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We present a theoretical study of nonlinear effects that result from modal interactions
in internal waves in a non-uniformly stratified finite-depth fluid with background
rotation. A linear wave field containing modes m and n (of horizontal wavenumbers
km and kn) at a fixed frequency ω results in two different terms in the steady-state
weakly nonlinear solution: (i) a superharmonic wave of frequency 2ω, horizontal
wavenumber km + kn and a vertical structure h̄mn(z) and (ii) a time-independent term
(Eulerian mean flow) with horizontal wavenumber km − kn. For some (m, n), h̄mn(z)
is infinitely large along specific curves on the (ω/N0, f /ω) plane, where N0 and
f are the deep ocean stratification and the Coriolis frequency, respectively; these
curves are referred to as divergence curves in the rest of this paper. In uniform
stratifications, a unique divergence curve occurs on the (ω/N0, f /ω) plane for those
(m, n 6= m) that satisfy (m/3) < n < (3m). In the presence of a pycnocline (whose
strength is quantified by the maximum stratification Nmax), divergence curves occur for
several more modal interactions than those for a uniform stratification; furthermore, a
given (m, n) interaction can result in multiple divergence curves on the (ω/N0, f /ω)
plane for a fixed Nmax/N0. Nearby high-mode interactions in a uniform stratification
and any modal interaction in a non-uniform stratification with a sufficiently strong
pycnocline are shown to result in near-horizontal divergence curves around f /ω ≈ 1,
thus implying that strong nonlinear effects often occur as a result of interaction
within triads containing two different modes at the near-inertial frequency. Notably,
self-interaction of certain modes in a non-uniform stratification results in one or more
divergence curves on the (ω/N0, f /ω) plane, thus suggesting that even arbitrarily
small-amplitude individual modes cannot remain linear in a non-uniform stratification.
We show that internal wave resonant triads containing modes m and n at frequency
ω occur along the divergence curves, and their existence is guaranteed upon the
satisfaction of two different criteria: (i) the horizontal component of the standard
triadic resonance criterion k1 + k2 + k3 = 0 and (ii) a non-orthogonality criterion. For
uniform stratifications, criterion (ii) reduces to the vertical component of the standard
triadic resonance criterion. For non-uniform stratifications, criterion (ii) seems to be
always satisfied whenever criterion (i) is satisfied, thus significantly increasing the
number of modal interactions that result in strong nonlinear effects irrespective of the
wave amplitudes. We then adapt our theoretical framework to identify resonant triads
and hence provide insights into the generation of higher harmonics in two different
oceanic scenarios: (i) low-mode internal tide propagating over small- or large-scale
topography and (ii) an internal wave beam incident on a pycnocline in the upper
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ocean, for which our results are in qualitative agreement with the numerical study of
Diamessis et al. (Dynam. Atmos. Oceans., vol. 66, 2014, pp. 110–137).

Key words: internal waves, stratified flows, waves in rotating fluids

1. Introduction
Pathways of energy dissipation in internal waves generated by tides and winds

are an important piece in the puzzle of understanding vertical mixing and the global
energy budget in the ocean (Munk & Wunsch 1998). In this paper, we study a
nonlinear mechanism of superharmonic wave generation as a result of interaction
between various vertical modes of internal waves at a fixed frequency.

Linear internal wave fields in the finite-depth ocean are conveniently represented
using vertical modes, which ensures that the boundary conditions on the ocean
floor and the free surface (often modelled as a rigid lid) are satisfied (Gill 1982).
Internal tide generation arising from barotropic tidal flow over bottom topography
is understood to result in a range of vertical modes at the semidiurnal frequency,
with the high modes getting dissipated near the generation sites and the low modes
travelling far (Garrett & Kunze 2007). Subsequent processes such as scattering by
short or tall deep ocean topography and continental shelves further transfer energy
from the far-travelling low modes to higher modes at the same frequency (Johnston,
Merrifield & Holloway 2003; Klymak et al. 2011; Mathur, Carter & Peacock 2014).
Similarly, the spatially compact near-inertial currents excited in the mixed layer by
surface winds generate a whole range of high modes, with a modal representation
and the calculation of the evolution of the modal amplitudes providing insight into
the mechanisms by which near-inertial waves propagate into the deep ocean (D’Asaro
1989; Balmforth & Young 1999). While the transfer of energy to higher modes, and
hence shorter spatial scales, is generally recognized as conducive to instabilities and
mixing, the exact mechanisms leading to internal wave energy dissipation are not
well understood. The nonlinear effects that may result from the presence of a range
of vertical modes at a given frequency in a non-uniform stratification are the focus
of the current study.

One of the well-known instability mechanisms in internal waves is the resonant
triad interaction (RTI) (Staquet & Sommeria 2002). In uniformly stratified fluid of
infinite horizontal and vertical extents, three interacting internal waves satisfying the
relations ω1 + ω2 + ω3 = 0 and k1 + k2 + k3 = 0 form a resonant triad, where k1,2,3
are the wave vectors and ω1,2,3 are the corresponding frequencies (positive or negative)
obtained from the linear internal wave dispersion relation (Hasselmann 1967; LeBlond
& Mysak 1981). In arbitrary non-uniform stratifications, however, there exists no such
simple analytical criterion for a pure resonant wave triad. In this paper, we show
that pure resonant triads exist in a finite-depth non-uniform stratification, and we also
identify the conditions for the same.

An important consequence of RTI is the parametric subharmonic instability (PSI),
where a primary plane internal wave (above a threshold amplitude) at frequency
ω0 in a viscous, uniformly stratified fluid results in the growth of secondary waves
that form a resonant triad with the primary wave (Koudella & Staquet 2006; Bourget
et al. 2013). The secondary waves with the maximum growth rate occur at frequencies
ω1,2 < ω0, with the relation ω1 ≈ ω2 ≈ ω0/2 holding in the limit of relatively large

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.343


288 D. Varma and M. Mathur

wavenumbers of the secondary waves (Staquet & Sommeria 2002). In an internal
wave beam, constructed as a superposition of unidirectional plane waves at a fixed
frequency, PSI is less likely to occur, with various studies highlighting the importance
of incorporating the effect of the finite spatial extent of the wave beam (Clark &
Sutherland 2010; Bourget et al. 2013; Karimi & Akylas 2014). PSI has been observed
in experimental studies of propagating internal wave modes too, with the triads
corresponding to large theoretical growth rates shown to emerge (Martin, Simmons
& Wunsch 1972; Joubaud et al. 2012).

RTI can also result from the presence of two finite-amplitude primary waves. For
example, interaction between reflecting or colliding wave beams at a fixed frequency
ω results in the generation of higher harmonic wave beams at frequency 2ω (Peacock
& Tabaei 2005; Tabaei, Akylas & Lamb 2005). The interaction between plane waves
contained within a unidirectional wave beam at frequency ω, however, does not result
in the generation of higher harmonics, as the unidirectional wave beam in a uniformly
stratified fluid of an infinite extent is an exact solution of the nonlinear equations as
well (Tabaei & Akylas 2003). In contrast, in a finite-depth fluid, any linear internal
wave field is a superposition of modes, and hence not necessarily an exact solution
to the nonlinear equations of motion. As shown by Thorpe (1966) for a uniform
stratification with no background rotation, two primary internal wave modes at a fixed
frequency can interact to form a resonant triad.

To the best of our knowledge, while the generation of subharmonic and superhar-
monic waves in non-uniform stratifications has been reported in field observations
(Xie et al. 2013), theoretical studies (Thorpe 1998; Young, Tsang & Balmforth 2008;
Wunsch 2015), laboratory experiments (Wunsch & Brandt 2012; Wunsch et al. 2015;
Ghaemsaidi et al. 2016) and numerical simulations (Gayen & Sarkar 2013; Diamessis
et al. 2014; Wunsch et al. 2014), no previous studies have rigorously defined and
identified resonant triads arising from modal interactions in non-uniformly stratified
finite-depth media. In this paper, we construct the steady-state weakly nonlinear
solution that corresponds to the leading-order solution containing an arbitrary sum of
vertical modes at a given frequency in non-uniformly stratified media with background
rotation, and thereby identify resonant triads via the divergence of the weakly
nonlinear solution. Section 2 discusses the theory, followed by the results in § 3.
The relevance of our theoretical results to two different oceanic scenarios is presented
in § 4, followed by the conclusions in § 5.

2. Theory

The nonlinear governing equations for two-dimensional, incompressible, inviscid
internal waves on the f -plane under the Boussinesq approximation are (LeBlond &
Mysak 1981)

∂2

∂t2
(∇2ψ)+ f 2 ∂

2ψ

∂z2
=

g
ρ∗

∂

∂x
[J(ψ, ρ)] −

∂

∂t
[J(ψ,∇2ψ)] + f

∂

∂z
[J(ψ, v)], (2.1)

∂ρ

∂t
=−J(ψ, ρ), (2.2)

∂v

∂t
+ J(ψ, v)= f

∂ψ

∂z
, (2.3)
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where x and z are the horizontal and vertical coordinates and t is time; ψ(x, z, t),
v(x, z, t) and ρ(x, z, t) are the streamfunction, y-component of velocity and
density, respectively, with the velocity components in the (x, z) plane given by
(u, w) = (−∂ψ/∂z, ∂ψ/∂x); ρ∗ is a reference constant density, f the Coriolis
frequency and g the acceleration due to gravity. The Jacobian operator J is defined
as J(A, B) = (∂A/∂x)(∂B/∂z) − (∂B/∂x)(∂A/∂z), and ∇2

= ∂2/∂x2
+ ∂2/∂z2. A

no-normal-flow boundary condition at the horizontal boundaries of the fluid of depth
H is specified as ψ(x, z = 0, t) = ψ(x, z = H, t) = 0. We now proceed to perform
a weakly nonlinear analysis, which is a well-established mathematical tool as is
described in LeBlond & Mysak (1981).

In the framework of regular perturbation expansion, we seek solutions of the form

(ψ, v, ρ)= (ψ0, v0, ρ0)+ ε(ψ1, v1, ρ1)+ ε
2(ψ2, v2, ρ2)+ · · · , (2.4)

where the small parameter ε quantifies the relative magnitude of the nonlinear terms
in the governing equations. Substituting the solution forms of (ψ, v, ρ) in (2.4) into
(2.1)–(2.3), we obtain

[
∂2

∂t2
(∇2ψ0)+ f 2 ∂

2ψ0

∂z2

]
+ ε

[
∂2

∂t2
(∇2ψ1)+ f 2 ∂

2ψ1

∂z2

]
+ ε2

[
∂2

∂t2
(∇2ψ2)+ f 2 ∂

2ψ2

∂z2

]
=

[
g
ρ∗

∂

∂x
[J(ψ0, ρ0)] −

∂

∂t
[J(ψ0,∇

2ψ0)] + f
∂

∂z
(J(ψ0, v0))

]
+ ε

[
g
ρ∗

∂

∂x
[J(ψ0, ρ1)+ J(ψ1, ρ0)] −

∂

∂t
[J(ψ0,∇

2ψ1)+ J(ψ1,∇
2ψ0)]

+ f
∂

∂z
[J(ψ0, v1)+ J(ψ1, v0)]

]
+ ε2

[
g
ρ∗

∂

∂x
[J(ψ0, ρ2)+ J(ψ1, ρ1)+ J(ψ2, ρ0)]

−
∂

∂t
[J(ψ0,∇

2ψ2)+ J(ψ1,∇
2ψ1)+ J(ψ2,∇

2ψ0)]

+ f
∂

∂z
[J(ψ0, v2)+ J(ψ1, v1)+ J(ψ2, v0)]

]
(2.5)

∂ρ0

∂t
+ ε

[
∂ρ1

∂t

]
+ ε2

[
∂ρ2

∂t

]
=−J(ψ0, ρ0)− ε[J(ψ0, ρ1)+ J(ψ1, ρ0)]

− ε2
[J(ψ0, ρ2)+ J(ψ1, ρ1)+ J(ψ2, ρ0)], (2.6)

∂v0

∂t
+ J(ψ0, v0)+ ε

[
∂v1

∂t
+ J(ψ0, v1)+ J(ψ1, v0)

]
+ ε2

[
∂v2

∂t
+ J(ψ0, v2)+ J(ψ1, v1)+ J(ψ2, v0)

]
= f

∂ψ0

∂z
+ εf

∂ψ1

∂z
+ ε2f

∂ψ2

∂z
. (2.7)

The solution at O(ε0) is assumed as ψ0= 0, v0= 0 and ρ0= ρ̄(z) with the stratification
profile N(z)=

√
(−g/ρ∗) dρ̄/dz. In other words, the background flow is described by

a static, stably stratified fluid.
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Substituting (ψ0, ρ0, v0) into (2.5)–(2.7) and retaining only the O(ε) terms, we
obtain the governing equations for (ψ1, ρ1, v1) as

∂2

∂t2
(∇2ψ1)+ f 2 ∂

2ψ1

∂z2
+N2 ∂

2ψ1

∂x2
= 0, (2.8)

∂ρ1

∂t
=
ρ∗

g
N2 ∂ψ1

∂x
, (2.9)

∂v1

∂t
= f

∂ψ1

∂z
, (2.10)

with ψ1 satisfying the boundary conditions ψ1(z = 0) = ψ1(z = H) = 0. We assume
(ψ1, ρ1, v1) to be described by a superposition of right-propagating linear internal wave
modes (LeBlond & Mysak 1981) at a given frequency ω> 0 and write

ψ1 =

∞∑
n=1

√√√√√ 2ωknEn

ρ∗(ω2
− f 2)

∫ H

0

(
dΦn

dz

)2

dz

Φn(z) cos(knx−ωt+ αn), (2.11)

where the mode shape Φn(z) and horizontal wavenumber kn > 0 satisfy

d2Φn

dz2
+

k2
n(N

2
−ω2)

ω2 − f 2
Φn = 0. (2.12)

In (2.11), En is the vertically averaged horizontal energy flux in the nth mode. The
energy flux En is assumed to be independent of time, thus implying that we are
constructing a steady-state weakly nonlinear solution. Corresponding solutions to the
equations in (2.9) and (2.10) are

ρ1 =
1
ω

dρ0

dz

∞∑
n=1

√√√√√ 2ωknEn

ρ∗(ω2
− f 2)

∫ H

0

(
dΦn

dz

)2

dz

knΦn(z) cos(knx−ωt+ αn), (2.13)

v1 =
−f
ω

∞∑
n=1

√√√√√ 2ωknEn

ρ∗(ω2
− f 2)

∫ H

0

(
dΦn

dz

)2

dz

dΦn

dz
sin(knx−ωt+ αn). (2.14)

Substituting (ψ0, ρ0, v0) into (2.5), the O(ε2) terms generate the governing equation
for ψ2 as

∂2

∂t2
(∇2ψ2)+ f 2 ∂

2ψ2

∂z2
+N2 ∂

2ψ2

∂x2
=

g
ρ∗

∂

∂x
[J(ψ1, ρ1)]−

∂

∂t
[J(ψ1,∇

2ψ1)]+ f
∂

∂z
[J(ψ1, v1)].

(2.15)
The right-hand side of (2.15), which we denote by R, is evaluated by substituting the
solutions for (ψ1, ρ1, v1) from expressions (2.11), (2.13) and (2.14) to give
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R=
∞∑

m=1

∞∑
n=1

[Amn cos((km + kn)x− 2ωt+ αm + αn)

+Bmn cos((km − kn)x+ αm − αn)],

Amn(z)=
2ω

ρ∗(ω2 − f 2)

√√√√√ kmknEmEn∫ H

0

(
dΦm

dz

)2

dz
∫ H

0

(
dΦn

dz

)2

dz

×

(
Φmkmkn

2ω

[
N2 dΦn

dz
+

d(N2)

dz
Φn

]
(km + kn)−

Φnk2
n

2ω
dΦm

dz
N2(km + kn)

−ω

[
Φmkm

(
d3Φn

dz3
− k2

n
dΦn

dz

)
−

dΦm

dz
kn

(
d2Φn

dz2
− k2

nΦn

)]
−

f 2

2ω

[
km

dΦm

dz
d2Φn

dz2
+ kmΦm

d3Φn

dz3
− kn

d2Φm

dz2

dΦn

dz
− kn

d2Φn

dz2

dΦm

dz

])
,

Bmn(z)=
2ω

ρ∗(ω2 − f 2)

√√√√√ kmknEmEn∫ H

0

(
dΦm

dz

)2

dz
∫ H

0

(
dΦn

dz

)2

dz

×

(
Φmkmkn

2ω

[
N2 dΦn

dz
+

d(N2)

dz
Φn

]
(km − kn)+

Φnk2
n

2ω
dΦm

dz
N2(km − kn)

+
f 2

2ω

[
km

dΦm

dz
d2Φn

dz2
+ kmΦm

d3Φn

dz3
+ kn

d2Φm

dz2

dΦn

dz
+ kn

d2Φn

dz2

dΦm

dz

])
.


(2.16)

The forcing function R results from an interaction between various modes present
at leading order, i.e. in the solutions for ψ1, ρ1 and v1. The solution ψ2 of the
linear equation (2.15) is written in the same form as the two terms in the forcing
function R:

ψ2 =

∞∑
m=−∞

∞∑
n=−∞

[hmn(z) cos ((km + kn)x− 2ωt

+αm + αn)+ gmn(z) cos((km − kn)x+ αm − αn)], (2.17)

thus comprising superharmonic waves of frequency 2ω (and horizontal wavenumber
km + kn) and time-independent standing waves (and hence a non-zero mean flow)
of horizontal wavenumber km − kn. Substituting the solution form (2.17) into (2.15)
generates the governing equation for hmn(z) and gmn(z). For a given modal pair
(m, n), we define h̄mn(z)= hmn(z)+ hnm(z) and ḡmn(z)= gmn(z)+ gnm(z), which describe
the vertical structure of the resulting superharmonic and time-independent terms,
respectively, in ψ2. The governing equations for h̄mn(z) and ḡmn(z) are

d2h̄mn

dz2
+ (km + kn)

2 N2
− 4ω2

4ω2 − f 2
h̄mn = C̄mn, (2.18)

d2ḡmn

dz2
− (km − kn)

2 N2

f 2
ḡmn = F̄mn, (2.19)

with the forcing functions being given by C̄mn =−(Amn + Anm)/(4ω2
− f 2) and F̄mn =

(Bmn+Bnm)/f 2; h̄mn(z) and ḡmn(z) satisfy the boundary conditions h̄mn(z= 0)= h̄mn(z=
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H)= ḡmn(z=0)= ḡmn(z=H)=0. A brief discussion on the mean flow vertical structure
ḡmn(z) is given in appendix A. In this paper, we focus our attention on h̄mn(z), the
vertical structure of the superharmonic nonlinear term.

For a given non-uniform stratification N(z), h̄mn(z) is calculated numerically by
solving equation (2.18) along with the boundary conditions as a boundary value
problem using the in-built Matlab function bvp4c. For a fixed stratification profile
and (m, n), we compute h̄max

mn =max(|h̄mn(z)|) on a grid of 400× 200 uniformly spaced
points on the plane of (ω/N0, f /ω) ∈ [0.01, 0.99] × [0.01, 0.99]. For a given modal
pair (m, n), we identify all the curves (referred to as the maxima curves) on the
(ω/N0, f /ω) plane along which h̄max

mn is a local maximum in a direction that is locally
orthogonal to the curve. As discussed in § 3.2, we further verify that h̄max

mn diverges
in a very small neighbourhood around the maxima curves, which are henceforth
termed divergence curves in the rest of this paper. Along every divergence curve we
identify, the mode number s associated with the corresponding higher harmonic wave
is calculated as s= nz + 1, where nz is the number of zeros for h̄mn(z) in z ∈ (0,H).

3. Results
We present results for an ocean-like non-uniform stratification profile N(z)

(figure 1a):

N(z)=N0 + (Nmax −N0) exp
(
−
(z− zc)

2

σ 2

)
, 0 6 z 6 H, (3.1)

where N0 is the deep ocean uniform stratification and zc is the centre of the pycnocline
whose characteristic width and maximum stratification are σ and Nmax, respectively;
zc = 3400 m and σ = 250 m are fixed throughout this paper, whereas Nmax is varied
to study the effects of pycnocline strength in § 3.2. For the specific case of N0= 6×
10−4 rad s−1, Nmax = 10N0, ω = 1.4053 × 10−4 rad s−1 and f = 0, the vertical mode
shapes Φn(z) (calculated by solving (2.12) numerically) for n= 1, 2, 3 are shown in
figure 1(b); Φ7 is plotted in figure 1(c). All the modes assume a sinusoidal form in
the uniformly stratified deep ocean, and contain smaller vertical length scales in the
pycnocline region.

3.1. Uniform stratification (m 6= n)
For a uniform stratification, i.e. N(z)=Nmax=N0 where N0 is constant, equation (2.12)
is solved analytically with the boundary conditions Φn(z = 0) = Φn(z = H) = 0 to
obtain Φn(z)= sin(nπz/H) and kn=nπ/(H cot θ), where cot θ =

√
(N2

0 −ω
2)/(ω2 − f 2).

Substituting for Φn(z) and kn, the particular solutions of (2.18) and (2.19) are

h̄mn = Īmn sin
(
(m− n)πz

H

)
, ḡmn = J̄mn sin

(
(m+ n)πz

H

)
, (3.2a,b)

where

Īmn =
4πω
√

mnEmEn

ρ∗H2(ω2 − f 2)

(m
2
− n2)

(
N2

0

2ω cot2 θ
+

ω(N2
0 − f 2)

(ω2 − f 2) cot2 θ
+

f 2

2ω

)
(m+ n)2(N2

0 − 4ω2)–(m− n)2(4ω2 − f 2) cot2 θ

 , (3.3)
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(a) (b) 3800

3000

2000

1000

0
–0.4 0 0.4 0.8 1.2 1.6
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–0.50 –0.25 0 0.25 0.50

FIGURE 1. (a) The ocean-like stratification profile we consider in § 3. For the specific
case of N0 = 6 × 10−4 rad s−1, Nmax = 10N0, ω = 1.4053 × 10−4 rad s−1 and f = 0, the
vertical mode shapes Φn(z) for (b) n= 1, 2, 3 and (c) n= 7 are shown. All the modes in
(b) and (c) correspond to En = 1 W m−1.

J̄mn =
2π
√

mnEmEn

ρ∗H2(ω2 − f 2) cot2 θ
. (3.4)

For a given (m, n), the coefficient Īmn in (3.2), and hence the superharmonic part
of the weakly nonlinear solution, diverges if the condition (m+ n)2(N2

0 − 4ω2)–(m−
n)2(4ω2

− f 2) cot2 θ = 0 is satisfied. Therefore, for fixed values of m, n and f /ω, the
weakly nonlinear steady-state solution diverges for values of ω/N0 given by

ω2

N2
0
=
(m+ n)2 − (m− n)2(4− f 2/ω2)/(1− f 2/ω2)

4(m+ n)2 − (m− n)2(4− f 2/ω2)/(1− f 2/ω2)
, (3.5)

implying that no small-amplitude internal waves with non-zero strength in modes m
and n at the frequency given by (3.5) can persist in their linear form. In the limit of
f = 0, expression (3.5) is the same as what has been derived by Thorpe (1966). The
expression in (3.5) can be equivalently derived by requiring the vertical mode number
|m − n| at frequency 2ω to correspond to a horizontal wavenumber of km + kn, i.e.
the two primary modes and the superharmonic wave form an internal wave resonant
triad. It is noteworthy that there exists no such closed-form expressions or any other
criterion for verification of resonance in non-uniform stratifications.

For at least one value of f /ω to exist in the range 0 6 f /ω < 1 such that the
corresponding ω/N0 given by the expression in (3.5) satisfies 0 < ω/N0 < 1, one
requires the condition (m+ n)2 > 4(m− n)2 to be satisfied. In other words, assuming
a fixed frequency ω in the leading-order internal wave solution, divergence of the
weakly nonlinear steady-state solution occurs for some (ω/N0, f /ω) (in the wave
propagation regime) based on the interaction between modes m and n that satisfy

(m/3) < n< 3m, m 6= n. (3.6)

In figure 2, we plot the variation of log10[h̄
max
mn ] as a function of ω/N0 and

f /ω for fixed values of (Em, En) = (0.9, 0.1) W m−1, where h̄max
mn = max(|h̄mn(z)|).

Figure 2(a–c) correspond to (m, n) = (1, 2), (2, 3) and (2, 5), respectively, for the
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FIGURE 2. (Colour online) log10[h̄
max
mn ] plotted as a function of ω/N0 and f /ω for (m, n)=

(1, 2) (column 1), (2, 3) (column 2) and (2, 5) (column 3). The first, second, third
and fourth rows correspond to Nmax = N0 (uniform stratification), 1.5N0, 4N0 and 10N0,
respectively, in the stratification profile given by (3.1). The energy fluxes for each plot
are fixed at (Em, En)= (0.9, 0.1) W m−1. The mode numbers associated with the higher
harmonic wave along the divergence curves are indicated by the encircled numbers. Note
that the common colour bar (shown next to (a)) is saturated at a value of 1, hence making
some of the divergence curves appear white.

uniform stratification (Nmax =N0). As shown in figure 2(a), there is a difference of a
few orders of magnitude between regions close to and far from the divergence curve,
which is described by (3.5). The divergence occurs at ω/N0 = 0.395 for f /ω = 0
and then moves towards smaller values of ω/N0 as f /ω is increased from zero.
At approximately f /ω ≈ 0.79, the curve is almost horizontal, implying that strong
nonlinear effects would occur over a wide range of ω/N0 if modes 1 and 2 are
simultaneously present. The peak occurring at the divergence curve is quite sharp if
either ω/N0 or f /ω is close to zero. In contrast, noticeably larger regions around the
divergence curve correspond to large h̄max

mn for values of ω/N0 and f /ω away from
zero, thus making the occurrence of strong nonlinear effects more likely. As evident
in the solution for h̄mn(z) in (3.2), the mode number of the higher harmonic wave on
the divergence curves in a uniform stratification is always |m− n|.

For (m, n) = (2, 3), shown in figure 2(b), the divergence curve occurs for larger
values of ω/N0 and f /ω compared to the case of (m, n) = (1, 2). Interestingly, for
f /ω ≈ 0.935, a wide range of values for ω/N0 corresponds to infinitely large h̄23(z);
similarly, for ω/N0 ≈ 0.468, a wide range of f /ω corresponds to large magnitudes of
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h̄23(z). The case of (m, n)= (2, 5), shown in figure 2(c), is similar to that of (m, n)=
(1, 2) but with the divergence curve occurring at smaller values of ω/N0 and f /ω.
It is noteworthy that, for the uniform stratification, the divergence curve for (m, n)=
(2, 4) coincides with that of (m, n)= (1, 2); also, based on condition (3.6), there exist
no divergence curves for (1, n > 3) and (2, n > 6). Considering all possible modal
interactions, described in detail in appendix C, all the divergence curves together span
a significant portion of the plane 0 < ω/N0 < 0.5, 0 < f /ω < 1. This suggests that
modal interactions are highly likely to result in strong nonlinear effects irrespective
of the specific values of ω/N0 and f /ω. For ω/N0 > 0.5 in a uniform stratification,
the higher harmonic wave at frequency 2ω can never represent a propagating internal
wave, owing to which no resonant triads (and hence no divergence curves) exist for
ω/N0 > 0.5. In contrast, in a non-uniform stratification with Nmax > N0, the higher
harmonic wave at frequency 2ω can still represent a propagating internal wave as
2ω/N < 1 somewhere in the pycnocline. Thus, one cannot rule out the possibility of
existence of divergence curves for ω/N0 > 0.5 if Nmax >N0.

3.2. Non-uniform stratification (m 6= n)

In figure 2(d–l), we show the variation of log10[h̄
max
mn ] as a function of ω/N0 and

f /ω for fixed values of (Em, En)= (0.9, 0.1) W m−1 and three different non-uniform
stratifications (Nmax/N0=1.5,4 and 10 in the second, third and fourth rows of figure 2,
respectively). We consider the same modal pairs as for the uniform stratification plots
in figure 2(a–c). For (m, n) = (1, 2), while the distribution of log10[h̄

max
mn ] for the

weak-pycnocline case of Nmax = 1.5N0 (figure 2d) is similar to that of Nmax =N0, the
divergence curve deforms significantly for the intermediate pycnocline strength of
Nmax = 4N0 (figure 2g) and also extends into the ω/N0 > 0.5 region. The divergence
curve then becomes near horizontal for the strong-pycnocline case of Nmax = 10N0
(figure 2j), again spanning the entire range of 0<ω/N0 < 1. For Nmax = 10N0, strong
nonlinear effects are therefore expected for all values of ω/N0 at f /ω ≈ 0.89 as
a result of the low-mode (1, 2) interaction. As indicated by the encircled numbers
on the divergence curves in figure 2(a,d,g,j), we find h̄mn(z) to correspond to a
mode-1 structure (based on the number of zeros in z∈ (0,H)) along these curves for
(1, 2) interaction irrespective of Nmax. Also noteworthy from figure 2(a,d,g,j) is the
observation that small f /ω tends to correspond to no resonant triads for large Nmax.

For (m, n) = (2, 3), the number of divergence curves increases to two when Nmax
is increased from N0 to 1.5N0 (figure 2e). The divergence curve along which h̄mn(z)
contains a mode-1 structure becomes near horizontal for Nmax = 4N0 (figure 2h), and
is then horizontal and centred around f /ω = 0.97 for Nmax = 10N0 (figure 2k). The
second divergence curve corresponding to a mode-2 structure for the higher harmonic
wave tends to become near horizontal at smaller values of f /ω as Nmax is increased
to 10N0. In summary, as Nmax is increased from 1.5N0 to 10N0, both the divergence
curves tend to become near horizontal at larger values of f /ω, and hence leave the
regions of small f /ω with no divergence curves. For the higher-modes interaction,
i.e. (m, n) = (2, 5) shown in figure 2(c, f,i,l), we observe the existence of a larger
number of divergence curves. For Nmax = 1.5N0, there are three different divergence
curves (with three different modal structures for h̄mn), which is in stark contrast to
the existence of only one divergence curve for Nmax = N0. An additional mode-2
divergence curve emerges in the region of large ω/N0 for Nmax = 4N0. Similarly, a
mode-4 divergence curve occurs at large ω/N0 for Nmax = 10N0. It is noteworthy that
as Nmax increases, the range of ω/N0 where the higher harmonic wave at frequency
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FIGURE 3. (Colour online) (a) log10[h̄
max
mn ] plotted as a function of ω/N0 and f /ω for

(m, n)= (2,5), Nmax=4N0 and (Em,En)= (0.9,0.1) W m−1, the same case as in figure 2(i).
Corresponding distributions of (b) kd

= |km + kn − k2ω
q |/k

2ω
q and (c) C̄max

mn /h̄
max
mn are also

shown. The various cross-sectional cuts (across the divergence curves) that are considered
in the bottom row of panels are shown using black solid lines and indexed from 1 to 12
in (a). (d–f ) Detected maximum value of log10[h̄

max
mn ] as a function of the grid size 1η

(η is the coordinate measured along the cut) on the 12 cross-sectional cuts shown in (a).
The legend in each of (d–f ) indicates the cross-section index associated with each curve.
Each curve in (d–f ) contains 25 points in the range 2.38× 10−11 61η6 4× 10−4.

2ω can represent a propagating internal wave increases, thus allowing for additional
divergence curves to emerge at large ω/N0. An overall summary from figure 2 is that,
for a given modal pair (m, n), regions of small and large f /ω tend to correspond to
smaller and larger numbers of resonant triads, respectively.

To verify that pure resonant triads indeed exist along the various divergence
curves of h̄mn(z), we analyse the case of (m, n) = (2, 5) and Nmax = 4N0 more
closely in figure 3. Plotted in figure 3(a) is log10[h̄

max
mn ] as a function of ω/N0 and

f /ω, showing divergence along four different curves. In figure 3(b), we plot kd,
the relative difference between km + kn and the numerically computed horizontal
wavenumber k2ω

q of mode-q at frequency 2ω, where q − 1 is the number of zeros
of h̄mn(z) in z ∈ (0, H). Indeed, kd attains very small values along the four curves
where h̄mn(z) is divergent, suggesting that the horizontal wavenumber km + kn of the
superharmonic wave matches that of mode-q at frequency 2ω along the divergence
curves. To confirm if the superharmonic wave is indeed an internal wave mode along
the divergence curves, one also has to compare the vertical structure of h̄mn(z) with
that of internal wave mode-q at frequency 2ω. We recall that h̄mn(z) is governed by
(2.18), whose left-hand side coincides with that of the governing equation for internal
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wave mode-q (Φ2ω
q ) at frequency 2ω if km + kn = k2ω

q :

d2Φ2ω
q

dz2
+
(k2ω

q )
2(N2
− (2ω)2)

(2ω)2 − f 2
Φ2ω

q = 0. (3.7)

The right-hand side of (2.18) is, however, non-zero, and specified by C̄mn(z). In
figure 3(c), we plot C̄max

mn /h̄
max
mn , which is a measure of the extent to which the

normalized vertical structure of the superharmonic wave, h̄mn(z)/h̄max
mn , satisfies (3.7)

if k2ω
q = km + kn. Figure 3(c) shows that C̄max

mn /h̄
max
mn is very small along the divergence

curves, and together with figure 3(b) confirms that the superharmonic wave is an
internal wave along the divergence curves observed in figure 3(a). Furthermore, it
seems that the condition kd

� 1 alone is a sufficiently accurate measure of how close
a given (ω/N0, f /ω) is to a divergence curve. The calculation of kd still requires the
value of q, which can only come from the numerical solution of (2.18) to obtain
h̄mn(z). A detailed discussion of the relation between figure 3(a–c) and the existence
of pure resonant triads is presented in § 3.4.

To verify that h̄mn(z) indeed diverges on the divergence curves, we calculate h̄max
mn on

very small domains in the neighbourhood of the divergence curves seen in figure 3(a).
As shown in figure 3(a), we consider cross-sectional cuts (1–12) across the various
divergence curves, with η defining the coordinate along these cuts. In figure 3(d–f ),
we plot the detected maximum value (within the corresponding cut) of log10 h̄max

mn as a
function of the resolution 1η along the 12 different cuts. Each curve in figure 3(d–f )
contains 25 points in the range 2.38 × 10−11 6 1η 6 4 × 10−4. The legend in each
of figure 3(d–f ) indicates the specific cut (indexed in figure 3a) that each curve is
associated with. For every curve in figure 3(d–f ), we observe an increase in max[h̄max

mn ]

by six orders of magnitude when 1η is decreased from 4× 10−4 to 2.38× 10−11. This
suggests strongly that the numerically identified divergence curves in figure 3(a) do
correspond to divergence in h̄mn(z) in their close vicinity. We have further verified that
a similar result holds for all the divergence curves shown in figure 2.

3.3. Self-interaction (m= n)

For self-interactions, i.e. m = n, the right-hand side C̄mm in (2.18) reduces to
−2Emk4

mφ
2
m(dN2/dz)/[ρ∗(ω2

− f 2)2
∫ H

0 (dΦm/dz)2 dz], thus resulting in a non-zero
right-hand side in (2.18) for non-uniform stratifications only. An equivalent expression
for self-interaction was also derived by Diamessis et al. (2014) and Wunsch (2015),
with the latter study considering an individual mode at frequency ω as the primary
wave, albeit with no background rotation. Wunsch (2015) then calculated the
amplitude of the higher harmonic wave at frequency 2ω for an idealized non-uniform
stratification with a sharp interface modelling the pycnocline, to subsequently compare
with the field observations of Xie et al. (2013). The generation of superharmonics as
a result of self-interaction in a mode-1 internal wave in non-uniform stratifications
was also reported in a recent numerical study by Sutherland (2016).

In figure 4(a–c), we plot log10[h̄
max
mm ] as a function of ω/N0 and f /ω for m= 1, 3, 5

in a non-uniform stratification with Nmax = 4N0. Self-interaction of mode-1 shows no
divergence curve in figure 4(a), with h̄max

mm increasing as a function of both ω/N0 and
f /ω. For m = 3, however, there exist three different divergence curves, as shown in
figure 4(b). Two of these divergence curves correspond to a mode-2 superharmonic
wave, whereas the one that is near horizontal at f /ω ≈ 0.9 corresponds to a mode-1
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FIGURE 4. (Colour online) log10[h̄
max
mn ] plotted as a function of ω/N0 and f /ω for (a)

(m, n) = (1, 1), (b) (m, n) = (3, 3) and (c) (m, n) = (5, 5). All panels correspond to the
stratification profile given in (3.1) with Nmax = 4N0 and (Em, En)= (0.9, 0.1) W m−1. The
mode numbers associated with the higher harmonic wave along the divergence curves are
indicated by the encircled numbers.

superharmonic wave. Self-interaction of mode-5 is even more complex, and results in
four different divergence curves with distinct mode numbers for the superharmonic
wave (figure 4c). In summary, figure 4(b–c) show that even individual modes can be
unstable linear internal wave forms irrespective of their amplitude if ω/N0 and f /ω
lie on any of the divergence curves.

3.4. Criteria for triadic resonance

Here, we discuss the general conditions under which divergence of h̄mn(z) occurs on
the (ω/N0, f /ω) plane. The governing equation (2.18) for h̄mn(z) is rewritten as

d2h̄mn

dz2
+ r2L2ω(z)h̄mn = C̄mn, (3.8)

where r= km+ kn, L2ω(z)= (N2
− 4ω2)/(4ω2

− f 2) and C̄mn is as described in the text
following (2.18). The general solution for (3.8) is written as h̄mn(z)= h̄h

mn(z)+ h̄p
mn(z),

where h̄h
mn(z) and h̄p

mn(z) are the homogeneous and particular solutions, respectively.
The homogeneous solution h̄h

mn(z) satisfies the equation

d2h̄h
mn

dz2
+ r2L2ω(z)h̄h

mn = 0. (3.9)

A non-zero homogeneous solution h̄h
mn(z) exists if and only if r= km + kn equals the

horizontal wavenumber k2ω
s associated with an internal wave mode (say mode-s) at

frequency 2ω. The vertical modes at frequency 2ω are denoted by Q2ω
j (z) with j being

the mode number and k2ω
j the corresponding horizontal wavenumber.

The particular solution h̄p
mn(z) satisfies (3.8). Using Q2ω

j (z), 16 j6∞, as a complete
set of basis functions, we write the particular solution as

h̄p
mn(z)=

∞∑
j=1

αjQ2ω
j (z), (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

34
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.343


Internal wave resonant triads in finite-depth non-uniform stratifications 299

where the basis functions Q2ω
j (z) satisfy the orthogonality condition∫ H

0
L2ω(z)Q2ω

i (z)Q
2ω
j (z) dz= 0, i 6= j (3.11)

and αj ∈ (−∞,∞) represents the amplitude of Q2ω
j (z). Substituting (3.10) into the

governing equation (3.8), we obtain

∞∑
j=1

αj(r2
− (k2ω

j )
2)L2ω(z)Q2ω

j (z)= C̄mn(z). (3.12)

We note that (3.12) has incorporated the governing equation for Q2ω
j (z), i.e.

d2Q2ω
j /dz2

+ (k2ω
j )

2L2ωQ2ω
j = 0.

Using the orthogonality condition in (3.11), equation (3.12) reduces to

αj(r2
− (k2ω

j )
2)=

∫ H

0
C̄mn(z)Q2ω

j (z) dz∫ H

0
L2ω(z)(Q2ω

j (z))
2 dz

(3.13)

for all j. If a non-zero homogeneous solution h̄h
mn(z) exists, i.e. r = k2ω

j for some
j = s, then (3.13) requires that

∫ H
0 C̄mn(z)Q2ω

s (z) dz = 0, i.e. C̄mn(z) being orthogonal
to Q2ω

s (z) must be satisfied. In other words, a non-zero h̄h
mn(z) together with the

non-orthogonality condition
∫ H

0 C̄mn(z)Q2ω
s (z) dz 6= 0 imply that αs→∞, thus resulting

in a diverging solution of (3.8). In summary, r = km + kn being the horizontal
wavenumber of some mode-s at frequency 2ω is necessary but not sufficient for
triadic resonance; the additional criterion of non-orthogonality of the right-hand side
of (3.8) to the homogeneous solution Q2ω

s (z) is also required. This additional criterion
of non-orthogonality, in the limit of a uniform stratification, is equivalent to the
vertical wavenumbers satisfying the classic triadic resonance criterion k1+ k2+ k3= 0.

In a non-uniform stratification, the identification of regions/curves on the (ω/N0, f /ω)
plane where a non-zero homogeneous solution exists for a given modal interaction is
computationally involved. This is mainly owing to the fact that the value of s, the
mode number associated with the homogeneous solution that may exist, is unknown
a priori. For example, an interaction between mode-2 and mode-5 can result in a
higher harmonic wave whose mode number is any value between 1 and 4 (figure 2f,i,l)
if the stratification is non-uniform. In contrast, for uniform stratifications, the mode
number associated with the higher harmonic wave is always |m− n| on the divergence
curves. Furthermore, the verification of the non-orthogonality between C̄mn(z) and
Q2ω

s (z) involves setting an arbitrary threshold on the value of
∫ H

0 C̄mn(z)Q2ω
s (z) dz

below which the functions can be deemed orthogonal. In our approach presented in
§§ 3.1–3.3, we directly compute the particular solution h̄p

mn(z) and plot its magnitude
on the entire (ω/N0, f /ω) plane, thus allowing us to easily identify the divergence
curves along which triadic resonance occurs without the requirement of a priori
knowledge of s or any arbitrary thresholds. The mode number s associated with the
higher harmonic wave that forms a resonant triad with modes m and n at frequency ω
is obtained from the numerically computed vertical structure of h̄p

mn(z) at the locations
of the divergence curves on the (ω/N0, f /ω) plane.
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FIGURE 5. Dispersion curves (thin grey solid lines) ω/N0 as a function of k for modes
1–9 (from left to right) for (a) Nmax =N0 (uniform stratification) and (b) Nmax = 4N0. The
thick black solid lines in both (a) and (b) show the variation of 2ω/N0 with km + kn
for the (m, n) combination indicated at the top for each curve. The points of intersection
between the black curves and the grey curves are shown using the ◦ marker. Both panels
correspond to f /ω= 0.2.

We now proceed to demonstrate, for fixed Nmax/N0 and f /ω, the identification of
values of ω/N0 at which a non-zero homogeneous solution h̄h

mn(z) exists. In figure 5(a),
we plot in grey the dispersion curves, i.e. ω/N0 versus k, corresponding to modes 1–9
for a uniform stratification (Nmax = N0) and f /ω= 0.2. These dispersion curves, with
mode-1 being the leftmost and mode-9 the rightmost curve, are known analytically
for the uniform stratification (see § 3.1). Plotted as black solid curves in figure 5(a)
are the variations of 2ω/N0 with km + kn for the values of (m, n) indicated on top
of each of the curves. Points of intersection between the black curves and the grey
curves occur at values of ω/N0 for which a non-zero homogeneous solution exists, i.e.
km + kn equals the horizontal wavenumber of some mode-s at frequency 2ω; s is the
mode number associated with the grey line passing through the corresponding point
of intersection.

In figure 5(a), the black curve corresponding to (m, n) = (1,1) intersects with
none of the grey dispersion curves, and hence no resonant interaction occurs for
the self-interaction of mode-1. Self-interaction of mode-3, i.e. the black curve
associated with (3, 3), intersects the mode-1 and mode-2 dispersion curves. No
divergence of the weakly nonlinear solution occurs at these two points of intersection
as C̄33(z) is uniformly zero for a uniform stratification (see § 3.3), i.e. the additional
non-orthogonality criterion of

∫ H
0 C̄33(z)Q2ω

s (z) dz 6= 0 is not satisfied for both s = 1
and s = 2. A similar conclusion holds for the self-interaction of mode-5, where
there is no divergence of h̄55(z) at all four points of intersection with the dispersion
curves. Analytical expressions identifying values of (ω/N0, f /ω) at which non-zero
h̄h

mm(z) exists for self-interaction in a uniform stratification are given in appendix B.
In summary, self-interaction in a uniform stratification can result in higher harmonic
internal wave generation along specific curves on the (ω/N0, f /ω) plane, but can
never result in triadic resonance as C̄mm(z) is uniformly zero.

For m 6= n in a uniform stratification, i.e. the cases (m, n)= (1, 2), (2, 3) and (2, 5)
in figure 5(a), the black curves always intersect with the dispersion curve associated
with mode number s= |m− n|. The non-orthogonality criterion is further satisfied at
these points of intersection, thus resulting in the divergence of h̄mn(z) as shown in
figure 2(a–c) (consider variation along the horizontal line f /ω = 0.2 in figure 2a–c).
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For (m, n)= (2, 3) and (2, 5) in figure 5(a), there are additional points of intersection
of the black curves with the dispersion curves corresponding to modes different from
|m − n|. At these additional points of intersection, no divergence (or even a local
maximum) of h̄mn(z) occurs (figure 2a–c) as the non-orthogonality criterion is not
satisfied. In summary, for m 6= n in a uniform stratification, the existence of non-zero
h̄h

mn(z), which guarantees the satisfaction of the horizontal component of the classic
triadic resonance criterion k1 + k2 + k3 = 0, is not sufficient for triadic resonance to
occur.

In figure 5(b), we perform the same analysis as in figure 5(a) for the non-uniform
stratification with Nmax = 4N0. For self-interaction of mode-1, i.e. (m, n) = (1, 1),
the black curve does not intersect with any of the dispersion curves, consistent
with the occurrence of no divergence curves in figure 4(a). For (m, n) = (3, 3), two
intersections occur with the mode-2 dispersion curve, with corresponding divergences
of h̄33(z) seen for two different values of ω/N0 along f /ω = 0.2 in figure 4(b).
Similarly, for all the other modal interactions considered in figure 5(b), all the
intersections with the dispersion curves correspond to the divergence of h̄mn(z) in
figures 2(g–i) and 4(c). Furthermore, there is agreement between figure 5(b) and
figures 2(g–i) and 4 in terms of both the locations of intersections/divergence and the
mode number associated with the higher harmonic wave at these locations. We have
also verified numerically that the non-orthogonality criterion is satisfied at all the
points of intersection in figure 5(b). In summary, for non-uniform stratifications, it
seems that the existence of a non-zero homogeneous solution h̄h

mn(z) alone guarantees
the occurrence of triadic resonance at the corresponding locations on the (ω/N0, f /ω)
plane. In other words, it seems unlikely that C̄mn(z) will be exactly orthogonal to
the corresponding Q2ω

s (z) in a non-uniform stratification, thus significantly increasing
the number of triadic resonances on the (ω/N0, f /ω) plane in comparison to the
uniform stratification for a given modal interaction. Furthermore, the existence of
h̄h

mn(z) being sufficient for triadic resonance suggests that an infinitely greater number
of modal interactions in non-uniform stratifications result in divergence curves on the
(ω/N0, f /ω) plane when compared to uniform stratifications.

Numerical calculation of h̄mn(z) on the entire (ω/N0, f /ω) plane for a given modal
interaction, as done in §§ 3.1–3.3, allows us to directly identify curves along which
triadic resonance occurs. This is in contrast to the multiple steps involved in the
approach presented in figure 5, which has to be repeated for all values of f /ω∈ (0, 1)
to obtain curves of triadic resonance on the entire (ω/N0, f /ω) plane. Also, computing
the vertical structure of h̄mn(z) gives the value of the mode number q of the higher
harmonic internal wave mode that may be in triadic resonance with modes m and n
at frequency ω. Therefore, in the case of a non-uniform stratification, for which the
existence of non-zero h̄h

mn(z) seems sufficient to identify triadic resonance, the problem
reduces to a simple calculation of the relative difference between km+ kn and k2ω

q . We
adopt this approach of calculating h̄mn(z), then estimating q, followed by a calculation
of kd

= |km + kn − k2ω
q |/k

2ω
q in § 4.2.

4. Discussion
The theoretical framework developed in this paper is potentially relevant for several

oceanic scenarios. Here, we implement our theoretical calculations on idealized
models of the linear wave fields that result from (i) low-mode internal tide scattering
by topography (§ 4.1) and (ii) internal wave beams generated by tidal flow over
topography (§ 4.2), both in non-uniform stratifications containing a pycnocline.
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FIGURE 6. (Colour online) (a) Plots of divergence curves on the (ω/N0, f /ω) plane where
h̄mn(z) diverges for (m, n) = (1, n) (2 6 n 6 7) in a non-uniform stratification with (a)
Nmax= 1.5N0, (b) Nmax= 4N0 and (c) Nmax= 10N0. Each n corresponds to a separate colour
and marker style, as indicated in the legend on the right. Among the modal interactions
considered in this figure, only (m, n)= (1, 2) corresponds to the presence of a divergence
curve for a uniform stratification.

4.1. Mode-1 scattering by bottom topography
In general, the high- and low-mode content of semidiurnal internal tides are
understood, respectively, to dissipate close to and propagate far from their topographic
generation sites. The mode-1 internal tides that tend to travel far from their generation
sites encounter long stretches of small-scale (and sometimes large-scale) rough
topography. The resulting interaction between mode-1 and the topography can scatter
an appreciable amount of energy into higher modes at the semidiurnal frequency
(Bühler & Holmes-Cerfon 2011; Mathur et al. 2014), raising questions about the
nonlinear effects that may result from interaction between mode-1 and higher modes.
For example, to the north of Hawaii, the mode-1 internal tide is estimated to lose
approximately 10 % of its energy to higher modes upon propagation over 2000 km
of small-scale topography (Mathur et al. 2014). In contrast, to the south of Hawaii,
the mode-1 internal tide can lose up to 40 % of its energy to higher modes at the
Line Islands Ridge (Johnston et al. 2003). We note here that the initiation of a modal
interaction, especially close to triadic resonance, depends only on the presence of
some non-zero energy in the primary waves.

As shown in § 3.1, divergence of h̄mn(z) occurs only for (m/3) < n < 3m in the
case of a uniform stratification. Mode-1 can therefore resonantly interact only with
mode-2 in a uniform stratification. This result, however, is not necessarily true for
non-uniform stratifications. We therefore proceed to compute the divergence curves, if
any, for mode-1 interactions with various higher modes (> 2). Specifically, in figure 6,
we consider interactions resulting from modes (m, n)= (1, n) (2 6 n 6 7) in the non-
uniform stratification described by (3.1). Figure 6(a–c) show the divergence curves for
Nmax = 1.5N0, 4N0 and 10N0, respectively. Interestingly, (m, n)= (1, 3) corresponds to
the presence of a divergence curve even for the weak-pycnocline case of Nmax= 1.5N0.
In figure 6(a), the divergence curves corresponding to the interaction of mode-1 with
modes 2–7 span a significant portion of the domain 0<ω/N0 / 0.5, 0< f /ω< 1. It is
therefore likely that strong nonlinear effects occur for any (ω/N0 < 0.5, f /ω) as long
as there exist mechanisms by which at least a small amount of mode-1 energy is put
into modes 2–7. Of significance is the presence of at least one divergence curve for
all the modal interactions we consider in figure 6(a). Furthermore, multiple divergence
curves occur for a fixed (m, n) where m= 1 and 4 6 n 6 7. In fact, (1, 7) interaction
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corresponds to four different divergence curves in figure 6(a). We recall that a given
(m, n) interaction can result in at most one divergence curve on the (ω/N0, f /ω) plane
for a uniform stratification.

For Nmax= 4N0 (figure 6b), there is again a large number of divergence curves, now
spread over the entire (ω/N0, f /ω) plane, for m= 1 and 26 n6 7, with some of them
being horizontal at large f /ω even for small n. For the strongest-pycnocline case of
Nmax = 10N0 (figure 6c), low-mode interactions (m, n) = (1, 2), (1, 3) result in near-
horizontal divergence curves at f /ω=0.89,0.93, respectively. The interaction of mode-
1 with higher modes (n = 4–7) again leads to more divergence curves that span a
wide range of ω/N0 and f /ω. In summary, RTIs are likely to occur in the ocean as a
result of interaction between mode-1 and the higher modes generated by topographic
scattering of mode-1. An interesting observation from figure 6 is the contrasting effect
of increasing Nmax on the number of divergence curves in the small-f /ω region of
the (ω/N0, f /ω) plane. For ω/N0 < 0.5, for which the higher harmonic wave at 2ω
is propagating throughout the ocean depth, the number of divergence curves passing
through the f /ω= 0 line noticeably decreases with an increase in Nmax. In contrast, for
ω/N0 > 0.5, for which internal wave propagation at 2ω is restricted to the pycnocline
region, the number of divergence curves passing through f /ω = 0 increases with an
increase in Nmax. In summary, figure 6 suggests that a significantly larger number of
resonant mode interactions occur in a non-uniform stratification compared to a uniform
stratification.

It may be potentially interesting to include primary waves that propagate in the
negative x-direction to model interaction between incident and reflected waves at
topographic sites. The dissipation of high-mode internal tides close to the generation
sites can also be initiated by a nonlinear transfer of energy to higher frequencies and
smaller length scales that result from modal interactions at the semidiurnal frequency.
Finally, the existence of RTI arising from modal interactions raises questions about
the validity of linear models of generation and scattering that assume a range of
vertical modes at a fixed frequency in the wave field.

4.2. Internal wave beam incident on a pycnocline
The generation of mean flow and superharmonics shown in this paper is strikingly
similar to the nonlinear effects that result from colliding plane waves or wave beams,
a prevalent occurrence when an internal wave beam interacts with either a solid
boundary (Peacock & Tabaei 2005) or a free-slip surface (Zhou & Diamessis 2013)
or with the ocean pycnocline (Grisouard, Staquet & Gerkema 2011; Mercier et al.
2012). It may therefore be worthwhile to model these occurrences as nonlinear
interaction between modes rather than as localized interaction between colliding
plane waves or wave beams. For example, the qualitative differences in harmonic
wave generation observed for various pycnoclines (Diamessis et al. 2014) could be
explained using a modal representation of the incident wave beam, which we now
proceed to elucidate further.

As shown in figure 7, Diamessis et al. (2014) numerically studied the dynamics
of an upward-propagating internal wave beam of dominant wavelength λx in the
constant deep ocean stratification N0 incident on a pycnocline whose thickness is h
and where the maximum stratification is denoted by Nmax. The stratification profile
and the incident wave beam profile are both described in Diamessis et al. (2014).
The incident wave frequency was specified as ω = N0/

√
2 corresponding to a 45◦

wave beam, which corresponds to the first higher harmonic 2ω being evanescent in
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FIGURE 7. (Colour online) (a) Schematic depicting the flow studied by Diamessis et al.
(2014) and discussed in § 4.2. An upward-propagating wave beam of dominant horizontal
wavelength λx in a stratification N0 is incident on a pycnocline of thickness h and
maximum stratification Nmax. (b) Energy flux fraction Em in mode-m for various pycnocline
strengths (Nmax= (1.5, 3, 4, 6, 8, 10)N0 from left to right) and a fixed pycnocline thickness
given by h/λx = 1.

the deep ocean. It was shown that higher harmonics were invariably generated as a
result of the interaction between the incident wave beam and the pycnocline, with
the amplitude and number of higher harmonics increasing with Nmax/N0 for a given
normalized pycnocline thickness h/λx.

For a thin pycnocline, i.e. h/λx = 0.1, it was shown by Diamessis et al. (2014)
that the amplitudes of the higher harmonics were largest when their frequencies and
wavenumbers satisfy the interfacial wave dispersion relation. They then proceed to
construct a theoretical model that considers a plane internal wave incident on a sharp
interface across which there is a density jump, with no boundaries either below or
above the sharp interface. Interfacial waves are relevant only in the limit of extremely
thin pycnoclines and with the primary wave frequency ω satisfying 2ω > N0, thus
rendering the higher harmonics evanescent in the deep ocean. In our theoretical
framework, the influence of the boundaries both below and above the pycnocline is
completely accounted for, and there are no assumptions about either the pycnocline
thickness or the primary wave frequency. In the limit of h/λx � 1, 2ω > N0 and
the ocean boundaries being far from the pycnocline, the existence of a resonant
triad with two modes at frequency ω and the third at frequency 2ω is equivalent
to the requirement of the higher harmonics having to satisfy the interfacial wave
dispersion relation. Furthermore, the presence of boundaries above and below the thin
pycnocline restricts the number of interfacial mode wavenumbers to be countably
infinite, as opposed to the possibility of a continuous range of wavenumbers when
there are no boundaries. In summary, the thin-pycnocline results of Diamessis et al.
(2014) reaffirm our conclusion that the existence of a resonant triad results in the
amplification of the higher harmonics.

For a thick pycnocline, i.e. h/λx = 1, Diamessis et al. (2014) observe harmonic
generation at multiple locations in the pycnocline, thus resulting in a complex flow
pattern. Here, we present the results of our analysis for six different values of Nmax/N0

with a fixed normalized pycnocline thickness of h/λx= 1. In figure 7(b), we show the
fractional distribution of energy fluxes in various modes corresponding to the incident
wave beam in figure 7(a). The energy flux distribution moves rightwards to higher
modes as Nmax/N0 is increased from 1.5 to 10. For each of the six Nmax/N0 values, we
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FIGURE 8. (Colour online) The product EmEn shown in colour as a function of m and n
for the incident wave beam shown in figure 7 and for (a) Nmax = (1.5, 3)N0, (b) Nmax =

(4, 6)N0 and (c) Nmax= (8, 10)N0. In each plot, the small and large Nmax cases are shown
at the top left and bottom right, respectively. The pink (top left) and black (bottom right)
points mark the (m, n) combinations for which kd

= |(km+ kn− k2ω
q )|/k

2ω
q is less than 0.01

for the corresponding stratification, indicating that the (m, n) pair of modes at frequency
ω could form a resonant triad with mode-q at frequency 2ω.

explore the existence of resonant triads containing a pair of modes (m, n) (with non-
negligible Em and En) at the primary wave frequency ω. The existence of a resonant
triad is established by verifying if the condition kd

= |(km + kn − k2ω
q )|/k

2ω
q = 0 is

satisfied within a specified limit. Here, q is calculated as q = nz + 1, where nz is
the number of zeros in hmn(z). We recall from figure 3 and § 3.4 that regions of
small values of kd indeed capture the regions in the neighbourhood of divergence
curves/triadic resonance.

In figure 8(a–c), we show the distribution of EmEn as a function of mode numbers
m and n for six different values of Nmax/N0 and a fixed value for the normalized
pycnocline thickness h/λx = 1 (thick pycnocline based on the terminology of
Diamessis et al. (2014)). In each of figure 8(a–c), the distributions for two values of
Nmax/N0 are shown as indicated within each figure. As shown in (2.16), the magnitude
of hmn is directly proportional to

√
EmEn; thus, it is relevant to look for only those

resonant triads which contain modes m and n (at frequency ω) for which
√

EmEn is
non-negligible. Also shown as individual points (coloured pink and black) in figure 8
are the (m, n) combinations for which |kd

| is less than 0.01 for the corresponding
Nmax/N0. For Nmax/N0 = 1.5 (top left of figure 8a), the absence of any pink points
indicates that there are no resonant triads containing modes m and n at frequency ω
with non-negligible Em and En. For Nmax/N0 = 3 (bottom right of figure 8a), kd

� 1
(black points) occurs at (m, n) = (10, 10) (self-interaction) and (m, n) = (25, 23),
both of which imply the existence of resonant triads. The resonant triad containing
(m, n) = (25, 23) is potentially significant as the value of EmEn is appreciable, as
indicated by the background colour. It is therefore expected that the higher harmonic
waves are stronger for the case of Nmax/N0 = 3 in comparison to Nmax/N0 = 1.5. As
we increase Nmax/N0 further (figure 8b,c), we observe an increase in the number of
resonant triads within the region of non-negligible EmEn and therefore conclude that
the amplitude of higher harmonics is likely to be larger for larger Nmax/N0 for a fixed
value of h/λx = 1. This offers an explanation for one of the main observations of
Diamessis et al. (2014), namely that the number and amplitude of higher harmonics
increase with a stratification parameter defined as γ = (Nmax/N0)/(h/λx). The precise
number, amplitude and spatial pattern of higher harmonics would, however, require
calculations of the energy transfer rates within the identified resonant triads, and also
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a consideration of interactions that occur at higher frequencies. As a follow-up study,
it would be intriguing to investigate the relation between stratification profiles that
are conducive to solitary wave generation (Gerkema 2001) and those that correspond
to the existence of a large number of resonant triads that contain the modes present
in the incident wave beam.

5. Conclusions

In this paper, we have shown the existence of pure resonant triads in finite-depth
non-uniform stratifications with background rotation. The weakly nonlinear solution
corresponding to interaction between modes m and n in the linear solution comprises
two different terms, one at frequency 2ω (horizontal wavenumber km + kn and
vertical profile h̄mn(z)) and the other being time independent. The amplitude of the
superharmonic term diverges if a resonance condition in the governing equation
for h̄mn(z) is met. The resonance condition is also interpreted as the existence of a
resonant triad comprising modes m and n at frequency ω and the higher harmonic
internal wave at frequency 2ω. The mode number q of the higher harmonic wave
is q = |m − n| for a uniform stratification, but seems to take some value less than
max(m, n) for a non-uniform stratification with a pycnocline.

For a given modal pair (m, n), the resonance condition is satisfied along specific
divergence curves on the (ω/N0, f /ω) plane in both uniform stratifications and ocean-
like non-uniform stratifications. In uniform stratifications, a unique divergence curve
exists for a given (m, n) that satisfies (m/3) < n< 3m. For the case of m/n close to
unity, the divergence curves tend to become horizontal and accumulate close to f /ω≈
1. In non-uniform stratifications with a pycnocline, divergence curves occur for several
more modal interactions than those for the uniform stratification; in fact, divergence
curves occur for all (m, n 6= m) we considered: (m = 1, 2 6 n 6 7), (m = 2, 3 6 n 6
5) and self-interactions too. Furthermore, multiple divergence curves occur for many
(m, n) in non-uniform stratifications with a pycnocline, a significant consequence of
which is an increase in the extent of the region on the (ω/N0, f /ω) plane where the
higher harmonic solutions are of a large magnitude. For sufficiently strong pycnoclines,
we observe the occurrence of near-horizontal divergence curves near f /ω ≈ 1 even
for values of m/n far from unity, potentially a significant factor for understanding
nonlinear effects in near-inertial waves. Remarkably, resonance occurs even for self-
interaction (m = n) in a non-uniform stratification, thus rendering the corresponding
distinct modes at frequency ω unstable irrespective of their amplitude.

The divergence of the higher harmonic weakly nonlinear solution was shown
to occur upon satisfying two different criteria: (i) km + kn = k2ω

s , where k2ω
s is the

horizontal wavenumber of some mode-s at frequency 2ω, and (ii) the right-hand
side C̄mn(z) of the governing equation (2.18) of h̄mn(z) should not be orthogonal to
Q2ω

s (z), where Q2ω
s (z) is the vertical structure of mode-s at frequency 2ω. Criterion (i)

is the same as the horizontal component of the standard triadic resonance criterion
k1 + k2 + k3 = 0. For uniform stratifications, criterion (ii) coincides with the vertical
component of k1 + k2 + k3 = 0, and is not necessarily satisfied upon satisfying
criterion (i). In fact, there exist non-divergence curves on the (ω/N0, f /ω) plane
along which criterion (i) but not criterion (ii) is satisfied for a uniform stratification.
For non-uniform stratifications with a pycnocline, however, criterion (ii) was always
satisfied upon the satisfaction of criterion (i) for all the cases we considered, and
hence results in several more divergence curve/triadic resonance interactions than for
a uniform stratification.
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Two representative oceanic scenarios, namely low-mode internal tide scattering
by topography and internal wave beam interaction with the pycnocline, were then
discussed. In non-uniform stratifications with a pycnocline, mode-1 interaction with
higher modes results in divergence curves over large portions of the (ω/N0, f /ω)
plane, suggesting that RTIs are likely to occur over small-scale random topography
in the ocean. The generation of higher harmonics upon the interaction of an internal
wave beam with the pycnocline was then associated with the existence of resonant
triads comprising two modes at frequency ω contained within the incident wave beam.
Consistent with the numerical study of Diamessis et al. (2014), we were able to show
that the number of resonant triads that result from interaction between the modes
contained in a given incident wave beam increases with the maximum stratification
in the pycnocline whose thickness is fixed.

The most significant contribution of our study is to demonstrate the existence of
pure resonant triads in finite-depth non-uniform stratifications when the interaction
between modes m and n is considered. The condition for resonant triad interaction
involving modes m and n at frequency ω in both uniform and non-uniform
stratifications is given by kd

= kωm + kωn − k2ω
q = 0, where the notation kΩp stands

for the horizontal wavenumber of mode-p at frequency Ω . Here, q is given by
q= nz + 1, where nz is the number of zeros of the particular solution of the vertical
structure h̄mn(z) of the weakly nonlinear higher harmonic solution when a primary
wave field containing modes m and n at frequency ω is assumed. It is noted that the
particular solution of h̄mn(z) diverges in the event of kd being exactly zero. However,
kd
= 0 is never exactly achieved in the numerical solutions, allowing us to build a

finite-amplitude solution for h̄mn(z) and hence calculate nz. It is also noteworthy that
numerical calculation of h̄mn(z), as against adopting the graphical approach given in
§ 3.4, allows for a direct and efficient identification of triadic resonance/divergence
curves on the entire (ω/N0, f /ω) plane. While our calculations were performed for
idealized non-uniform stratifications, they can be readily extended to realistic ocean
stratification profiles without making any assumptions about the pycnocline or the
mixed layer characteristics. Finally, the inclusion of the effects of background rotation
allowed us to discover phenomena that are potentially relevant for the dynamics of
near-inertial waves.

The results in this paper could also represent a mechanism by which wind-generated
near-inertial oscillations in the upper ocean get dissipated. Our study may help
quantify the relative importance of the nonlinear energy transfer from near-inertial
oscillations to other frequencies, in comparison to other mechanisms such as
downward radiation of near-inertial waves (Young & Jelloul 1997) and turbulent
dissipation (Hebert & Moum 1994). The tools presented in this paper can also be
useful in the theoretical prediction of PSI and its characteristics in individual modes
of a non-uniform stratification, a special case of which (primary wave frequency
≈ twice the inertial frequency) was studied by Young et al. (2008). Our ongoing
efforts include a calculation of the amplitude evolution (and hence the growth rates)
associated with the resonant triads identified in this paper and subsequent comparisons
with direct numerical simulations. Finally, the influence of background shear, viscosity
and three-dimensionality could be included to make our model even more relevant
for realistic ocean settings.
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FIGURE 9. (Colour online) log10[ḡ
max
mn ] plotted as a function of ω/N0 and f /ω for (m, n)=

(a) (1, 2), (b) (2, 3) and (c) (2, 5) with Nmax = 4N0. The energy fluxes for each plot are
fixed at (Em, En)= (0.9, 0.1) W m−1.

Appendix A. Mean flow in the weakly nonlinear solution

As shown in (3.2), the mean flow given by the time-independent term ḡmn(z) does
not diverge for any values of ω/N0, f /ω, m and n in a uniform stratification. For a
non-uniform stratification with Nmax = 4N0, we plot log10[ḡ

max
mn ] as a function of ω/N0

and f /ω for three different modal pairs: (m, n)= (1, 2), (2, 3), (2, 5) in figure 9(a–c),
respectively. The mean flow again does not diverge anywhere on the (ω/N0, f /ω)
plane, with log10[ḡ

max
mn ] increasing as a function of ω/N0 and f /ω in most of the

domain. There, however, exists a vertical line close to (ω/N0) = 0.955 along which
log10[ḡ

max
mn ] attains a local minimum for (m, n)= (2, 3) (figure 9b). For (m, n)= (2, 5),

as shown in figure 9(c), there again exists a local minimum along a vertical line,
now occurring at ω/N0 ≈ 0.93. We have furthermore verified via very fine-resolution
(in ω/N0) runs in the vicinity of the local maxima (that occur just to the left of the
identified local minima) that there is no divergence of the mean flow in these regions
of the parameter space.

Appendix B. Self-interactions in uniform stratification

The governing equation (2.18) for h̄mn(z) reduces to

d2h̄mm

dz2
+ (2km)

2 N2
0 − (2ω)

2

(2ω)2 − f 2
h̄mm = 0 (B 1)

for n = m and a uniform stratification N(z) = N0. Equation (B 1) is the well-known
governing equation (2.12) for linear internal wave modes with horizontal wavenumber
2km and frequency 2ω. Therefore, non-zero solutions exist only if the vertical
wavenumber kz,2ω satisfies

kz,2ω = 2km

√
N2

0 − (2ω)
2

(2ω)2 − f 2
, (B 2)

with kz,2ω= sπ/H where the mode number s of the higher harmonic wave is a positive
integer; s can now be written in terms of the mode number m of the primary wave
as

s= 2m

√
N2

0 − (2ω)
2

(2ω)2 − f 2

√
ω2
− f 2

N2
0 −ω

2
. (B 3)
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FIGURE 10. f /ω plotted as a function of ω/N0 as given by (C 1) for resonant triads
containing modes m and n to exist in a uniform stratification. The ten different curves
correspond to increasing (in the direction of the arrow) equispaced values of m/n in the
range 1.1 6 (m/n)6 2.9.

Non-zero solutions for h̄mm(z) exist for all combinations of ω/N0, f /ω and m that give
an integer solution for s in (B 3). In the range 0< (ω/N0) < 0.5 and 0< f /ω < 1, s
can take any integer value in the range 1 6 s<m; each of these possible values of s
occur along specific curves on the (ω/N0, f /ω) plane.

Appendix C. High-mode interactions in uniform stratification
Here, we plot (3.5) on the (ω/N0, f /ω) plane for all possible values of m/n that

can result in the existence of resonant triads containing modes m and n at frequency
ω. Equation (3.5) is rewritten as

ω2

N2
0
=
(m/n+ 1)2 − (m/n− 1)2(4− f 2/ω2)/(1− f 2/ω2)

4(m/n+ 1)2 − (m/n− 1)2(4− f 2/ω2)/(1− f 2/ω2)
. (C 1)

As shown by condition (3.6) in § 3.1, m/n has to be in the range (1/3)< (m/n)<3 for
any divergence curve/resonant triad to exist on the (ω/N0, f /ω) plane. Since equation
(C 1) is invariant with an interchange of m and n, we proceed to plot the divergence
curves as f /ω versus ω/N0 for the smaller range of 1< (m/n) < 3.

Figure 10 shows that for m/n close to 3, the divergence curve occurs for small
values of ω/N0 and f /ω. As m/n is decreased from 3, the divergence curve moves
away from the origin, with the curve becoming near horizontal around f /ω ≈ 1 and
near vertical around ω/N0≈0.5 for m/n close to unity. With m 6=n, m/n close to unity
is achieved only for relatively large values of m and n, i.e. high modes. Thus, we
conclude that interaction between neighbouring high modes in a uniform stratification
results in strong nonlinear effects in the near-inertial range, i.e. ( f /ω)≈ 1 for almost
the entire range of 0 < (ω/N0) < 0.5. It is worthwhile to recall that modes m and
n at frequency ω generate mode |m− n| at frequency 2ω, thereby implying that the
corresponding resonant triad contains a low-mode higher harmonic at frequency 2ω
and two high-mode waves at frequency ω.

One of the well-known mechanisms for low-mode tidal energy dissipation
occurs via parametric subharmonic instability at around the critical latitude where
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(ωM2/2)≈ f , with ωM2 and f being the semidiurnal frequency and the local Coriolis
frequency, respectively (MacKinnon & Winters 2005). It was further shown in the
numerical study of MacKinnon & Winters (2005) that the subharmonic waves at
frequency ωM2/2 were of high modes whereas the primary wave is a low-mode
semidiurnal tide. These results are consistent with our finding that two neighbouring
high modes at a frequency ω and a low mode at frequency 2ω often form a resonant
triad in the near-inertial range, i.e. f /ω≈ 1 independent of the value of ω/N0.
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