
J. Fluid Mech. (2020), vol. 889, A13. c© The Author(s), 2020.
Published by Cambridge University Press
doi:10.1017/jfm.2020.86

889 A13-1

Streamwise-constant large-scale structures in
Couette and Poiseuille flows

Simon J. Illingworth†

Mechanical Engineering, University of Melbourne, VIC 3010, Australia

(Received 23 April 2019; revised 14 January 2020; accepted 26 January 2020)

The linear amplification mechanisms leading to streamwise-constant large-scale
structures in laminar and turbulent channel flows are considered. A key feature
of the analysis is that the Orr–Sommerfeld and Squire operators are each considered
separately. Physically, this corresponds to considering two separate processes: (i) the
response of wall-normal velocity fluctuations to external forcing; and (ii) the response
of streamwise velocity fluctuations to wall-normal velocity fluctuations. The analysis
is performed for both plane Couette flow and plane Poiseuille flow; and for each
we consider linear amplification mechanisms about both the laminar and turbulent
mean velocity profiles. The analysis reveals two things. First, that the most amplified
structures (with a spanwise spacing of approximately 4h, where h is the channel
half-height) are to an important degree encoded in the Orr–Sommerfeld operator alone,
thus helping to explain their prevalence. Second – and consistent with numerical and
experimental observations – that Couette flow is significantly more efficient than
Poiseuille flow in leveraging the mean shear to produce channel-wide streamwise
streaks.
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1. Introduction
Streamwise-elongated large-scale structures are prevalent in all of the canonical

wall-bounded shear flows: boundary layers (Adrian, Meinhart & Tomkins 2000;
Balakumar & Adrian 2007; Hutchins & Marusic 2007); pipes (Kim & Adrian
1999; Guala, Hommema & Adrian 2006; Monty et al. 2007, 2009); Poiseuille flow
(Balakumar & Adrian 2007; Monty et al. 2007, 2009); and Couette flow. In this
context, Couette flow is peculiar in that streamwise-elongated channel-wide structures
are especially pronounced, evidence of which has been observed across a broad range
of Reynolds numbers both in simulations (Lee & Kim 1991; Bech & Andersson
1994; Komminaho, Lundbladh & Johansson 1996; Papavassiliou & Hanratty 1997;
Tsukahara, Kawamura & Shingai 2006; Avsarkisov et al. 2014; Pirozzoli, Bernardini
& Orlandi 2014; Lee & Moser 2018) and in experiments (Tillmark & Alfredsson
1994; Bech & Andersson 1994; Tillmark & Alfredsson 1998; Kitoh, Nakabyashi &
Nishimura 2005; Kitoh & Umeki 2008).

† Email address for correspondence: sillingworth@unimelb.edu.au
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889 A13-2 S. J. Illingworth

Meanwhile linear analyses of the Navier–Stokes equations also uncover an important
place for streamwise-elongated structures in shear flows (Schmid & Henningson
2001). Such linear analyses reveal that, for channel flows (in which we include
both Poiseuille flow and Couette flow), the structures that are most excitable are
streamwise constant with a spanwise spacing of approximately 4h, corresponding to
a spanwise wavenumber of approximately π/2h (where h is the channel half-height).
This has been observed not only for laminar Couette flow and laminar Poiseuille
flow (Gustavsson 1991; Butler & Farrell 1992; Farrell & Ioannou 1993; Trefethen
et al. 1993; Jovanovic & Bamieh 2005), but also more recently for their turbulent
counterparts for which the linear analyses are performed about the turbulent mean
velocity profile (del Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu
2010a,b). A key ingredient in the development of these streamwise-constant structures
is the lift-up effect, the driving mechanism for which is the mean wall-normal shear
(Ellingsen & Palm 1975; Landahl 1980; Kim & Lim 2000). We can therefore
summarize as follows: mean shear is a key ingredient in linear amplification
mechanisms; and yet the most amplified structures in channel flows are largely
insensitive to the details of the shear.

This paper considers the linear amplification mechanisms leading to streamwise-
constant large-scale structures in laminar and turbulent channel flows. The importance
of streamwise-constant structures in channel flows has motivated a number of previous
investigations using both linear (Bamieh & Dahleh 2001; Jovanovic & Bamieh 2005)
and nonlinear (Gayme et al. 2010, 2011) modelling approaches. A key feature
of the present analysis is that the Orr–Sommerfeld and Squire operators are each
considered separately. (We will use a slightly modified Squire operator by setting
the streamwise velocity – rather than the wall-normal vorticity – to be the output of
interest.) Physically, this corresponds to considering two separate processes: (i) the
response of wall-normal velocity fluctuations to external forcing; and (ii) the response
of streamwise velocity fluctuations to wall-normal velocity fluctuations. Importantly,
doing so allows us to define an efficiency of the overall process.

This point of view, in which the forcing of streamwise velocity by wall-normal
velocity is made explicit, is in the spirit of Gustavsson (1991). It also shares some
similarities with the work of Zaki & Durbin (2005) and Zaki & Durbin (2006)
on bypass transition in boundary layers. The analysis is performed for both plane
Couette flow and plane Poiseuille flow; and for each we consider linear amplification
mechanisms about both the laminar and turbulent mean velocity profiles. By doing
so we will uncover two things. First, that the most amplified structures – with a
spanwise spacing of approximately 4h irrespective of the details of the mean flow
– are to an important degree encoded in the Orr–Sommerfeld operator alone, thus
helping to explain the prevalence of such structures. Second – and consistent with
numerical and experimental observations – that Couette flow is significantly more
efficient than Poiseuille flow in leveraging the mean shear to produce large-scale
streamwise streaks.

2. Linear model

We consider laminar or turbulent flow in a channel for which the streamwise,
spanwise and wall-normal directions are denoted by x, y and z; and the corresponding
velocity components by u, v and w. The Reynolds number R= uoh/ν is based on the
channel half-height h, kinematic viscosity ν and some characteristic velocity uo. For
laminar flow this characteristic velocity is the maximum velocity across the channel
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Streamwise-constant large-scale structures in channel flows 889 A13-3

height; for the turbulent flow it is the friction velocity, uτ =
√
τw/ρ, where τw is the

wall shear stress and ρ is the density. Following non-dimensionalization the channel
half-height is unity so that z ∈ [−1,+1].

2.1. Laminar velocity profiles
The non-dimensional velocity profile for laminar Couette flow is U(z)= z; for laminar
Poiseuille flow it is U(z) = 1 − z2. Linearizing the incompressible Navier–Stokes
equations about one of these laminar base flows gives

∂u
∂t
+U

∂u
∂x
+ (wU′, 0, 0)=−∇p+ R−11u+ f , (2.1a)

∇ · u= 0, (2.1b)

where u= [u v w]T and ′ represents differentiation in the wall-normal direction. Note
the inclusion of a forcing term, f =[ fx fy fz]

T, in the momentum equation (2.1a), which
we treat as an external input to the flow.

2.2. Turbulent velocity profiles
Linear models have been used for fully developed turbulent flows in a number
of previous studies. In some the linear operator is obtained from a Reynolds
decomposition of the velocity field, giving rise to a linear operator in which the
viscosity is equal to the kinematic viscosity (McKeon & Sharma 2010; Sharma
& McKeon 2013). In others the linear operator is obtained by first performing a
triple decomposition of the velocity field and then providing a closure for the terms
quadratic in the incoherent fluctuations using a simple eddy-viscosity model (Reynolds
& Hussain 1972; del Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu
2010a,b; Illingworth, Monty & Marusic 2018; Madhusudanan, Illingworth & Marusic
2019; Vadarevu et al. 2019). In this second case the effective viscosity, which varies
across the flow, is given by the sum of the eddy and kinematic viscosities.

In this work we include only the kinematic viscosity in the linear model. Doing
so gives rise to an Orr–Sommerfeld operator whose dynamics is independent of
the mean velocity profile (to be made clear in § 2.3) and thus simpler and more
generic than its eddy-viscosity equivalent. This choice is therefore convenient but it
is also suitable for two reasons. First, a key emergent feature of both linear models
is the critical layer mechanism in which a significant response can occur when the
phase velocity, c = ω/kx, is equal to the local mean velocity, c = U(z) (Maslowe
1986). The two linear models show different critical layer behaviours owing to
their different effective viscosity profiles. But since the focus of this work is on
streamwise-constant fluctuations for which the streamwise wavenumber is zero, the
critical layer mechanism does not occur and this difference between the two models
does not exist. Second, we must specify the variation of the eddy viscosity in the
wall-normal direction (z), but a reasonable approximation is to assume instead that it
is constant with z. As noted by Townsend (1956, § 6.7 p. 127), a reasonable way to
determine this constant would be to compare the measured mean velocity profile with
that given by assuming a suitable constant eddy viscosity; and the approximation
would only be in error near the walls. It is therefore reasonable to approximate
any eddy viscosity with an equivalent constant (and larger) viscosity which would
manifest itself as a reduction in the effective Reynolds number R. (The effect of
including an eddy viscosity in the linear model (2.1) will be considered in § 6.)
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889 A13-4 S. J. Illingworth

For Couette flow there is an additional reason for which the kinematic viscosity
may be more appropriate than an eddy viscosity. The eddy-viscosity profile is closely
related to the mean velocity profile – knowledge of one implies knowledge of the
other. The strong streamwise rollers that are unique to Couette flow will surely have
an influence on the mean velocity profile, and in turn on the eddy-viscosity profile.
And yet the intended role of the eddy viscosity is to model the effect of small-scale,
incoherent motions on the large, most energetic scales. Therefore any eddy-viscosity
profile, as well as acting to modify the dynamics of the largest scales, is at the same
time modified by them. This observation applies equally to Poiseuille flow and indeed
any shear flow, but we can expect it to be especially problematic for Couette flow,
where large-scale structures play such a prominent role.

The linear model formed about the turbulent mean flow has the same form as
that for laminar flow (2.1) but the reasoning used to form it and the definition
and interpretation of some its terms are different. The linear model is obtained by
performing a Reynolds decomposition of the velocity field; substituting this into the
incompressible Navier–Stokes equations; and subtracting the equations governing the
mean flow. This gives rise to (2.1) as before but with two important differences.
First, U now represents the turbulent mean velocity profile and u represents turbulent
fluctuations about the mean. Second, any nonlinear terms are absorbed into the
forcing term f so that f =−(u · ∇)u+ (u · ∇)u (Landahl 1967; Bark 1975; McKeon
& Sharma 2010). Thus the formation of the linear operator (2.1) about the turbulent
mean flow does not imply that nonlinear terms are neglected. Rather, we take the
point of view that the linear operator (2.1) is constantly forced by the remaining
nonlinear terms. Nonlinear effects thus manifest themselves in two ways: through
their role in setting the mean velocity profile U; and through their forcing of the
linear operator (2.1). (The forcing could have additional contributions from any
externally applied forcing as in § 2.1, but this would not modify the analysis.)

2.3. Streamwise-constant model
The streamwise-constant model used throughout this work is obtained by taking
Fourier transforms of (2.1) in the homogeneous directions (x, y); transforming into
Orr–Sommerfeld Squire form; and setting the streamwise wavenumber to zero

∂1ŵ
∂t
= R−1∆2ŵ− ikDf̂y − k2 f̂z, (2.2a)

∂ û
∂t
= R−11û−U′ŵ+ f̂x, (2.2b)

with boundary conditions ŵ(t) = ∂zŵ(t) = û(t) = 0 at the two walls. Here k is the
spanwise wavenumber, D represents differentiation in the wall-normal direction and
∆ = D2

− k2 is the two-dimensional Laplacian. Note that, for streamwise-constant
fluctuations, the equation governing the streamwise velocity û simplifies significantly.
Since this is also the quantity of interest, we use it directly as the output of the
Squire operator in (2.2b) instead of using the (standard) wall-normal vorticity.
(For streamwise-constant fluctuations the relationship in Fourier space between the
streamwise velocity û and the wall-normal vorticity η̂ is simply η̂ = ikû.) Note also
that we choose an evolution equation for wall-normal velocity fluctuations ŵ in (2.2a)
instead of v̂ (or a suitable streamfunction) because ŵ forces û directly in (2.2b).
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Streamwise-constant large-scale structures in channel flows 889 A13-5

f̂x

f̂y ŵ

ŵ

√̂

û

f̂z

-ikd

-id/k

-k2

G(s)

S(s)

(sÎ -Î2)-1 (sI -Î)-1U�R R

FIGURE 1. Linear amplification mechanisms for streamwise-constant fluctuations
at spanwise wavenumber k. Dashed lines denote forcing components and velocity
components that are omitted in the analysis. (These processes scale with R, while those
retained scale with R2 – see § 2.3.) The transfer functions G(s) from (2.4a) and S(s)
from (2.4c) are also indicated.

v̂ can be obtained from ŵ by using the continuity equation (2.1b) with streamwise
gradients set to zero (see also figure 1)

ikv̂ +Dŵ= 0. (2.3)

Taking Laplace transforms of (2.2), rescaling the Laplace variable s by the Reynolds
number R (Gustavsson 1991; Jovanovic & Bamieh 2005) and rearranging gives rise
to two transfer functions, G(s) and So(s), as follows:

ŵ(s)= R (s∆−∆2)−1
[
−ikD −k2

]︸ ︷︷ ︸
G(s)

[
f̂y(s)

f̂z(s)

]
, (2.4a)

û(s)= R (sI −∆)−1
[
I −U′

]︸ ︷︷ ︸
So(s)

[
f̂x(s)
ŵ(s)

]
. (2.4b)

(Rescaling the Laplace variable in this way is equivalent to rescaling time by R−1.)
Notice that the Reynolds number R has been isolated to render each transfer function
independent of it. The transfer function G(s) comes from the Orr–Sommerfeld
operator. It represents the dynamics from spanwise and wall-normal forcing, [f̂y f̂z]

T,
to wall-normal velocity fluctuations, ŵ. Importantly, G(s) is independent of the
mean velocity profile. The transfer function So(s) is related to the Squire operator. It
represents the dynamics from streamwise forcing and wall-normal velocity fluctuations,
[f̂x ŵ]T, to streamwise velocity fluctuations, û. Equations (2.4) are represented in a
block diagram in figure 1.

From (2.4a), (2.4b) and figure 1 we see that the overall transfer function from
[f̂y f̂z]

T to û (which involves both G(s) and So(s)) scales with R2, while the transfer
function from f̂x to û (which involves only So(s)) scales with R. For sufficiently large
R we can therefore neglect the influence of f̂x and it is convenient to define a second
transfer function, S(s), for which the influence of f̂x is neglected

û(s)= R [−(sI −∆)−1U′]︸ ︷︷ ︸
S(s)

ŵ(s). (2.4c)
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889 A13-6 S. J. Illingworth

The transfer function So(s) in (2.4b) therefore includes the influence of f̂x, while the
transfer function S(s) in (2.4c) neglects it.

Finally, we define an overall transfer function F(s)

F(s) = S(s)G(s)
= (sI −∆)−1U′(s∆−∆2)−1

[
ikD k2

]
. (2.5)

Implicit in (2.5) is that the contribution from streamwise forcing f̂x can be ignored.
This assumption is sound provided that the Reynolds number R is sufficiently large,
as discussed above. Then F(s) represents the overall dynamics from [f̂y f̂z]

T to û as
follows:

û(s)= R2F(s)

[
f̂y(s)

f̂z(s)

]
. (2.6)

The overall dynamics (2.6), together with definitions of G(s) and S(s), are shown in
a block diagram in figure 1. Note that the Reynolds number scaling of the overall
operator has also been analysed in the slightly different context of stochastic forcing
for which the relevant norm (the two norm) is found to scale with R3/2 (Bamieh &
Dahleh 2001; Jovanovic & Bamieh 2005).

2.4. Transfer function norms
With the relevant transfer functions defined, we now introduce two norms to evaluate
their size: the infinity norm ‖ · ‖∞ and the two norm ‖ · ‖2.

We will make extensive use of the infinity norm, defined for a transfer function T
as

‖T‖∞ =max
ω

σ1(iω), (2.7)

where σi(iω) are the singular values of T(iω) at frequency ω and represent a
generalization of gain for systems with many inputs and many outputs. The singular
values are ordered such that σ1 > σ2 > · · ·> σn. Therefore σ1 represents the maximum
singular value at frequency ω; and the infinity norm (2.7) represents the worst-case
gain over all possible forcing frequencies and forcing directions. An important
property of the infinity norm – and a key reason for using it in this work – is its
submultiplicative property

‖T1T2‖∞ 6 ‖T1‖∞‖T2‖∞ (2.8)

for any two transfer functions T1 and T2. This property will be useful in the following
sections to characterize the efficiency of the forcing of streamwise velocity fluctuations
(the Squire operator S) by wall-normal velocity fluctuations (the Orr–Sommerfeld
operator G).

Another commonly used norm for transfer functions is the two norm

‖T‖2
2 =

1
2π

∫
∞

−∞

Trace[T∗(iω)T(iω)] dω=
1

2π

∫
∞

−∞

∑
i

σ 2
i (iω) dω. (2.9)

The two norm (2.9) represents an average gain over all frequencies and forcing
directions. In contrast to the infinity norm, the two norm does not satisfy the
submultiplicative property (2.8), and is therefore less suitable for our purposes
(to be made clear in § 3.2). Nevertheless, it will be used briefly in § 3 to check the
sensitivity of some key results to the choice of norm.
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FIGURE 2. The infinity norm ‖ · ‖∞ for G (a); S (b); and F= SG (c). Results for S and
F are shown for Couette flow (——) and for Poiseuille flow (– –).

2.5. Numerical discretization
Equations (2.4a) and (2.4c) are discretized in the wall-normal direction (z) using
Chebyshev collocation. A total of 101 Chebyshev points are used, which is sufficient
for the large scales of interest. Convergence has been checked by doubling the
number of Chebyshev points and ensuring that the results do not change. The norms
(2.7) and (2.9) are defined such that they each correspond to grid-independent energy
norms. This is achieved using Clenshaw–Curtis quadrature (Trefethen 2008).

3. Laminar velocity profiles
We start by evaluating the infinity norm (2.7) for laminar Couette flow and laminar

Poiseuille flow as a function of the spanwise wavenumber k. We do this for the
Orr–Sommerfeld operator G (2.4a), the Squire operator S (2.4c) and for the overall
operator F= SG (2.5).

3.1. Norms of G, S and F with spanwise wavenumber
Figure 2 plots the infinity norm (2.7) as a function of spanwise wavenumber for G,
S and F. We plot all norms only for non-zero values of k since, when k = 0, the
continuity equation becomes simply ∂w/∂z = 0, which, together with the boundary
conditions for w, implies that w= 0 everywhere. Recall from § 2.3 that the Reynolds
number R has been isolated from each transfer function (see (2.4) and (2.6)). This
means that all results effectively correspond to R = 1. This, coupled with the fact
that the infinity norm satisfies ‖RT(s)‖∞ = R‖T(s)‖∞ for any transfer function T(s)
(and R positive), means that the results at any Reynolds number can be readily
generated from the results presented here. The infinity norm of the Orr–Sommerfeld
operator G is plotted in figure 2(a). Recall that, for streamwise-constant fluctuations,
the dynamics of G is independent of the mean velocity profile and is therefore
identical for Poiseuille flow and Couette flow. We observe that ‖G‖∞ attains its
maximum at a spanwise wavenumber of k = 2.00 (λ = 3.14). The infinity norm of
the Squire operator S is plotted in figure 2(b). Notice that there are now two curves
– one for Couette flow and one for Poiseuille flow – because S is a function of
the mean velocity profile. For both flows ‖S‖∞ attains its maximum at k = 0 and
decreases monotonically with increasing k. Finally, the infinity norm of F = SG,
which represents the overall dynamics, is plotted in figure 2(c). For both flows ‖F‖∞
attains its maximum near k ≈ π/2 (λ ≈ 4). Precisely, ‖F‖∞ attains its maximum at
k= 1.18 (λ= 5.3) for Couette flow and at k= 1.62 (λ= 3.9) for Poiseuille flow.

What if we use a different norm? Table 1 summarizes the spanwise wavenumbers
at which the peak response, as measured by the infinity norm, is achieved; and also
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889 A13-8 S. J. Illingworth

G Scoue Spois Fcoue Fpois

kmax for ‖ · ‖∞ 2.00 0 0 1.18 1.62
kmax for ‖ · ‖2 2.90 0 0 1.40 1.79

TABLE 1. Spanwise wavenumber kmax at which the largest response occurs for the
infinity norm, ‖ · ‖∞, and the two norm, ‖ · ‖2.

repeats this using the two norm (2.9). (The variation of the two norm with k is plotted
in the Appendix.) When rescaled by R, the infinity norm of the overall operator F is
equivalent to the ‘maximum resonance’ for R→∞ as plotted in table 1 of Trefethen
et al. (1993). (The limiting case of R→∞ is equivalent to neglecting the influence
of f̂x, as done in § 2.3.) Similarly, when properly rescaled by R, the two norm of the
overall operator F is equivalent to the variance of the response to stochastic forcing of
unit power, as considered in Farrell & Ioannou (1993) and Jovanovic & Bamieh (2005)
(although in those studies the influence of f̂x was not neglected). From table 1 and the
Appendix we see that the responses of the operators G, S and F, as measured by the
two norm, show similar behaviour to that seen using the infinity norm. In particular,
we still observe (i) that G and F each attain their maximum response at a spanwise
wavenumber k ≈ 2; and (ii) that S attains its maximum response at k = 0. Thus we
see that pertinent results observed when using the infinity norm are also observed
when using the two norm, and therefore that these features are not an artefact of our
particular choice of norm.

From figure 2 it is interesting that, despite the norm ‖G‖∞ remaining unchanged
and the norm ‖S‖∞ remaining similar across the two flows, the norm of the overall
system, ‖F‖∞ differs significantly. In particular ‖F‖∞ for Couette flow is significantly
larger than ‖F‖∞ for Poiseuille flow. We now consider this in more detail by defining
an efficiency of the forcing process.

3.2. Efficiency
We now make use of the submultiplicative property of the infinity norm (see § 2.4)

‖F‖∞ = ‖SG‖∞ 6 ‖S‖∞‖G‖∞. (3.1)

In words: the optimal response of the overall system, when quantified using the
infinity norm, is at most as large as the product of the optimal responses of the two
systems of which it is composed. How closely equality in (3.1) is approached is
determined by the nature of the interaction between G and S. With (3.1) in mind we
now introduce an efficiency, α, defined such that

‖SG‖∞ = α‖S‖∞‖G‖∞, (3.2)

or
α =

‖SG‖∞
‖S‖∞‖G‖∞

. (3.3)

Note that (3.1) and (3.2) together imply that α 6 1. A value of α = 1 implies that
the forcing of streamwise velocity fluctuations by wall-normal velocity fluctuations
is perfectly efficient. A value of α ≈ 0 implies a low efficiency or that wall-normal
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FIGURE 3. The infinity norm of the overall system, ‖F‖∞ = ‖SG‖∞, and its upper
bound ‖S‖∞‖G‖∞; and the corresponding forcing efficiency α (3.3). Results are shown
for Couette flow (a) and for Poiseuille flow (b).

velocity fluctuations (G) are not able in turn to easily excite streamwise velocity
fluctuations (S).

It is important now to clarify (i) the physical significance of the efficiency α; (ii) the
specific sense in which it represents an efficiency; and (iii) the ways in which it might
give additional insight over more standard analyses such as transient growth. It is
instructive to think of the mean flow – and in particular the mean shear – as the
fuel for velocity fluctuations. We might expect that the energy extracted from a fuel
will be much greater than the initial energy required to extract it. (A simple everyday
example would be the energy expended in pressing an accelerator pedal versus the
energy extracted to accelerate an entire car.) If we were to define the efficiency of
such a process as the ratio of the energy extracted to the energy expended, then we
would expect this efficiency to be much greater than one. This is not the sense in
which α in (3.3) represents an efficiency. Rather, α represents a measure of the energy
extracted from the fuel when compared to the energy available in that fuel. This can
give additional insight since, in more standard analyses, we gain information on the
energy of fluctuations when compared to the energy input, but not on the energy of
fluctuations when compared to the energy that is available. It is for this reason that
α can serve as a useful additional metric.

Figure 3 shows the numerator and denominator of (3.3), together with the
efficiency α, for both Couette flow and Poiseuille flow. From (3.1) we expect that the
denominator, ‖S‖∞‖G‖∞, will serve as an upper bound for the numerator, ‖SG‖∞ and
this is confirmed in panels (a,b). For Couette flow the upper bound is very nearly
attained (panel (a)) corresponding to an efficiency α close to 1 (panel (b)). For
Poiseuille flow the efficiency is considerably less than 1 at all spanwise wavenumbers
considered and is in the region of α ≈ 0.4 for the spanwise wavenumbers at which
the largest overall response is attained (i.e. k≈π/2).

4. Turbulent velocity profiles
We now repeat the analysis of § 3 using turbulent mean velocity profiles for both

Couette flow and Poiseuille flow. The focus of the results is similar to that of § 3,
with the caveat that the mean velocity profile – and therefore the models S and F –
now vary with Reynolds number. (Recall from § 2.3 that the Reynolds number has
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FIGURE 4. The infinity norm of the overall system, ‖F‖∞=‖SG‖∞, as a function of the
spanwise wavenumber k; and the efficiency, α as defined in (3.3). Results are shown for
Couette flow (a) and for Poiseuille flow (b). Lighter lines correspond to larger friction
Reynolds numbers Rτ . For comparison the efficiencies α for laminar flow from figure 3
are also plotted (– –).

Couette Rτ — 171 260 507 — 986
Poiseuille Rτ 107 180 298 550 816 950

TABLE 2. Friction Reynolds numbers considered.

been eliminated from the operators G, S and F; therefore the turbulent Reynolds
number manifests itself only through the modification of the mean velocity profile.)
The turbulent mean velocity profiles are taken from existing turbulence databases
(Hoyas & Jiménez 2006, 2008; Pirozzoli et al. 2014, 2017). The Reynolds numbers
considered are summarized in table 2. For Couette flow we use data for friction
Reynolds numbers Rτ between 171 and 986. For Poiseuille flow we use data for
friction Reynolds numbers between 107 and 950.

In figure 4 we plot (for each Reynolds number) the infinity norm of the overall
system, ‖F‖∞ = ‖SG‖∞, as a function of the spanwise wavenumber k. We also plot
for each Reynolds number the efficiency, α, as defined in (3.3). For comparison we
include the plots of α for laminar flow from figure 3 (dashed lines). (‖S‖∞‖G‖∞
is not plotted but can be inferred from knowledge of ‖SG‖∞ and α.) We see that,
for both flows and for all Reynolds numbers, a peak in ‖SG‖∞ occurs for spanwise
wavenumbers in the vicinity of k = π/2, as it did for laminar flow in figure 3,
and consistent with previous work (Pujals et al. 2009; Hwang & Cossu 2010a,b).
This is perhaps not surprising: recall from figure 2 that this peak is present in G(s)
governing the wall-normal velocity, which from (2.4a) is independent of the mean
velocity profile and therefore has identical dynamics across all laminar and turbulent
flows. These results are in good agreement with direct numerical simulations (DNS)
and experiments, where the spanwise dimensions of the channel-wide streamwise
streaks are in the approximate range of λ ≈ 4–5h (k = 1.26–1.57) (Pirozzoli et al.
2014). We also see in figure 4 that the efficiencies, α, are lower than their laminar
counterparts for all of the turbulent Reynolds numbers considered.

Key results from figure 4 are summarized as a function of Reynolds number in
figure 5. We plot in panel (a) the spanwise wavenumber kmax at which ‖SG‖∞ attains
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FIGURE 5. Summary of key results from figure 4 as a function of friction Reynolds
number Rτ : (a) spanwise wavenumber, kmax, at which ‖F‖∞ attains its maximum; and
(b) the efficiency, αmax, attained at this maximum. Results are shown for turbulent Couette
flow (A), turbulent Poiseuille flow (@) and their laminar counterparts (Couette ——,
Poiseuille – –).

its maximum; and in panel (b) the efficiency αmax attained at this maximum. We
also plot these same quantities for the laminar velocity profiles (dashed lines) for
comparison. For both flows we see that kmax remains almost constant as the friction
Reynolds number is varied. For Couette flow it lies in the range 1.186 kmax 61.19; for
Poiseuille flow it occurs at kmax= 1.62 for all cases considered (including the laminar
flow). For both flows the efficiency αmax at this spanwise wavenumber is lower for the
turbulent velocity profiles than it is for their laminar counterparts. For Couette flow it
reduces from αmax= 0.98 for the laminar profile to lie in the range 0.586 αmax 6 0.63
for the turbulent mean profiles. For Poiseuille flow it reduces from αmax = 0.32 for
the laminar profile to lie in the range 0.21 6 αmax 6 0.28 for the turbulent mean
profiles. Despite the greater reductions for Couette flow, αmax is nonetheless larger
for Couette flow than it is for Poiseuille flow for all cases considered. Indeed the
maximum αmax attained for Poiseuille flow is still smaller than the minimum value
attained for Couette flow by a factor of approximately two (figure 5b).

5. Singular value decomposition of G and S at ω= 0

We have seen that the efficiency of the forcing process, as characterized by the
quantity α, is significantly higher for Couette flow than it is for Poiseuille flow
for both laminar and turbulent mean velocity profiles. We now seek to explain
this observation by performing singular value decompositions of the discretized
Orr–Sommerfeld and Squire operators, G and S.

As described in § 2.4, the infinity norm (2.7) of a transfer function represents a
maximum (or worst-case) gain. This is attained at a particular forcing frequency and
for a particular forcing direction, and therefore any analysis of ‖G‖∞, ‖S‖∞ and ‖F‖∞
is complicated by the fact that each can occur at different temporal frequencies ω. For
streamwise-constant fluctuations, however, the infinity norms ‖G‖∞, ‖S‖∞ and ‖F‖∞
all occur at zero frequency, ω = 0. We therefore need only consider each transfer
function at ω= 0, i.e. G(i0), S(i0) and F(i0). A singular value decomposition of G(i0)
is then

G(i0)=UΣV∗, (5.1)

(and similarly for S) where Σ = diag[σ1 · · · σn] contains the singular values with
σ1 > σ2 > · · · > σn; U = [u1 · · · un] contains the response singular vectors; and V =
[v1 · · · vn] contains the forcing singular vectors. Now writing the product of the two
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FIGURE 6. (a,b) First two singular response modes (u1, u2) of G; and first two singular
forcing modes (v1 and v2) of S for Couette flow (c,d) and Poiseuille flow (e, f ). In each
panel the singular modes are shown in physical space on the left (laminar velocity profiles
only); and in Fourier space on the right (laminar and turbulent velocity profiles; lighter
lines correspond to larger friction Reynolds numbers). In each plot the scaling is arbitrary.

transfer functions G and S in terms of their singular value decompositions (using
subscripts to distinguish between them)

F(i0)= S(i0)G(i0)=USΣSV∗S UGΣGV∗G, (5.2)

from which we see that key roles will be played by UG (the singular response modes
of G) and by VS (the singular forcing modes of S) since their product V∗S UG appears
at the centre of (5.2). The quantity V∗S UG thus quantifies the nature of the interaction
between the Orr–Sommerfeld and Squire operators, G and S.

5.1. Leading singular modes of G and S
Given the importance of UG and VS in determining the interaction between G and S,
we now plot their variation in the wall-normal direction. We do so for Couette flow
and Poiseuille flow and for their laminar and turbulent velocity profiles. In all cases
we set the spanwise wavenumber to k = π/2, which lies approximately in the range
where the infinity norm of the overall operator, ‖F‖∞, achieves its largest value. We
plot only the first two singular modes of both operators because, as we will see, these
are the most significant for explaining the results of §§ 3 and 4.

The first two singular response modes (u1 and u2) of the Orr–Sommerfeld operator
G are shown in figure 6(a,b). (These are plotted in physical space, ui(y, z), on the
left and in Fourier space, ui(k = π/2, z), on the right of each panel.) Recall that,
for streamwise-constant fluctuations, the Orr–Sommerfeld operator is independent of
the mean velocity profile. Therefore u1 and u2 remain the same across all of the
velocity profiles that we consider (Couette and Poiseuille; laminar and turbulent). The
first response mode, u1, spans the entire channel height and is symmetric about the
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Couette Poiseuille
Laminar Rτ = 986 Laminar Rτ = 950
v∗1 v∗2 v∗1 v∗2 v∗1 v∗2 v∗1 v∗2

u1 0.985 0 0.544 0 0 0.515 0 0.385
u2 0 0.971 0 0.496 0.931 0 0.806 0

TABLE 3. Summary of the inner products v∗i uj for i, j= 1, 2 (equivalent to looking at
the first two diagonal entries of V∗S UG).

channel centre (reaching its peak response there). The second response mode, u2, is
anti-symmetric about the channel centre (where it is zero).

The first two singular forcing modes (v1 and v2) of the Squire operator S for laminar
Couette flow are shown in figure 6(c,d). (Again, these are plotted both in Fourier
space and in physical space.) The first forcing mode v1 is symmetric about the channel
centre and is similar to u1; and the second forcing mode v2 is anti-symmetric about
the channel centre and is similar to u2. This similarity between the leading forcing
modes of G and the leading response modes of S can be quantified by looking at the
inner products v∗1u1 and v∗2u2. (This is equivalent to looking at the first two diagonal
entries of V∗S UG.) These are v∗1u1 = 0.985 and v∗2u2 = 0.971. (The maximum possible
value is 1 since UG and VS are each orthonormal.) These values are also summarized
in table 3.

The story is quite different for laminar Poiseuille flow. The first two singular forcing
modes (v1 and v2) of the Squire operator S for laminar Poiseuille flow are shown in
figure 6(e, f ). The first forcing mode, v1, is anti-symmetric about the channel centre;
while the second forcing mode, v2 is symmetric. The anti-symmetry of v1 means that
its inner product with u1 (which is symmetric) is zero, v∗1u1 = 0. Thus the different
symmetries of laminar Poiseuille flow mean that the leading forcing mode of the
Squire operator is not excited by the leading response mode of the Orr–Sommerfeld
operator. (The two modes are orthogonal.) In a similar way, the symmetry of v2 means
that its inner product with u2 (which is anti-symmetric) is zero, v∗2u2 = 0. Thus for
Poiseuille flow the important interactions are the second response mode with the first
forcing mode (v∗1u2 = 0.931); and the first response mode with the second forcing
mode (v∗2u1= 0.515). This limits the forcing efficiency of laminar Poiseuille flow and
is a consequence of its anti-symmetrical shear profile U′.

Similar arguments apply when we replace the laminar velocity profiles of § 3 with
the turbulent mean velocity profiles of § 4. In particular the first forcing mode v1
of the Squire operator is symmetric for turbulent Couette flow and anti-symmetric
for turbulent Poiseuille flow; and the second forcing mode v2 is anti-symmetric
for turbulent Couette flow and symmetric for turbulent Poiseuille flow. These first
two forcing modes are shown in figure 6(c–f ) for all Reynolds numbers considered
alongside their laminar counterparts. (For brevity they are shown only in Fourier
space.) Thus the symmetries observed in the leading forcing modes of S for laminar
Couette flow and laminar Poiseuille flow are retained by their turbulent counterparts.
The most notable difference is that, for the turbulent mean velocity profiles, the
leading forcing modes display peaks near the channel walls. These peaks occur for
both Couette flow and Poiseuille flow and they move closer to the wall as Reynolds
number increases. This is not surprising given the crucial role of the mean wall-normal
shear for the Squire operator – and that this shear becomes increasingly concentrated
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at the wall with increasing Reynolds number. This in turn causes a reduction in the
inner products considered earlier. For Couette flow the inner product v∗1u1 reduces
from 0.985 (laminar) to 0.544 (Rτ = 986); and the inner product v∗2u2 reduces from
0.971 (laminar) to 0.496 (Rτ = 986). For Poiseuille flow the inner product v∗2u1
reduces from 0.515 (laminar) to 0.385 (Rτ = 950); and the inner product v∗1u2 reduces
from 0.931 (laminar) to 0.806 (Rτ = 950). (These values are also summarized in
table 3.) This indicates (for both flows) a reduction in the projection of the leading
response modes of G onto the leading forcing modes of S and helps to explain the
reduced efficiency α for the turbulent mean velocity profiles observed in figures 4
and 5.

We finish this section by considering why laminar Couette flow displays almost
perfect forcing efficiency, α ≈ 1. This is explained by the fact that, for laminar
Couette flow, the shear profile satisfies U′(z) = 1 everywhere. Thus the Squire
operator becomes simply S= (sI −∆)−1, the dynamics of which is similar to that of
(s∆−∆2)−1, which appears in the Orr–Sommerfeld operator G(s) (see (2.4a)). It is
then perhaps not surprising that the leading forcing modes of S in figure 6(a,b) are
so similar to the leading response modes of G in figure 6(c,d). More generally (not
shown) the ith forcing mode of S is similar to the ith response mode of G and thus
the inner product v∗i ui is close to unity.

6. Effect of including an eddy viscosity
The results presented in §§ 4 and 5 (for turbulent mean velocity profiles) use the

kinematic viscosity in the linear model (2.1). This choice of the kinematic viscosity
(rather than an eddy viscosity) was discussed and justified in § 2.2. In particular:
(i) it leads to a simpler and more generic linear model; (ii) it is appropriate for
streamwise-constant fluctuations, which are our focus; and (iii) it would be reasonable
to approximate any eddy viscosity with an equivalent constant viscosity, which would
appear simply as a reduction in the effective Reynolds number R in the linear model
(2.1). Our choice of a constant viscosity in the linear model (2.1) is therefore well
motivated. However, it is also interesting to consider the effect of including an
eddy viscosity in the linear model (2.1), not least because this approach has formed
the basis of a number of previous studies concerning linear mechanisms in wall
turbulence as discussed in § 2.2.

The linear model (2.2), when an eddy viscosity is included, becomes

∂1ŵ
∂t
=LOSŵ− ikDf̂y − k2 f̂z, (6.1a)

∂ û
∂t
=LSQû−U′ŵ+ f̂x, (6.1b)

where LOS and LSQ are the Orr–Sommerfeld and Squire operators for streamwise-
constant perturbations and for an eddy-viscosity profile, νT , that varies in the wall-
normal direction

LOS = νT∆
2
+ 2ν ′TD∆+ ν ′′T(D2

+ k2), (6.2a)
LSQ = νT∆+ ν

′

TD. (6.2b)

Notice that, since the viscosity now varies in the wall-normal direction, we cannot
isolate it in the way we isolated the Reynolds number R for the linear model (2.1)
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FIGURE 7. (a) The infinity norm of the Orr–Sommerfeld operator, ‖G‖∞; and (b,c) wall-
normal variation of the (b) first and (c) second response modes of G. In each panel results
are shown for the linear model with kinematic viscosity (2.2) (solid lines) and for the
linear model with eddy viscosity (6.1) for Couette flow (dashed lines) and Poiseuille flow
(dot–dashed lines). In (b,c) the scaling is arbitrary.

with kinematic viscosity. Using the scaling arguments of § 2.3, we again ignore the
influence of the streamwise forcing, f̂x, in (6.1b) so that the Squire operator S is forced
only by the wall-normal velocity ŵ. (Although the effective Reynolds number will
be reduced by the eddy viscosity, it should still be sufficiently high for the scaling
arguments of § 2.3 to be applicable.)

6.1. Effect on the Orr–Sommerfeld operator G
We observed in § 2.3 that, for the kinematic viscosity, the Orr–Sommerfeld operator
G(s) is independent of the mean velocity profile and is therefore identical for Couette
flow and Poiseuille flow. This is no longer true for the linear model (6.1) because
the operator G(s) now depends on the eddy-viscosity profile, which itself depends on
the mean velocity profile. This ultimately means that we must now compare three
linear operators: (i) G using the kinematic viscosity (valid for both flows); (ii) G for
Couette flow with eddy viscosity; and (iii) G for Poiseuille flow with eddy viscosity.
For simplicity we do this comparison only for the largest friction Reynolds number
available – for which we expect the influence of the eddy viscosity to be most
significant. For Couette flow this is Rτ = 986 and for Poiseuille flow it is Rτ = 950.

Figure 7 summarizes the influence of the eddy viscosity on the Orr–Sommerfeld
operator G(s). In panel (a) we plot the infinity norm, ‖G‖∞ with spanwise
wavenumber k for the three operators. The three curves have each been normalized
by their maximum value to aid comparison. We see that including an eddy viscosity
reduces the spanwise wavenumber at which the peak response occurs: for the
kinematic viscosity this peak occurs at kmax = 2.00; with eddy viscosity the peak
reduces to kmax = 1.44 for Couette flow and to kmax = 1.47 for Poiseuille flow.
Therefore including an eddy viscosity in the linear operator does modify the behaviour
of the Orr–Sommerfeld operator G. But this modification is relatively small and we
ultimately draw the same conclusion as we did for the kinematic viscosity: that the
Orr–Sommerfeld operator has a preferred spanwise wavenumber; and that this is in
the region of k≈ 1–2. In panels (b,c) we plot the first two singular response modes of
G for the three cases. We see that including an eddy viscosity in the linear operator
modifies these response modes. But again, this modification is relatively small and
we ultimately draw the same conclusions as we did for the kinematic viscosity: that
both response modes are channel-wide; that the first response mode is symmetric
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FIGURE 8. Summary of key results for the linear model with eddy viscosity (6.1) as
a function of friction Reynolds number Rτ : (a) spanwise wavenumber, kmax, at which
‖F‖∞ attains its maximum; and (b) the efficiency, αmax, attained at this maximum. Results
are shown for turbulent Couette flow (q) and turbulent Poiseuille flow (p). Results from
figure 5 for the linear model with kinematic viscosity (2.2) are also shown (A,@).

about the channel centre; and that the second response mode is anti-symmetric about
the channel centre.

6.2. Effect on kmax and αmax

We now consider the effect of the eddy viscosity on the overall operator F(s). In
particular, we will look at the influence on the spanwise wavenumber at which ‖F‖∞
attains its maximum (kmax); and the efficiency attained at this maximum (αmax). In
other words we repeat here the results of figure 5 using the linear model (6.1) so
that an eddy viscosity is included in the overall operator F(s).

The results are plotted in figure 8. We plot in panel (a) the spanwise wavenumber
kmax at which ‖F‖∞ attains its maximum; and in panel (b) the efficiency αmax attained
at this maximum. We also plot these same quantities for the laminar velocity profiles
(dashed lines) and for the turbulent velocity profiles without eddy viscosity (open
symbols), which were also plotted in figure 5. In panel (a) we see that, for both
flows, the effect of including an eddy viscosity is to reduce kmax. For Poiseuille flow
the reduction in kmax is at most 25 % (from kmax = 1.60 to kmax = 1.2 at Rτ = 950).
For Couette flow the reduction in kmax is much larger: the largest reduction is 50 %
(from kmax = 1.2 to kmax = 0.6 at Rτ = 986). This is broadly consistent with the
results obtained by Hwang & Cossu (2010a). Using the linearized Navier–Stokes
equations for Couette flow at a lower friction Reynolds number of Rτ = 52, they
found a preferred spanwise wavenumber for harmonic forcing (the infinity norm)
of kmax = 0.82 (which corresponds to a spanwise wavelength of λmax = 7.7h). These
results are all in quite poor agreement with DNS and experiments, where the spanwise
dimensions of the channel-wide streamwise streaks are in the approximate range of
λ≈4–5h (k=1.26–1.57) (Pirozzoli et al. 2014). It seems, then, that the eddy viscosity
is less appropriate for Couette flow – at least for streamwise-constant modes – and
this is likely in part for the reasons discussed earlier in § 2.2.

In panel (b) we see that, for both flows, including an eddy viscosity significantly
reduces αmax. To give some indication, the average value of αmax across all turbulent
Reynolds numbers reduces from 0.24 to 0.09 for Poiseuille flow; and from 0.60
to 0.19 for Couette flow. Despite this, it is important to stress that the efficiency
achieved by Couette flow is still in every case larger than that for Poiseuille flow by
a factor of approximately 2. Thus although the efficiency of both flows is reduced by
the inclusion of an eddy viscosity, the efficiencies of the two flows relative to each
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other remains approximately the same. (Specifically, at the highest Reynolds numbers
available, the ratio of efficiencies is 2.15 when using the kinematic viscosity and is
2.09 when using the eddy viscosity.) We can therefore still conclude that Couette
flow is significantly more efficient than Poiseuille flow, even if the efficiency of both
flows is reduced.

7. Conclusions
We have considered the linear amplification mechanisms leading to streamwise-

constant large-scale structures in laminar and turbulent channel flows. To do so, the
Orr–Sommerfeld and Squire operators have each been considered separately. This is
advantageous in three ways: (i) it makes explicit the forcing of streamwise velocity
fluctuations by wall-normal velocity fluctuations; (ii) it allows one to define an
efficiency of this forcing process, and therefore to characterize the energy extracted
by fluctuations when compared to the energy available in the mean shear; and
(iii) it exploits the fact that, for streamwise-constant fluctuations, the dynamics
governing the wall-normal velocity is independent of the mean velocity profile
(and therefore the mean shear). The analysis helps to explain the prevalence of
streamwise-constant structures with a spanwise spacing of approximately 4h (where
h is the channel half-height) in both laminar and turbulent channel flows. This
spanwise spacing is encoded in the Orr–Sommerfeld operator G(s) (figure 2) which,
for streamwise-constant fluctuations, depends only on the channel geometry and
boundary conditions. The analysis also indicates that Couette flow is more efficient
than Poiseuille flow in leveraging the mean shear to produce channel-wide streamwise
streaks. This helps to explain the energetic large-scale roll modes observed in Couette
flows over a wide range of Reynolds numbers. The effect of including an eddy
viscosity was also considered. Although the eddy viscosity does serve to reduce the
overall forcing efficiency, we still observe that Couette flow is significantly more
efficient than Poiseuille flow in leveraging the mean shear to produce channel-wide
streamwise streaks. (The spanwise wavenumbers at which the maximum response is
obtained for Couette flow with eddy viscosity do, however, show poorer agreement
with observations.)

As well as being of interest from a modelling point of view, the analysis could
also have implications for control. For example, one way to reduce the propensity for
large-scale roll modes – as demonstrated by Poiseuille flow – is to use boundary
conditions such that the dynamics governing the wall-normal velocity and the
dynamics governing the streamwise velocity have different symmetries. While this
might suggest possibilities that are ultimately impractical, at its best it could uncover
possibilities that would otherwise be missed.
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Appendix. Two norm of G, S and F with spanwise wavenumber
The two norms (2.9) of G, S and F as a function of the spanwise wavenumber k are

plotted in figure 9. (The spanwise wavenumbers at which the peak in the two norm
occurs are summarized in table 1 in § 3.1.)
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FIGURE 9. The two norm ‖ · ‖2 for G (a); S (b); and F = SG (c). Results for S and F
are shown for Couette flow (——) and for Poiseuille flow (– –).
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