al. 2002),

∂

∂t
(αkρk)+ ∂

∂xj
(αkρkũk

j )= 0, (2.8)

∂

∂t
(αkρkũk

i )+
∂

∂xj
(αkρkũk

i ũ
k
j )=

∂

∂xj
αk[Π̃ k

ij − ρkτ k
ij ] + αkρkgi +Mk, (2.9)

where ˜( ) is the filter operation (2.7), Mk = Π k
ijnk

j δ(x− xI) are the pure interfacial
forces resulting from filtering, where nk

j is the normal unit vector pointing outward
of phase k, δ is the Dirac distribution identifying the interface location with xI and

τ k
ij = ũiuj

k − ũk
i ũ

k
j (2.10)

is the subgrid-scale (SGS) stress. Interphase momentum exchange Mk and SGS stress
τ k

ij are the two unresolved terms in (2.9); our treatment of them will be explained
in the following sections. Equations (2.8) and (2.9) can be easily extended for the
polydisperse two-fluid model by neglecting the momentum exchange between bubble
groups as in Carrica et al. (1999) and Ma et al. (2011). To simulate polydisperse
bubbly flow, the dispersed bubble phase is separated into NG groups. Each group has
a characteristic bubble diameter db

k , k = 1, 2, . . . , NG, and a corresponding volume
fraction αb

k . By definition, the volume fraction of all of the phases must sum to one:

αl +
NG∑
k=1

αb
k = 1, (2.11)

where the superscripts l and b refer to the liquid and bubble phases respectively. The
volume fraction of the kth bubble group is related to the bubble number density Nb

k
by

αb
k =

mb
kNb

k

ρb
, (2.12)

where mb
k is the mass of the kth bubble group, Nb

k is the number density of the kth
bubble group and ρb is the bubble density, which is assumed to be constant. The
governing equations consist of mass conservation for the liquid phase,

∂(αlρ l)

∂t
+ ∂

∂xj
(αlρ lũl

j)= 0, (2.13)

momentum conservation for the liquid phase,

∂(αlρ lũl
i)

∂t
+ ∂

∂xj
(αlρ lũl

iũ
l
j)=−

∂

∂xj
(αlp̃)δij + αlρ lgi + ∂

∂xj

[
αl(σ̃ l

ij − ρτ l
ij)
]+Mgl, (2.14)

the bubble number density equation for each bubble group,

∂Nb
k

∂t
+ ∂

∂xj
(ũb

k,jN
b
k )= Bb

k + Sb
k +Db

k, k= 1, . . . ,NG (2.15)
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and the momentum conservation for each bubble group,

0=− ∂

∂xj
(αb

k p̃)δij + αb
kρ

bgi +Mlg
k , k= 1, . . . ,NG, (2.16)

in which we neglect the inertia and shear stress terms in the gas phase following
Carrica et al. (1999) and Ma et al. (2011). Here, ρ l is assumed to be constant; p̃ is
the filtered pressure, which is identical in each phase due to the neglect of interfacial
surface tension; Bb

k is the source for the kth bubble group due to air entrainment,
and Sb

k is the intergroup mass transfer, which only accounts for bubble breakup in
the present study (Moraga et al. 2008; Ma et al. 2011). The bubble breakup model
proposed by Martínez-Bazán et al. (2010) is employed. Here, Db

k = νb(∂Nb
k /∂xj)

stems from filtering the exact bubble number density equation and represents the
SGS diffusion for the kth bubble group with bubble diffusivity, νb, given by (2.31)
below; Mgl and Mlg

k are the momentum transfers between phases, which satisfy the
following relationship:

Mgl +
NG∑
k=1

Mlg
k = 0. (2.17)

2.2. Interfacial momentum exchange
For a single particle moving in a fluid, the force exerted by the continuous phase on
the particle includes drag, lift, virtual mass and Basset history forces. These forces are
well established in the literature for both laminar and turbulent flows (Clift, Grace &
Weber 1978; Maxey & Riley 1983, among many others). By neglecting the Basset
history force, the filtered interfacial forces can be formulated as follows:

Mlg
k = f̃

VM
k + f̃

L
k + f̃

D
k , (2.18)

where the filtered virtual mass force f̃
VM
k , the filtered lift force f̃

L
k and the filtered drag

force f̃
D
k are approximated as (Lakehal et al. 2002)

f̃
VM
k ≈ αb

kρ
lCVM

(
Dũl

Dt
− Dũb

k

Dt

)
,

f̃
L
k ≈ αb

kρ
lCL(ũl − ũb

k)× (∇× ũl
),

f̃
D
k ≈ αb

kρ
l 3
4

CD

db
k
(ũl − ũb

k)|ũl − ũb
k|,


(2.19)

where D/Dt is the material derivative defined in terms of the Eulerian velocity field,
CVM is the virtual mass coefficient with a constant value of 0.5, CL is the lift force
coefficient chosen as 0.5 and CD is the drag coefficient given by (Clift et al. 1978)

CD =


24
Rek

(1+ 0.15Re0.687
k ) for Rek < 1000,

0.44 for Rek > 1000,
(2.20)

where Rek= (db
k | ũl − ũb

k |)/ν l is the bubble Reynolds number of the kth group. In pure
water, with no contamination, the bubble drag coefficient is smaller than that in (2.20).
As explained by Clift et al. (1978), the presence of surfactants, which is usually the
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case in laboratory conditions and the real world, increases the drag force so that the
drag corresponds frequently to that of a solid sphere of the same size as given by
(2.20). Finally, an inherent assumption in (2.19) is that SGS effects on the interfacial
forces are assumed to be negligibly small.

2.3. Bubble entrainment model
Kiger & Duncan (2012) reviewed the mechanisms of air entrainment in plunging jets
and breaking waves. As already mentioned, a detailed examination of the process of
bubble entrainment needs much more computational resolution than we are employing.
Instead, dispersed bubbles are introduced into the water column using an entrainment
model. Ma et al. (2011) correlated the bubble entrainment rate with the shear-induced
turbulence dissipation rate, εl, which is available in the Reynolds-averaged Navier–
Stokes framework. In the present LES framework, we use the formulation of Ma
et al. (2011) but change εl to the shear-induced production rate of SGS kinetic energy,
εl

sgs,SI (sometimes called the SGS dissipation rate), which represents the rate of transfer
of energy from the resolved to the SGS motions, given by (2.30). For polydisperse
bubbles, the formulation is

Bb
k =

cen

4π

(
σ

ρ l

)−1

αl

 f (ak)1ak
NG∑
k=1

a2
k f (ak)1ak

 εl
sgs,SI, (2.21)

where cen is the bubble entrainment parameter and has to be calibrated in the
simulation. Here, σ is the surface tension coefficient, ak is the characteristic radius
of each bubble group, 1ak is the width of each bubble group and f (ak) is the
bubble size spectrum. Deane & Stokes (2002) used a high-speed video camera to
measure the bubble size distribution under the laboratory-scale breaking imposed by
the focused wave method in seawater. They divided the entrainment process into two
distinct mechanisms controlling the bubble size distribution. The first is turbulent
fragmentation of the entrapped cavity, which is largely responsible for bubbles larger
than the Hinze scale, leading to a bubble number density proportional to aα1 , where a
is the bubble radius. The second is jet interaction and drop impact on the wave face,
resulting in smaller bubbles with a number density proportional to aα2 . Their results
showed that initially the size spectrum slopes are α1 = −10/3 and α2 = −3/2, with
considerable decrease at later times in the quiescent phase. The initial bubble size
spectrum (2.22) directly affects the size-dependent liquid–bubble interaction. Bubbles
with radii smaller than the Hinze scale contribute approximately a few per cent of
the total entrained bubbles with smaller dynamical effects due to relatively smaller
diameter and rising velocity. Thus, the size spectrum slope for the larger bubbles,
α1, is more important and need to be chosen accurately. Different experimental
studies under laboratory-scale unsteady breaking waves (Loewen, O’Dor & Skafel
1996; Rojas & Loewen 2007) found similar values for α1 in both freshwater and
saltwater. In addition, Ma et al. (2011) employed a bubble breakup model proposed
by Martínez-Bazán et al. (2010) and showed that the model reproduced the −10/3
dependence for bubbles greater than the Hinze scale, consistent with the observation
of Deane & Stokes (2002). As in Ma et al. (2011), we use the size spectrum
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suggested by Deane & Stokes (2002),

f (a)∝
{

a−10/3 if a> ah,

a−3/2 if a 6 ah,
(2.22)

where ah= 1.0 mm is taken to be the Hinze scale, to initially distribute the generated
bubbles across the NG bubble groups. This initial distribution is merely a convenience
in that the bubble breakup model of Martínez-Bazán et al. (2010) rapidly redistributes
large bubbles to fit this distribution, as shown by Ma et al. (2011). Bubbles are
entrained at the free-surface cells if εl

sgs,SI is larger than a critical value, εl
c, which is

set to 0.01 m2 s−3. The threshold value, εl
c, is imposed to avoid unphysical bubble

entrainment, especially after active breaking. We note that if we change εl
c by a factor

of 2 or so, the change of entrained bubbles during active breaking is negligibly small.

2.4. Subgrid-scale model
The turbulent velocities in the continuous phase can arise from (a) bubble agitations,
e.g. turbulent wakes behind individual bubbles, and (b) large-scale flow instabilities,
e.g. shear-induced instability (Fox 2012). In a continuum LES framework in which
individual bubbles are not resolved and the filter width is in the inertial subrange, the
main dissipative scales of motions are not resolved, and then transfer of the energy
from the resolved to subgrid scales through shear- and bubble-induced dissipation
should be modelled appropriately. The most widely used and simplest SGS model
is the Smagorinsky model (Smagorinsky 1963), in which the anisotropic part of the
SGS stress τ l,d

ij is related to the resolved rate of strain,

τ l,d
ij ≡ τ l

ij −
δij

3
τ l

kk =−2ν l
sgsS̃

l
ij, (2.23)

where S̃ l
ij = 1

2(∂ ũl
i/∂xj + ∂ ũl

j/∂xi) is the resolved rate of strain and ν l
sgs = ν l

SI + ν l
BI is

the eddy viscosity of the SGS motions calculated using linear superposition of both
the shear-induced, ν l

SI , and bubble-induced, ν l
BI , viscosities (Lance & Bataille 1991).

As in single-phase flow, we take

ν l
SI = (Cs∆̃)

2 ˜|S |, (2.24)

where Cs is the Smagorinsky coefficient, ∆̃ = (1x1y1z)1/3 is the width of the grid

filter and ˜|S | =
√

2S̃ l
ijS̃

l
ij is the norm of the resolved strain rate tensor.

The Cs can be chosen as a constant (0.1–0.2) or determined dynamically. Although
the constant Smagorinsky model (CSM) is fairly good at fully turbulent flows with
simple geometries (e.g. turbulent channel flow), it is too dissipative near the wall
as well as in laminar and transition flows. A near-wall function can be used to
give better behaviour close to walls, but the extra dissipation cannot be removed in
transitional turbulence generated under breaking waves. In the case of deep water
unsteady breaking, this is more important because we have a localized unsteady
TKE plume with relatively high intensity at the initial stage of the breaking, which
gradually becomes more uniform and is mixed down to a greater depth. Shen & Yue
(2001) studied the interaction between a turbulent shear flow and a free surface at
low Froude numbers using single-phase Navier–Stokes equations. The DNS results
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showed that the amount of energy transferred from the grid scales to the SGS
reduced significantly as the free surface was approached. As a result, the coefficient
Cs should decrease towards the free surface (Shen & Yue 2001, figure 6a), which is
not captured in the CSM and leads to excessive dissipation near the free surface. The
dynamic Smagorinsky models (DSMs), on the other hand, provide a methodology for
determining an appropriate local value for Cs, where the turbulent viscosity converges
to zero when the flow is not turbulent and no special treatment is needed near the
wall or in laminar and transitional regions. In addition, the DSM is able to capture
the anisotropy and the decrease of Cs near the free surface as seen in DNS results.
In the present study, we use the dynamic procedure of Germano et al. (1991) with
a least-square approach suggested by Lilly (1992) to compute (Cs)

2 based on double
filtered velocities as

(Cs)
2 =− LijMij

2∆̃2MijMij
, (2.25)

where
Lij =̂̃ul

iũl
j − ̂̃ul

i
̂̃ul

i and Mij = α2̂̃|S |̂̃Sij − ̂̃|S |S̃ij. (2.26a,b)

Here, ̂ represents the test scale filter with α= ∆̂/∆̃> 1. We use the box filter given
in Zang, Street & Koseff (1993, appendix A) with α=2. As pointed out by Zang et al.
(1993) and others, the locally computed values from (2.25) have large fluctuations and
cause numerical instability especially in the case of negative diffusivity. To cope with
this problem, averaging in a homogeneous direction (Germano et al. 1991; Vremen,
Geurts & Kuerten 1997) or, in a more general case, local averaging (Zang et al. 1993)
should be applied. We perform local averaging and set negative values to zero as in
Vremen et al. (1997).

The effect of SGS bubble-induced turbulence is added in the form of a bubble-
induced viscosity, ν l

BI (Lance & Bataille 1991; Fox 2012). We use the well-known
model proposed by Sato & Sekoguchi (1975), given by

ν l
BI =Cµ,BI

NG∑
k=1

αb
k db

k |ũr,k|, (2.27)

where the model constant Cµ,BI is equal to 0.6 and ũr,k is the resolved relative
velocity between the kth bubble group and the liquid phase. In regions of high void
fraction, (2.27) may underestimate the bubble-induced viscosity due to bubble–bubble
interactions, and then SGS pseudo-TKE. Using (2.4) and (2.23), the σ̃ l

ij − ρ lτ l
ij term

in (2.14) can be written in the form of effective viscosity as

σ̃ l
ij − ρ lτ l

ij = σ̃ l
ij − ρ l

(
τ l,d

ij +
δij

3
τ l

kk

)
, σ̃ l

ij − ρ lτ l,d
ij = 2ρ lν l

eff S̃ij, (2.28a,b)

where
ν l

eff = ν l + ν l
sgs = ν l + ν l

SI + ν l
BI. (2.29)

The ρ l(δij/3)τ l
kk term can be absorbed in the pressure term. We write εl

sgs,SI in (2.21)
as

εl
sgs,SI = 2ν l

SIS̃ijS̃ij = ν l
SI|S̃ |

2
. (2.30)

To compute Db
k in (2.15), the bubble diffusivity, νb, is given by

νb = ν
l
sgs

Scb , (2.31)

where Scb is the Schmidt number for the bubble phase, taken equal to 0.7.
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2.5. Free-surface tracking

The VOF method with the second-order piecewise linear interface calculation (PLIC)
scheme (Rider & Kothe 1998) is employed to track the free-surface location. A
linearity-preserving piecewise linear interface geometry approximation ensures that
the generated solutions retain second-order spatial accuracy. Second-order temporal
accuracy is achieved by virtue of a multidimensional unsplit time integration scheme.
In the VOF approach, an additional equation for the fluid volume fraction ψ is solved,

∂ψ

∂t
+∇ · (ũl

ψ)= 0, (2.32)

where ψ is the volume fraction of the water within a computational cell. If ψ = 1,
the cell is inside the water, while if ψ = 0, the cell is outside the water; otherwise,
the cell is at the air (or void)–water interface, and ψ = 0.5 determines the position of
the free surface.

2.6. Boundary conditions

We do not solve the Navier–Stokes equations in any cell where ψ = 0 and treat
it as a void with zero density. Instead, the pressure remains unchanged and all of
the velocity components are set to zero, which implies zero stress at the void–water
interface. Due to the zero-stress assumption, the energy transfer between water and
air is ignored. At the top boundary, the pressure is set to zero and then the whole
void area has zero pressure. As in Watanabe, Saeki & Hosking (2005) and Christensen
(2006), we ignore surface tension, which leads to homogeneous boundary conditions
for shear and pressure at the free surface. To correctly account for the actual flume
geometry, a no-slip condition is imposed along the solid side walls and bottom (see
§ 2.8). The DSM gives zero turbulent viscosity near the wall and does not need any
special treatment such as a near-wall damping function. A sponge layer is used to
reduce wave reflection from the downstream boundary. At the upstream boundary, the
appropriate inflow condition is imposed. The input wavepacket is composed of 32
sinusoidal components of steepness aiki, where the ai and ki are the amplitude and
wavenumber of the ith component. Based on linear superposition and by imposing
that the maximum η occurs at xb and tb, the total surface displacement at the inlet is
given by (see RM § 2.3)

η(0, t)=
N=32∑
i=1

ai cos[2πfi(t− tb)+ kixb], (2.33)

where fi is the frequency of the ith component. Here, xb and tb are the predefined
location and time of breaking respectively. The discrete frequencies fi were uniformly
spaced over the band 1f = fN − f1 with a central frequency defined by fc = (fN −
f1)/2. Different global steepnesses, S =∑N=32

i=1 aiki, and bandwidths, 1f /fc, lead to
spilling or plunging breaking, where increasing S and/or decreasing 1f /fc increases
the breaking intensity. (See Drazen, Melville & Lenain (2008) for more details.) The
free surface and velocities of each component are calculated using linear theory and
then superimposed at x= 0.
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2.7. Numerical method
The 3D VOF unstructured finite volume code TRUCHAS (Rider & Kothe 1998) was
extended to incorporate the polydisperse bubble phase (Ma et al. 2011) and different
turbulent closures. The details of the numerical method are given in Ma et al. (2011).
To summarize, the algorithm involves the following steps.

(a) Material advection (the VOF model): the material interfaces are reconstructed
using PLIC and interface normals are determined. The movement of the material
between cells is based on combining the reconstructed geometry obtained from
the PLIC algorithm with the normal component of the fluid velocities located on
the faces of all mesh cells.

(b) Solve the bubble number density and update the volume fractions: we use the
bubble velocity at the previous time step to solve (2.15) and then update the
volume fractions obtained from (2.11) and (2.12).

(c) Velocity prediction: the intermediate predicted velocities are calculated with
updated volume fractions by a forward Euler step in time. This step incorporates
an explicit approximation to the momentum advection, body force and pressure
gradient. These are updated in the correction step. Viscous forces are treated
implicitly and then are averaged between the previous time step and the predicted
step.

(d) Pressure solution and velocity correction: the Poisson equation for pressure
correction is solved using the preconditioned generalized minimal residual
(GMRES) algorithm to satisfy the solenoidal condition.

(e) Bubble velocity calculation: using (2.16), the bubble velocities are calculated
based on the updated fluid velocities.

2.8. Reynolds decomposition of the resolved fields
The Reynolds decomposition of any field variable, φ, can be written as φ = 〈φ〉 + φ′,
where 〈.〉 represents the ensemble-averaged or organized flow and φ′ is the turbulent
fluctuation about this average. Similarly, for the resolved field variable, φ̃ = φ − φsgs,
we can define φ̃ = 〈φ̃〉 + φ̃′, then

φ′ = φ − 〈φ〉 = φ̃ + φsgs − 〈φ̃ + φsgs〉 = φ̃′ + φsgs − 〈φsgs〉, (2.34)

where the SGS part is unresolved and its magnitude can only be estimated. Although
ensemble averaging is practical in experimental studies, it is tedious in the numerical
simulation due to the long computational times involved. The averaged variable in
the homogenous direction (here the y direction) can be interpreted as an organized
motion and the deviation from this average as the turbulent fluctuation. By this
assumption, the ensemble averaging is approximated by the spanwise averaging, and
enough grid points in the spanwise direction are needed to obtain a stable statistic.
Christensen & Deigaard (2001) and Lakehal & Liovic (2011) used averaging on
approximately 40 grid points in the spanwise direction to study turbulence under surf
zone breaking waves, where the lateral boundary conditions were periodic. We use a
no-slip boundary condition for the side walls and, because of wall effects, we should
not perform the averaging through the entire grid. We ignore 20 grid points near each
wall, and then averaging is performed on the remaining grid points,

〈φ̃(i, k)〉 ≈ ¯̃φ(i, k)=
Ny−20∑
j=21

1
Ny − 40

φ̃(i, j, k), (2.35)
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Case no. d (m) S fc (s−1) 1f /fc tb (s) xb (m) tob (s) xob (m) Exp.

P1 0.6 0.54 0.88 1.0 14.4 6.0 14.66 7.35 LM
P2 0.6 0.45 0.88 1.0 14.3 6.7 14.44 7.58 LM

SP1 0.6 0.38 0.88 1.0 14.3 6.7 14.68 7.85 LM
S1 0.6 0.36 0.88 1.0 14.3 6.7 14.79 7.95
P3 0.6 0.352 0.88 0.73 20.5 8.46 19.04 8.35 RM
S2 0.6 0.278 0.88 0.73 20.5 7.46 21.41 9.15 RM

TABLE 1. Input parameters for the simulated cases.

Similar case no. d (m) S fc (s−1) 1f /fc Exp.

∼P1 0.6 0.50 0.88 0.73 Rojas & Loewen (2010)
∼P3 0.6 0.36 1.08 0.75 Drazen & Melville (2009)

TABLE 2. Input parameters for the experiments that are similar to the simulated cases.

where Ny is the number of grid points in the spanwise direction and ¯( ) represents
the spanwise averaging. Then we can write

φ̃′ = φ̃ − ¯̃φ and φ̃rms = [φ̃′2]1/2, (2.36a,b)

where φ̃rms is the resolved r.m.s. (root-mean-square) of the turbulent fluctuations.
In § 4.2 we will show that (2.35) gives good results compared with the ensemble-
averaged measurements of RM.

3. Numerical simulations
We simulate all three cases in LM and two cases in RM, where the dispersive

focusing method was used to generate breaking. Table 1 summarizes the input
parameters of the simulated test cases, where d is the still water depth, and tob and
xob are the time and location at which the forward-moving jet hits the undisturbed
free surface in plunging breakers, or a bulge is formed in the profile at the crest
on the forward face of the wave in spilling breakers. Here, tob and xob are slightly
different from the linear theory prediction of tb and xb defined in (2.33). The other
parameters have been defined in § 2.6.

Besides the corresponding experiments in table 1, we also consider the void fraction
measurements by Rojas & Loewen (2010) and the high-resolution post-breaking
turbulence and velocity measurements by Drazen & Melville (2009). The experimental
set-ups in these two works are similar to the simulated cases, as summarized in
table 2.

Unless otherwise indicated, the references for time, x and z directions are tob,
xob and still water level, respectively. This is consistent with the corresponding
measurements and makes comparison easier. The normalized time, locations and
velocities can then be written as

x∗ = x− xob

Lc
, z∗ = z− d

Lc
, t∗ = t− tob

Tc
, u∗ = u

Cc
, (3.1a−d)

where Tc, Lc and Cc are the period, wavelength and phase speed of the centre
frequency wave of the input packet respectively.
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Case no. Domain size (m) Mesh size Mesh resolution (mm)

P1 (15.0, 0.63, 0.864) 650× 90× 124 (23.1, 7.0, 7.0)
P2 (15.0, 0.63, 0.864) 650× 90× 124 (23.1, 7.0, 7.0)

SP1 (15.0, 0.63, 0.84) 650× 90× 120 (23.1, 7.0, 7.0)
S1 (15.0, 0.63, 0.84) 650× 90× 120 (23.1, 7.0, 7.0)
P3 (15.0, 0.63, 0.80) 650× 90× 114 (23.1, 7.0, 7.0)
S2 (15.0, 0.63, 0.77) 720× 90× 110 (20.8, 7.0, 7.0)

TABLE 3. Numerical set-up for the 3D LES cases.

Liquid density, ρ l 1000 kg m−3 Virtual mass coef. (2.18), CVM 0.5
Air density, ρb 1.20 kg m−3 Entrainment parameter (2.20), cen 0.36

Gravity, g 9.81 m s−2 Surface tension (2.20), σ 0.072 N m−1

Water dynamic viscosity, µl 10−6 m2 s−1 Test scale filter ratio (2.25), α 2
Lift force coef. (2.18), CL 0.5 Schmidt number (2.30), Scb 0.7

TABLE 4. Model input parameters for the 3D LES cases.

3.1. Model set-up
As summarized in table 3, the longitudinal domain size in all the simulations is 15 m.
Depending on the breaker height, the domain size in the vertical direction is between
0.77 and 0.864 m. Finally, the domain size in the spanwise direction is 0.63 m. Based
on the 2D and 3D grid dependence studies by Derakhti & Kirby (2014), a mesh
resolution of (1x, 1y, 1z)= (23.1, 7.0, 7.0) mm is chosen for the 3D simulations, as
summarized in table 3. Bubbles are divided into NG = 20 groups with a logarithmic
distribution of bubble sizes (similarly to Ma et al. 2011), where the maximum and
minimum bubble diameters are taken as 8 mm (∆̃/db > 1.3) and 0.2 mm, consistent
with the observation by Deane & Stokes (2002). We use the same model parameters
for all of the simulations, as summarized in table 4. All the 3D simulations are then
repeated without the inclusion of a dispersed bubble phase to examine the effects
of dispersed bubbles on the organized and turbulent motions as well as the energy
dissipation. For simplicity, hereafter we drop ˜(.) for all of the resolved variables.

4. Results
4.1. Bubble entrainment and transport

4.1.1. Three-dimensional free-surface evolution and entrainment mechanisms
In a plunging breaker, the finger-shaped falling jet hits the forward face of the

wave and both backward and forward splashes are formed. Based on the initial
breaker intensity, the splash generation can be continued several times, and finally
a bore-like region is formed and propagates downstream. In a spilling breaker, the
jet and splashes are weak, and a bore-like front propagation is the main dominant
feature. We can define three main entrainment mechanisms in a plunging breaker:
cavity entrapment, jet/splash impacts and entrainment in the bore-like region, where,
in a spilling breaker, the last one is the most important one. The entrained cavity
will be fragmented into some large air pockets which may outgas quickly or be
further fragmented by turbulence into different bubble sizes down to the Hinze scale.
It should be noted that, under a 3D breaker, the air can escape laterally, leading
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FIGURE 1. (Colour online) Snapshots of the free-surface (isosurface of ψ = 0.5) evolution
for P1 (S= 0.54).

to smaller cavity entrainment than the considered experiments which are performed
in narrow flumes. To directly capture the details of these entrainment mechanisms
we need to have small spatial and temporal resolution that is intractable in the 3D
simulation of large laboratory-scale breaking events.

Figure 1 shows snapshots of the free-surface evolution for the large plunging
breaker P1. It is clear that the model captures the overturning jet impact, splash-up
process and formation of a bore-like region. The finger-shaped structures (Saruwatari,
Watanabe & Ingram 2009) can be seen in the forward splash. When the jet hits the
forward face of the wave, backward and forward splashes are generated and reach
an elevation higher than the primary wave height. Local rise and depression of the
surface (scars) is one of the typical features behind the progressive bore and can be
seen in figure 1(d), where the bore front is formed and propagates downstream.

While large bubbles outgas quickly, small bubbles are preferentially entrained into
the coherent vortices generated during breaking and transported vertically by turbulent
motions, and may remain in the water column for a long time. Bubbles entrained by
a plunging breaker can be divided into three distinct clouds. Figure 2 shows the first
and second bubble cloud generation and evolution during and after active breaking for
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FIGURE 2. (Colour online) Snapshots of the 3D bubble plume (isosurface of αb= 0.1 %)
evolution in the breaking region for P3 (S= 0.352). (a) Side view of the 3D results and
(b) photographs of the corresponding experiment adopted from RM, figure 10.

the plunging breaker P3. Comparing with the photographs taken in the corresponding
experiment by RM, the model fairly accurately predicts the evolution of these separate
bubble clouds. The third cloud which is generated by the progressive bore front is
located outside of the frames shown. Figure 3 shows the 3D bubble plume evolution
for P1, in which the two semicircular clouds are related to the two turbulent regions
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FIGURE 3. (Colour online) Snapshots of 3D bubble plume (isosurface of αb = 0.05 %)
evolution in the breaking region for P1 (S = 0.54). (a) Side view of the 3D results and
(b) top view of the 3D results.

under the first impacting jet and forward splash, and the third cloud represents bubbles
entrained by the bore which are transported by the vortices behind the bore. The
accumulation of bubbles near the side walls (especially during the outgassing phase)
is consistent with the observation of LM.

Here, we just want to emphasize that the entrainment processes are three-
dimensional, and the bubble plume evolution is related to the large vortical structures.
Detailed study of the large-scale coherent vortices and their interactions with the
entrained bubbles is left to a subsequent paper.

4.1.2. Void fraction distributions
Figure 4 shows snapshots of the spatial distribution of the spanwise-averaged bubble

void fraction, ᾱb, for P1. During cavity formation (t∗ < 0) the model predicts a void
fraction of up to 10 % at the jet toe, consistent with the measurement of Blenkinsopp
& Chaplin (2007, figure 4a). The cavity entrapped by the jet entrains a considerable
void volume during t∗ = 0.0–0.25, which is related to the region inside the black
solid line, showing the spanwise-averaged free-surface location (ψ̄ = 0.5). During
t∗ = 0.25–0.5 the entrained cavity collapses and big void pockets outgas quickly.
Although the breakup process cannot be captured because of our spatial resolution
as well as replacing actual air by void, the integrated rise velocity of the cavity
can be captured reasonably well (see Derakhti & Kirby (2014), appendix A). Panels
(d–g) can be compared with the corresponding measurement of ensemble-averaged
contour maps of void fraction given in LM, figure 2. Comparing figure 4(d) with LM,
figure 2(a), the time and location (t∗∼ 0.25, x∗∼ 0.5) at which the forward splash hits
the undisturbed free surface are accurately captured by the model. In addition, the
predicted averaged void fraction distributions for the primary bubble cloud as well
as the distinct secondary cloud are consistent with the measurements. The primary
semicircular bubble cloud initially advances approximately with the phase speed, but
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Position t∗max ᾱb
max t∗1–t∗2 ᾱb

ave

x∗ = 0.56, z∗ = 0.03 (J) 0.57 (0.61) 0.33 (0.60) 0.52–0.67(0.56–0.73) 0.172 (0.26)
x∗ = 0.61, z∗ = 0.02 (K) 0.66 (0.68) 0.21 (0.37) 0.57–0.74(0.61–0.78) 0.105 (0.13)
x∗ = 0.61, z∗ = 0.01 (L) 0.69 (0.73) 0.08 (0.12) 0.57–0.76(0.61–0.84) 0.039 (0.043)

TABLE 5. Summary of the void fraction results corresponding to figure 5. The
corresponding measured values by Rojas & Loewen (2010) are given inside the
parentheses. Here, ᾱb

ave is obtained from time averaging of ᾱb during the interval t∗1 <
t∗ < t∗2 .

after t∗ = 0.5 its horizontal centroid becomes constant (∼x∗ = 0.4) and then moves
backward slowly after t∗ = 1.1. The secondary bubble cloud is generated by the
impact of the forward splash during t∗ = 0.25 to t∗ = 0.65, where at t∗ = 0.65 we
have the maximum entrainment by a jet-like impact similar to the primary jet. The
spanwise-averaged void fraction of the dispersed bubbles near the surface becomes
more than 30 % at t∗ ∼ 0.6 and then decreases gradually to ∼1 % at t∗ ∼ 1.5. Rojas
& Loewen (2010) measured the time history of the ensemble-averaged void fraction
at some fixed locations under unsteady breaking waves. They also observed that the
maximum ensemble void fraction in the secondary bubble cloud occurred at t∗ ∼ 0.6
in their plunging breaking case. Figure 5 shows the time variation of ᾱb at the three
different locations in the secondary bubble cloud for P1, which has slightly different
wavepacket conditions compared with the plunging case in Rojas & Loewen (2010)
(see table 2). Comparing panels (a) and (c) with Rojas & Loewen (2010), figures
15(b) and 16(b), the model predicts similar results with smaller maximum and mean
void fraction, as summarized in table 5. The smaller bubble void fraction could be
due to (i) the stronger plunger in Rojas & Loewen (2010) and (ii) the different
averaging methods. The spanwise-averaged bubble void fraction can be smaller than
the measured ensemble-averaged values, due to the 3D structures of the entrained
bubbles, as shown in figure 3.

To quantify the distribution of the cavities captured by the VOF model versus the
entrained dispersed bubbles, the time-averaged vertically integrated spanwise-averaged
volumes of the dispersed bubbles, Vb, and the cavities, Vc, are calculated as

Vb(x) = 1
t∗2 − t∗1

∫ t∗2

t∗1

∫ η∗(t,x)

z∗1
ᾱbdz∗dt∗, (4.1)

Vc(x) = 1
t∗2 − t∗1

∫ t∗2

t∗1

∫ η∗(t,x)

z∗1
(1− ψ̄)dz∗dt∗, (4.2)

where t∗1 = −0.25, t∗2 = 2.0 and z∗1 = −0.31. Figure 6 shows Vb and Vc for the
different breakers. Because of the strong splashes in P1, a large secondary bubble
cloud forms and leads to the peak in Vb in the range 0.5 < x∗ < 1.0. In all of the
breakers, when the bore front is formed, uniform Vb is predicted for approximately
0.5Lc and then gradually decreases as the bore propagates further downstream and
becomes less turbulent. The model results for P1 show that 67 % and 33 % of the
total air entrainment in the first two clouds occurs in the ranges 0 < x∗ < 0.5 and
0.5 < x∗ < 1.0 respectively. This is consistent with the volumes of entrained air
estimated by Rojas & Loewen (2010) in their plunging breaker case. They estimated
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FIGURE 4. (Colour online) Time-dependent contour plots of the spanwise averaged void
fraction distributions (ᾱb %) in the breaking region for P1 (S= 0.54).

the volume of air entrained by the splash-up process to be about half of the volume
of air that is entrained in the primary cloud.

4.1.3. Integral properties of the bubble plume
This section discusses some integral properties of the bubble plume. LM used 0.3 %

void fraction as a threshold to evaluate the integral properties of the bubble plume,
using a conductivity probe on a 50 mm × 50 mm grid. The measurements started a
quarter of a period after breaking, and because of surface effects, they were based on
measurements at depths below 2.5 cm. The signals were ensemble averaged and then
time averaged over 0.05 s intervals. They did not consider any upper limit for the void
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FIGURE 5. Spanwise-averaged bubble void fraction (ᾱb) time series for P1 (S = 0.54)
at (a) x∗ = 0.56, z∗ = 0.03; (b) x∗ = 0.61, z∗ = 0.02 and (c) x∗ = 0.61, z∗ = 0.01.
The corresponding positions in Rojas & Loewen (2010) measurement are J, K and L,
respectively.
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FIGURE 6. Time-averaged vertically integrated spanwise-averaged volume of —— the
dispersed bubbles, Vb (m3 m−2), and – – – the cavities captured by the VOF model,
Vc (m3 m−2). (a) P1 (S= 0.54), (b) P2 (S= 0.45) and (c) SP1 (S= 0.38).

fraction, which means that initially the entrained cavities may lead to an ensemble-
averaged void fraction of more that 50 %. The total volume of the entrained dispersed
bubbles, Vb, per unit length of crest is computed from

Vb =
∫

A
ᾱb H (ᾱb − αthld)dA, (4.3)

where αthld = 0.3 % is a threshold value and H is the Heaviside step function. The
total cross-sectional area of the dispersed bubble plume, Ab, is calculated as

Ab =
∫

A
H (ᾱb − αthld)dA. (4.4)

The averaged volume fraction of the dispersed bubbles, αb
ave, is defined as

αb
ave =

Vb

Ab
. (4.5)

Finally, the horizontal and vertical centroids of the bubble plume, x̄b, z̄b, are calculated
using

(x̄b, z̄b)=

∫
A
ᾱbH (ᾱb − αthld)(x, z)dA

Ab
. (4.6)
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FIGURE 7. Integral properties of the bubble plume for P1 (S = 0.54). (a) Normalized
volume of the entrained air: ——, Vb/V0; – – –, (Vb + Vc)/V0. (b) Normalized bubble
plume area: ——, Ab/V0. (c) Averaged volume fraction (%): ——, αb

ave; – – –, (Vb +
Vc)/Ab. The total volume of the cavities captured by the VOF model is Vc= ∫A (1− ψ̄) dA.
The circles are the measurements of the corresponding case adopted from LM, figure 3.

As explained by LM, the total volume of the bubble plume and the centroid positions
reach their asymptotic values for threshold values equal to 0.3 % or less. However, the
cross-sectional area and the averaged volume fraction do not reach their respective
asymptotic values. The regions with void fractions close to the threshold value
contribute significantly to the cross-sectional area of the bubble plume, but do not
contribute much to the total volume of air. Thus, the total volume of the bubble
plume predicted by the model can be expected to have more correlation with the
measurement, in comparison with the plume area or averaged volume fraction. On the
other hand, the predicted cross-sectional area and averaged volume fraction should
have a similar pattern, while the absolute values may be different.

Figure 7 shows the time-dependent averaged volume fraction and normalized
volume and cross-sectional area of the bubble plume for P1. Here, V0 is the total
volume of air per unit length of crest enclosed by the forward jet as it impacts the
free surface, as seen from video images taken from the side wall of the experimental
channel for P1. Use of the measured V0 (= 0.0098 m3 m−1) makes it possible to
compare the absolute values between the model and measurement. During t∗ = 0–0.5,
the total volume of the entrained dispersed bubbles (solid line in figure 7a) accounts
for less than 10 % in P1 to approximately 40 % in SP1 (not shown). The reason
is that the entrainment model correlates the volume of the entrained bubbles (see
(2.21)) with the shear-induced SGS production rate, εsgs,SI , near the free surface, and,
thus, cannot capture the entrainment due to the cavity entrapped by the overturning
jet, which is not a turbulence-dependent mechanism but relates to the geometry of
the breaker. Figure 7(a) shows that the total volume based on both the dispersed
bubbles fed in by the entrainment model and the cavities captured by the VOF model
compares well with the measurement. For both cases, the entrainment model predicts
the correct volume of entrained bubbles after t∗ = 0.5, when the turbulence and
leading-edge entrainment mechanisms in the splash-up and bore-like region become
dominant, while the air pockets and/or larger bubbles outgas quickly because of the
larger rise velocity and smaller initial penetration depth.

The plume area and averaged volume fraction are also predicted reasonably well.
Similarly to the plume volume if we consider the cavities, the averaged volume
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FIGURE 8. Normalized centroid positions of the bubble plume for P1 (S= 0.54).

fraction, αb
ave, becomes comparable with the measurement during t∗ = 0–0.5 in

P1. Figure 8(a) shows that the entrained bubbles are initially transported at the
characteristic phase speed, Cc. Because of the breaking-induced large vortices which
do not propagate downstream, the primary and secondary bubble clouds have nearly
fixed positions after t∗ = 0.75, and as a result x̄b becomes nearly constant. The
vertical centroid position of the plume (figure 8b) clearly shows a peak at the second
jet/splash impact which corresponds to the secondary bubble clouds. Then, it becomes
nearly constant at later times. As observed by the experiments, there is also a peak
z̄b during the first jet impact which cannot be captured by the entrainment model.

4.2. Spanwise-averaged organized and turbulent flow fields
As reviewed in § 1, comprehensive experimental work by RM and Drazen & Melville
(2009) has revealed the main characteristics of the ensemble-averaged flow field under
unsteady breaking waves, especially after active breaking. In both experiments, a large
coherent vortex structure was seen in the ensemble-averaged velocity field. It is clear
that this type of breaking differs from quasi-steady breaking since the turbulent region
has a finite length, propagating downstream slowly compared with the phase velocity
and deepening. Here, we will only present some comparisons between the organized
and turbulent velocity fields for P3 and the corresponding measurements by RM. The
reader is referred to Derakhti & Kirby (2014) for more details.

RM measured the velocity field using LDV at seven elevations and seven x
locations in the breaking region. Figure 9 shows the normalized spanwise-averaged
and r.m.s. velocities at x∗ = 0.60, z∗ =−0.025 for P3 in the streamwise and vertical
directions versus the corresponding unfiltered measured signals. The rest of the
available measured velocity signals are low-pass filtered using a threshold value equal
to 0.3 Hz. RM performed filtering on both the ensemble-averaged and r.m.s. velocity
in the same manner. For the r.m.s. velocity the filtering was first performed on the
variance of the turbulent velocity and then the square root was taken. Figure 10 shows
the low-pass filtered results versus measurements for P3 at x∗ = 0.15 and x∗ = 0.60,
from close to the free surface to z∗=−0.15 (≈ z=−d/2). Although we do not expect
exact correlations for a point-wise comparison in the breaking region especially in
this non-stationary event, the results show that the model captures the spatial and
temporal evolution of the organized and turbulent velocities in the breaking region
reasonably well. Based on figures 9 and 10, it is seen that the inclusion of a dispersed
bubble phase improves the predicted organized and turbulent velocities in the breaking
region. At x∗ = 0.15, the slow variation of the r.m.s. and spanwise-averaged signals
clearly shows the passage of the TKE cloud and the coherent vortices induced by the
breaking. Further downstream at x∗ = 0.60, the r.m.s. turbulent velocity initially has
the same increase as the TKE cloud arrives, but it only decreases to 0.01Cc at t∗= 20.
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FIGURE 9. Normalized spanwise-averaged and r.m.s. velocities for P3 (S= 0.352) at x∗=
0.6, z∗=−0.025: —— with and – – – without the inclusion of dispersed bubbles. The
circles are the measurements of the corresponding case adopted from RM, figure 41.
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FIGURE 10. Normalized low-pass filtered spanwise-averaged and r.m.s. velocities
for P3, at (a,c) x∗ = 0.15 and (b,d) x∗ = 0.60 at different elevations: —— with and
– – – without the inclusion of dispersed bubbles. The circles are the measurements of
the corresponding case adopted from RM, figures 42 and 46.

Based on the experiments it remains approximately 0.005Cc even up to t∗ = 60. In
addition, we can conclude that the spanwise averaging from (2.35) and (2.36) is a
good approximation for the ensemble averaging in this problem.

Figure 11 shows the time-dependent spatial distribution of the normalized
spanwise-averaged TKE for P1 and P3. During the active breaking period, 0< t∗< 1,
the turbulent motions have high intensity and are concentrated near the free surface.
As time proceeds, they become more uniform and are mixed down more than two
wave heights. The TKE cloud evolution in P3 is comparable with the turbulent
intensities measured by RM. In addition, the TKE cloud boundary is consistent with
the digitized dye trace shown in RM, figure 47, which indicates that the model can
fairly well capture the transition between non-turbulent and highly turbulent regions.
In P1, because of a strong jet impact, there is an enhanced vertical transport of
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FIGURE 11. (Colour online) Snapshots of the normalized spanwise-averaged TKE, k, for
(a) P1 (S= 0.54) and (b) P3 (S= 0.352). The reference value is C2

c .

turbulence in the region 0.25 < x∗ < 0.5, leading to the formation of a separate
turbulent region transported deeper than the other regions. The following splash cycle
also generates a separate TKE cloud with a smaller penetration depth. In P3, the jet
impact is weaker and the resulting turbulent cloud is more uniform in the streamwise
direction with the obliquely descending extension of the TKE.

4.3. Energy dissipation
Energy dissipation is one of the least understood components of the near-surface
dynamics of the ocean. The breaking-induced dissipation rate is much greater than
the other sources of dissipation especially during active breaking. In addition, breaking
waves are highly intermittent in both time and space. Thus, the mixing and energy
dissipation at the near-surface layer are highly intermittent and are dominated by the
individual breaking events, with the background levels of turbulence and dissipation
rate being considerably lower (Melville 1994). Based on scaling arguments, Duncan
(1983) showed that the wave dissipation per unit length of breaking crest can be
written in the form

ε̌total = bρg−1c5
b, (4.7)

where g is the gravitational acceleration, cb is the phase speed of the breaking wave
and b is a breaking parameter. Phillips (1985) defined a distribution Λ(cb) so that
Λ(cb)dcb represents the average total length of breaking fronts per unit surface area
travelling with velocities in the range (cb, cb + dcb). He then formulated the average
rate of energy loss for breaking waves with speeds in the range (cb, cb+ dcb) per unit
surface area as

ε̌total(cb)dcb = bρg−1c5
bΛ(cb)dcb. (4.8)
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This concept is interesting especially for large-scale models with relatively large time
scales, e.g. wind–wave models in which a whole breaking event is SGS and needs
to be parameterized based on the spectral characteristics. However, as summarized by
Drazen et al. (2008), the available literature shows a large scatter for b. In addition,
so far only a few published Λ(cb) distributions exist, and it may need to be calibrated
based on the specific area of interest.

In this section, we first examine the bubble- and shear-induced dissipation and
their contribution to the total dissipation under a breaking event – the former is
commonly ignored in 3D LES simulations of breaking waves. Then, we discuss the
time-dependent behaviour of the breaking parameter, b. In addition, a scaling law for
the time-averaged dissipation rate per unit length of breaking crest is obtained.

4.3.1. Shear- and bubble-induced dissipation
The dissipation rate of the resolved kinetic energy per unit mass is

εtotal = εr + εsgs, (4.9)

where εr = 2νSijSij= ν|S |2 is the viscous dissipation rate directly from the resolved
velocity field, and εsgs represents the rate of transfer of energy from the resolved
motions to the SGS motions. In the present study, εsgs =−τ d

ij Sij = εSI + εBI consists
of two different dissipation mechanisms. Here, εSI = νSI|S |2 is a conventional shear-
induced dissipation rate similar to a single-phase turbulence. The additional term, εBI=
νBI|S |2, accounts for turbulent SGS motions generated by the dispersed bubbles and
enhances the dissipation rate. At high Reynolds number, with the filter width much
larger than the Kolmogorov length scale (typical in LES), εr is usually negligibly
small, and if the model resolves most of the TKE, we can approximate the total
dissipation rate, ε, by εsgs. This is equivalent to assuming that there is a close balance
between production and dissipation in the averaged kinetic energy of SGS motions
(Pope 2000).

Figure 12 shows snapshots of the spatial distribution of εsgs for P1 with and without
the inclusion of a dispersed bubble phase. The regions with a high dissipation rate are
collocated with the high vorticity and TKE regions. Here, εsgs is large, O(1 m2 s−3), at
the jet/splash impact and the bore-front regions. These regions have a relatively high
void fraction, and comparing the results of the simulation with and without a bubble
phase clearly shows enhancement of the dissipation rate in these bubbly regions. The
local values of the dissipation rate decrease quickly. At the end of active breaking,
they become at least two orders of magnitude smaller. The corresponding Hinze scale
of the bubble radius then can be estimated as aH

∼= c(γ /ρ)3/5ε−2/5 ≈ 1 mm, where
c= 0.36–0.5 and γ /ρ= 7.3× 10−5 (see Garrett, Li & Farmer 2000). This is consistent
with our choice of aH = 1 mm for the bubble size distribution.

Figure 13 shows the integrated viscous as well as shear- and bubble-induced SGS
dissipation rates in the breaking region for P1, SP1 and S1. The bubble-induced
dissipation is noticeable during the jet/splash cycles at which a large volume of
bubbles is entrained. At the end of active breaking, when the bore-like region is
formed, bubble-induced dissipation becomes large and comparable with shear-induced
dissipation, again. At later times, at which the surface waves have passed the breaking
region (t∗> 4), the total dissipation rate of the background turbulence seems to decay
like (t∗)n, where n is initially approximately −2.5, but becomes close to the theoretical
value for isotropic turbulence, n = −17/4 (Gemmrich & Farmer 2004), for t∗ > 12.
As we would expect, the viscous dissipation rate is small compared with the SGS
dissipation rate.
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FIGURE 12. (Colour online) Snapshots of the spanwise-averaged SGS dissipation rate,
εsgs (m2 s−3), for P1, from the simulation (a) with and (b) without the inclusion of the
dispersed bubbles.
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FIGURE 13. Dissipation rate per unit length of crest due to the different mechanisms for
(a) P1, (b) SP1 and (c) S1: ——, shear-induced ε̌SI/L2

c ; – – –, bubble-induced ˇεBI/L2
c ;

— · —, viscous dissipation ε̌r/L2
c . The dashed lines indicate (t∗)n, where n is the number

on the lines.

The total breaking-induced viscous, ε̂r, and SGS dissipation, ε̂sgs, per unit length of
crest can be calculated using

ε̂r(t∗) =
∫ t∗

t∗0

∫
A
εrdAdt∗ =

∫ t∗

t∗0

∫
A
αρεrdAdt∗, (4.10)

ε̂sgs(t∗) =
∫ t∗

t∗0

∫
A
εsgsdAdt∗ =

∫ t∗

t∗0

∫
A
αρεsgsdAdt∗, (4.11)

where t∗0 = −0.25 and αρ is the density of the liquid phase at each grid point.
Figure 14 shows the results for P1, SP1 and S1. In all the breaker types, most of the
energy is dissipated (more that 80 % of the total dissipation) during the first period
after breaking, with the bubble-induced dissipation larger than the shear-induced
dissipation. Table 6 summarizes the different dissipation contributions predicted by
the model and the estimation from LM. Comparing with the experimental estimations,
we can conclude that the simulations without the inclusion of the dispersed bubbles
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FIGURE 14. Total breaking-induced dissipation per unit length of crest (J m−1) for (a) P1,
(b) SP1 and (c) S1: ——, ε̂total = ε̂r + ε̂sgs; – – –, ε̂SI

sgs; — · —, ε̂BI
sgs; · · · · · · , ε̂r;——,ε̂nb

total
(the total dissipation from the simulations without the inclusion of the dispersed bubbles).

Case no. LM (J m−1) ε̂total (J m−1) ε̂nb
total/ε̂total (%) ε̂SI

sgs/ε̂total (%) ε̂BI
sgs/ε̂total (%)

P1 17.8 14.7 63.7 45.9 52.9
P2 8.6 7.7 64.8 45.4 53.0

SP1 4.3 2.6 65.9 43.2 53.7
S1 1.4 64.5 42.3 51.6

TABLE 6. Total dissipation in the breaking region. LM approximated the total dissipation
by estimating the total energy flux difference between upstream and downstream of the
breaking region.

underpredict the total dissipation by approximately 35 % in both plunging and spilling
breaking. In addition, bubble-induced dissipation accounts for more than 50 % of the
total breaking-induced dissipation regardless of the breaker’s type and intensity. We
should note that the cavity breakup process is not resolved in our simulations, and
may be responsible for an additional dissipation during the initial stage of active
breaking.

4.3.2. Time-dependent breaking parameter, b
Available estimates of the breaking parameter b range from O(10−4) to O(10−2),

depending on the breaking type and intensity, the unsteady or quasi-steady character,
and probably the method of defining the breaking parameter. In most of the previous
experiments, the total breaking-induced dissipation per unit length of breaking crest,
ε̂total, was approximated through surface elevation measurements at fixed locations
upstream and downstream of the wave breaking and by implementation of a wave
theory and a simple control volume analysis. The averaged dissipation rate, ε̌ total, then,
is defined as ε̌ total = ε̂total/τb, where τb is a time scale related to the active breaking
period and is of the order of the breaking wave period, T; ˆ( ), ˇ( ) and ( ) represent
time and space integration, space integration and time averaging, respectively. Finally,
the time-averaged breaking parameter, b, is defined as

b= gε̌ total

ρc5
b
. (4.12)
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FIGURE 15. Different breaking parameters (a) b, (b) b/(S− S0), (c) β and (d) β for
——, P1; — · —, P2; – – –, SP1;· · · · · · , S1; ——, P3; - - -, S2.

For example, Drazen et al. (2008) estimated ε̂total ≈ −1Fb = ρgCgs

∫ t2
t1
(η2

2 − η2
1)dt,

where Cgs is the spectrally weighted group velocity. They chose τb equal to the
acoustically active period as measured by a hydrophone.

Here, we have time-dependent information on the breaking-induced dissipation rate.
Thus, the time-dependent breaking parameter, b, can be readily calculated as

b= gε̌total

ρc5
b
. (4.13)

Figure 15(a) shows b for the different breakers. For all breakers, b decreases by
approximately an order of magnitude at the end of active breaking compared with
the initial stage of breaking. In addition, it is clear that b is strongly linked to
the breaker intensity, e.g. the corresponding b for P1 is approximately two orders
of magnitude greater than that for S2. Intuitively, the most important parameter
that can be related to breaker intensity is wave steepness. This is also confirmed
by experimental measurements for both constant-amplitude and constant-steepness
wavepackets. P1, P2, SP1 and S1 are constant-steepness type packets with S0 ≈ 0.34,
while P3 and S2 are constant-amplitude type packets with S0 ≈ 0.25, where S0 is
the global steepness of incipient breaking. The results reveal that the rate of increase
of the breaking-induced dissipation in the packets with S0 = 0.34 is considerably
greater than that in the packets with S0 = 0.25. Furthermore, linear dependence of
the breaking-induced dissipation on S − S0 is observed for the cases with the same
S0, as shown in figure 15(b). This trend can also be recognized in DM, figure 8, in
which the normalized change in energy flux across the control volume increases more
noticeably as S0 increases slightly. Thus, we define

b= β(S− S0)Sα0 , (4.14)

where β is a time-dependent parameter and α is a constant. Figure 15(c) shows the
resultant β with the choice of α= 4, for all the breakers. As we can see, the choice of
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α= 4 successfully confines the large variation of breaking parameter for the different
breakers (figure 15a), and the resultant β has the same trend and values regardless of
the breaker’s type and intensity.

Usually, the use of a time-averaged value of the breaking parameter, b, is more
preferable in models with relatively large time scales, e.g. wind–wave models. We
define

b(t∗)= 1
t∗ − t∗0

∫ t∗

t∗0
bdt∗ = 1

t∗ − t∗0

∫ t∗

t∗0
β(S− S0)S4

0dt∗ = β(t∗)(S− S0)S4
0, (4.15)

where t∗0 = −0.1. Figure 15(d) shows that β is nearly invariant for the different
plunging and spilling breakers, after t∗ = 0.3. The appropriate ε̌total in (4.8) should
represent the averaged dissipation rate per unit length of breaking crest during the
active bubble entrainment period, which is of the order of the breaking wave period.
Thus, considering β(t∗ = 0.5–1.0)∼ 3, the averaged breaking parameter becomes

b∼= 3(S− S0)S4
0. (4.16)

Finally, the averaged breaking-induced dissipation rate per unit length of breaking
crest in the active breaking period can be approximated as

ε̌ total
∼= 3ρg−1c5

b(S− S0)S4
0, for S> S0, (4.17)

and for S< S0 the packet is non-breaking and ε̌ total = 0.

4.4. Turbulence modulation by the dispersed bubbles
To examine turbulence modulation by dispersed bubbles, their effects on turbulence
production by mean shear and SGS dissipation as well as the work done by the
dispersed bubbles on turbulence motions (or turbulence production by dispersed
bubbles) should be considered. In this section, the temporal variation of spatially
integrated terms in the breaking region will be discussed. First, the comparisons
of turbulence production, SGS dissipation and total TKE between the simulations
with and without the inclusion of dispersed bubbles are presented. Then, the role
of production by dispersed bubbles, which leads to different modulation of the total
TKE in plunging and spilling breakers, will be discussed.

In LES, the transport equation for the resolved TKE can be obtained based
on the resolved velocity field. Subgrid-scale dissipation contains both shear- and
bubble-induced dissipation and typically is much larger than the viscous dissipation
(figure 14). In the case of a two-phase flow with a dilute regime (α ≈ 1), common
practice is to use the conventional single-phase TKE transport equation with an
additional term due to a correlation between the fluctuating concentration and the
vertical turbulent velocity component, −ρgα′w′, where hereafter (.) indicates ensemble
(spanwise)-averaged. As we have shown, highly turbulent and dissipative regions are
collocated with high void fraction regions. Due to a large void fraction (>10 %)
during the active breaking period, the dilute assumption is not valid anymore, and
concentration fluctuations cannot be ignored. The exact resolved TKE transport
equation for a two-phase flow is derived in § A.2. The final equation is given by

∂

∂t
(ρᾱk̄)+ ∂

∂xj
(ρᾱūjk̄) = Tk + Pk + Bk + Ek − (εk

r + εk
sgs)+Dk

+ tk
ex + Tk

ex + Pk
ex − (εk

r,ex + εk
sgs,ex)+Dk

ex, (4.18)
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FIGURE 16. The two-phase total production rate by mean shear, P̌k
total = P̌k + P̌k

ex1 + P̌k
ex2,

from simulations —— with and – – – without the inclusion of the dispersed bubbles for
(a) P1, (b) SP1 and (c) S1. The reference value is ρL2

cC2
c T−1

c .
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FIGURE 17. The two-phase total SGS dissipation rate by mean shear, ε̌k
total = ε̌k + ε̌k

ex1 +
ε̌k

ex2, from simulations —— with and – – – without the inclusion of the dispersed bubbles
for (a) P1, (b) SP1 and (c) S1. The reference value is ρL2

cC2
c T−1

c .

where k= u′iu
′
i/2 is the resolved TKE. The other terms are given by (A 8) and (A 9)

in § A.2. In the case of a single-phase flow, ᾱ= 1 and α′ = ∂ ūj/∂xj = ∂u′j/∂xj = 0, by
which the extra terms become zero and (4.18) reduces to the single-phase classical
transport equation for the resolved TKE. The comparison between the estimated total
turbulence production and SGS dissipation using (4.18) and the single-phase TKE
transport equation, as well as the relative importance of the extra terms due to triple
correlations in (4.18), are presented in appendix B.

Figure 16 shows the total production rate by mean shear, P̌k
total, and figure 17 shows

the total SGS dissipation rate, ε̌k
total, for the simulations both with and without the

inclusion of the dispersed bubbles. The presence of dispersed bubbles reduces P̌k
total

while enhancing ε̌k
total in both plunging and spilling breakers. The total production rate

by buoyancy Ěk
p (not shown) is an order of magnitude smaller than that by mean shear

and the dispersed bubbles.
Figure 18 shows that the dispersed bubbles damp the total TKE by approximately

20–30 % in the plunging breakers and 50 % in the spilling breaker. An exception is for
t∗ < 0.5, where the TKE is damped slightly, or even enhanced in the large plunging
case P1. This enhancement of the TKE in the large plunging case as well as the
increase of TKE damping by decreasing breaking intensity can be explained through
turbulence production by dispersed bubbles, Bk=−f ′i u′i. Interfacial momentum transfer
and turbulence production by dispersed bubbles through drag, virtual mass and lift
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FIGURE 18. Normalized total resolved TKE, ǩ, in the breaking region, from simulations
—— with and – – – without the inclusion of the dispersed bubbles for (a) P1, (b) SP1
and (c) S1. The reference value is L2

cC2
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FIGURE 19. Total spanwise-averaged interfacial forces exerted on the water column by
the bubbles, F̌m

i,type, for P1 (S= 0.54) in (a) the streamwise direction and (b) the vertical
direction: ——, drag force; – – –, virtual mass force; — · —, lift force. The reference
value is ρL2

cCcT−1
c .

forces are discussed in the following section. To summarize, positive Bk contributes
to both the reduction of P̌k

total and enhancement of ε̌k
total to some extent. In P1, Bk is

large (figure 21d) during the entrainment stage, leading to the net enhancement of the
total TKE for t∗<0.5. However, in the spilling breaker, S1, this production by bubbles
is relatively weak (figure 22d) and the TKE is damped approximately half as much
as in the simulation without the inclusion of dispersed bubbles. Finally, figure 18
reveals that the total TKE can also be scaled by (S− S0)S4

0, similarly to the averaged
dissipation rate (4.17).

4.5. Liquid–bubble momentum exchange and production by dispersed bubbles
Momentum exchange between the dispersed bubble phase and the liquid phase through
drag, lift and virtual mass forces (2.19) is examined here. Using (2.17) and (2.18), the
total spanwise-averaged forces, F̌m

i,type, exerted on the water column by the bubbles are
calculated as

F̌m
i,type =

NG∑
g=1

∫
A
−f̄ g

i,typedA, (4.19)

where i refers to the x, y and z directions, respectively; and type refers to the drag,
virtual mass or lift forces. Figures 19 and 20 show the normalized F̌m

i,type for P1
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FIGURE 20. Total spanwise-averaged interfacial forces exerted on the water column by
the bubbles for S1 (S= 0.36). The definitions are the same as in figure 19.

and S1 in the streamwise and vertical directions. The main interphase exchange
in the streamwise direction occurs during the bubble entrainment period, with
|F̌m

x,drag| ≈ |F̌m
x,vmass|. For P1 (figure 19a), the interphase exchange during jet/splash

impact, 0 < t∗ < 0.6, is an order of magnitude larger than that during the rest
of the active breaking, when the previously entrained bubbles outgas continuously
without any additional entrainment. At t∗ ∼ 1, the bore front is formed and entrains
some new bubbles with considerably smaller interphase momentum transfer. Such
a strong temporal variation does not exist for the spilling case, S1 (figure 20a).
In the vertical direction, on the other hand, the drag force is the main interfacial
feedback, with F̌m

z,drag � F̌m
z,vmass, and the spanwise-averaged drag force is noticeable

during the whole active breaking period for both cases (figures 19b and 20b). Due
to a relatively larger acceleration of the newly entrained bubbles compared with
their surrounding liquid acceleration, the virtual mass force is mostly positive in the
streamwise direction. The negative F̌m

x,drag is due to the negative relative velocity of
the entrained bubbles in the streamwise direction compared with the liquid velocity.
In the vertical direction, however, the relative velocity is mostly positive and is
approximately equal to the rising velocity of the dispersed bubbles, leading to
positive F̌m

z,drag during the entire active breaking. Although the local values of the lift
force are comparable with the other two forces, the spanwise-averaged lift force is
negligibly small compared with the spanwise-averaged drag and virtual mass forces
in both cases. The spanwise-averaged forces in the spanwise direction (not shown)
are an order of magnitude smaller than those in the other two directions. The actual
distribution of the forces is highly 3D; thus, the abovementioned arguments and the
results presented in this section should be considered in an averaged sense.

The rates of total work done (or the rates of production) by the drag, virtual mass
and lift forces on the organized flow, B̌m

type, and the turbulent motions, B̌k
type, are given

by

B̌m
type =

∑
i

NG∑
g=1

∫
A
−f̄ g

i,typeūidA, B̌k
type =

∑
i

NG∑
g=1

∫
A
−f ′gi,typeu′idA. (4.20a,b)

Figures 21(a,b) and 22(a,b) show normalized B̌m
type and B̌k

type for P1 and S1
respectively. During the entrainment stage, the rates of total work done on the
turbulent and organized motions by the virtual mass force, B̌m

vmass and B̌k
vmass, are

positive, while the corresponding rates of total work done by the drag and lift forces
are mostly negative in both cases. The rates of total work done on the turbulent and
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FIGURE 21. The rate of work done on (a) the organized and (b) the turbulent motion by
——, the drag force; – – –, the virtual mass force; and — · —, the lift force for P1. The
total rate of work done on (c) the organized, B̌m, and (d) the turbulent, B̌k, motion. The
reference value is ρL2

cC2
c T−1

c .

−0.005

0

0.005(a)

(c)

0 0.3 0.6 0.9

−0.002

0

0.002

−0.005

0

0.005(b)

(d )

0 0.3 0.6 0.9

−0.002

0

0.002

FIGURE 22. The rates of work done on the organized and turbulent motions by the
dispersed bubbles for S1. The definitions are the same as in figure 21.

organized motions by the lift force are negligibly small compared with those by the
drag and virtual mass forces in both cases.

In the transport equations for the TKE and organized flow, the summations of all
work done by the interfacial forces on organized, B̌m, and turbulent motions, B̌k, (see
appendix A) are given by

B̌m = Bm
drag + Bm

vmass + Bm
lift, B̌k = Bk

drag + Bk
vmass + Bk

lift. (4.21a,b)

Figures 21(c,d) and 22(c,d) show the temporal variation of B̌m and B̌k for P1 and
S1. During the jet/splash impact in P1, B̌m and B̌k are much greater than they are
during the rest of the active breaking, with B̌m < B̌k due to interaction between
the 3D-distributed momentum exchange between two phases and the confused 3D
velocity field. In the spilling case S1 and for t∗ > 1 in P1 at which the bore front is
formed, on the other hand, there are nearly uniform production rates, with B̌m > B̌k.
As previously explained, the large positive B̌k during the jet/splash impact, which is
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comparable with the turbulence production by mean shear (figure 16a), contributes
to the enhancement of ε̌k

total and the reduction of P̌k
total by dispersed bubbles. In the

spilling case, B̌k is much smaller compared with the corresponding P̌k
total. Although

the structure of the bubble plume and the corresponding momentum exchange, as well
as the velocity field behind the bore-front region, are 3D (see figure 3), the resultant
B̌k is relatively small due to very small bubble void fractions in these regions. In
the bore-front region, instead, the momentum exchange and velocity field are nearly
uniform in the spanwise direction, which leads to more pronounced positive work
done on the organized motion in S1 (figures 22c,d).

5. Conclusions

A continuum polydisperse two-fluid model was used to study turbulent bubbly
flows under laboratory-scale isolated deep water breaking waves imposed by the
focused wave method. Bubbles were entrained at the free surface using the bubble
entrainment model. The free surface was captured by the second-order VOF interface
tracking scheme. Turbulence was simulated using an LES approach with a dynamic
Smagorinsky subgrid formulation. The SGS bubble-induced turbulence and dissipation
as well as the momentum transfer between the two phases were considered. The main
conclusions can be summarized in the following categories.

(a) Bubble entrainment and transport: it was shown that the entrainment model can
predict the correct volume of entrained bubbles during the jet/splash impacts
and in the bore-like region for the plunging and plunging/spilling breakers. The
initial cavity entrapment is not a turbulence-related entrainment mechanism and
can be captured by the VOF model. Since air entrainment in the spilling cases is
mainly due to surface irregularity and bubble entrainment in the bore-like region
is the dominant entrainment mechanism, we may expect that the entrainment
model will also predict the correct volume of entrained air for spilling breakers
during the entire entrainment period. By comparing snapshots of the void
fraction distributions, void fraction time series as well as integral properties of
the bubble plumes with the corresponding experiments, we can conclude that
the model captures the spatial and temporal evolution of entrained bubbles fairly
accurately.

(b) Dissipation: in all the breaker types, most of the energy (more than 80 % of
the total dissipation) was dissipated during the first period after breaking. It was
shown that the bubble-induced dissipation accounted for more than 50 % of the
total dissipation. The bubble-induced dissipation rate was noticeable during the
jet/splash cycles in which a large volume of bubbles was entrained. At the end
of the active breaking, when the bore-like region was formed, the bubble-induced
dissipation rate became large and comparable with the shear-induced dissipation
rate, again.
In addition, the averaged dissipation rate per unit length of breaking crest
is usually written as bρg−1c5

b. The breaking parameter, b, has been poorly
constrained by experiments and field measurements. The time-dependent
evolution of b was examined for both constant-steepness and constant-amplitude
wavepackets. A scaling law for the averaged breaking parameter was obtained
as b∼= 3(S− S0)S4

0, where S=Σaiki is the global steepness of the packet and S0

is the global steepness of incipient breaking.
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(c) Turbulence modulation by dispersed bubbles: all of the 3D simulations were
repeated without the inclusion of dispersed bubbles, and it was shown that the
integrated TKE in the breaking region was damped by the dispersed bubbles
by approximately 20 % for the large plunging breaker to 50 % for the spilling
breaker. In the plunging breakers, the TKE was damped only slightly or even
enhanced during the initial stage of the active breaking. This was explained
through the noticeable turbulence production by the dispersed bubbles in the
larger plunging breakers during the initial stage of the active breaking.

(d) Liquid–bubble momentum exchange: in both spilling and plunging breakers,
the drag force was the main interfacial feedback in the vertical direction. In
the streamwise direction, the momentum exchange was noticeable during the
initial stage of the active breaking with the spanwise-averaged total drag and
virtual mass forces of the same order but in the opposite direction. Although
the local values of the lift force were comparable with the other two forces,
the spanwise-averaged lift force was negligibly small compared with the
spanwise-averaged drag and virtual mass forces in both spilling and plunging
breakers. The rates of total work done by the drag and lift forces were mostly
negative while the rate of work done by the virtual mass force was positive in
both the spilling and plunging breakers. In the plunging breakers, the rates of
total work done on the organized flow, B̌m, and turbulent motions, B̌k, during
the jet/splash impact were much greater than they were during the rest of the
active breaking, with B̌m < B̌k. In the spilling cases, on the other hand, there
were nearly uniform production rates, with B̌m > B̌k.

(e) The two-phase versus single-phase TKE transport equation: due to a large void
fraction (>10 %) during the active breaking, the dilute assumption is not valid
anymore, and concentration fluctuations cannot be ignored. It was found that in
the high void fraction regions, the SGS dissipation rate was overpredicted by
approximately 30 % to 50 % by the single-phase TKE transport equation. The
total production rate by mean shear was also overpredicted by the single-phase
formulation but the overprediction was smaller than 10 %.
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Appendix A. Exact transport equations for turbulent bubbly flow

The Reynolds decomposition of the resolved field φ̃ = 〈φ̃〉 + φ̃′ is used to separate
organized and turbulent motions, where 〈 〉 could be ensemble or phase averaging and
here is approximated by spanwise averaging given by (2.35). All the variables are the
liquid phase resolved quantities and for simplicity we drop ˜( ) and ( )l.
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A.1. Transport equation for the averaged resolved kinetic energy
The resolved kinetic energy per unit mass (ek = uiui/2) equation can be obtained by
multiplying the liquid phase momentum equation, (2.14), by ui,

ui ×

∂(ραui)

∂t︸ ︷︷ ︸
a

+ ∂(ραuiuj)

∂xj︸ ︷︷ ︸
b

=−∂(αP)
∂xj

δij︸ ︷︷ ︸
c

+ ραgi︸︷︷︸
d

+ ∂

∂xj

[
ρα(2νSij − τ d

ij )
]

︸ ︷︷ ︸
e

−fi︸︷︷︸
f

,
(A 1)

where P= p+ (2/3)ρksgs is the modified pressure, −τ d
ij = 2νsgsSij is the deviatoric part

of the SGS stress tensor and fi is the hydrodynamic force exerted on the dispersed
bubbles. By using the chain rule and A(∂AB/∂x)= ∂CB/∂x+ C(∂B/∂x), where C =
A2/2, we obtain

ui × a : ∂ραek

∂t
+ ek

∂ρα

∂t
,

ui × b : ∂ραujek

∂xj
+ ek

∂ραuj

∂xj
,

ui × c : −∂αPuj

∂xj
+ αP

∂uj

∂xj
,

ui × d : ραgiui,

ui × e : ∂
∂xj

[
ρα(2νSij − τ d

ij )ui
]− ρα(2νSijSij − τ d

ij Sij),

ui × f : −fiui.



(A 2)

Using the continuity equation (2.13) the summation of ek(∂/∂) terms is equal to
zero, and the transport equation of averaged resolved kinetic energy is obtained by
averaging the remaining terms of (A 2) as

∂

∂t
(ραek)+ ∂

∂xj
(ραujek)= T − (εr + εsgs)+D+ B+ E, (A 3)

where

T =− ∂

∂xj

[
αPuj − ρα(2νSij − τ d

ij )ui

]
(rate of work done by pressure and viscous stresses),

εr= 2ρανSijSij (viscous dissipation rate),

εsgs=−ρατ d
ij Sij (SGS dissipation rate),

D=αP∂uj
∂xj

(pressure dilatation rate),

B=−fiui (rate of work done by dispersed bubbles),

E= ραgiui = D
Dt
(−ραep)

(rate of the total change of the potential energy),



(A 4)

where ep = gz is the potential energy per unit mass and g= |g3|.
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A.2. Transport equation for the resolved TKE

The transport equation for the averaged resolved TKE per unit mass, k̄ = u′iu′i/2,
is obtained by multiplying the liquid phase momentum equation by u′i and then
performing averaging,

u′i ×

∂(ραui)

∂t︸ ︷︷ ︸
a

+ ∂(ραuiuj)

∂xj︸ ︷︷ ︸
b

=−∂(αP)
∂xj

δij︸ ︷︷ ︸
c

+ ραgi︸︷︷︸
d

+ ∂

∂xj

[
ρα(2νSij − τ d

ij )
]

︸ ︷︷ ︸
e

−fi︸︷︷︸
f

.
(A 5)

The fluctuating part of each term will survive after averaging. By using the chain rule
and A(∂AB/∂x)= ∂CB/∂x+C(∂B/∂x), where C= A2/2, we can rewrite (A 5) as

u′i × a : u′i
∂

∂t
ρ(ᾱu′i + α′ūi + α′u′i)=

∂ρᾱk
∂t
+ k

∂ρᾱ

∂t
+ α′u′i

∂ρūi

∂t

+ r
∂ρα′

∂t
+ ∂ρα

′k
∂t
+ k

∂ρα′

∂t

u′i × b : u′i ∂∂xj
[ρ(u′iᾱūj + ᾱūiu′j + ᾱu′iu′j + α′ūiūj + ūiα′u′j + ūjα′u′i + α′u′iu′j)]

= ∂ρᾱūjk
∂xj

+ k
∂ρᾱūj

∂xj
+ r

∂ρᾱu′j
∂xj
+ ᾱu′iu′j

∂ρūi

∂xj
+ ∂ρᾱu′jk

∂xj
+ k

∂ρᾱu′j
∂xj

+ r
∂ρα′ūj

∂xj
+ ūjα′u′i

∂ρūi

∂xj
+ r

∂ρα′u′j
∂xj

+ α′u′iu′j
∂ρūi

∂xj
+ ∂ρα

′ūjk
∂xj

+ k
∂ρα′ūj

∂xj
+ ∂ρα

′u′jk
∂xj

+ k
∂ρα′u′j
∂xj

u′i × c : −∂ᾱP′u′j
∂xj

+ ᾱP′
∂u′j
∂xj
− ∂α

′P′u′j
∂xj

+ α′P′ ∂u′j
∂xj
− ∂P̄α′u′j

∂xj
+ P̄α′

∂u′j
∂xj

u′i × d : ρgiα′u′i

u′i × e : ∂
∂xj

[
ρᾱ(2νS ′

ij − τ ′dij )u′i
]− ρᾱ(2νS ′

ijS
′

ij − τ ′dij S ′
ij)

+ ∂

∂xj

[
ρ(2να′S ′

ij − α′τ ′dij )u′i
]− ρ(2να′S ′

ijS
′

ij − α′τ ′dij S ′
ij)

+ ∂

∂xj

[
ρ(2να′u′iS̄ij − α′u′iτ̄ d

ij )
]
− ρ(2να′S ′

ijS̄ij − α′S ′
ijτ̄

d
ij )

u′i × f : −f ′i u′i,



(A 6)

where r = u′iūi. Using the continuity equation, the summation of k(∂/∂) and r(∂/∂)
terms is equal to zero; thus, (A 6) simplifies to

∂

∂t
(ρᾱk̄)+ ∂

∂xj
(ρᾱūjk̄) = Tk + Pk + Bk + Ek − (εk

r + εk
sgs)+Dk

+ tk
ex + Tk

ex + Pk
ex − (εk

r,ex + εk
sgs,ex)+Dk

ex, (A 7)
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where k= u′iu
′
i/2 is the resolved TKE and

Tk=− ∂

∂xj

[
ᾱP′u′j + ρᾱu′jk− ρᾱ(2νS ′

ij − τ ′dij )u′i
]
,

(pressure, turbulent, viscous and SGS transport rate),

Pk=−ρᾱu′iu′j
∂ ūi

∂xj
, (production rate by mean shear),

Bk=−f ′i u′i, (production rate by the dispersed bubbles),

Ek=−ρgα′u′3, (production rate by buoyancy),

εk
r = 2ρνᾱS ′

ijS
′

ij, (viscous dissipation rate),

εk
sgs=−ρᾱτ ′dij S ′

ij, (SGS dissipation rate),

Dk= ᾱP′
∂u′j
∂xj
, (pressure dilatation rate),



(A 8)

and the extra terms due to the correlation of α′ with velocity and pressure
fluctuations,

Tk
ex=−

∂

∂xj

[
α′P′u′j + P̄α′u′j + ρα′kūj + ρα′u′jk− ρ(2να′S ′

ij − α′τ ′dij )u′i

− ρ(2να′u′iS̄ij − α′u′iτ̄ d
ij )
]

(extra transport rate terms),

tk
ex=−

∂ρα′k
∂t
− α′u′i

∂ρūi

∂t
(extra transient terms),

Pk
ex1=−ρūjα′u′i

∂ ūi

∂xj
, Pk

ex2 =−ρα′u′iu′j
∂ ūi

∂xj
(extra production terms),

εk
r,ex1= 2ρνα′S ′

ijS
′

ij, εk
r,ex2 = 2ρνα′S ′

ijS̄ij

(extra viscous dissipation terms),

εk
sgs,ex1=−ρα′τ ′dij S ′

ij, εk
sgs,ex2 =−ρα′S ′

ijτ̄
d
ij

(extra SGS dissipation terms),

Dk
ex=α′P′

∂u′j
∂xj
+ P̄α′

∂u′j
∂xj

(extra pressure dilatation terms).



(A 9)

The production terms are identical in the transport equation of organized flow kinetic
energy and TKE. In addition,

εr = εm
r + εm

r,ex + εk
r + εk

r,ex, εsgs = εm
sgs + εm

sgs,ex + εk
sgs + εk

sgs,ex. (A 10)

In the case of a single-phase flow, ᾱ = 1 and α′ = ∂ ūj/∂xj = ∂u′j/∂xj = 0, by which
the extra terms become zero and (A 13) and (A 7) reduce to the classical transport
equations of organized flow kinetic energy and TKE, respectively. For example, the
single-phase flow SGS dissipation rate and mean shear production rate are given by

εSP
sgs =−ρτ ′dij S ′

ij, PSP = ρu′iu′j
∂ ūi

∂xj
. (A 11)
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A.3. Transport equation for the kinetic energy of organized flow
The transport equation for the kinetic energy of organized flow per unit mass (em =
ui ui/2) is obtained by multiplying the averaged liquid phase momentum equation
by ui,

ui ×

∂(ραui)

∂t︸ ︷︷ ︸
a

+ ∂(ραuiuj)

∂xj︸ ︷︷ ︸
b

=−∂(αP)
∂xj

δij︸ ︷︷ ︸
c

+ ραgi︸︷︷︸
d

+ ∂

∂xj

[
ρα(2νSij − τ d

ij )
]

︸ ︷︷ ︸
e

−fi︸︷︷︸
f

 .
(A 12)

By taking the procedure explained in the previous section and using the averaged
continuity equation, the transport equation for the kinetic energy of organized flow
is given by

∂

∂t
(ρᾱem)+ ∂

∂xj
(ρᾱūjem) = Tm − Pm − (εm

r + εm
sgs)+Dm + Bm + Em

+ tm
ex + Tm

ex − Pm
ex − (εm

r,ex + εm
sgs,ex)+Dm

ex, (A 13)

where

Tm =− ∂

∂xj
(ᾱP̄ūj − ρᾱ(2νS̄ij + τ̄ d

ij )ūi + ρᾱūiu′iu′j), Pm =−ρᾱu′iu′j
∂ ūi

∂xj
,

εm
r = 2ρνᾱS̄ijS̄ij, εm

sgs =−ρᾱτ̄ d
ij S̄ij, Dm = ᾱP̄

∂ ūj

∂xj
,

Bm =−f̄iūi, Em = ρgiᾱūi = D
Dt
(−ρᾱēp),


(A 14)

and the extra terms due to α′ correlation with velocity and pressure fluctuations are

Tm
ex =−

∂

∂xj
(α′P′ūj − ρ(2να′S ′

ij + α′τ ′dij )ūi + ρα′u′iu′jūi + ρα′u′jem + ρα′u′iūiūj),

tm
ex =−ui

∂(ρα′u′i)
∂t

, Pm
ex =−ρūjα′u′i

∂ ūi

∂xj
− ρα′u′iu′j

∂ ūi

∂xj
,

εm
r,ex = 2ρνα′S ′

ijS̄ij, εm
sgs,ex =−ρα′τ ′dij S̄ij, Dm

ex = α′P′
∂ ūj

∂xj
.


(A 15)

Appendix B. The two-phase versus the single-phase TKE transport equation

Figures 23 and 24 show the corresponding values for the total production rate by
mean shear and SGS dissipation in the breaking region using the exact two-phase
transport equation and the single-phase transport equation. The total SGS dissipation
rate is overpredicted by approximately 30–50 % by (A 11) when the void fractions are
high. The total production rate by mean shear is also overpredicted by the single-
phase formulation but the overprediction is smaller than 10 %. Figures 25 and 26
show different terms in the total production rate by the mean shear and dissipation
rates given by (A 9). The extra terms with triple fluctuating correlation are usually
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FIGURE 23. Total production rate by mean shear in the breaking region based on the
two-phase (——), P̌k + P̌k

ex1 + P̌k
ex2, and the single-phase transport equation (– – –), P̌SP,

for (a) P1, (b) SP1 and (c) S1. The reference value is ρL2
cC2

c T−1
c .
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FIGURE 24. Total SGS dissipation rate in the breaking region based on the two-phase
(——), ε̌k

sgs + ε̌k
sgs,ex1 + ε̌k

sgs,ex2, and the single-phase transport equation (– – –), ε̌SP
sgs, for (a)

P1, (b) SP1 and (c) S1. The reference value is ρL2
cC2

c T−1
c .
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FIGURE 25. Different terms in the total production rate by mean shear: ——, P̌k;
– – –, P̌k

ex1; — · —, P̌k
ex2; for (a) P1, (b) SP1 and (c) S1. The reference value is ρL2

cC2
c T−1

c .

larger than the other extra terms in both the production and SGS dissipation rates. In
addition, during the initial stage of the active breaking, they are the dominant terms.
The extra terms in the total SGS dissipation rate of the two-phase formulation are
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FIGURE 26. Different terms in the total SGS dissipation rate: ——, ε̌k
sgs; – – –, ε̌k

sgs,ex1;
— · —, ε̌k

sgs,ex2; for (a) P1, (b) SP1 and (c) S1. The reference value is ρL2
cC2

c T−1
c .

noticeable only at the entrainment stages. In the production terms, instead, P̌k
ex1 and

P̌k
ex2 are comparable with P̌k for 0< t∗ < 1.
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