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Interfacial electrohydrodynamic solitary waves
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Interfacial waves between two superimposed dielectric fluid layers under a horizontal
electric field are investigated from asymptotic and numerical aspects. The fluid is taken
to be inviscid, incompressible and non-conducting in each layer. The competing forces
resulting from gravity, surface tension and electric field are all considered. A systematic
procedure is proposed to derive model equations of multiple scales in various possible
limits from the electrified Euler equations in the framework of the Zakharov—Craig—Sulem
formulation. Based on thorough analyses of the Dirichlet-Neumann operators in
the long-wave approximation, classic weakly nonlinear models — including the
Boussinesq-type system, the Korteweg—de Vries (KdV) equation and its variants, and the
Benjamin-type equation — are obtained under different scaling assumptions. In addition,
strongly nonlinear models (without the smallness assumption on the wave amplitude)
in the Benjamin and Barannyk—Papageorgiou—Petropoulos regimes are derived. In these
models, the electric effects are shown to produce dispersive regularisations of long and
short waves. A modified boundary integral equation method is developed to compute
solitary waves in the original electrified Euler equations. Through comparisons with
solitary-wave solutions in the Euler equations, it is found that in various asymptotic
regimes, weakly nonlinear models are in overall good agreement when wave amplitudes
are small. In contrast, the range of validity of the strongly nonlinear model is much broader.
It is shown that the horizontal electric field plays a significant role in the physical system:
it expands the range of parameters for the existence of progressive waves, changes the
qualitative characteristics of solitary waves and leads to a new type of solitary wave,
namely the KdV—wavepacket mixed type.
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1. Introduction

Electrohydrodynamics, an interdisciplinary subject coupling electrostatic fields into fluid
flows through the Maxwell stress tensor, arose in the 1960s when Taylor, Melcher and
others began their researches on interfacial hydrodynamic instabilities under electric
fields. Motivated by the disintegration of water drops in a strong electric field such as a
thunderstorm, Taylor (1964) showed that electrified cones could exist in equilibrium with
fixed semi-vertical angle 49.3° (termed the “Taylor cone’ in later literature). Subsequently,
the destabilising effect of the normal electric field was confirmed by Taylor & McEwan
(1965) when they applied it to an extended horizontal surface of a conducting liquid. The
normal electric field, which is orthogonal to the undisturbed interface, has a wide range
of applications in chemistry and industry, including the cooling system, coating process
and microfluidic device, to name a few. Electrospray ionisation resulting from the Taylor
cone is an essentially useful technique in converting solution ions into highly charged
gas-phase ions of macromolecules (Fernandez de La Mora & Loscertales 1994). It plays
a vital role in advanced propulsion and power technologies in space science, such as the
field-emission electric propulsion and colloid thrusters used in fine control of spacecraft
(see Gamero-Castafio & Hruby (2001) and references therein).

As opposed to the normal electric field causing instability to the fluid layer, the
tangential electric field, parallel to the undisturbed interface, has a stabilising effect since it
provides a dispersive/dissipative contribution to the linear system (Melcher 1963; Melcher
& Schwarz 1968; Kochurin & Zubarev 2018). It can delay the formation of the film
rupture (Tilley, Petropoulos & Papageorgiou 2001) and even suppress the Rayleigh—Taylor
instability (see Eldabe (1989) for the linear stability analysis). Even in the non-dispersive
situation, Zubarev (2004) showed that under a strong tangential electric field, nonlinear
wave—wave interactions on a dielectric fluid of infinite depth do not lead to the formation
of singularities (say, wave breaking). The control of the Rayleigh—Taylor instability using
tangential electric fields has received increasing attention in the past decade due to its
potential application in many situations of practical relevance. Joshi, Radhakrishna &
Rudraiah (2010) performed the linear stability analysis by involving the polarisation effects
and showed how the electrostriction term obliterated the density difference between fluids
to remove or delay the instability. For inviscid dielectric fluids, Barannyk, Papageorgiou
& Petropoulos (2012) and Barannyk et al. (2015) derived reduced nonlinear models based
on a multi-scale analysis and showed numerically that instability can be arrested entirely if
the tangential electric field is sufficiently strong. Conversely, the touching singularity (i.e.
the interface touches the rigid wall) occurs in a finite time when the electric strength is in
the subcritical regime. Direct numerical simulations of the full Navier—Stokes equations
were carried out by Cimpeanu, Papageorgiou & Petropoulos (2014), Yang et al. (2016)
and Anderson et al. (2017) when gravity, surface tension and tangential electric field were
considered. All the groups found complete suppression of the Rayleigh—Taylor instability
subject to finite wavelength perturbations.

In this study, two immiscible inviscid fluids with one on top of the other are
bounded vertically by two horizontal rigid walls, which are assumed to be electrically
insulating (Barannyk et al. 2012, 2015). The fluids and electric fields are strongly coupled
through the Maxwell stress at the interface (Melcher & Taylor 1969). A horizontally
applied electric field, tangent to the undisturbed interface, can exert significant forces
competing with gravity and surface tension at the electrified interface when the system
is perturbed. Asymptotic modelling and direct numerical simulations of the primitive
equations are combined to capture the nonlinear features of electrohydrodynamic waves.
Particular attention is paid to new interfacial solitary waves that emerge owing to the
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external field. We should emphasise that due to the stabilising effect of horizontal electric
fields, the upper fluid layer is allowed to be heavier than the lower layer in modelling and
computations.

There have been many studies on asymptotic theories of nonlinear electrohydrodynamic
waves propagating at the liquid—gas or liquid—liquid interface in different electrode—fluid
configurations for incompressible, inviscid and irrotational flows. Among these
works, the long-wave approximation is most commonly examined in the literature.
Electrocapillary-gravity waves propagating on the surface of a thin conducting liquid
under a normal electric field were studied thoroughly by different groups. When the
thickness of the gas layer is of the same order as that of the conducting layer, the
celebrated Korteweg—de Vries (KdV) equation with coefficients depending on the electric
parameter was obtained by Easwaran (1988). As the top electrode is placed far from the
free surface, the Benjamin equation with the electric effect reflected in the term of the
Hilbert transform was derived by Gleeson er al. (2007) and later on extended to the
three-dimensional problem by Hunt et al. (2017), which results in the two-dimensional
Benjamin equation. Further generalisation was achieved by Wang (2017), who derived
bidirectional isotropic models (namely the Benney-Luke-type and Boussinesq-type
equations) based on asymptotic expansions of the Dirichlet—-Neumann operators in the
Hamiltonian framework. When a perfect dielectric liquid replaces the conducting film,
the electric field within the fluid domain becomes active and needs to be solved together
with other fields. Using matched asymptotic expansions, Papageorgiou, Petropoulos &
Vanden-Broeck (2005) and Papageorgiou & Vanden-Broeck (2007) derived reduced
integrodifferential systems involving the Hilbert transform while sending the upper
electrode to infinity, and computed periodic travelling waves and touch-down dynamics.
In the presence of tangential electric fields, coupled evolution equations in the long-wave
limit were also obtained and investigated by Tilley er al. (2001) and Papageorgiou &
Vanden-Broeck (2004a) for the dynamics of electrocapillary waves and by Barannyk et al.
(2012, 2015) for control of the Rayleigh—Taylor instability. Interested readers are referred
to the recent comprehensive review by Papageorgiou (2019) and the references therein for
more details about weakly nonlinear models in electrohydrodynamics.

There has been considerable research devoted to fully nonlinear interfacial
electrohydrodynamic travelling waves without any assumptions on the size of wave
amplitude and wavelength. The conventional tool is solving the electrified Euler equations
based on various boundary integral equation methods. When one layer is assumed to
be hydrodynamically passive (the gas-liquid interface, for instance), computations of
strongly nonlinear travelling waves were carried out by Papageorgiou et al. (2005),
Papageorgiou & Vanden-Broeck (2007) and Gao et al. (2017) for normal electric fields,
and by Papageorgiou & Vanden-Broeck (2004a, ) for tangential electric fields. Solutions
influenced by surface tension and electrical stress were extended to the axisymmetric
configuration by Grandison et al. (2007), who showed the existence of travelling
toroidal bubbles. When both fluid layers are hydrodynamically active and have the same
density, Grandison, Papageorgiou & Vanden-Broeck (2007) computed symmetric and
anti-symmetric periodic waves in the presence of a velocity jump across the interface.
To the best of our knowledge, no fully nonlinear computations have been performed for
the system of two hydrodynamically active dielectrics when the competing forces resulting
from gravity, surface tension and electric field are all considered.

In the absence of electric fields, theoretical and numerical aspects of interfacial
gravity-capillary waves were investigated by different authors. Benjamin (1992) proposed
a weakly nonlinear model, now bearing his name, for long interfacial waves propagating
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on an infinitely deep fluid layer assuming small density difference and large interfacial
tension between two fluids. He found a new type of solitary wave in the Benjamin equation,
bifurcating from infinitesimal periodic waves and featuring oscillatory decaying tails,
termed wavepacket solitary waves. Akylas (1993) showed that the existence of wavepacket
solitary waves demands a phase speed extremum at a non-zero wavenumber, where the
group velocity is equal to the phase velocity. Furthermore, the associated cubic nonlinear
Schrodinger (NLS) equation at this particular point is of the focusing type so that soliton
solutions of the NLS equation can approximate envelopes of wavepacket solitary waves in
the primitive equations. On the other hand, for interfacial gravity-capillary waves between
two semi-infinite fluid layers, Laget & Dias (1997) performed the normal-form analysis
and found a critical density ratio above which the NLS equation is of defocusing type at
the minimum of the phase speed. Unexpectedly, in such a scenario, wavepacket solitary
waves were still shown to exist in the full Euler equations but only at finite amplitude. It
indicates that the focusing NLS equation is unnecessary for wavepacket solitary waves in
the primitive equations. In the present paper, introducing an electric field adds complexity,
thereby increasing the difficulty of asymptotic analysis and numerical computations.
However, from a linear theory perspective, the horizontal electric field leads to a more
complicated dispersion relation. And its stabilising nature expands the range of parameters
that can be explored; hence new wave phenomena, particularly new solitary waves, arising
from the electric field may be expected.

The main focus of this paper is to quantify nonlinear interfacial electrocapillary-gravity
waves between two perfect dielectric liquids, with specific emphasis on solitary waves. The
goal is twofold: to propose a systematic way to derive strongly/weakly nonlinear models
in different scaling limits, and to provide numerical results for various types of solitary
waves in the electrified Euler equations. The rest of the paper is organised as follows. The
mathematical formulation of the problem, together with the linear dispersion relation, is
described in § 2. Since it is convenient to deal with the problem using interface variables,
we reformulate the problem based on the Dirichlet-Neumann operators in the same
section. Strongly and weakly nonlinear models are derived in § 3 for different wavelength
and amplitude scalings via expanding and truncating the pseudo-differential operators
in the kinematic and dynamic boundary conditions. In § 4, solitary waves are solved
numerically for the primitive equations based on a boundary integral equation method.
Theoretical and numerical solutions of the reduced models are compared with those of the
Euler equations, and good agreement is found for small- and moderate-amplitude solitary
waves. It is also shown that the electric field has a great impact on the physical system and
can change the qualitative nature of the interface. Finally, conclusions and further remarks
are given in § 5.

2. Mathematical formulation
2.1. Governing equations

Two immiscible inviscid incompressible fluids are bound together in an infinite horizontal
channel and separated by a sharp interface y = n(x, t), where x is the direction of wave
propagation, and the y-axis points upwards, with y = 0 at the undisturbed interface (see
the sketch of the system in figure 1). We denote by 4™ and p* the depth and density in
each layer, where the superscripts ‘+’ and ‘—’ refer to fluid properties associated with
the upper and lower fluid layers, respectively. The fluids, which are assumed to be perfect
dielectrics with electrical permittivities ¢, are under the action of a uniform horizontal
electric field of strength Ey in the absence of perturbations. The flows are supposed to
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Figure 1. The schematic of the problem. The dashed line represents the undisturbed interface.

be irrotational, hence there exist potential functions ¢* such that the velocity fields u*
satisfy ut = V¢T, where V = (,, dy) is the gradient operator. If we denote the electric
fields by ET and E~ in the corresponding layers, then the electrostatic limit of Maxwell’s
equations yields V x ET = 0; therefore voltage potentials V¥ can be introduced, such that
E* = —VV*. In this scenario, both velocity potentials and voltage potentials satisfy the
Laplace equation:

ApT =0, AVT =0, n<y<h", (2.1a,b)
Ap~ =0, AV =0, —h <y<n, (2.2a,b)

where A = 0y, + 0y, is the two-dimensional Laplace operator. The electric fields have
to satisfy two boundary conditions at the interface y = n(x, t), namely the continuity of
electric potential and continuity of the electric displacement field given by
vt av—
Vi=v", et — =" —, (2.3a,b)
on on
where n = (—n,, 1)//1 + nf is the unit normal vector pointing outwards from the lower
layer. Far away from interfacial disturbances, we should impose the condition

VE = Egx, asx— +oo. (2.4)

Following Barannyk ez al. (2012, 2015), the impermeability conditions should be satisfied
for both fluids and electric fields on the channel walls, namely

dpT v+

aﬁiza_:o, aty = it

aqsy— a\;v— 25)
——=——=0, aty=h".

ay ay

On physical grounds, the no-current boundary condition for electric fields is used to model
electrically insulating walls. The hydrodynamic boundary conditions at the interface are a
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kinematic condition
0= F — by = by — ey (2.6)

which indicates continuity of normal velocity, and a modified dynamic boundary condition
resulting from pressure continuity across the interface:

P~ (6 + 31VoTP +gn) — o7 (87 + 31V97 1 + )
— O Nxx

X

+[n-X-n]

where g is the acceleration due to gravity, o is the coefficient of surface tension, n - X' - n
arises from the Maxwell stress tensor (X); j—1,2 given by

Ti= SV — V2, Zp= Xy =eViV,, = (V2 — V2 2 84—
11—2(x V) 12 = 2o = eViVy, 22—2(y s (2.8a—c)

and [-], represents the jump in this quantity across the interface. A straightforward
calculation yields

vy - V)2
[n-X-nl=¢ |:<W) —%|VV |2:|—€Jr |:<W) —%|Vv+|2i|- (2.9)

For convenience, we introduce new functions W* = V+ /Eo — x, hence Wt 50 as
x — 400, and W still satisfy Laplace’s equation. Therefore, (2.3a,b) and (2.9) can be
rewritten as

("= =T W — W) — e~ (W, —nWy), (2.10)

aw—\?
[n- X -nl; =Eje™ [(W) — %|VW‘|2} — Ej(eW, —eTW)

IW+\? E2(et—e7)n?
—Ejet | ——) —AVWT? |+ u, (2.11)
on 142

respectively, where the constant E%(£+ —¢&7) in (2.11) has been neglected since it can
always be absorbed by redefining ¢~ in the dynamic boundary condition. Finally, (2.1a,b),
(2.2a,b), (2.5), (2.6), (2.7), (2.10) and the continuity condition W = W~ at the interface
complete the whole problem.

2.2. Zakharov—Craig—Sulem formulation

The Dirichlet—-Neumann operator (DNO), which sends boundary value data to normal
derivative data via solving the Laplace equation, is essential for investigating free
boundary problems in potential theory. We define the velocity potentials and voltage
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potential at the interface as

+ = ¢t N =¢
Efnn=¢T (0,0, ExD=¢ (x,n<x’f>’f>’} (2.12)

Wx, £) = WHx, nx, 1), 1) = W (x, n(x, 1), 1).

First, it follows from the kinematic boundary condition and the definitions of £* that at
the interface,

+ _ +
=TI g e M (2.13a,b)
1+ ng 1+ ng
Following Craig & Sulem (1993), we introduce the DNOs
GT (1. h) EF = It — ¢ lymy = [V - (=m) /T + 02y,
G (n,h)éE = [d’; - 77x¢;]y:n =[Vo™ - n./ 1+ n,%]y:n, (2.14)

GT (YW = W =W oy = [VWT - (=n) /1 + 1n2]y=y,
G_(ﬂy h_) W= [Wy_ - anx_]y:n =[VW™. ny/ 1+ 77)%]}?:17-

We suppress the dependency of DNOs on 4% and 7 in subsequent analyses for simplicity
of notation. Then the derivatives of W* can be expressed as

Wy & 0 GEW G=W + n W,
A LA S A (2.15a,b)
1+ n? ' L+ng
the kinematic boundary condition can be rewritten as a compact form
=G & =-GTet, (2.16)

and the continuity equation for the electric displacement field at the interface now reads
G WHetGTW = (7 —e)n,. (2.17)

Following Zakharov (1968), who formulated the free-surface water wave problem in terms
of surface quantities, we can rewrite the pressure equation as

—le= 1 _2_(77t+77x§_)2 o+ le+ 1 +2_(77t+77x5+)2
2
+2(1E B W GWY = e 2W)
F(p —pHgn— —2M __ o, (2.18)

()

upon substituting (2.11), (2.13a,b), and (2.15a,b) into (2.7), and noticing that & = ¢ +
n:9F. We denote by £ = p=&~ — pTET the potential difference at the interface, and it is
easy to see that (2.18) is the evolution equation for &. Recalling the kinematic boundary
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condition (2.16), one obtains the relations between & and &+ as
GTe=(p Gt+p™GE™ = & =(p G T+pTG)TIGTE, (2.19)
GeE=—(p Gr4+pTGEY = &' =—(0G"+p'G)7'GE. (220
On the other hand, due to (2.17), the voltage potential W and the interface displacement
are related through
W=( —eh)(e G +eTGH .. (2.21)

Finally, by replacing & + and W with (2.19)-(2.21), equations (2.16) and (2.18) form a
closed system with two unknowns: n and &.

2.3. Linear theory

Coifman & Meyer (1985) proved that if the L'-norm and Lipschitz-norm of  are smaller
than a certain constant, then G~ is an analytic function of 7. It then follows that G~ (1, h™)
can be written naturally in the form of a Taylor expansion in 1, namely G~ (n,h™) =

Zfio Gj_(n, h7), and Craig & Sulem (1993) initially obtained a recursive formula for the
expansion. The first three terms of the Taylor series are given by

Gy = (—dx)/? tanh((—dx)/?h7),
Gy = —dmd — Gy nG (2.22)

S DR
G2 :EGOT} Bxx+§

where the dependency of Gj_ on 1 and A~ has been suppressed for simplicity as usual. In
the same vein, the DNO for the upper-layer fluid, G (n, h*), can be expanded as

3an*Gy + Gy nGynGy

GT i) =) Gl k) =) (=1 G (n, h), (2.23)
J=0 j=0

which is obtained by replacing n and A~ with —n and A, respectively, in Gj_(n, h™).

In the subsequent analyses, we derive the linear dispersion relation of the problem. We
first linearise the whole system around the trivial uniform stream solution n = ¢ = W= 0.
Dropping nonlinear terms in (2.16), (2.18) and (2.21) gives

=Gy (p~ Gy +p*Gy) ' Gy,
& —Ej(e — Wit (o~ — pHgn —one =0, (2.24)
W=("—e")(e Gy +e7G) n..
For wavenumber k and frequency w, substituting the ansatz
(1.6, W) = (1, §, Wye'©er, (2.25)
into the system (2.24) yields
|k| tanh(|k|A™) tanh(|k|h™T)

~ p—tanh(|k|hT) + p* tanh(|k|h—)
[t |k| tanh(|k|hT) + &~ |k| tanh(|k|h )W = (e~ — e1)ikd,

—iwé + (p~ — pH)gh — EZ(e™ — eN)ikW + ok>j = 0.

A

—iw

(2.26)
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This is a homogeneous linear algebraic system for 7, £ and w. By requiring the solution for
this system to be non-trivial, we obtain, after some algebra, the linear dispersion relation
in the form

- 2(a— +32
o = |k|tanh(|kzzt(|3€|t?nh<|k|h+> [(p_ ey B B(_|k8|)) 1k +G|k|2} 027
with
A(lk) = p~ tanh(|k|h") + pT tanh(|k|h7), (2.28)
B(|k|) = e tanh(|k|h") + ¢~ tanh(|k|h 7). (2.29)

In the long-wave regime, i.e. the wavenumber £ is close to zero, the dispersion relation
(2.27) can be approximated by

h=ht E2(e~ —eh)?
PP N [y T (A ) AP/ 2.30
R [p Pt et e | (2:30)

which shows clearly the stabilising effect of the electric field. However, if one of the
fluid layers is of infinite depth, then the electric field can provide dispersive regularisation
only to short waves. For example, we let A~ — oo, and then the leading-order dispersion
relation near k = O reads w® ~ |k|?(p~ — p1)ht/pT, indicating that the system is linearly
ill-posed when p™ > p~ (namely the Rayleigh-Taylor unstable regime).

3. Long-wave modelling

In this section, various nonlinear long-wave models are derived via systematic asymptotic
analyses of the DNOs in the Zakharov—Craig—Sulem formulation of the problem. Our
analyses will be based on a fundamental assumption that the lower layer is thin
compared with a characteristic wavelength. Due to the long-wave assumption, a small
parameter measuring the aspect ratio of vertical to horizontal scales, u =h~ /1 K 1,
can be introduced, where A is a characteristic wavelength. Further asymptotic limits
imposed on the thickness of the upper layer (shallow/deep in comparison with the typical
wavelength) can lead to different reduced models. These models will be used in the
next section to validate the numerical algorithm for the full Euler equations and provide
quantitative/qualitative understandings of solitary-wave solutions under the horizontal
electric field.

It is convenient to choose A~ /gh— and y/g(h—)3 as reference scales of length, velocity
and potential, and denote by

h=h"/h=, R=pt/p~, e=¢"/)e", (3.1a—c)
the ratios of depth, density and permittivity. The dimensionless dynamic boundary

condition now reads

1 x_2 R x;_z
R e B [

1+n2 1+ n?
By )
+ 20+ 1) [(GW) —e(GTW)” — (1 —e)(W; +2Wy)]
+(—Ry—— ¢ (3.2)

IECEE - RCie
940 A15-9
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where & has been redefined as € =&~ — RET, Ej = Egs_ /p~gh™ is an electric Bond

number (the ratio of the electric to gravitational forces), and T = o/p~g(h™)? is the
traditional Bond number (the ratio of the capillary to gravitational forces). It is noted
that the thickness of the lower layer has been normalised to unity, while the kinematic
boundary condition (2.16) is unchanged after the non-dimensionalisation.

3.1. Equations for the shallow—shallow configuration

In what follows, we analyse the problem when the thickness of the upper fluid layer is
comparable to that of the lower layer, namely 4 = 2™ /h~ = O(1). This means that both
layers are shallow in comparison with the typical length of the interfacial wave. We
derive weakly nonlinear models in various asymptotic regimes, each of which features
a nonlinearity-dispersion balance.

We first consider the classic Boussinesq scaling: the interfacial wave varies on temporal
and horizontal spatial scales of 1/u, and the amplitude of the interface displacement scales
by w?. All the parameters, including the Bond number, electric Bond number, depth ratio

and permittivity ratio, are assumed to be of order 1 to enable the forces exerted by the
electric field, surface tension and gravity to compete with each other. In summary, the
following scales are chosen:

=0, 8 =0W, n=0W?, &=O0(),

(3.3)
R=0(1), E,=0(1), t=0(1), &=0(Q).

We use order-of-magnitude arguments to derive reduced nonlinear models. First, due to
the smallness of the spatial derivative, the DNOs can be expanded as

1
G =0 — gaxxxx — 0xM0x + O(Mé),
3 (3.4)
Gt = —hdy — ?axxxx + 0oy + 0(M6)’
and then a direct symbolic calculation yields
(GT+RG ) ={—(h+ R)d | 1 + AR L= R 1o, + 0% R
= Xx 3(h+ R) xXx h+Rx77x w
R h3+Ra Lo R0, + 0 _la—‘
TThARL 30+ R T hr R MM %
! W +R 1-R
S "o + o). (3.5)

" h+R "3h+R2 (h+R2?
In the same vein, one can obtain
e eh® + 1 Lo lme o
esh+1  3(h+1)2 (eh+1)2 7"

With the aid of these formulae, we have the following expansions, after some calculations
of (2.19)—(2.21):

(eGT+G) ! = -t +owd.  (3.6)

__ h 2 +_ & 2
3 ——h+R+0(M), 3 —h+R+0(M), (3.7a.b)
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and
l—¢ (1 —e)eh®+ 1) ( - )2

Wy =— 0 . 3.8

Substituting the above formulae into boundary conditions at the interface, and retaining
terms valid up to O(°) in (2.16) and O(/ﬁ) in (3.2), one then obtains

___*h h*(1 + hR) W —
N = _h TR Exx — 3(h +R)2 Exxre — h + R)2 (M&x)xs 3.9
_ Ep(1 —¢)? W —R 5 3Ep(l — g)3 5
Ey(1 — £)X(eh® + 1)
[ 3(eh+ 1)2 T] xxs (3.10)

a Boussinesg-type system in the presence of a horizontal electric field. From the system
(3.9) and (3.10), we can infer that the electric field can provide dispersive regularisation to
both gravity and surface tension, and introduce new nonlinearity.

The KdV equation can be derived from (3.9) and (3.10) upon further simplifications.
Taking the derivative of (3.10) with respect to x yields

h(1 + hR) h? —
=— , 3.11
N + Uy 3(h+R) Uxxx — h(h+R) (u)x ( )
L h? —R W)+ 3hEp(1 — ¢)3 )
u C = ——— U
T T+ R T 2k D2 R) Y
h  [Ep(1—g)*(eh®+1)
, 3.12
+h+R[ 3(eh + 1)2 e (3-12)
where
h Ep(1 —¢)?
L S gy U= (3.13a,b)
h+R h+R eh+1

Note that the leading order of the system is a classic wave equation 1, — ¢1y = O.
Assuming that the wave travels mainly towards one direction (say, the right direction), the
solution must take the form n(x — ct) + - - -, and it then follows that u = cn + u(x — ct),
where i is of order u*. Upon substituting u# with ¢n+u in (3.11) and (3.12), and
eliminating the leading-order terms via subtracting one equation from the other, we find

h |:c2(1+hR) Ep(1 —&)2(eh® + 1) ]n

Ny

" 2c(h+R) 3 3(ch + 1)2
1 [ =R 3hEp(1 — &)3
1 c( ) + b( . ) 7]2~ (3.14)
2h(h+R)  2(eh+ 1)?*(h+R)
Finally, substituting (3.14) into (3.11) or (3.12) yields the KdV equation
N + Ny + anxex + By = 0, (3.15)
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where
2ol 2
o [Eba e +1) M] (3.16)
2eh+R) L 3(eh+1)? 3
2012 _ )3
(h+R)  (¢h+D*2(h+R)

are the dispersive and nonlinear coefficients, respectively. The famous soliton solution
admitted by (3.15) is given by

=7 52 sech?[8 (x — ct — 48%at — xo)], (3.18)

where § and xq are arbitrary constants associated with the wave amplitude and initial phase,
respectively.

It is well known that the soliton formation arises from a dynamic balance between
dispersive and nonlinear effects. However, the dispersive and nonlinear coefficients in
(3.15), « and B, may be close to zero for certain parameter sets, hence rescaling is required
in the asymptotic analysis. For the first case, § < 1, a higher-order nonlinearity needs to
be introduced to balance the dispersion, resulting in the modified KdV equation. For this
purpose, we choose the scales

=0, =0, n=0w), &§=0(0), B=0(W), (3.19a—e)

and the other parameters (4, R, ¢ and Ej) keep the original order of magnitude.
The new scaling indicates that the balance between the two effects can be achieved
for larger-amplitude waves, though the temporal and spatial scales for solitons remain
the same. Following the same procedure, symbolic calculations yield

h R(1 + h)

g — 3
SRR T R e TOW),
1 1+h
— 3
SETRIRY T ®amr O,
__1-=¢ (1—e)? , (I—e)(l+eh® (1—e? )

(3.20)

Substituting the above formulae into the kinematic and dynamic boundary conditions,
namely (2.16) and (3.2), and then truncating the expansions at appropriate orders in u, one
obtains

o . R —i? e _ h*(1 +hR) R(1 + )2( . (321)
N = h+R§xx (h+R)2 néx)x W XXXX (h+R)3 n éx X» .
B Ep(1 —¢)? R—1? 3Eb(1—8)3 )
g,__[1_R+ 1 +eh ] 2(h+R)2§ 21+ eh)?
Ep(1 — &)*(1 + eh?) RA+h? 5, 2E(1—e* ,
[ 3(1 + eh)? H] s + (h+ R)3 M8x (1 + eh)3 (3-22)

By assuming one-way wave propagation along a major direction (right-going waves, say)
and following a standard argument, one finally, after some tedious calculation, obtains a
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modified KdV equation

M+ Cnx + e + B + Bnne = 0, (3.23)

where c is the long-wave speed defined in (3.13a,b), @ and S are the same as given in (3.16)
and (3.17), and

3hEp(1 — &) 3E,(1 —e)3(R—h*)  3cR( + h)?
c(l+eh3h+R)  c(1+eh?(h+R)? h(h+R)?

For the second case, o « 1, a fifth-order derivative term is commonly introduced to
balance the quadratic nonlinearity, implying the scaling

g = (3.24)

dh=0), d=0mw, n=o0w", E=0u>, a=0w?». (3.25a—e)

Following the same argument, after some algebra, a fifth-order KdV equation can be
obtained to govern the interface dynamics:

Nt + cnx + oy + BNy + ANy = 0, (3.26)
where
N he [14+KR RU1-1»H*] K1 +hR)t
a= — _
h+R 15 18(h + R) 6¢c(h + R)?

hEp(1 — g)2 [(1 + eh?)? _ 2 + el) ~h(L+hR)(1 +eh?)
2¢(h+R) |91 +¢eh)3 151 +eh)?  9(h+R)(1 + ch)?

There is a third possibility: « and g are very close to zero for the same set of parameters.
This is possible even when the electric field is absent, as long as one chooses R ~ h?
and T =~ (1 — h)(1 + h3) /3. In this situation, one can obtain a higher-order modified KdV
equation, including fifth-order dispersion and cubic nonlinearity (see Laget & Dias (1997)
for the case when the electric field is absent). We omit the derivation of the model equation
since it is tedious but straightforward if one follows the previous procedure.

:| . (327

3.2. Equation for the case of great upper-layer depth

In this part, we consider the case that the typical wavelength A is much larger than the mean
depth of the lower layer but comparable to the thickness of the upper layer, which is termed
the Benjamin scaling. The non-dimensionalisation is achieved in the same way as in the
shallow—shallow case, where i~ is taken as the length scale. Based on the linear analysis,
R is always set to be less than 1 in the current subsection, such that the problem is linearly
well-posed. The Benjamin regime includes the additional expectation of small-amplitude
motions and large interfacial tension (Benjamin 1992). One chooses the scaling

=0, =0, n=0Ww), &§=01), h= O(I/M),} (3.28)
R=0(), e=0(), E,=0(), t=0(/p.
In this case, the expansions of the DNOs can be expressed as
G™ = = — F0oree — 1 + O, (3.29)
GT = G} + 8ndy + G nGF+0(1), (3.30)
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where
Gy = (=3)'/? tanh(h(=0)'/?) = O(). (3.31)
It then follows that
(GT+RG) ™' = (GH '+ RGH ' 0(GH ™ + O(w), (3.32)
1
(eGT+G) ™ = —(GH ' +0(D). (3.33)
&
Substituting these expansions into boundary conditions at the interface gives
Nt = _Sxx - (ngx)x - Rpéxxx, (334)
1 Ep(1 —¢)?
b =—g6+—— P~ (- R+ 70 (3.35)

where P = (’JX(G(")Ir )~ ! is a pseudo-differential operator. In the limiting case & — oo, this
operator becomes the Hilbert transform H defined by

J&)

X —x

v, (3.36)

1
HIf 1) = —P.V.

where ‘P.V.” means that the integral is in the Cauchy principal value sense. Finally, by
assuming one-way wave propagation and following the same procedure as the previous
subsection, one can reduce the system to a single evolution equation for n:

cR  Ep(l —¢)?

T
3 dec :| Py — =— e =0, (3.37)

c
un Nx 2 NNx 26

where ¢ = 4/1 — R is the long-wave speed. For the limiting case 7 — o0, (3.37) reduces
to the famous Benjamin equation for long interfacial waves with strong surface tension
(Benjamin 1992). In the context of electrohydrodynamic waves, the Benjamin equation
was first derived by Gleeson et al. (2007), who investigated the free-surface evolution of a
conducting fluid under a normal electric field.

While weakly nonlinear dispersive models, such as (3.37), have been successful in many
aspects of the free-surface/interfacial wave problems, strongly nonlinear models still need
to be developed to describe moderate-amplitude wave phenomena as well as to afford a
significant simplification over the primitive equations. Next, we derive strongly nonlinear
models without the smallness assumption on the wave amplitude. The following scaling is
made:

B=0w. &=0w. n=00). &= 0(1/“)’} (3.38)

R=0(), e=0Q1), E,=0(), t=01/n).

Under this scaling assumption, one proceeds by expanding the DNOs in powers of j:
G™ = =B — s + O(u™), (3.39)
Gt = GI + amds + GInGl + o). (3.40)

We can then expand the crucial pseudo-differential operator (Gt + RG™)~! symbolically
as

(GT+RG™) ™' =[G + d.:mdx + GGl — Ry — R3mdx + O(u)]™!
=GH™' == (10 =RGHand(GH T +RGH 20 +O().  (3.41)
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Similarly, we have
1 1—¢
(€GTHG) T =—(GDT O = We=——(G)) ' dun + 0(?), (3:42)
and
E7 =& +R(G) ' 0uf + R(Gy) ™ 9mdeE + O(w), (3.43)
£ = (G 0k + (G T mdk + O(1). (3.44)
Finally, we obtain the governing equations for n and & upon substituting these expansions
into the kinematic and dynamic boundary conditions
e+ e + (u)x — RITu+ Tnu+nTu+nT (qu)lx =0, (3.45)

Ep(l — &)
b ( S)T

ur + (1 = R)ny + utty — Thype + Nx — R{uTu+ MT(W)]x =0, (3.46)

where the pseudo-differential operator 7 is defined as

_ (_axx)l/2

~ tanh(h(—dw) /%)’
Note that the governing system (3.45) and (3.46) has been rewritten in a more revealing
form via differentiating the dynamic boundary condition with respect to x and letting

u=E&,.
A slightly different nonlinear model can be derived by using £~ instead of £ as the
unknown. Recalling the kinematic boundary condition (2.16) and the related operator

expansions, one can express £ as
£ = =GN = =G e + OG0, (3.48)

Substituting (3.48) into the dynamic boundary condition (3.2) and retaining terms valid
up to O(u), one obtains

(3.47)

_ N 1 Ep(1 —¢)?
& TRG) "ma+ 56 >2+<1—R>n+”TTn—mxx=o. (3.49)

The approximate kinematic boundary condition is constructed by the retention of terms up
to O(1+?) in the expansion of G~. One finally obtains

Nt + ux + (nu)x = 0, (3.50)

Ep(1 —¢)? T
&

where we have written u = £ as before. The system (3.50) and (3.51) has an inbuilt
advantage over the system (3.45) and (3.46) in computing solitary waves. To illustrate this,
we assume that a solitary wave propagates with a constant speed ¢, and the wave becomes
static in the moving frame X = x — ct. By integrating (3.50), one can show easily that
u = cn/(1 4+ n). After substituting this relation into (3.51), an integrodifferential equation

for n is obtained:

ur + (1 — R)ny + uuy, + Ny — Theee + RT[(1 + nul; =0, (3.51)

A2+ 1)
TV L (1—R
2(1+n)2+( )n+[

which can be solved by some numerical iteration method. However, (3.45) cannot relate n
and u explicitly, complicating the problem.

Ep(1 —¢)*

— czR] Tn—tnxx =0, (3.52)
&
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3.3. Barannyk—Papageorgiou—Petropoulos scaling

Barannyk er al. (2012, 2015) considered the problem of interfacial electrocapillary-gravity
waves between two perfect dielectrics under a horizontal electric field. To understand the
effects of the electric field on the Rayleigh—Taylor instability, they proposed a nonlinear
long-wave model based on novel scaling. Their scaling assumes that interfacial waves are
long relative to the upper-layer thickness but of comparable length with the lower-layer
thickness. More precisely, the scales are chosen as

d=0(), =0, n=0w?», &t=0w, h=o0w?,

(3.53)
R=0(1), e=0(), E,=0(), t=0().

Under the Barannyk—Papageorgiou—Petropoulos scaling, the kinematic boundary
condition (2.16) indicates that

£ =—(G)IGTET = —(Gy) LMD + dmdET o), (3.54)

where G, = |D|tanh(|D]). It follows directly that §~ = O(1?). One proceeds by
expanding the pseudo-differential operators in powers of  in the boundary conditions
at the interface, as before. Retaining terms valid up to O(u>) for the kinematic boundary

condition, and up to O(u?) for the dynamic boundary condition, yields

0 — hed + (g =0, (3.55)
1 Epy(1—¢)2 1—R T
£+ 5(5;)2 + = (Gy) e — M e =0, (3.56)
Changing variables as
n=h(—-17), & =~hu, 8 =~hd, (3.57a—c)
one arrives at the system
Ne + un)y =0, (3.58)
R(ur + uuy) — Ep(1 — )*(Gy) ™ 'jxer + (1 = R)ify — Tigee = 0, (3.59)

which is the same as obtained by Barannyk et al. (2012). It is noted that,
unlike the Benjamin equation, the dispersive effects in the system (3.58) and
(3.59) come from only the electric field and surface tension. That is because the
Barannyk—Papageorgiou—Petropoulos scaling gives rise to a very small £ —, which excludes
the motion of the deep layer when truncating the asymptotic expansion at an appropriate
order. Though there is a smallness assumption on wave amplitude, the system can be
viewed as a strongly nonlinear model since the amplitude is of the same order as the
upper-layer thickness. The system (3.58) and (3.59) demonstrates interesting dynamics,
including suppressing the Rayleigh—Taylor instability, self-similar solutions, and touch-up
singularities, and interested readers are referred to Barannyk et al. (2015) for more details.

4. Numerical calculations

This section presents the numerical scheme for solitary waves in the fully nonlinear
problem (2.1a,b)—-(2.7). We take a frame of reference moving with the solitary wave so
that the flow is steady. Recalling W* = V*/Ej — x, it is suitable to rescale the length,
velocity potentials and perturbations of electric-field potentials by using A~, ch™ and h~,
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respectively, where c is the translating speed of the solitary wave. The interface is assumed
to be symmetric, with the y-axis the line of symmetry, and decay to zero in the far field.
Therefore, the velocity becomes a unit as x — =00 in the new frame of reference.

4.1. Boundary integral equations

Define the complex velocity potentials as
fFO=¢"@ +iv* ), CRY

where 1 are stream functions as well as the complex conjugates of the corresponding
velocity potentials, and z = x + iy stands for a point on the complex plane. Without
loss of generality, we assume ¢+ = 0 at x = 0, and ¥+ = 0 at the interface. It follows
from the non-dimensionalisation scheme that ¥~ = —1 at the bottom, and ¥ =h
at the top. Using a hodograph transformation that exchanges the independent and
dependent variables, the lower (upper) layer is mapped conformally onto the infinite
strip —1 < ¥~ < 0(0 < ¥ < h) in the = + iyy* plane. The impermeability boundary
conditions at two rigid walls can be satisfied automatically by using the method
of images. Specifically, the function dz/df*t — 1 can be reflected in the line ¥ = h to
produce a function analytic in 0 < ¥+ < 2h, and the same procedure can be applied to
the lower-layer fluid and the analytic function dz/df™ — 1. Since the velocity potential is
discontinuous across the interface, an auxiliary function y can be introduced such that
x(¢7) = ¢™ at the interface. Hereafter, we use ¢~ as the primary independent variable
and suppress its superscript for ease of notation. Applying the Cauchy integral formula to
both lower- and upper-layer fluids results in the two integral equations

o2 =D —ye @ —dm) Yy

%9 () l‘nf_oo[ @ — dm) +4 ¢>—¢m]d¢’ *2

X 1 /OO [Zh(x¢—X¢)+y¢(X(¢)—X(¢m)) Yo }

2 () — 1 = — do,

%o . C@ — 2@+ @ —xom ]
(4.3)

where the functions xy and y, are evaluated at the interface, and both ¢ and ¢,, represent
the horizontal coordinate of the ¢~ + iy~ plane. For the electric field, we introduce the
complex voltage potentials

() = W) +iU%(2), (4.4)

where W are defined in § 2.1, and U* are newly introduced complex conjugate functions.
Based on the Cauchy integral formula, two integral equations are obtained:

1o [2We+ U @ —dm) Uy
Wy (dm) = — do, 4.5
@) n/_w[ @ —du) +4 +¢—¢m}"’ “
Wy 1 /oo 2hWy — Uy (X(§) — X (¢m)) Uy
—2 () = — — do, 4.6
X ™ _oo[ GG — x4 x @) —xm |0 HO

where W stands for the perturbation of the voltage potential at the interface, as before. In
the transformed plane, the continuity condition of the electric displacement field and the
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dynamic boundary condition are recast to

(e — Dyg = eUy — Uy, 4.7)
ffﬂ—Rﬁy+a—R) —ff-+@%vﬂ—w%—§%aﬁ2—w%
27 ¢ YT )Tyt TN T e T e
Ep(1 —¢) T
— 7 %W = 377 WspXs — Xpp¥e) =0, (4.8)

respectively, where J = xé + yi is the Jacobian of the transformation, and F = ¢//gh~
is the Froude number measuring the wave speed.

The problem being considered is as follows: given one of the two parameters H = y(0)
and F, we seek solitary-wave solutions to the system (4.2), (4.3), (4.5)—(4.8). Since
we confine our attention to symmetric solutions in the present paper, it is sufficient to
perform numerical computations on a half real line (say, 0 < ¢ < 00). Due to the decaying
nature of solitary waves, a truncated domain [0, L) with large L is used in numerical
computations. We introduce a set of mesh grids

Gl N (4.9)
¢ = N i=1,2,...,N, .
and the corresponding unknowns
sy oy Xy W o dUT L g
@((ﬁ;), ao (@i), do (@), a0 (@i), a0 (9, F; (4.10)

U(j can be obtained through (4.7). The symmetry of solutions gives
y$(0) =0, U, (0) =0, (4.11a,b)

and additionally, the decaying nature of solitary waves indicates that

Xp(on) =1, xe(dn) =1, We(epn) =0. (4.12a—c)

Overall, there are SN — 4 unknowns, and we need the same number of equations. To avoid
the singularities in computations of the Cauchy integrals, we introduce another set of mesh
grids

Giv1/2 = i=1,2,...,N—1 (4.13)

¢i + Pit1
5
Evaluating (4.2)-(4.6) and (4.8) at the midpoints ¢;y1/> results in SN — 5 algebraic
equations. We can specify the wave displacement at the centre to close the system, namely
n(0) = H. Itis noted that this condition should be omitted while computing a solitary wave
with a prescribed Froude number. Here, x, y and x can be obtained by integrating their
derivatives using the trapezoidal rule. The derivatives xpy and ys4 are computed via the
five-point centred difference scheme. And the unknowns at the midpoints are calculated
by a fourth-order interpolation formula.

The fully nonlinear equations are solved via a Newton iteration method. The program is
considered to have converged to a solution when the /°°—norm of the residual error is less
than 10710, The initial guess of the iteration is obtained by applying an artificial pressure
to the interface and then eliminating it gradually via a numerical continuation. Once a
solitary-wave solution is found, other solutions on the same branch are computed via a
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straightforward continuation method by changing the Froude number, the wave amplitude
or other parameters. Finally, the number of grid points is chosen sufficiently large (N >
2000), and the grid spacing is chosen sufficiently small (L/N < 0.1), to ensure accurate
enough solutions.

4.2. Results

Before presenting numerical results, it is necessary to discuss the condition for the
existence of solitary waves from the viewpoint of linear theory. First, the linear dispersion
relation in the dimensionless form reads

2 tanh(k) tanh(kh) [1 _R Ep(1 — &)’k T rk2:| .

= (4.14)
k[tanh(kh) + R tanh(k)] & tanh(kh) + tanh(k)

Despite the nonlinear nature of solitary waves, the linear dispersion relation provides a
necessary condition for their existence. Namely, the function F defined in (4.14) should
have global extrema, where the group velocity and the phase velocity are equal. If the
extremum occurs at k = 0, then solitary waves that can be described asymptotically by the
KdV equation in the weakly nonlinear regime may exist (below the minimum or above
the maximum). On the other hand, when the extreme occurs at a non-zero wavenumber,
wavepacket solitary waves with damped oscillations can be expected. It is emphasised
that, as discussed in the Introduction, searching for interfacial wavepacket solitary waves
does not require a normal-form analysis unless one is concerned with the bifurcation
mechanism of solitary waves in the vicinity of the bifurcation point, which is beyond the
scope of this paper.

The classical dispersion relation of interfacial capillary-gravity waves in the absence of
a horizontal electric field is shown in figure 2(a). The k—F curves for a stable density
stratification (R < 1) are plotted for different values of interfacial tension. When the
interfacial tension is neglected (r = 0), the phase speed is a monotonically decreasing
function of wavenumber, hence solitary waves may exist above the global maximum
occurring at k = 0. As the interfacial tension increases, the dispersion curve first
experiences a global minimum at a non-zero wavenumber and then becomes strictly
increasing. As discussed before, solitary waves under these two situations are of different
types if they exist.

Figure 2(b) shows the regularising effect of the horizontal electric field, which may
support solitary waves even for an unstable density stratification of fluids (R > 1). For
R = 1.2, the k—F? curves are plotted with various values of electric strength. Without an
electric field, waves are in the Rayleigh-Taylor unstable regime (F? is negative for small
wavenumbers), and no solitary waves are expected. However, a considerably large electric
field can make F2 positive for all wavenumbers to suppress the Rayleigh—Taylor instability.
The positivity of F indicates a global minimum occurring at either k = 0 or k #= 0, which
may result in different types of solitary waves below the phase speed minimum. It is noted
that a local extremum (see, for example, the circle in figure 2b) cannot support solitary
waves due to a resonance between long and short waves, usually resulting in generalised
solitary waves with non-decaying trains of ripples.

In the following subsections, we exhibit numerical results for three different regions of
the density ratio: R > 1, R = 1 and R < 1. Besides the density ratio, the parameter space
includes four other dimensionless parameters: the depth ratio 4, the permittivity ratio ¢,
the electric strength Ej, and the surface tension . We choose appropriate parameter sets
to display new solitary-wave solutions under the electric field.
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Figure 2. (a) Dispersion relations (k—F curve) for interfacial capillary-gravity waves. The parameters are
chosen as R=0.3, h=2, E, =0, with t =0 (dashed line), T = 0.1 (solid line) and 7 = 0.5 (dotted
line). Symbols: circle, k =0 and F = 0.78; asterisk, k = 2.514 and F = 0.635 (phase speed minimum).
(b) Dispersion relations (k—F2 curve) for interfacial electrocapillary-gravity waves for R = 1.2, h = 2, & = 0.1,
t = 0.1, with E, = 0 (dashed line), E; = 1 (dotted line), and Ej, = 2 (solid line). Symbols: cross, k = 0 and

F2 = 0.297; circle, k = 0 and F2 = 0.719; asterisk, k = 1.097 and F2 = 0.699 (phase speed minimum).

421. R>1

This regime can be explored due entirely to the horizontal electric field, which regularises
the Rayleigh—Taylor instability. We first use the following parameters: R = 1.5, h = 2,
e =2, E, =3 and v = 0.3. The dispersion relation shown in figure 3(a) has a global
minimum at k = 0. Therefore, solitary waves may exist below this minimum and can be
approximated asymptotically by the sech-squared solutions of the KdV equation (3.15)
when the wave amplitude is small. The free-surface displacement at the centre, 1(0), is
plotted versus the dimensionless wave speed, F, in figure 3(b), and a typical wave profile
(F = 0.2216) is shown in figure 3(c). The comparison between the numerical results
from the electrified Euler equations (solid line) and the theoretical prediction of the KdV
equation (dotted line) shows good agreement for small- and moderate-amplitude solitary
waves. In a certain respect, it confirms the effectiveness of the weakly nonlinear theory
and the correctness of the numerical algorithm of the fully nonlinear equations. We vary
the wave speed to complete the bifurcation diagram, and terminate the computation when
the trough of the solitary wave almost touches the bottom boundary. Figure 3(d) shows
the typical profiles of large-amplitude solitary waves. The solid curve is the solution
of the largest amplitude that we can obtain, which has developed a remarkable, almost
touch-down configuration (17(0) = —0.9999, recalling that the thickness of the lower
layer was non-dimensionalised to unity in the beginning). Touch-up/down singularities
are common nonlinear interfacial phenomena in electrohydrodynamicinstabilities, which
are confirmed by laboratory experiments and numerical simulations (see, for example,
Papageorgiou 2019) and have wide applications in microscale technologies, such as the
sub-micrometre replication techniques in integrated circuits (Schiffer et al. 2000). In
this example, the curvature (or, equivalently, the second derivative of y) singularity
occurs when approaching the limiting configuration (i.e. bounded interfacial gradient but
unbounded curvature; see the enlarged view of the wave trough in figure 3d), akin to the
touch-up instability of interfacial electrohydrodynamic waves shown by Barannyk et al.
(2015).
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Figure 3. (a) Dispersion relation when a strong electric field regularises the Rayleigh—Taylor instability;
parameters are chosen as R = 1.5, h =2, ¢ =2, E;, = 3 and © = 0.3. (b) Speed—amplitude bifurcation curves
of solitary waves for the electrified Euler equations (solid line) and the KdV equation (dots). The curve near
the limiting point (F = 0 and n(0) = —1) is shown in detail. (¢) Solutions of the Euler equations (solid line)
and the KdV equation (dotted line) for F = 0.22. (d) Typical profiles for the almost touch-down configuration
with 7(0) = —0.9999.

The dispersion relation may have two local minima competing for the global minimum.
A typical example is shown in figure 4(a) with R=1.1, h =2, ¢ = 0.2, E;, = 3.5 and
7 = 0.1. Two local minima occur at k = 0 and k = 1.269, and the latter one possesses the
smaller value of F and hence the global minimum. As a consequence, wavepacket solitary
waves are expected. The speed—amplitude bifurcation curves and typical wave profiles are
displayed in figures 4(b) and 4(c), respectively. Two fundamental branches are found in
this type of solitary wave, including one family of waves with a positive displacement at
their centre — denoted waves of elevation — and another family of waves with a negative
displacement at their centre — denoted waves of depression. Both branches bifurcate
from infinitesimal periodic waves at the minimum of the phase speed (F = 0.977).
The elevation wave is a single-hump solution, and the depression wave features two
humps placed side-by-side. We trace the bifurcation curve by varying the wave speed, and
terminate the numerical program when Newton’s method oscillates and fails to reach the
desired accuracy (presumably since the wave crest becomes sharp and further increasing
amplitude is sensitive to perturbations).
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Figure 4. (a) Dispersion relation for R = 1.1, h =2, ¢ = 0.2, E;, = 3.5 and 7 = 0.1, which has a global
minimum F = 0.977 at k = 1.269. (b) Speed—amplitude bifurcation curves of the elevation branch (top) and
depression branch (bottom). (¢) Typical wave profiles of elevation type (top) and depression type (bottom).
Dashed lines and solid lines correspond to circles and squares in (b).

The other case is shown in figure 5, where the long-wave phase speed is smaller than
the local minimum at the non-zero wavenumber, which gives the phase speed minimum
F = 0.8893 at k = 0. The bifurcation curve (wave speed versus wave displacement at
the centre) shown in figure 5(b) has a turning point near the global minimum of F.
The corresponding wave profile is displayed in the middle of figure 5(c), which features
monotonic decay on either side of the wave crest. Away from the turning point, solutions
are characterised by a train of small-amplitude oscillations riding on the crest of a solitary
wave of KdV type (see the second and fourth figures in figure 5c). They are akin to
free-surface parasitic capillary waves, which can be viewed as a perturbation due to the
effect of surface tension on a progressive pure gravity wave. This new type of solitary wave
may be attributed largely to the local minimum of the phase speed at k = 1.269 which
is very close to the global minimum and therefore exerts a considerable impact on the
waveform through wave interactions. Surprisingly, in this case, the solution branch does
not bifurcate from the global phase speed minimum, and solitary waves can exist only
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Figure 5. (a) Dispersion relations for £, = 2.9, R=1.1, h=2, e =0.2 and v = 0.1. (b) Speed—amplitude
bifurcation curve near the phase speed minimum. (¢) Typical profiles corresponding to the circles in (b), from
top to bottom.

at finite amplitude (see figure 5(b) and notice that the maximum value of || is always
positive even when 7(0) = 0).

There is one particular situation in which the global minimum of the phase speed is
attained at both k = 0 and k =0 simultaneously. We choose R =1.1, h =2, ¢ = 0.2,
T =0.1 and Ej, = 2.966. In this case, the global phase speed minimum (F = 0.90014)
occurs at k =0 and k = 1.086. Typical wave profiles are shown in figure 6, where
the dashed lines highlight the wave envelopes in the modulational regime. Due to
the apparent up—down asymmetry of wave envelopes, these solutions are neither the
KdV-soliton type nor the wavepacket type. Such an exotic wave phenomenon arises due
to the complicated dispersion relation resulting in long- and short-wave interactions.
Indeed, it merits careful study from the asymptotic point of view, which is left for future
work.
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Figure 6. Typical profiles of KdV—wavepacket mixed type solitary waves with E;, = 2.966, R = 1.1, h = 2,
e=02and 7 =0.1.

422 R=1

In the absence of the electric field, it is easy to know that solitary waves cannot exist in
pure interfacial capillary waves (i.e. R = 1) since the global minimum of the dispersion
relation is F = 0 and there is no global maximum. The situation will change if one
considers the interfacial electrocapillary waves. In figure 7, we show examples with R = 1,
h=1,e =0.8, Ep = 0.3 and different values of 7. For r = 0.1, 0.5 and 1.0, all dispersion
relations attain the same global minimum (F = 0.0577) at kK = 0 since the surface tension
effect has no contribution to the long-wave speed. Elevation solitary waves are found to
bifurcation from the phase minimum and exist for all positive F below. The wave amplitude
keeps growing as F decreases, and ultimately, the wall touch-up phenomenon and the
curvature singularity occur when approaching the limiting configuration near /' = 0. An
interesting feature, in this case, is that despite different wave profiles for a fixed wave
amplitude (see figure 7¢), they have the same speed. Hence, as displayed in figure 7(b),
the speed—amplitude bifurcation curves with varying values of 7 coincide. This can be
understood intuitively from the KdV equation (3.15) and its solution (3.18) in the weakly
nonlinear regime, since the ratio of amplitude to speed depends only on B, which is
independent of 7. However, the coincidence for fully nonlinear solutions is challenging
to elucidate due to the non-local nature of the electrified Euler equations.

Solutions are of particular interest when R = 1 and T = 0; that is, the horizontal electric
field provides the only restoring force for the fluid system. In addition, we set h = 2,
e = 0.2, E, = 0.5, and display the numerical results in figure 8. The dispersion relation is
plotted in figure 8(a), where a global maximum of the dispersion relation appears at k = 0,
and a branch of depression solitary waves is found for ' > 0.39036. The speed—amplitude
bifurcation curve is shown in figure 8(b), which features a ‘snake-like’ behaviour with
several turning points. Starting from the phase speed maximum, we trace the curve by
using the amplitude or speed interchangeably as the bifurcation parameter to traverse very
sharp turning points or stationary points, respectively. After passing through two turning
points near A and B, whose profiles are plotted in figure 8(c), a local bulge appears in
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Figure 7. (a) Dispersion relations as 7 varies: T = 0.1 (dotted line), T = 0.5 (dashed line) and 7 = 1.0 (solid
line); other parameters are R = 1, h = 1, ¢ = 0.8 and E;, = 0.3. (b) Speed—amplitude bifurcation curves: T =
0.1 (solid line), T = 0.5 (circles) and T = 1.0 (asterisks). (¢) Wave profiles for a fixed amplitude ((0) = 0.9)
and variable 7. The line styles are the same as those shown in (a).

the middle portion of the wave, and the solution is no longer similar to the sech-squared
soliton. As we trace the bifurcation curve further, the bulge rises and expands, and 7(0)
gradually approaches zero. The interface becomes two fundamental depression waves
placed side-by-side (see F of figure 8c¢).

423. R<1

When the surface tension is sufficiently strong such that the global minimum of the
dispersion relation is achieved at k = 0, the Benjamin equation (3.37) and the strongly
nonlinear model (3.50) and (3.51) can provide good approximations for various nonlinear
interfacial phenomena if the depth ratio satisfies &> 1. We still focus on solitary
waves and compare numerical results of the reduced models against computations of the
electrified Euler equations. The numerical scheme for constructing solitary-wave solutions
in the reduced models is an extension of Petviashvili’s method. The basic idea is to perform
the iteration in the Fourier space supplemented by a normalisation factor (see Petviashvili
(1976) and Wang (2017), for example). Following this idea, (3.52) can be written in the
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Figure 8. (a) Dispersion relations for pure electrified waves with R=1, 1t =0, h =2, e =0.2 and E, =
0.5. (b) ‘Snake-like’ bifurcation curve. The branch near points E and F is shown in detail. (¢) Wave profiles
corresponding to points A to F.

Fourier space as

A2+
2 (1+n)? _
1 — R+ [Ep(1 — €)2/e — c2R)k/ tanh(hk) + Tk?

n= Qlnl. (4.15)

where the hat symbol denotes the Fourier transform. To prevent the amplitude from going
to zero or infinity, we need to introduce a multiplier in every iteration step, thus the
numerical scheme can be proposed as

/ ||* dk
_ (4.16)
/ 5 QL] dk

where the asterisk indicates complex conjugation, and m is a free parameter that needs to
be chosen for convergence of the sequence {7,}. We found empirically that the iteration
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Figure 9. (a) Speed—amplitude bifurcation curves as R varies, R = 0.9, 0.7, 0.5 and 0.3 (from left to right);
other parameters are 1 = 50, ¢ = 0.8, E;, = 1 and t = 10. Solutions are obtained with different models: the
electrified Euler equations (solid lines), the Benjamin equation (dashed lines), and the strongly nonlinear
equation (3.52) (dotted lines). (b) Comparisons of typical wave profiles for R = 0.9: n(0) = —0.6 (top) and
n(0) = —0.9 (bottom). The line styles are the same as those in (a).

method (4.16) converges for 1 < m < 2. The iteration scheme for the weakly nonlinear
model (3.37) can be derived in the same vein, and we omit the detailed expressions.

We set h =50, ¢ =0.8, E, =1, 7 =10, and vary R to obtain different solution
branches. Single-trough depression solitary waves can be found for all values of R that we
tested, and speed—amplitude bifurcation curves are plotted in figure 9(a). The Benjamin
equation generally gives good predictions for small- and moderate-amplitude solitary
waves; however, the strongly nonlinear model shows excellent agreement even when wave
profiles almost touch the bottom (see comparisons of the waveform in figure 95). We push
the solution to the limiting configuration in computations of the full Euler equations. It
is found again that the touch-down phenomenon and curvature singularity occur while
approaching the static state, regardless of the density ratio.

Interfacial gravity solitary waves (without capillarity and electric field) were
investigated extensively by different groups in the past few decades. One of the most
striking findings is the broadening of the solitary pulse; that is, the midsection of the
interface develops a plateau that becomes infinitely long when the wave speed approaches
a limiting value (see the numerical computation by Turner & Vanden-Broeck (1988)). We
attempt to learn the modification of the electric field on the broadening phenomenon. We
first choose R =0.997, h =2, ¢ = 0.7, E;, = 0.5 and 7 = 0, and this set of parameters
yields a global maximum F = 0.1215 at k = 0.6274 (see figure 10a). Both elevation
and depression branches of wavepacket solitary waves are found to bifurcate from this
maximum, and wave profiles of moderate amplitude (dashed lines in figure 10c) are similar
to those shown in figure 4. We draw the global bifurcation diagrams by varying the wave
speed, and the wave crests start to become broad apparently as F' > 0.1245. In contrast
to the case without an electric field, the depression wave develops two plateaus during
broadening (the bottom part of figure 10c). As shown by solid lines in figure 10(d), the
connection between the two stays fixed, and either plateau expands in one direction only.
The limiting profiles of the two branches have the same wave height (= 0.3869) and the
same wave speed (= 0.1249). Close to the limiting point, the elevation and depression
profiles overlap except for the middle hollow in the depression wave (see the comparison
in figure 10d).
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Figure 10. (a) Dispersion relation with R = 0.997,h = 2,¢ = 0.7, E}, = 0.5 and T = 0. (b) Bifurcation curves
of the elevation (top) and depression (bottom) branches parametrised by the value at the middle points of the
waves. (c) Wave profiles corresponding to the solutions labelled by circles (dashed lines) and squares (solid
lines) in (). (d) Comparisons between elevation waves (dots) and depression waves (solid lines) near the
limiting point.

As the broadening phenomenon occurs, the electric field may excite oscillations on the
solitary pulse. Typical examples can be obtained when the global extremum of the phase
speed is achieved at k = 0. We present results in figure 11 with R =0.99, h =2, ¢ =
0.2, Ep, = 5 and T = 0. Via using F and n(0) alternately as the bifurcation parameter, the
speed—amplitude (parametrised by the value at the middle point) diagram can be drawn,
which features a helix-shaped behaviour with many turning points. Starting from the phase
speed maximum and tracing the bifurcation curve, the KdV-type solitary wave becomes
broader and broader by adding more and more oscillations on the midsection of the solitary
wave.

5. Concluding remarks

In the present paper, nonlinear electrohydrodynamic interfacial waves propagating
through the deformation of the interface between two superimposed layers of dielectric
fluid under horizontal electric fields have been investigated from asymptotic and
numerical perspectives. The electrified Euler equations have been reconstructed as the
Zakharov—Craig—Sulem formulation through the extension of the Dirichlet-Neumann
operator to the electric field. Consequently, a systematic procedure has been proposed
to derive multi-scale models with weak or strong nonlinearity in various asymptotic
limits. All the reduced models obtained here have Hamiltonian structures. This fact
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is not only evident for weakly nonlinear models, such as the Boussinesq-type system,
the KdV equation and its variants, and the Benjamin-type equation, but also valid for
strongly nonlinear models. For example, the evolution equations (3.45) and (3.46) form a
Hamiltonian system with the functional

1
Hln,&] = 5 /[(1 + 77)53 + RET0n0yE +E0nT 1o +ET 0 E +£0,mdTE)] dx

Ep(1 —e)? _ 1-R T
+—/nx(G§> Dedi + —— nzdx+—/nfdx, (5.1)
2e 2 2
and 7 and £ are the canonical variables satisfying Hamilton’s equations
SH SH
= —, =——, 5.2a,b
Nt 5E & 5n (5.2a,b)

where the right-hand sides represent the variational derivatives. In the same manner, the
Barannyk—Papageorgiou—Petropoulos system (3.55) and (3.56) has the Hamiltonian

(1-¢)?

1 E 1—R
H[n,s+]=§/[<n—h)<s;>2— b R L

nx(Gy) e — = n* — ? nx] dx.

(5.3)
It is also possible to write the electrified Euler equations in the Hamiltonian form.
However, the proof is a bit mathematically involved, and the related work will be reported
elsewhere in the near future.

These multi-scale models provide good approximations and theoretical underpinnings
for small- and moderate-amplitude solutions in various asymptotic regimes. However, it
is still necessary to seek solutions in the primitive equations to understand fully nonlinear
wave phenomena such as the global bifurcation and limiting configurations of travelling
waves. A numerical algorithm based on the modified boundary integral equation method
has been developed to compute solitary waves in the full Euler equations coupled with
electric effects. It has been found that the electric field has a significant impact on
the physics system being investigated, and can change the qualitative nature of solitary
interfacial waves from three perspectives. First, the regularising effect arising from the
horizontal electric field expands the range of parameters for the existence of progressive
waves; notably, the density ratios R > 1 and R = 1 may support solitary waves. Second,
the electric field can change the qualitative characteristics of solitary waves; for instance,
the infinite bilateral broadening of an interfacial gravity solitary pulse may be replaced by
two abreast plateaus with unilateral expansion under the combined effect of gravity and
electric field. Third, the coexistence of gravity, surface tension and electric forces may lead
to a complicated dispersion relation giving rise to a new type of travelling waves, namely
the KdV—-wavepacket mixed type solitary waves.

Our theoretical and numerical results raise other questions. The first question is the
stability of these solitary waves in the electrified Euler equations. For the present, a helpful
quantity that can be checked is the velocity jump across the interface. It is found that a
tangential velocity discontinuity exists in the pulse region for all solitary waves that we
tested, and the system can therefore be susceptible to a Kelvin—Helmholtz instability. In
order to put this intuition on a firm footing, a thorough linear stability analysis is needed.
More importantly, since a horizontal electric field can regularise the system from the linear
point of view, it is natural to ask whether and how it plays a role in the stability properties
of nonlinear waves. Thus a numerical scheme for unsteady simulations is required to
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understand the time evolution of a perturbed solitary wave. A possible scheme is to
generalise the vortex sheet method pioneered by Baker, Meiron & Orszag (1982) to include
electric effects. And this can be achieved by introducing another Birkhoff—Rott integral
accounting for the electric field.

To further understand the bifurcation mechanism of wavepacket solitary waves, the
nonlinear Schrodinger (NLS) equation is needed since it would tell us when to expect
small-amplitude solitary-wave bifurcations from extrema of dispersion relations. When
the NLS equation is defocusing at the extremum, wavepacket solitary waves usually
appear along a branch of generalised solitary waves and exist at finite amplitude; a typical
example is progressive hydroelastic waves in deep water (see Milewski, Vanden-Broeck &
Wang (2011) for details). However, in this case, a numerical algorithm handling periodic
waves in the electrified Euler equations is required in considering the computation of
generalised solitary waves, which we leave for a future study. On the other hand, when
the global extremum of the dispersion relation occurs at two different wavenumbers
simultaneously, the bifurcation mechanism of the newly discovered solitary waves in this
paper cannot be described by a single NLS equation. It is a particular case of the long—short
wave interaction (see, for example, Benney 1977) and merits a thorough investigation. In
addition, it is also of great interest to seek KdV—wavepacket mixed type solutions in other
nonlinear wave systems.

Finally, the asymptotic procedure presented in the paper can be generalised easily to the
three-dimensional problem. However, a horizontal electric field has a preferred direction
and leads to an anisotropic dispersion relation in the three-dimensional case. Namely, it
cannot provide a stabilising effect for linear waves propagating orthogonal to the electric
field. It is of particular interest to find a way to regularise various interfacial instabilities
(Kelvin—Helmbholtz, Rayleigh—Taylor, etc.) in all horizontal directions.
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