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1. Introduction

This paper is concerned with establishing nodal solutions for a class of asymptotically
linear elliptic equations that includes the special model case

−Δu + λu =
u3

1 + su2 in R
N (1.1)

for N � 3 and λ > 0. In nonlinear optics this equation models the propagation of a
light beam in a saturable medium under a self-focusing effect. The parameter λ is the
speed of propagation of the guided wave and s is the saturation parameter, which is
related to properties of the dielectric nonlinear response of the materials (see [1,25] and
references therein). The Pohozaev identity [22] implies that a necessary condition for
the existence of non-trivial solutions is s < 1/λ. Moreover, for s ∈ (0, 1/λ), there exists
a unique positive radial and radially decreasing least energy solution (see [14,23,26]).
The question of interest here is proving that this condition is also sufficient to show the
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existence of a least energy sign-changing solution. The result will be stated for a class of
the more general problem

−Δu + λu = f(u) in R
N . (1.2)

Here N � 3 and λ > 0. We make the following assumptions on f :

(f1) f ∈ C(R, R);

(f2) f(−t) = −f(t) for all t ∈ R;

(f3) limt→0(f(t)/t) = 0;

(f4) there exists s > 0 such that limt→+∞(f(t)/t) = 1/s and f(t)/t < 1/s for all t ∈ R;

(f5) f(t)/t is an increasing function for all t > 0.

Moreover, as is natural for asymptotically linear problems, we are going to assume a
non-quadraticity type condition [12]:

lim
t→+∞

[f(t)t − 2F (t)] = +∞,

f(t)t − 2F (t) � 0 for all t ∈ R,

⎫⎬
⎭ (NQ)

where F (t) =
∫ t

0 f(z) dz.
The main difficulty in this kind of problem, a so-called asymptotically linear prob-

lem, is due to hypothesis (f4), which states that the nonlinearity f does not verify the
Ambrosetti–Rabinowitz superquadraticity condition

θF (s) � f(s)s for some θ > 2, ∀s ∈ R,

originally introduced in [2]. Roughly speaking, the above inequality is one of the main
tools required in order to prove the boundedness of the Palais–Smale sequence.

Our main result is the following theorem.

Theorem 1.1. Assume (f1)–(f5) and (NQ) are satisfied. If the parameter s > 0, given
in condition (f4), satisfies s ∈ (0, 1/λ), then there exists a radial sign-changing solution
of (1.2) that changes sign exactly once in R

N . If this solution is non-degenerate and f is
in C1(R, R), then it has Morse index j � N + 2.

A close inspection of the proof of Theorem 1.1 reveals that this solution minimizes the
energy among all possible sign-changing solutions of (1.2) that are radially symmetric.
In particular, Theorem 1.1 establishes the existence of a sign-changing radial solution
of (1.1) for s ∈ (0, 1/λ).

In general, the approaches to find nodal solutions of an elliptic equation with a non-
linear term that is superquadratic or asymptotically linear at infinity stumble over the
fact that the operators

∫
RN (|∇u±|2) dx are not in C1 (see, for example, [4] and [6]). We

are able to avoid this difficulty by recovering the basic ideas used in [8].
In his seminal work [21], Nehari introduced a method for finding nodal solutions of

an ordinary differential equation by pasting together positive and negative solutions on
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alternating annuli and combining them with variational methods. This so-called Nehari
method was successfully applied in [27] to obtain oscillating solutions to a class of vari-
ational systems of ordinary superlinear differential equations. A similar argument was
exploited, for example, in [4,24] and references therein, to obtain sign-changing solutions
to radially symmetric partial differential equations for the superquadratic and subcritical
nonlinearities, and in [9] for the critical growth.

Our approach is based on some arguments presented in [8] regarding the original
Nehari method. The contribution of our work is twofold: on the one hand, it applies
the fine construction of [8] (though differently from them) in an unbounded domain
like R

N and subsequently deals with the difficulties it brings; on the other hand, it faces
the subtle peculiarities of a nonlinear term that is non-homogeneous and asymptotically
linear at infinity. To our knowledge, this is the first result about the existence of a
sign-changing solution of a problem with a nonlinearity that is asymptotically linear at
infinity. We remark that the existence of positive solutions for elliptic problems that are
asymptotically linear at infinity has an extensive literature (see, for example, [13,16–19,
26] and references therein).

We start by gluing two solutions of the equation, one in a ball of a fixed radius and
the other in an exterior unbounded domain (see Proposition A 1), essentially in the way
of the method of Nehari. Initially, this may resemble the ideas found in [5] and [24].
Nevertheless, we continue by directly treating the partial differential equation, instead
of the ordinary differential equation, and find a nodal solution not by construction,
but as an existence result by minimization in a closed subset containing all the sign-
changing solutions of the equation. The problem is then proving that the minimum of
the energy on this constraint is achieved by some function in the subset and then proving
that the constraint is natural, meaning that it is indeed a solution of the equation. In
order to circumvent the possible lack of regularity of this subset, it is crucial to apply a
deformation lemma and a fine use of Miranda’s theorem [20]. We would like to mention
that in [11] the authors already consider minimization in a closed set in a more general
form and find nodal solutions for a class of superlinear elliptic problems using Nehari’s
method.

Finally, it is worthwhile observing that the monotonicity assumption (f5) allows us
to perform Nehari-type arguments. This hypothesis was essential in our work as well as
in most of the articles referred to previously. The existence of multiple nodal solutions
to superlinear elliptic equations on R

N under assumptions that do not require either
oddness or the monotonicity condition (f5) was established in [10].

2. The variational framework

In this section we present the variational framework to deal with (1.2) and also give
some preliminary results that will be needed later. We denote by E the Sobolev space
H1

rad(RN ) of the radial functions with the inner product 〈u, v〉 =
∫

RN (∇u∇v + λuv) dx

and we denote the associated norm by ‖u‖ = 〈u, u〉1/2. We define I : E → R by

I(u) = 1
2

∫
RN

(|∇u|2 + λu2) dx −
∫

RN

F (u) dx.
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Weak solutions of (1.2) correspond to critical points of I. The assumptions on f imply
that I ∈ C1(E, R) and that the derivative of I in the direction v at u is

I ′(u)v =
∫

RN

(∇u∇v + λuv) dx −
∫

RN

f(u)v dx.

Moreover, we follow [8] in defining the functional γ : E → R by

γ(u) = I ′(u)u =
∫

RN

(|∇u|2 + λu2) dx −
∫

RN

f(u)u dx

and considering the sets

S = {u ∈ E \ {0} : γ(u) = 0},

Ŝ = {u ∈ S : u+ 
≡ 0, u− 
≡ 0},

S1 = {u ∈ Ŝ : γ(u+) = 0},

where u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}. We observe that sign-changing
solutions of (1.2) are in S1. For our purposes, we first prove that S1 is a natural constraint
for I. Namely, every constrained critical point on S1 is in fact a free critical point. In
order to find a least energy sign-changing radial solution of (1.2), we minimize I on S1.
To this end, we define the level

c = inf
S1

I

and employ the Ekeland variational principle to prove that c is a critical value.

3. Preliminary lemmas

In this section we prove some important properties of the set S1.

Lemma 3.1. The set S1 is non-empty.

Proof. Fix a positive real number R and let ū ∈ E be the unique least energy and
positive solution in the ball BR(0) of (see [3] and [19])

−Δu + λu = f(u) in BR(0),

u = 0 on ∂BR(0).

By Proposition A 1 there exists a positive radial solution v̄ ∈ E of the exterior problem

−Δu + λu = f(u) in R
N \ BR(0),

u = 0 on ∂(RN \ BR(0)).

Let us define
z = ū − v̄

(thus, z+ = ū and z− = −v̄) and fix ū and v̄ as 0 outside BR(0) and R
N \ BR(0),

respectively.
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Moreover, define G : E → R by

G(u) =
∫

RN

(|∇u|2 + λu2) dx − 1
s

∫
RN

u2 dx = 〈u, u〉 − 1
s

∫
RN

u2 dx.

Then,

G(z) = 〈ū − v̄, ū − v̄〉 − 1
s

∫
RN

(ū − v̄)2 dx

= 〈ū, ū〉 − 1
s

∫
BR(0)

ū2 dx + 〈v̄, v̄〉 − 1
s

∫
RN \BR(0)

v̄2 dx

=
∫

BR(0)

(
f(ū)

ū
− 1

s

)
ū2 dx +

∫
RN \BR(0)

(
f(v̄)

v̄
− 1

s

)
v̄2 dx.

By assumption (f4), we have

G(z+) = G(ū) =
∫

BR(0)

(
f(ū)

ū
− 1

s

)
ū2 dx < 0 (3.1)

and

G(z−) = G(v̄) =
∫

RN \BR(0)

(
f(v̄)

v̄
− 1

s

)
v̄2 dx < 0. (3.2)

Hence,
G(z) = G(z+) + G(z−) < 0. (3.3)

Now, let us define the function g : [0,∞) → R by setting g(0) = 〈z, z〉 and

g(t) =
I ′(tz)tz

t2
= 〈z, z〉 −

∫
RN

f(tz)
t

z dx ∀t > 0.

From (f3), g(0) = limt→0+ g(t) = 〈z, z〉 > 0, and so g : [0,∞) → R is a continuous
function. On the other hand, by (f4), (3.3) and using the Lebesgue dominated convergence
theorem, we obtain

lim
t→+∞

g(t) = 〈z, z〉 − lim
t→+∞

∫
RN

f(tz)
t

z dx

= 〈z, z〉 − lim
t→+∞

∫
RN

f(tz)
tz

z2 dx

= 〈z, z〉 −
∫

RN

1
s
z2 dx

= G(z)

< 0. (3.4)

Hence, there exists T > 0 such that

I ′(Tz)Tz

T 2 = 0,
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that is γ(Tz) = I ′(Tz)Tz = 0. Defining w = Tz, we get that the last identity and the
fact that z± 
= 0 imply that w ∈ Ŝ.

Now we proceed as follows:
w+ = Tz+ = T ū, (3.5)

and hence, substituting in the expression for G and using (3.1),

G(w+) = 〈w+, w+〉 − 1
s

∫
RN

(w+)2 dx

= T 2
{

〈ū, ū〉 − 1
s

∫
BR(0)

(ū)2 dx

}

= T 2G(z+)

< 0.

Analogously, using (3.2),

G(w−) = 〈w−, w−〉 − 1
s

∫
RN

(w−)2 dx

= T 2
{

〈v̄, v̄〉 − 1
s

∫
RN \BR(0)

(v̄)2 dx

}

= T 2G(z−)

< 0.

Since G(w+) < 0 and G(w−) < 0, we can use the same reasoning as in (3.4) and show
that there exist real numbers a, b > 0 such that aw+ ∈ S and bw− ∈ S, and consequently
γ(aw+ + bw−) = 0.

Combining the fact that aw+ + bw− 
≡ 0 with the equality γ(aw+ + bw−) = 0, we
conclude that aw+ + bw− ∈ S. We also conclude that aw+ + bw− ∈ S1, because aw+ +
bw− ∈ Ŝ and (aw+ + bw−)+ = aw+ ∈ S, which completes the proof. �

Remark 3.2. Let us define S+ = {u ∈ S : u > 0} and S− = {u ∈ S : u < 0}. Note that
a byproduct of the previous proof is that there exists a path rw = r ∈ C([0, 1], S) such
that r(0) = aw+ ∈ S+, r(1) = bw− ∈ S− and r([0, 1]) ∩ S1 = {r(1/2)} = {aw+ + bw−}
(analogously to [8, Lemma 2.4]). Indeed, observing that (1− t)aw+ + tbw− 
= 0 for every
t ∈ [0, 1] and that

G((1 − t)aw+ + tbw−) = 〈(1 − t)aw+ + tbw−, (1 − t)aw+ + tbw−〉

− 1
s

∫
RN

((1 − t)aw+ + tbw−)2 dx

= (1 − t)aG(w+) + tbG(w−)

< 0,

we find α ∈ C([0, 1], R) such that

r(t) = α(t)[(1 − t)aw+ + tbw−] ∈ S.

We obtain, in particular, that aw++bw− 
≡ 0 by taking t = 1/2 and r(1/2) = aw++bw−.
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Lemma 3.3. The set S1 is closed.

Proof. We first observe that if γ(u) = 0 and u 
= 0, then for any 2 < q < 2∗ there
exists a positive constant C such that |u|Lq � C > 0. Effectively, by the assumptions
(f3)–(f4) and given ε > 0, there exists a positive constant C(ε) such that

|f(t)| � ε|t| + C(ε)|t|q−1 and |F (t)| � ε|t|2 + C(ε)|t|q ∀t ∈ R (3.6)

for 2 < q < 2∗. Since γ(u) = 0, we have∫
RN

(|∇u|2 + λu2) dx =
∫

RN

f(u)u dx � ε

∫
RN

u2 dx + C(ε)
∫

RN

|u|q dx.

Thus,

1
2

∫
RN

(|∇u|2 + λu2) dx �
∫

RN

(|∇u|2 + (λ − ε)u2) dx � C(ε)
∫

RN

|u|q dx. (3.7)

By the Sobolev embedding theorem and the inequality above,

C|u|2Lq � 1
2‖u‖2 � C(ε)|u|qLq . (3.8)

Substituting (3.8) in (3.7) and using the fact that u 
≡ 0, we obtain that |u|Lq � C > 0
for some constant C.

We now recall that

S1 = γ−1{0} ∩ (γ ◦ h)−1{0} ∩ {u ∈ E : u+ 
≡ 0, u− 
≡ 0},

where h : E → E is given by h(u) = u+. Let {un} ⊂ S1 such that un → u for n → ∞.
Since γ(u+

n ) = 0, it follows that γ(u−
n ) = 0 (here we have used that f is an odd function)

and from (3.7) we have
|u+

n |Lq , |u−
n |Lq � C > 0. (3.9)

Since ‖u±
n ‖ � ‖un‖, the sequence {un} is bounded in E and u±

n ∈ E. Using that the
space E = H1

rad(RN ) is compactly embedded in Lq(RN ), we find that u+ 
≡ 0 and u− 
≡ 0
after taking n → ∞ in (3.9). Since γ is a continuous function, it follows that u ∈ γ−1{0}.
By [8, Lemma 2.3], h is continuous and, as a consequence, u ∈ (γ ◦ h)−1{0}. Therefore,
u ∈ S1 showing that S1 is closed in E. �

Lemma 3.4. Let {un} ⊂ S1 be a sequence such that {I(un)} is a bounded sequence.
Then {un} is bounded.

Proof. The proof is adapted from [26]. Suppose by contradiction that there exists a
subsequence, still denoted by {un}, such that ‖un‖ → ∞ as n → ∞.

Up to a subsequence, {I(un)} is convergent, so let c ∈ R be the limit I(un) → c as
n → ∞. By (NQ), we have

I(un) = I(un) − 1
2I ′(un)un =

∫
RN

( 1
2f(un)un − F (un)) dx � 0,

which gives c � 0.
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We first study the case c > 0. Define

vn = 2
√

c
un

‖un‖ .

Then ‖vn‖ = 2
√

c.
Arguing as in the proof of Lemma A 3, from (A 6) to (A 15), replacing cΩ by c and the

integrals in Ω by integrals in R
N , we obtain

lim inf
n→∞

I(un) �
∫

Λ

lim inf
n→∞

[ 12f(un)un − F (un)] dx = +∞,

which implies that I(un) → +∞. This contradicts the limit I(un) → c as n → ∞ and
we conclude that the case c > 0 is impossible.

Assume now that c = 0. Define tn = 1/‖un‖ and set wn = tnun, ‖wn‖ = 1. We claim
that there exist positive numbers R and ρ̃, and a sequence {yn} ⊂ R

N such that

lim inf
n→∞

∫
BR(yn)

w2
n dx � ρ̃. (3.10)

In fact, if

lim
n→∞

sup
y∈RN

∫
BR(y)

w2
n dx = 0,

then, by Lions’s lemma, vn → 0 in Lq-norm for every 2 < q < 2∗. By (3.6),

lim
n→∞

∫
RN

f(wn)wn dx = 0 and lim
n→∞

∫
RN

F (wn) dx = 0,

which implies that

lim
n→∞

I(wn) = lim
n→∞

[
1
2‖wn‖2 −

∫
RN

F (wn) dx

]
= 1

2 . (3.11)

On the other hand, arguing as in (A 14) and replacing cΩ by c, we have

I(wn) = I(tnun) � I(un) = c + on(1) = on(1)

for n → ∞, contrary to (3.11). Hence, (3.10) holds with ρ̃ > 0. There are again two cases
to consider:

(i) the sequence {yn} is bounded;

(ii) |yn| → ∞ for n → ∞.

We can now proceed analogously to the case in which c > 0 and conclude that both of
these conditions are impossible, which proves that the case c = 0 is also impossible, and
the proof is complete. �

Remark 3.5. The proof of the preceding lemma together with the inequalities (3.8)
and (3.9) state that there exist L > 0 and M > 0 such that if {un} ⊂ S1 and the sequence
{I(un)} is bounded, then L � |un|Lq � M , q ∈ (2, 2∗), and L � ‖un‖ � M for every n.
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Lemma 3.6. There exists σ > 0 such that infS1 I � σ.

Proof. By assumption (NQ), for every u ∈ S1, we have

I(u) = I(u) − 1
2I ′(u)u =

∫
RN

[ 12f(u)u − F (u)] dx � 0.

Hence, infS1 I � 0. Suppose by contradiction that there exists a sequence {un} ⊂ S1

such that I(un) → 0 as n → ∞. From Lemma 3.4, {un} is bounded. Therefore, there
exist u0 ∈ E and a subsequence, still denoted by {un}, such that un converges weakly
to u0 in E, un converges strongly to u0 in Lq

loc, 2 < q < 2∗, and un(x) converges to u0(x)
for almost every x ∈ R

N . By (NQ) and Fatou’s lemma,

0 = lim inf
n→∞

I(un)

= lim inf
n→∞

[I(un) − 1
2I ′(un)un]

= lim inf
n→∞

∫
RN

[ 12f(un)un − F (un)] dx

=
∫

RN

[ 12f(u0)u0 − F (u0)] dx

� 0.

Consequently,
1
2f(u0)u0 − F (u0) = 0 for almost every x ∈ R

N .

By (NQ), u0(x) = 0 for almost every x ∈ R
N . Remark 3.5 gives L � |un|Lq for every n.

Since E = H1
rad(RN ) is compactly embedded in Lq(RN ), we find that L � |u0|Lq , contrary

to u0(x) = 0. �

Hypothesis (f5) states that the function t �→ f(t)/|t| is increasing on R \ {0}; thus we
can apply the deformation lemma (see [28, Lemma 2.3]) and Miranda’s theorem [20] to
show the following crucial lemma.

Lemma 3.7. If the infimum c of I on S1 is attained, then c is a critical value of I.

Proof. Let uc ∈ S1 such that I(uc) = c = infS1 I. We have to prove that I ′(uc) = 0.
Suppose, by contradiction, that I ′(uc) 
= 0. Since I ∈ C1(E, R), there exist δ > 0 and
ν > 0 such that

‖I ′(v)‖ � ν for every v ∈ E, ‖v − uc‖ � 2δ.

As in Remark 3.5, we have lower bounds ‖u+
c ‖ > L and ‖u−

c ‖ > L and, without loss of
generality, we may assume 6δ < L.

Let D = [12 , 3
2 ] × [ 12 , 3

2 ] and φ(ξ, τ) = ξu+
c + τu−

c for (ξ, τ) ∈ D. Observing that

I ′(u±
c )u±

c = 0 (3.12)

and using (f5), we have

I(φ(ξ, τ)) = I(ξu+
c ) + I(τu−

c ) < I(u+
c ) + I(u−

c ) = c (3.13)
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for (ξ, τ) ∈ D with ξ 
= 1 or τ 
= 1. Consequently,

c0 = max
∂D

I ◦ φ < c. (3.14)

Applying [28, Lemma 2.3] to ε = min{(c − c0)/2, νδ/8} and S = B(uc, δ), there exists
η ∈ C([0, 1] × E, E) such that

(i) η(θ, u) = u if θ = 0 or if u 
∈ I−1([c − 2ε, c + 2ε]) ∩ B(uc, 2δ);

(ii) η(1, Ic+ε) ∩ B(uc, δ) ⊂ Ic−ε;

(iii) I(η(1, v)) � I(v) for every v ∈ E,

where Ia = {v ∈ E : I(v) � a}.
Combining (i)–(iii) with (3.13)–(3.14) yields

max
(ξ,τ)∈D

I(η(1, φ(ξ, τ))) < c. (3.15)

We claim that
η(1, φ(D)) ∩ S1 
= ∅. (3.16)

In fact, define ϕ(ξ, τ) = η(1, φ(ξ, τ)) and

Ψ(ξ, τ) = (ψ1(ξ, τ), ψ2(ξ, τ)) := (I ′(ϕ+(ξ, τ))ϕ+(ξ, τ), I ′(ϕ−(ξ, τ))ϕ−(ξ, τ)) (3.17)

for ξ > 0 and τ > 0. We are going to show that there exists (ξ0, τ0) ∈ D such that
Ψ(ξ0, τ0) = (0, 0).

Note that

‖uc − φ(ξ, τ)‖ = ‖(u+
c + u−

c ) − (ξu+
c + τu−

c )‖
= |1 − ξ|‖u+

c ‖ + |1 − τ |‖u−
c ‖

� |1 − ξ|‖u+
c ‖

� |1 − ξ|L
> |1 − ξ|6δ

> 2δ ⇐⇒ ξ < 2
3 or ξ > 4

3 . (3.18)

Property (i) of η and inequality (3.18) imply that ϕ(ξ, τ) = φ(ξ, τ) if ξ = 1
2 for τ ∈ [ 12 , 3

2 ].
Thus,

Ψ( 1
2 , τ) = (I ′(ϕ+( 1

2 , τ))ϕ+( 1
2 , τ), I ′(ϕ−( 1

2 , τ))ϕ−( 1
2 , τ))

= (I ′(φ+( 1
2 , τ))φ+( 1

2 , τ), I ′(φ−( 1
2 , τ))φ−( 1

2 , τ))

= (I ′( 1
2u+

c )( 1
2u+

c ), I ′(τu−
c )(τu−

c )) (3.19)

and from (f5) and (3.12) we get

ψ1( 1
2 , τ) = I ′( 1

2u+
c )( 1

2u+
c ) > 0 for all τ ∈ [ 12 , 3

2 ]. (3.20)
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On the other hand, again using property (i) of η and ξ = 3
2 in (3.18), ϕ(ξ, τ) = φ(ξ, τ)

for τ ∈ [ 12 , 3
2 ],

Ψ( 3
2 , τ) = (I ′(ϕ+( 3

2 , τ))ϕ+( 3
2 , τ), I ′(ϕ−( 3

2 , τ))ϕ−( 3
2 , τ))

= (I ′(φ+( 3
2 , τ))φ+( 3

2 , τ), I ′(φ−( 3
2 , τ))φ−( 3

2 , τ))

= (I ′( 3
2u+

c )( 3
2u+

c ), I ′(τu−
c )(τu−

c ))

and from (f5) and (3.12) we get

ψ1( 3
2 , τ) = I ′( 3

2u+
c )( 3

2u+
c ) < 0 for all τ ∈ [ 12 , 3

2 ]. (3.21)

Analogous calculations give that

ψ2(ξ, 1
2 ) = I ′( 1

2u−
c )( 1

2u−
c ) > 0 for all ξ ∈ [ 12 , 3

2 ] (3.22)

and

ψ2(ξ, 3
2 ) = I ′( 3

2u−
c )( 3

2u−
c ) < 0 for all ξ ∈ [ 12 , 3

2 ]. (3.23)

Noting that the function Ψ , as defined in (3.17), is continuous on D because η and
φ are continuous, and considering (3.19)–(3.23), we can apply Miranda’s theorem [20]
and conclude that there exists (ξ0, τ0) ∈ D such that Ψ(ξ0, τ0) = (0, 0), as we claimed
in (3.16). This and (3.15) give a contradiction to the definition of c. Hence, we have that
I ′(uc) = 0 and conclude the proof of this lemma. �

4. Proof of Theorem 1.1

In this section, we argue as in [8] to show the existence of a sign-changing solution of (1.2)
that is radially symmetric. Let c = infS1I and {un} ⊂ S1 be a minimizing sequence, that
is, I(un) → c. From Lemma 3.4, the sequence {un} is bounded. Without loss of generality,
we can assume that un converges weakly to some u in E. Since γ(u+

n ) = 0, it follows that
γ(u−

n ) = 0. The inequalities in (3.8) give

|u+
n |Lq , |u−

n |Lq � L > 0. (4.1)

Using that the space E = H1
rad(RN ) is compactly embedded in Lq(RN ), after taking

n → ∞ in (4.1) we find that u+ 
≡ 0 and u− 
≡ 0. Hence, u = u+ + u− is a sign-
changing function. We claim that u+

n converges strongly to u+ in E. In fact, suppose by
contradiction that there exists a subsequence, still denoted by {u+

n }, such that ‖u+‖ <

lim infn→∞ ‖u+
n ‖. Consequently,

γ(u+) = ‖u+‖2 −
∫

RN

u+f(u+) dx

< lim inf
n→∞

[
‖u+

n ‖2 −
∫

RN

u+
n f(u+

n ) dx

]
= 0. (4.2)
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On the other hand, from (f3)–(f4), given 2 < q < 2∗ and 0 < ε < λ/4, there exists a
positive constant C(ε) such that f(t)t � εt2 +C(ε)tq for all t ∈ R and consequently there
exists δ > 0 such that

γ(u) � 1
4‖u‖2 ∀u ∈ E, ‖u‖ � δ. (4.3)

Consider the function g1 : [0,∞) → R given by g1(t) = γ(tu+). The inequality (4.3) gives
that for sufficiently small t > 0, g1(t) > 0, while (4.2) implies that g1(1) < 0. Since g1

is continuous, there exists 0 < α < 1 such that γ(αu+) = 0. Since γ(u+
n ) = 0, it follows

that γ(u−
n ) = 0 and, as in (4.2), γ(u−) � 0. Similarly, there exists 0 < β � 1 such that

γ(βu−) = 0. Therefore, αu+ + βu− ∈ S1 and

I(αu+ + βu−) < lim inf
n→∞

I(αu+
n + βu−

n )

= lim inf
n→∞

[I(αu+
n ) + I(βu−

n )]

� lim inf
n→∞

[I(u+
n ) + I(u−

n )]

= lim inf
n→∞

I(un)

= c

= inf
S1

I,

which is impossible. Therefore, u+
n converges strongly to u+ in E. Analogously, u−

n con-
verges strongly to u− in E and hence un → u in E. Since S1 is closed, u ∈ S1. Therefore,
I(u) = c = infS1I. From Lemma 3.7 it follows that u is a critical point of I and so a
sign-changing solution of (1.2) in E, with least energy among all possible sign-changing
solutions that are radially symmetric. In order to verify that the sign-changing solution
obtained has exactly two nodal domains, we refer the reader to [8, pp. 1051] because
the proof of this fact follows analogously. We now suppose that u is a non-degenerate
critical point. Since u is radially symmetric, we can exploit the argument used in the
proof of [15, Theorem 1.6] to obtain for any canonical directions ei, i = 1, . . . , N , a C∞

function ψi with compact support in the open half-space
∑

(ei) = {x ∈ R
N : x · ei > 0}

such that I ′′(u)(ψi, ψi) < 0. On the other hand, by (f5), I ′′(u)(v, v) < 0 for v = u+ and
v = u− (see [8]). Combining the fact that the support u+ is in a ball centred at the origin
and the support of u− is the exterior of this ball, with the fact that the support of ψi

is in the open half-space
∑

(ei) for every i = 1, . . . , N , it follows that u+ and u− do not
belong to span{ψ1, . . . , ψN} and we hence conclude that u has Morse index j � N + 2.
The proof of Theorem 1.1 is complete.

Appendix A

In this appendix we present the existence of a radial positive solution for the following
asymptotically linear Schrödinger equation in an exterior domain:

−Δu + λu = f(u) in Ω,

u = 0 on ∂Ω,

}
(A 1)
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where Ω ≡ R
N \ BR(0) for some fixed R > 0. Existence of positive solution to this

problem in exterior domains was proved in [18] under more restrictive conditions, in
particular assuming that f is convex. We do not intend to impose such a hypothesis
since our model problem (1.1) does not satisfy this condition. This result may exist in
the literature but since we have not found a reference we will give a brief proof.

Proposition A 1. Assume that (f1)–(f5) and (NQ) are satisfied. There then exists a
radial positive solution of (A 1).

The proof of Proposition A 1 will be carried out through the verification of several
steps. Here we consider the Sobolev space EΩ ≡ H1

0,rad(Ω) endowed with the norm

‖u‖2
Ω =

∫
Ω

(∇u∇v + λuv) dx.

Since we are interested in finding positive solutions of (A 1), in this section we assume
that f(t) = 0 when t � 0 without changing the symbols f and F . The critical points of
the associated C1 functional IΩ : EΩ → R, defined by

IΩ(u) = 1
2

∫
Ω

(|∇u|2 + λu2) dx −
∫

Ω

F (u) dx,

are precisely the solutions of (A 1). If u denotes one of these solutions, then 0 =
I ′
Ω(u)u− = −‖u−‖2

Ω ; thus u � 0. Since the term on the right in (A 1) is non-negative,
the strong maximum principle implies that u > 0 in Ω.

Assuming that conditions (f1), (f3) and (f4) hold, we are able to verify that IΩ satisfies
the geometric hypotheses of the mountain pass theorem. This is a consequence of the
following lemma.

Lemma A 2. Assume that (f1), (f3) and (f4) are satisfied. Then there exist positive
numbers b, ρ and e ∈ EΩ such that

(1) IΩ(u) � b for every u ∈ EΩ such that ‖u‖Ω = ρ;

(2) ‖e‖Ω > ρ and IΩ(e) < 0.

Proof. By (f1), (f3) and (f4), given ε ∈ (0, λ) and q ∈ (2, 2∗), where 2∗ = 2N/(N −2),
there exists a positive constant C(ε) such that

|f(t)| � ε|t| + C(ε)|t|q−1 and |F (t)| � ε

2
|t|2 +

C(ε)
q

|t|q ∀t ∈ R. (A 2)

Hence, for every u ∈ EΩ , we have

IΩ(u) � 1
2

∫
Ω

(|∇u|2 + λu2) dx −
∫

Ω

(
ε

2
|u|2 − C(ε)

q
|u|q

)
dx

� λ − ε

2λ

∫
Ω

(|∇u|2 + λu2) dx − C(ε)
q

∫
Ω

|u|q dx.
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By the Sobolev embedding theorem and the inequality above,

IΩ(u) � λ − ε

2λ
‖u‖2

Ω − C(ε)
q

‖u‖q
Ω .

Since ε ∈ (0, λ) and q > 2, we can find positive numbers b and ρ such that (1) holds.
To prove (2), let u0 be the unique positive radial solution of (see [7])

−Δu + λu = f(u) in R
N ,

u(x) → 0 as |x| → ∞

and set
vσ(x) = u0(x/σ) for σ > 0.

For any σ > 0 we have

I(vσ) = 1
2

∫
RN

(|∇vσ|2 + λv2
σ) dx −

∫
RN

F (vσ) dx

=
σN−2

2

∫
RN

|∇u0|2 dx − σN

∫
RN

(
−λ

2
u2

0 + F (u0)
)

dx.

By the Pohozaev identity,

2N

∫
RN

(
−λ

2
u2

0 + F (u0)
)

dx = (N − 2)
∫

RN

|∇u0|2 dx,

which implies that

2N

∫
RN

(
−λ

2
u2

0 + F (u0)
)

dx > 0.

Hence,
I(vσ) → −∞ as σ → +∞. (A 3)

Next, let φ ∈ C∞(RN ) be a radial increasing function such that φ(x) = 0 for |x| � R,
φ(x) = 1 for |x| � 2R and 0 � φ(x) � 1. Recalling that Ω = R

N \ BR(0), we can write

IΩ(φvσ) = I(vσ) − IB2R(0)(vσ) + IB2R(0)\BR(0)(φvσ), (A 4)

where

IB2R(0)(vσ) = 1
2

∫
B2R(0)

(|∇vσ|2 + λv2
σ) dx −

∫
B2R(0)

F (vσ) dx,

IB2R(0)\BR(0)(φvσ) = 1
2

∫
B2R(0)\BR(0)

(|∇(φvσ)|2 + λ(φvσ)2) dx

−
∫

B2R(0)\BR(0)
F (φvσ) dx.

We claim that

IB2R(0)(vσ) and IB2R(0)\BR(0)(φvσ) are bounded uniformly in σ � σ0. (A 5)
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If (A 5) holds, then, combining (A 3)–(A 5), we get σ0 > 1 sufficiently large such that
IΩ(φvσ) < 0 for σ > σ0. Taking e = φvσ and observing that e ∈ EΩ and ‖e‖2 �
σN−2‖u0‖2, we can assume that ‖e‖ > ρ, with ρ as in the proof of (1). Therefore,
IΩ(e) < 0 and ‖e‖ > ρ, and (2) is proved.

Let us show that (A 5) holds. By the definition of vσ, we have

|vσ(x)| � u0(0) and |∇vσ(x)| � C

σ
∀x ∈ R

N

for some positive constant C. We can assume, by increasing σ0 if necessary, that C/σ < 1.
Consequently, ∫

B2R(0)
(|∇vσ|2 + λ|vσ|2) dx � (1 + λu2

0(0)) vol(B2R(0)).

Since 0 � vσ(x) � u0(0) and F is continuous, there exists M > 0 such that∣∣∣∣
∫

B2R(0)
F (vσ) dx

∣∣∣∣ � M vol(B2R(0)).

Similarly,
|φvσ(x)| � u0(0) and |∇(φvσ(x))| � C(R) ∀x ∈ R

N

for some constant C > 0. Hence, there exists a constant C(R) > 0 such that

|IB2R(0)(vσ)| � C(R) and |IB2R(0)\BR(0)(φvσ)| � C(R)

uniformly in σ, and the proof of the lemma is complete. �

Since the functional IΩ satisfies the geometric hypotheses of the mountain pass theo-
rem, it follows by Ekeland’s variational principle that there exists a Cerami sequence at
the mountain pass level cΩ , that is, a sequence {un} ⊂ EΩ such that

IΩ(un) → cΩ and ‖IΩ(un)‖E−1
Ω

(1 + ‖un‖) → 0 as n → ∞,

where
cΩ = inf

γ∈Γ
max

t∈[0,1]
IΩ(γ(t)) � b > 0

for b given by Lemma A 2 (1), and

Γ = {γ ∈ C([0, 1], EΩ); γ(0) = 0 and IΩ(γ(1)) < 0}.

By Lemma A 2, Γ 
= ∅. Here we have also used that u ≡ 0 ∈ EΩ and IΩ(0) = 0.

Lemma A 3. The sequence {un} is bounded.

Proof. The proof is adapted from [26]. Suppose by contradiction that there exists a
subsequence, still denoted by {un}, such that ‖un‖ → ∞ as n → ∞. Define

vn = 2
√

cΩ
un

‖un‖ .
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Since {vn} ⊂ H1
0 (Ω) and ‖vn‖ = 2

√
cΩ , there exists a subsequence, still denoted by {vn},

such that vn converges weakly to v in EΩ , vn converges strongly to v in Lq
loc, 2 < q < 2∗,

and vn(x) converges to v(x) for almost every x ∈ Ω for some v ∈ EΩ . By fixing vn and
v as 0 outside Ω, we can assume vn, v ∈ H1(RN ). We claim that there exist positive
numbers r and ρ and a sequence {yn} ⊂ R

N such that

lim inf
n→∞

∫
Br(yn)

v2
n dx � ρ. (A 6)

In fact, suppose not. Then

lim
n→∞

sup
y∈RN

∫
Br(y)

v2
n dx = 0, (A 7)

and by Lions’s lemma, vn → 0 in Lq-norm for every 2 < q < 2∗. By (3.6)∣∣∣∣
∫

RN

F (vn) dx

∣∣∣∣ � ε

∫
RN

|vn|2 dx + C(ε)
∫

RN

|vn|q dx � 2ε
√

cΩ

λ
+ C(ε)

∫
RN

|vn|q dx,

and thus, from (A 7), it follows that

lim
n→∞

∫
RN

F (vn) dx = 0

and
I(vn) = 1

2‖vn‖2 −
∫

RN

F (vn) dx = 2cΩ + on(1). (A 8)

On the other hand, we claim that

I(vn) � cΩ + on(1). (A 9)

In fact, up to a subsequence, we can assume that ‖IΩ(un)‖E−1
Ω

‖un‖ < 1/n, IΩ(un) =
cΩ + on(1) and

− 1
n

< I ′
Ω(un)un = ‖un‖2 −

∫
Ω

f(un)un dx <
1
n

. (A 10)

We will show that

IΩ(tun) � t2

2n
+

∫
Ω

( 1
2f(un)un dx − F (tun)) dx. (A 11)

In fact, we set
ξ(t) = 1

2 t2f(un)un − F (tun), t � 0.

For any t > 0,

ξ′(t) =
[
f(un)

un
− f(tun)

tun

]
tu2

n.

From (f5), the function t �→ ξ(t) has a maximum point in t = 1. Consequently,

1
2 t2f(un)un dx − F (tun) � 1

2f(un)un dx − F (un) ∀t � 0. (A 12)
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Combining (A 10) with (A 12), we get

IΩ(tun) =
t2

2
‖un‖2 −

∫
Ω

F (tun) dx

� t2

2

(
1
n

+
∫

Ω

f(un)un dx

)
−

∫
Ω

F (tun) dx

=
t2

2n
+

∫
Ω

( 1
2 t2f(un)un dx − F (tun)) dx

� t2

2n
+

∫
Ω

( 1
2f(un)un dx − F (un)) dx

and (A 11) follows. Using (A 10) again, we have

IΩ(un) = 1
2‖un‖2 −

∫
Ω

F (un) dx � − 1
2n

+
∫

Ω

( 1
2f(un)un dx − F (un)) dx. (A 13)

From (A 11) and (A 13) we obtain

IΩ(tun) � t2

2n
+ IΩ(un) +

1
2n

.

Choosing t = tn = 2
√

cΩ/‖un‖, we find

I(vn) = IΩ(tnun) � 2cΩ

n‖un‖2 + IΩ(un) +
1
2n

= cΩ + on(1) (A 14)

for n → ∞, and (A 9) is proved. Combining (A 8) with (A 9) gives

2cΩ + on(1) = I(vn) � cΩ + on(1),

and so 0 < cΩ � on(1), which is impossible. Hence, (A 6) holds.
There are two cases to consider:

(i) the sequence {yn} is bounded;

(ii) |yn| → ∞ for n → ∞.

If (i) holds, then there exists r1 > r, for r given in (A 6), such that∫
Br1 (0)

v2
n dx � ρ

2
.

Since ‖vn‖ = 2
√

cΩ , there exists a subsequence, still denoted by {vn}, such that vn

converges weakly to v in E, vn converges strongly to v in Lq
loc, 2 < q < 2∗, and vn(x)

converges to v(x) for almost every x ∈ R
N for some v ∈ E. Hence,∫

Br1 (0)
v2 dx � ρ

2
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and so v 
= 0, which implies that there exists a subset Λ ⊂ Br1(0) ∩ Ω with positive
measure such that v(x) 
= 0 for all x ∈ Λ. As a consequence of ‖un‖ → ∞, |un(x)| → ∞
for all x ∈ Λ. By (NQ), we have

IΩ(un) − 1
2I ′

Ω(un)un =
∫

Ω

[ 12f(un)un − F (un)] dx �
∫

Λ

[ 12f(un)un − F (un)] dx.

Combining Fatou’s lemma with (NQ), we obtain

lim inf
n→∞

(IΩ(un) 1
2I ′

Ω(un)un) �
∫

Λ

lim inf
n→∞

[ 12f(un)un − F (un)] dx = +∞.

But this contradicts the fact that IΩ(un)− 1
2I ′

Ω(un)un = cΩ + on(1). Hence, (i) does not
hold.

Suppose that (ii) holds and define ṽn(x) = vn(x + yn). Hence, ‖ṽn‖ = ‖vn‖ = 2
√

cΩ .
Passing to a subsequence if necessary, we can assume that ṽn converges weakly to ṽ in E

and ṽn ∈ E converges to ṽ in Lq
loc, 2 � q � 2∗, for some function ṽ. From (A 6)

lim inf
n→∞

∫
Br(0)

ṽ2
n dx � ρ,

which gives ∫
Br(0)

ṽ2 dx � ρ,

and so ṽ 
= 0. Therefore, there exists a subset Λ ⊂ Br(0) with positive measure such that
ṽ(x) 
= 0 for all x ∈ Λ. As a consequence, |un(x + yn)| → ∞ for all x ∈ Λ as n → ∞.
Since |yn| → ∞, we can assume that Br(yn) ⊂ Ω for every n. Thus, by (NQ), we have

IΩ(un) − 1
2I ′

Ω(un)un =
∫

Ω

[ 12f(un(x))un(x) − F (un(x))] dx

�
∫

Br(yn)
[ 12f(un(x))un(x) − F (un(x))] dx

=
∫

Br(0)
[ 12f(un(x + yn))un(x + yn) − F (un(x + yn))] dx

�
∫

Λ

[ 12f(un(x + yn))un(x + yn) − F (un(x + yn))] dx.

Using Fatou’s lemma and (NQ), we obtain

lim inf
n→∞

(IΩ(un) − 1
2I ′

Ω(un)un)

�
∫

Λ

lim inf
n→∞

[ 12f(un(x + yn))un(x + yn) − F (un(x + yn))] dx = +∞, (A 15)

which contradicts the fact that IΩ(un) − 1
2I ′

Ω(un)un = cΩ + on(1). Hence, (ii) does not
hold either, and this concludes the proof. �
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We are now ready to prove Proposition A 1. By Lemma A 3, we can assume that un

converges weakly to u in EΩ . Since EΩ is compactly embedded in Lp(Ω), for 2 < p < 2∗,
we can prove as usual (see [28]) that un converges strongly in EΩ . Hence IΩ(u) = cΩ

and I ′
Ω(u) = 0, and so u > 0. The proof of Proposition A 1 is complete.
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