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Very few stochastic systems are known to have closed-form transient solutions+ In
this article we consider an immigration birth and death population process with
total catastrophes and study its transient as well as equilibrium behavior+We obtain
closed-form solutions for the equilibrium distribution as well as the closed-form
transient probability distribution at any timet $ 0+ Our approach involves solving
ordinary and partial differential equations, and the method of characteristics is used
in solving partial differential equations+

1. INTRODUCTION

Very few stochastic systems are known to have closed-form transient solutions for
the distribution of the process+ Morse@17# studied theM0M01 queue and obtained
the time-dependent probabilities forL~t !, the number of customers at any timet ~see
also Kleinrock@13# !, and the transient solutions of some variations of theM0M01
queue have been obtained~see, e+g+, Jaiswal@10# and Chen and Renshaw@7# !+ Saaty
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@21# considered theM0M0s queue and derived the Laplace transform of the distri-
bution ofL~t !, but it is inverted specifically only for the cases5 2; see also Kelton
and Law@12# + Rothkopf and Oren@20# studied some generalizedM0M0s queues
with time-dependent arrival or service rates, and they obtained approximation re-
sults for transient solutions+ The spectral function of the continuous transient solu-
tion for theM0M0squeue is studied in van Doorn@22, Chap+ 6# , and further articles
relevant to transient solution forM0M0squeues include Whitt@23# ,Halfin and Whitt
@9# , and Pegden and Rosenshine@18# +Other related studies on transient solution for
queuing systems includeMt 0G0` queues~see Ross@19# !, M0M01 queues with ca-
tastrophes~Kumar and Arivudainambi@14# !, Engset loss models~Boucherie@2,
Chap+ 4# !, and networks of infinite-server queues with nonstationary Poisson arriv-
als~Massey and Whitt@16# !+

In this article, we consider an immigration birth and death population process
with total catastrophes and study its transient as well as equilibrium behavior+We
obtain closed-form solutions for the equilibrium distribution of population size as
well as the closed-form solution for the transient probability distribution for any
time t $ 0+

A large number of articles have been published on population processes under
the influence of catastrophes; see, for example, Brockwell @3,4# , Brockwell, Gani,
and Resnick@5# , Bartoszynsky, Buhler, Chan, and Pearl@1# , and Gripenberg@8#,
among others+ These articles are concerned with various quantities of interest, such
as time to extinction+ Kyriakidis @15# considered an immigration and birth–death
process subjected to a total catastrophe similar to ours, and using renewal argu-
ments, he obtained closed-form solution for the equilibrium probability that the
system is empty~i+e+, p0! and provided a computational procedure for calculating
other probabilitiespn, n 5 1,2, + + + + In @6# , Chao studied a queuing network model
with total catastrophes; he derived the closed equilibrium distribution for that net-
work, which is of a product form+ Kumar and Arivudainambi@14# considered a
special case of Chao’s model with only a single node~i+e+, a simple birth and death
process with constant birth and death rates and total catastrophe!, and they obtained
a closed-form transient solution for that system+

In this article,we consider the same model as that of Kyriakidis@15# +We obtain
not only the closed-form solution for the equilibrium distribution of the population
size, but also the closed-form solution for the transient probability distribution for
any timet $ 0, starting with an arbitrary initial population distribution+

Our analysis involves solving ordinary and partial differential equations for
the moment generating functions of the equilibrium distribution and the transient
distribution at timet+ For the latter, the method of characteristics is used to solve
the partial differential equations+ We first solve these differential equations and
then use inversion to obtain the closed-form equilibrium and transient distribution
functions+

The result on equilibrium distribution can be obtained from the transient solu-
tion by lettingt go to infinity+ However, we choose to present the results for equi-
librium solution separately because the equilibrium solution is simpler, the method
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for deriving equilibrium result is more elementary~ordinary differential equations!
than that of the transient case~partial differential equations!, and the method may be
of independent interest+

In the following section we present transient analysis of the system and, in
Section 3, we consider its limiting behavior+

2. TRANSIENT SOLUTION

Consider an immigration and birth–death process with total catastrophes+ The state
of the system is the population size+When the state of the system isn, the immigra-
tion rate isn, the birth rate isnl, the death rate isnµ, and the catastrophe rate is,
without loss of generality, 1+ Note that if the catastrophe rate is not 1, then it can be
transformed to 1 by using a different time scale+

Let X~t ! be the population size at timet+ Clearly, $X~t !; t $ 0% is a continuous-
time Markov process with transition rates

q~n, n 1 1! 5 n 1 nl, n $ 0,

q~n, n 2 1! 5 nµ, n . 1,

q~n,0! 5 1, n . 1,

q~1,0! 5 µ1 1+

We are concerned with the transient solution of population size distribution at
any timet $ 0 ~i+e+, of X~t !! + Assume that the initial population distribution is

P~X~0! 5 n! 5 pn, n 5 0,1, + + + , (1)

and let

h~x! 5 (
n50

`

pn xn+

Note that if the system is initially empty, thenh~x! [ 1+
Let

Pn~t ! 5 P~X~t ! 5 n!, n 5 0,1, + + + ;

then the Kolmogorov forward differential equation forPn~t ! is ~see, e+g+, Ross@19# !

Pn
' ~t ! 5 ~~n 2 1!l 1 n!Pn21~t ! 1 ~n 1 1!µPn11~t !

2 ~nl 1 nµ1 n 1 1!Pn~t !, n 5 1,2, + + + , (2)
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P0
' ~t ! 5 µP1~t ! 1 (

n51

`

Pn~t ! 2 nP0~t !

5 µP1~t ! 2 ~n 1 1!P0~t ! 1 1+ (3)

Let

P~t, x! 5 (
n50

`

Pn~t !xn ;

then it follows from~2! and~3! thatP~t, x! satisfies

]P~t, x!

]t
5 ~lx2 2 ~l 1 µ!x 1 µ!

]P~t, x!

]x
1 ~nx 2 n 2 1!P~t, x! 1 1, (4)

with initial-boundary conditions

P~t,1! 5 1, P~0, x! 5 h~x!+ (5)

We are interested in solving the partial differential equation~4! with initial
condition~5!+ The following theorem gives the complete solution to this problem+

Theorem 2.1: Solutions to partial differential equation (4) and (5) are given as
follows. Forl 5 µ5 n 5 0, the solution is

P~t, x! 5 e2t~h~x! 1 et 2 1!

for all x [ ~2`,`!. For l 5 µ5 0 andn . 0, the solution is

P~t, x! 5 e~xn2n21!tFh~x! 1
1

2xn 1 n 1 1
~e~2xn1n11!t 2 1!G (6)

for all x [ ~2`,`! except x5 1 1 10n, and at this point,

PSt,11
1

n
D 5 hS11

1

n
D1 t+

For l 5 0, µ . 0, andn $ 0, the solution is

P~t, x! 5 exp@nµ21~x 2 1!~12 e2µt! 2 t #

3 Fh~x0! 1E
0

t

exp@2nµ21~x 2 1!e2µt~eµt 2 1! 1 t# dtG , (7)

where

x0 5 11 e2µt~x 2 1! (8)
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for all x [ ~2`,`!. For l . 0, µ5 l, andn $ 0, the solution is

P~t, x! 5 e2t @11 lt~12 x!#2n0lh~x0!

1 e2tE
0

t

et @11 l~12 x!~t 2 t!#2n0l dt, (9)

where

x0 5 11 S 1

x 2 1
2 ltD21

(10)

for all x [ ~2`,11 10~lt !!, t . 0. For l . 0, µÞ l, andn $ 0, the solution is

P~t, x! 5 e2tF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!Gn0l

3 Fh~x0! 1E
0

t

etF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!G2n0l

dtG, (11)

where

x0 5 11 F e2~µ2l!t

x 2 1
2

l

µ2 l
~e~µ2l!t 2 1!G21

(12)

for all t . 0 and

2 ` , x , 11
µ2 l

l
e2~µ2l!t~e~µ2l!t 2 1!21+

Note that x0 in (12) is a function of~x, t !, but not oft, even when it is used in the
integrand of (11).

Proof: We use themethod of characteristics; see, for example, John@11# +We first
form the characteristic equation

df

dt
5 2lf 2 1 ~l 1 µ! f 2 µ, f ~0! 5 x0+ (13)

Each solution of~13! is called acharacteristic curve, which is parameterized by the
initial positionx0+ Let y 5 f 2 1+We have

dy

dt
5 2ly2 1 ~µ2 l!y, y~0! 5 x0 2 1+

This is a Bernoulli equation+We can integrate it by introducingq 5 10y to obtain

dq

dt
5 2~µ2 l!q 1 l, q~0! 5

1

x0 2 1
+
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For µÞ l, this first-order linear equation has solution

q~t ! 5 e2~µ2l!tFq~0! 1
l

µ2 l
~e~µ2l!t 2 1!G,

or

f ~t ! 5 11 e~µ2l!tF 1

x0 2 1
1

l

µ2 l
~e~µ2l!t 2 1!G21

+ (14)

For the special caseµ5 l, we find that

df

dt
5 2l~ f 2 1!2+

The solution is

f ~t ! 5 11 S 1

x0 2 1
1 ltD21

+ (15)

These characteristic curves cover at least the region$t . 0,2`, f #1% exactly
once+ More precisely, these characteristic curves cover the upper half-plane$t . 0,
6 f 6 , `% exactly once for the casel 5 0+ For the casel . 0 andl 5 µ, they cover
the domain

Ht . 0,2` , f , 11
1

lt
J

exactly once+ For the casel . 0 andl Þ µ, they cover the domain

Ht . 0,2` , f , 11
µ2 l

l
e2~µ2l!t~e~µ2l!t 2 1!21J

exactly once+ See Figures 1–5+
So far, we givex0 and find a characteristic curvef 5 f ~t ! starting atf ~0! 5 x0 in

~14! and~15!+ These solutions depend onx0, so we write them asf 5 f ~t, x0!+ Now,
if we are given a pair~x, t ! in the upper half-plane, we can solve the parameterx0

from the equationf 5 f ~t, x0! to find an equationx05 x0~x, t !,which is what we use
in the statement of the theorem+ It is easy to solve forx0 and the solutionsx0 5
x0~x, t ! are given in the theorem+

Along each characteristic curvef 5 f ~t !, we do the following calculation:

dP~t, f ~t !!

dt
5

]P~t, x!

]t
1

]P~t, x!

]x

df ~t !

dt
+
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Using the characteristic equation~13! and the partial differential equation~4!, we
find that the partial differential equation becomes an ordinary differential equation:

dP~t, f ~t !!

dt
5 ~nf ~t ! 2 n 2 1!P~t, f ~t !! 1 1, P~0, f ~0!! 5 h~x0!+

This equation is first order and linear+ Its solution is

P~t, f ~t !! 5 enf~t !2nt2tFh~x0! 1E
0

t

exp@2nf~t! 1 nt 1 t# dtG ,

Figure 1. Characteristic curves for the caseµ . l . 0+

Figure 2. Characteristic curves for the casem 5 l . 0+

TRANSIENT ANALYSIS OF BIRTH–DEATH PROCESSES 89

https://doi.org/10.1017/S0269964803171057 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964803171057


where

f~t ! 5E
0

t

f ~s! ds+

For µ5 l . 0, we have

f~t ! 5 t 1
1

l
ln~l~x0 2 1!t 1 1!+

Figure 3. Characteristic curves for the casem , l+

Figure 4. Characteristic curves for the casem . 0 andl 5 0+
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Whereas forµ5 l 5 0, we have

f~t ! 5 x0 t+

If µÞ l andl . 0, we have

f~t ! 5 t 1
1

l
lnF11

l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!G +

Also, whenµ . l 5 0, we have

f~t ! 5 t 1 µ21~x0 2 1!~eµt 2 1!+

We insert thef~t ! functions back toP~t, f ~t !!+We have that, for µ5 l . 0,

P~t, f ~t !! 5 e2t @l~x0 2 1!t 1 1# n0lFh~x0! 1E
0

t

et @l~x0 2 1!t 1 1#2n0l dtG,
and forµÞ l . 0,

P~t, f ~t !! 5 e2tF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!Gn0l

3 Fh~x0! 1E
0

t

etF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!G2n0l

dtG+
The solution for other cases of~l,µ,n! can be similarly obtained+ As a result, we
have found all the solutions for partial differential equation~4! and~5!+ n

Figure 5. Characteristic curves for the casem 5 l 5 0+
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Corollary 2.1: For l . µ $ 0, there holds

lim
tr`

PSt,
µ

l
D 5

l

l 1 ~l 2 µ!n
(16)

for all initial condition h~{!.

Proof: We note forµ , l that f ~t ! 5 µ0l is a characteristic curve along which we
have

PSt,
µ

lD 5 e2te~µ0l21!ntFhS µ

lD1E
0

t

ete2~µ0l21!nt dtG
r

l

l 1 ~l 2 µ!n

ast r ` for any initial h+ n

We remark that the asymptotic value~16! agrees with the value~38! of the
equilibrium solution+

Let h ~n!~x! be thenth derivative of functionh at x+ Recall that under some
condition onh ~i+e+, the moment generating function of the initial population distri-
bution!, we have

h~x 1 y! 5 (
n50

` h ~n! ~x!

n!
yn+

In particular, it follows from ~1! that

h ~n! ~0!

n!
5 P~X~0! 5 n! 5 pn, n 5 0,1, + + + +

We are now ready to present the closed-form transient solution to the stochastic
system+

Theorem 2.2.: For the casel 5 µ5 n 5 0, the transient probability distribution at
time t is

P0~t ! 5 p0e2t 1 1 2 e2t,

Pn~t ! 5 pne2t, n $ 1+ (17)

For the casel 5 µ5 0 andn . 0, we have for all n$ 0 that

Pn~t ! 5 e2~n11!t (
j50

n 1

j!
~nt ! jpn2j 1

1

n 1 1S n

n 1 1D
n

2
1

n 1 1
e2~n11!t (

j50

n 1

j!
~nt ! j S n

n 1 1D
n2j

+ (18)
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For the casel 5 0, µ . 0, andn $ 0, we have for all n$ 0 that

Pn~t ! 5 expF2 n

µ
~12 e2µt! 2 tG

3 S(
j50

n 1

j!~n 2 j !!
e2µjtS n

µDn2j

~12 e2µt!n2jh ~ j ! ~12 e2µt!

1
1

n! S n

µDnE
0

t

expF n

µ
e2µt~eµt 2 1! 1 tG~12 e2µ~t2t! !n dtD+ (19)

For the casel . 0, µ5 l, andn $ 0, we have for all n$ 0 that

Pn~t ! 5 e2t~11 lt !2n0l2n~lt !n

3 (
k50

n F 1

k!~n 2 k!!
~11 lt !2k~lt !2k )

j50

n21S n

l
1 k 1 jDh ~k!S lt

11 ltDG
1

ln

n! )
j50

n21S n

l
1 jDe2tE

0

t

et @11 l~t 2 t!#2n0l2n~t 2 t!n dt+ (20)

For the casel . 0,µÞ l, andn $ 0, we let

g~t ! 5
l

µ2 l
~e~µ2l!t 2 1!

a~t ! 5 12 ~g~t ! 1 e2~µ2l!t !21

b~t ! 5 e2~µ2l!t~g~t ! 1 e2~µ2l!t !22

c~t ! 5 g~t !~g~t ! 1 e2~µ2l!t !21; (21)

then, the transient probability distribution for any t$ 0 is

Pn~t ! 5 e2t~11 g~t !e~µ2l!t !2n0l

3 (
m1j1k5n

F 1

m! j! k!
~c~t !! j1m~b~t !!kh ~k! ~a~t !!

3 )
i50

j21S n

l
2 iD~ j 1 k!~ j 1 k 1 1!{{{~n 2 1!G

1
1

n!
expFS2

nµ

l
1 n 2 1D tG)

i50

n21S n

l
1 iD

3 E
0

t

et @e2~µ2l!t 1 g~t ! 2 g~t!#2n0l2n~g~t ! 2 g~t!!n dt+ (22)
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Remark: If the initial population size is a constantK, thenh~x! 5 xK and

h ~n! ~a! 5 n! aK2n, n 5 1,2, + + + ,K,

andh ~n!~a!50 forn. K+Thus, the transient solution for the case of initial condition
P~X~0! 5 K ! 5 1 is much simplified+ In particular, if the system is initially empty,
the solution is even more simplified becauseh~n!~a! 5 0, except forn5 0, in which
case it is 1+

Proof of Theorem 2.2: Formulas~17! follow easily from the Taylor expansion of
h~x! atx5 0+ To establish~18!, we first note that the function in~6! ~for x near zero;
say, 6x6 , 1! can be rewritten as

P~t, x! 5 e2~n11!th~x!entx 1
1

n 1 1S12
n

n 1 1
xD21

2
e2~n11!t

n 1 1 S12
n

n 1 1
xD21

entx+

Now, apply the Taylor expansions

entx 5 (
n50

` 1

n!
~nt !nxn,

S12
n

n 1 1
xD21

5 (
n50

` S n

n 1 1D
n

xn,

h~x! 5 (
n50

`

pn xn,

and the product formula

S(
n50

`

an xnDS(
n50

`

bn xnD 5 (
n50

`

(
j50

n

aj bn2j x
n; (23)

we then obtain~18!+
We now prove~19!+ The function in~7! can be rewritten as

P~t, x! 5 expF2 n

µ
~12 e2µt! 2 tGHexpF n

µ
~12 e2µt!xGh~12 e2µt 1 xe2µt!

1 E
0

t

expF n

µ
e2µt~eµt 2 1! 1 tG

3 expF n

µ
~12 e2µ~t2t! !xG dtJ +
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Since

eax 5 (
n50

` 1

n!
anxn,

h~12 e2µt 1 xe2µt! 5 (
n50

` 1

n!
h ~n! ~12 e2µt!e2µntxn

for

a 5
n

µ
~12 e2µt! and a 5

n

µ
~12 e2µ~t2t! !,

applying the product formula~23! yields~19!+
We next prove~20!+We can write~10! as

x0 5 p 1
qx

12 px
,

where

p 5
lt

11 lt
and q 5 ~11 lt !22+

Expandingh as

h~x0! 5 hSp 1
qx

12 px
D5 (

n50

` 1

n!
h ~n! ~ p!S qx

12 px
Dn

5 (
n50

` qn

n!
h ~n! ~ p!xn~12 px!2n+

Note that the function in~9! is the sum of two functionsPI andPII , where

PI 5 e2t~11 lt 2 ltx!2n0lh~x0!

5 e2t~11 lt !2n0l~12 px!2n0lh~x0!

5 e2t~11 lt !2n0l (
m50

` qm

m!
h ~m! ~ p!xm~12 px!2m2n0l+

Using Taylor expansion

~11 x!a 5 (
j50

` 1

j!
a~a 2 1!{{{~a 2 j 1 1!x j (24)

for a 5 2m2 n0l and the product formula~23!, we obtain the first part of~20!+
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The second partPII takes the form

PII 5 e2tE
0

t

et @11 l~12 x!~t 2 t!#2n0l dt

5 e2tE
0

t

et @11 l~t 2 t!#2n0lF12
l~t 2 t!

11 l~t 2 t!
xG2n0l

dt+ (25)

Applying Taylor expansion~24! for

a 5 2
l~t 2 t!

11 l~t 2 t!

in ~25! gives rise to the second part of~20!+
Finally,we establish~22!+We use the notation of~21!+Observe that the function

~12! can be written as

x0 5 a 1
bx

12 cx
+

Also, the function~11! is the sum of two functions:

PI 5 e2tF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!Gn0l

h~x0!,

PII 5 e2tF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!Gn0l

3 E
0

t

etF11
l~x0 2 1!

µ2 l
~e~µ2l!t 2 1!G2n0l

dt+

After some simple manipulation, we can rewritePI as

PI 5 e2t @11 ge~µ2l!t #2n0lS11
cx

12 cx
Dn0l

hSa 1
bx

12 cx
D,

wherea,b,c, andg are as defined in~21!+We now use expansions

S11
cx

12 cx
Dn0l

5 (
j50

` 1

j!

n

l
S n

l
2 1D{{{S n

l
2 j 1 1Dc jx j ~12 cx!2j,

hSa 1
bx

12 cx
D 5 (

k50

` bk

k!
h ~k! ~a!xk~12 cx!2k+ (26)
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The product of the two expansions in~26! is

S11
cx

12 cx
Dn0l

hSa 1
bx

12 cx
D

5 (
m50

` Hxm~12 cx!2m (
j1k5m

c jbk

j! k!

n

l S n

l
2 1D{{{S n

l
2 j 1 1Dh ~k! ~a!J +

We use the Taylor expansion

~12 cx!2m 5 (
i50

` 1

i!
m~m1 1!{{{~m1 i 2 1!cixi+

Applying the product formulas again, we obtain the first part of~22!+
To find the second part of~22!, we rewritePII as

PII 5 e2t @12 ~12 x0!g~t !# n0lE
0

t

et @12 ~12 x0!g~t!#2n0l dt+

It can be shown that

12 ~12 x0!g~t ! 5
12 ~12 a!g~t !

12 cx
,

12 ~12 x0!g~t! 5
12 ~12 a!g~t!

12 cx F11 S bg~t!

12 ~12 a!g~t!
2 cDxG,

c 5
bg~t !

12 ~12 a!g~t !
,

12 ~12 a!g~t ! 5
e2~µ2l!t

e2~µ2l!t 1 g~t !
,

12 ~12 a!g~t! 5
e2~µ2l!t 1 g~t ! 2 g~t!

e2~µ2l!t 1 g~t !
+

We obtain

PII 5 e2t @e2~µ2l!t # n0lE
0

t

et @e2~µ2l!t 1 g~t ! 2 g~t!#2n0l

3 F11 bS g~t!

12 ~12 a!g~t!
2

g~t !

12 ~12 a!g~t !
DxG2n0l

dt+

Because

g~t!

12 ~12 a!g~t!
2

g~t !

12 ~12 a!g~t !
5

g~t! 2 g~t !

@e2~µ2l!t 1 g~t ! 2 g~t!#b
,
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we have

PII 5 e2t @e2~µ2l!t # n0lE
0

t

et @e2~µ2l!t 1 g~t ! 2 g~t!#2n0l

3 F12
g~t ! 2 g~t!

e2~µ2l!t 1 g~t ! 2 g~t!
xG2n0l

dt+

Using the Taylor expansion, we then obtain the second part ofPII of ~22!+
This completes the proof of Theorem 2+2+ n

3. STEADY-STATE ANALYSIS

The equilibrium solution of the system can be obtained by lettingt r ` in Theo-
rem 2+2+ However, since the resulting differential equation for the steady state is
much easier to solve, we choose to analyze the steady-state case separately+

Let the equilibrium distribution be denoted bypn+ Clearly, the equilibrium dis-
tribution always exists in the case of a positive catastrophe rate+ The following bal-
ance equation is satisfied:

~n 1 nl 1 nµ1 1!pn 5 ~n 1 ~n 2 1!l!pn21 1 ~n 1 1!µpn11, n $ 1, (27)

np0 5 np1 1 (
i51

`

pi 5 µp1 1 1 2 p0+ (28)

Let P~x! be the moment generating function of$pn;n $ 0% ; that is,

P~x! 5 (
n50

`

pn xn,

then it follows from~27! and~28! that

~lx2 2 ~l 1 µ!x 1 µ!P'~x! 1 ~nx 2 n 2 1!P~x! 1 1 5 0, (29)

and the initial condition for the differential equation isP~1! 5 1+
We are interested in obtaining a closed-form solution for~29!+ We note that

Kyriakidis @15# , using a renewal argument, obtained a closed-form solution forp0

and he also provided a computational procedure to calculatepn, n . 0+
For convenience, we let

A 5
l

µ2 l
2 n, B 5

1

µ2 l
+

The following result completely characterizes the solution of differential equa-
tion ~29!+
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Theorem 3.1: If µ . l . 0, then (29) has a unique solution in x[ @0,µ0l# ; the
solution is given by

P~x! 5
1

l
S µ

l
2 xDA0l

~12 x!2BE
x

1S µ

l
2 tD2A0l21

~12 t !B21 dt (30)

on x[ @0,1# , and is given by

P~x! 5
1

l
S µ

l
2 xDA0l

~x 2 1!2BE
1

xS µ

l
2 tD2A0l21

~t 2 1!B21 dt (31)

on x [ ~1,µ0l# . The equation has an infinite number of solutions on x. µ0l. If
µ , l, the differential equation (29) has a unique solution in x# 1; the solution is
given by

P~x! 5
1

l
S µ

l
2 xDA0l

~12 x!2BE
x

µ0l S µ

l
2 tD2A0l21

~12 t !B21 dt (32)

on x[ @0,µ0l!, and

P~x! 5
1

l
Sx 2

µ

l
DA0l

~12 x!2BE
µ0l

x St 2
µ

l
D2A0l21

~12 t !B21 dt (33)

on x[ @µ0l,1# , and the equation has an infinite number of solutions on x. 1. If
l 5 µ . 0, then (29) has a unique solution on@0,1# given by

P~x! 5
1

l
~12 x!2n0le10~l~12x!!E

x

1

~12 t !n0l22e210~l~12t !! dt, (34)

and the equation has an infinite number of solutions on x. 1. If l 5 0 and µ. 0,
(29) has a unique solution on all x$ 0, and it is given by

P~x! 5
1

µ
e~n0µ!x 6x 2 16210µE

1

x

e2~n0µ!t 6 t 2 1610µ~t 2 1!21 dt+ (35)

Finally, if l 5 µ5 0, the differential equation has a unique solution given by

P~x! 5
1

n 1 1 2 nx
, (36)

which is defined for all x whenn 5 0, and it is defined for all xÞ 1 1 10n when
n . 0.
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Proof: We rewrite the differential equation~29! as

P'~x! 1 a~x!P~x! 5 l21S µ

l
2 xD21

~x 2 1!21, (37)

where

a~x! 5
n 1 1 2 nx

lS µ

l
2 xD~x 2 1!

5
A

µ2 lx
1

B

x 2 1
+

We thus find an integration factor

* µ

l
2 x*

2A0l

6x 2 16B+

Because this factor contains absolute value which is not convenient to handle, in
what follows we treat several cases individually+

Case 1: µ, l+ In this casel . 0, A , 0, andB , 0+ For x , µ0l, we choose the
integration factor

S µ

l
2 xD2A0l

~12 x!B+

Multiplying both sides of~37! by this factor, we obtain

FS µ

l
2 xD2A0l

~12 x!BP~x!G ' 5 l21S µ

l
2 xD21

~x 2 1!21S µ

l
2 xD2A0l

~12 x!B+

BecauseA, 0, integrating this equation in the interval~x,µ0l# yields~32!+ It is easy
to verify that the left limit of solution~32! satisfies

PS µ

l
2D 5

l

l 1 ~l 2 µ!n
+ (38)

For x [ ~µ0l,1!, we take the integration factor

Sx 2
µ

l
D2A0l

~12 x!B+

Consequently, we have

FSx 2
µ

l
D2A0l

~12 x!BP~x!G ' 5 l21S µ

l
2 xD21

~x 2 1!21Sx 2
µ

l
D2A0l

~12 x!B+
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Similar to the previous reasoning, we integrate the above equation in the interval
~µ0l, x# and obtain~33!+We can verify that the left- and right-hand side limits of this
solution at the pointx 5 µ0l are consistent; that is,

PS µ

l
2D 5 PS µ

l
1D,

implying that the solutionP~x! is continuous for allx , 1+ Finally, there holds

P~12! 5 1+

Case 2: µ5 l . 0+ In this case,

a~x! 5
n 1 1 2 nx

2l~x 2 1!2 5
1

2l~x 2 1!2 1
n

l

1

x 2 1
+

We find an integration factor

612 x6n0le210~l~12x!! 5 ~12 x!n0le210~l~12x!!

for x # 1+ There are infinitely many solutions inx . 1 so we restrict ourselves to
x # 1+We have

@~12 x!n0le210~l~12x!! P~x!# ' 5 2
1

l
~12 x!n0l22e210~l~12x!!+

To obtain the bounded solutionP~x! onx , 1, integrating the above equation yields
~34!, which satisfies

P~12! 5 1+

Case 3: µ. l . 0+ For x , 1, we take the integration factor

S µ

l
2 xD2A0l

~12 x!B+

Multiplying both sides of~37! by this factor and integrating yields~30!+ For x [
~1,µ0l!, we take the integration factor

S µ

l
2 xD2A0l

~x 2 1!B+

Again, multiplying both sides of~37! by this factor and integrating yields~31!+We
can verify that

P~x! r 1

asx r 1 from both sides of 1, implying that the solutionP~x! is continuous on
@0,µ0l# +
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Case 4: l 5 0 andµ . 0+ The differential equation becomes

µ~x 2 1!P'~x! 1 ~n 1 1 2 nx!P~x! 2 1 5 0+

An integration factor for this equation is

e2~n0µ!x 6x 2 1610µ+

Multiplying the equation with this factor, we obtain

~P~x!e2~n0µ!x 6x 2 1610µ!' 5
1

µ
e2~n0µ!x 6x 2 1610µ~x 2 1!21+

Integrating this equation between 1 andx and using the boundedness ofP~1!, we
obtain~35!+ This solution satisfiesP~1! 5 1 and it is defined for allx $ 0+

Case 5: l 5 µ5 0+ The differential equation becomes

~n 1 1 2 nx!P~x! 2 1 5 0+ (39)

The solution is given by~36!+ The solution is defined for allx, except for the point
x51110n whenn . 0+ The casen 5 0 is trivial, and it can be seen from~39! that
the solution isP~x! [ 1+

This completely solves~29! for all ranges of parameters and proves Theorem 3+1+
n

In the next theorem, we present the explicit formulas forpn for all n $ 0+ First,
we need a lemma+

Lemma 3.1: For µ . l . 0, the function (30) can be written as

P~x! 5 ~µ2 l!n0lE
0

1

~µ2 lyµ2l !2n0lF12
l~12 yµ2l !

µ2 lyµ2l
xG2n0l

dy+ (40)

For l . µ $ 0, the function (32) is equal to

P~x! 5 ~l 2 µ!n0lE
0

1

~lyµ2l 2 µ!2n0lF12
l~ yµ2l 2 1!

lyµ2l 2 µ
xG2n0l

dy+ (41)

For l 5 µ . 0, the function (34) is equal to

P~x! 5E
0

1

~12 l ln y!2n0lS11
l ln y

12 l ln y
xD2n0l

dy+ (42)

For l 5 0 and µ. 0, the function (35) is equal to

P~x! 5 e2n0µE
0

1

expF n

µ
yµGexpF n

µ
~12 yµ!xG dy+ (43)
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Proof: We prove~43! first+We use the transformation

s 5 ~12 t !10µ

in the function~35! to obtain

P~x! 5 enx0µ~12 x!210µE
0

~12x!10µ

expF2 n

µ
~12 sµ!G ds+ (44)

We use the transformation

s 5 y~12 x!10µ

in ~44! to find that

P~x! 5 enx0µE
0

1

expF2 n

µ
~12 ~12 x!yµ!G dy+

A few steps of simplification will result in~43!+
We prove~42! next+We use the transformation

s 5 expF2 1

l~12 t !G
in the function~34! to obtain

P~x! 5 ~12 x!2n0l expF 1

l~12 x!
GE

0

exp@210l~12x!#

~2l ln s!2n0l ds+ (45)

We use another transformation

s 5 y expF2 1

l~12 x!
G

in ~45! to obtain

P~x! 5 ~12 x!2n0lE
0

1S 1

12 x
2 l ln yD2n0l

dy+ (46)

Multiplying the integrand in~46! by this factor and performing some simple algebra
yields~42!+

We then prove~40!+We use the transformation

s 5 ~12 t !B

in function~30! to obtain

P~x! 5
µ2 l

l
S µ

l
2 xDA0l

~12 x!2BE
0

~12x!BS µ

l
2 1 1 sµ2lD2A0l21

ds+ (47)
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Take another nontrivial transformation~“conformal transformation”!

y 5 S µsµ2l

µ2 l 1 lsµ2lDB

+ (48)

This transformation has the property thaty 5 0 whens5 0, and

y 5 Sµ~12 x!

µ2 lx
DB

at s5 ~12 x!B+

Furthermore, the inverse transformation is

sµ2l 5
~µ2 l!yµ2l

µ2 lyµ2l
+

Using the conformal transformation~48! in ~47!, we obtain

P~x! 5 ~µ2 l!n0lS12
l

µ
xDA0l

~12 x!2BE
0

~µ~12x!0~µ2lx!!B

~µ2 lyµ2l !2n0l dy+

(49)

We perform yet another transformation

y 5 Sµ~12 x!

µ2 lx
DB

t

in ~49! to obtain

P~x! 5 ~µ2 l!n0lS12
l

µ
xD2n0lE

0

1Sµ2 lt µ2l
12 x

12
l

µ
xD2n0l

dt+

Multiplying the integrand by this factor and performing some simple algebra, we
obtain~40!+

To prove~41!, we do the same set of transformations on the function~32! as we
did for the function~30! ~the caseµ. l . 0!+The only differences are that the lower
integration limit in~47! is now

s 5 S12
µ

l
DB

instead of 0, and the corresponding value ofy in the transformation~48! at this point
remains 0, sinceµ , l+ The proof of Lemma 3+1 is thus complete+ n

Applying Lemma 3+1 and Theorem 3+1, we obtain the closed-form equilibrium
distribution for the stochastic system+
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Theorem 3.2: For µ . l . 0, the equilibrium distribution of the process is

p0 5 ~µ2 l!n0lE
0

1

~µ2 lyµ2l !2n0l dy, (50)

pn 5
ln

n!
~µ2 l!n0lS)

i51

n S n

l
1 i 2 1DDE

0

1

~µ2 lyµ2l !2n0l2n~12 yµ2l !n dy,

n 5 1,2, + + + + (51)

For l . µ $ 0, the equilibrium distribution of the process is

p0 5 ~l 2 µ!n0lE
0

1

~lyµ2l 2 µ!2n0l dy, (52)

pn 5
ln

n!
~l 2 µ!n0lS)

i51

n S n

l
1 i 2 1DDE

0

1

~lyµ2l 2 µ!2n0l2n~ yµ2l 2 1!n dy,

n 5 1,2, + + + + (53)

For l 5 µ . 0, we have

p0 5E
0

1

~12 l ln y!2n0l dy, (54)

pn 5
~2l!n

n! S)
i51

n S n

l
1 i 2 1DDE

0

1

~12 l ln y!2n0l2n~ ln y!n dy,

n 5 1,2, + + + + (55)

For l 5 0,µ . 0, we have

pn 5
1

n! S n

µ
Dn

e2n0µE
0

1

expF n

µ
yµG~12 yµ!n dy, n 5 0,1,2, + + + + (56)

For l 5 µ5 0, there holds

pn 5
1

n 1 1S n

n 1 1D
n

, n $ 0+ (57)

Proof: First, formula ~57! follows directly from Taylor expansion of the function
~36! atx5 0+ Formulas~50!–~56! follow from Lemma 3+1 and Taylor expansions of
the exponential functioney and ~1 2 x!n+ The proof of Theorem 3+2 is complete+

n

Remark: The equilibrium probability for the system to be empty~i+e+, p0! is con-
sistent with the solution obtained by Kyriakidis@15# +However,we point out an error
in Kyriakidis @15# that, in his formula forp0 for the caseµ . l . 0, there should be
absolute value for the multiplication factor and the integrand+
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