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Very few stochastic systems are known to have closed-form transient solutions
this article we consider an immigration birth and death population process with
total catastrophes and study its transient as well as equilibrium behédabtain
closed-form solutions for the equilibrium distribution as well as the closed-form
transient probability distribution at any time= 0. Our approach involves solving
ordinary and partial differential equatigresd the method of characteristics is used
in solving partial differential equations

1. INTRODUCTION

Very few stochastic systems are known to have closed-form transient solutions for
the distribution of the procesMorse[17] studied theM/M/1 queue and obtained

the time-dependent probabilities foft ), the number of customers at any titisee

also Kleinrock[13]), and the transient solutions of some variations of yd1/1
gueue have been obtaineste e.g., Jaiswa[10] and Chen and Renshdij]). Saaty
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[21] considered thé/M/s queue and derived the Laplace transform of the distri-
bution ofL(t), butitis inverted specifically only for the case= 2; see also Kelton
and Law[12]. Rothkopf and Oren20] studied some generalized/M/s queues
with time-dependent arrival or service ratasd they obtained approximation re-
sults for transient solution3 he spectral function of the continuous transient solu-
tion for theM/M/s queue is studied in van Doof@2, Chap 6], and further articles
relevant to transient solution fd/M/squeues include Whif23], Halfin and Whitt

[9], and Pegden and Rosenshji8]. Other related studies on transient solution for
gueuing systems includd, /G/c queuegsee Ros§19]), M/M/1 queues with ca-
tastrophegKumar and Arivudainambj14]), Engset loss model@oucherie[2,
Chap 4]), and networks of infinite-server queues with nonstationary Poisson arriv-
als(Massey and Whitf16]).

In this article we consider an immigration birth and death population process
with total catastrophes and study its transient as well as equilibrium behggor
obtain closed-form solutions for the equilibrium distribution of population size as
well as the closed-form solution for the transient probability distribution for any
timet=0.

A large number of articles have been published on population processes under
the influence of catastrophesee for example Brockwell[3,4], Brockwell, Gani
and ResnicK5], BartoszynskyBuhler, Chan and Pear[1], and Gripenberg8],
among othersThese articles are concerned with various quantities of intesesi
as time to extinctionKyriakidis [15] considered an immigration and birth—death
process subjected to a total catastrophe similar to, g using renewal argu-
ments he obtained closed-form solution for the equilibrium probability that the
system is emptyi.e., 7y) and provided a computational procedure for calculating
other probabilitiesr,,n = 1,2,.... In [6], Chao studied a queuing network model
with total catastrophe$e derived the closed equilibrium distribution for that net-
work, which is of a product formKumar and Arivudainambj14] considered a
special case of Chao’s model with only a single n@de, a simple birth and death
process with constant birth and death rates and total catasjreitehey obtained
a closed-form transient solution for that system

In this article we consider the same model as that of Kyriakjdis]. We obtain
not only the closed-form solution for the equilibrium distribution of the population
size but also the closed-form solution for the transient probability distribution for
any timet = 0, starting with an arbitrary initial population distribution

Our analysis involves solving ordinary and partial differential equations for
the moment generating functions of the equilibrium distribution and the transient
distribution at timet. For the latterthe method of characteristics is used to solve
the partial differential equationdVe first solve these differential equations and
then use inversion to obtain the closed-form equilibrium and transient distribution
functions

The result on equilibrium distribution can be obtained from the transient solu-
tion by lettingt go to infinity. However we choose to present the results for equi-
librium solution separately because the equilibrium solution is simifiermethod
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for deriving equilibrium result is more elementdigrdinary differential equations
than that of the transient cageartial differential equationsand the method may be
of independent interest

In the following section we present transient analysis of the systemiand
Section 3we consider its limiting behavior

2. TRANSIENT SOLUTION

Consider an immigration and birth—death process with total catastrophestate
of the system is the population si2¥hen the state of the systemristhe immigra-
tion rate isv, the birth rate isA, the death rate isy, and the catastrophe rate is
without loss of generalityl. Note that if the catastrophe rate is notlen it can be
transformed to 1 by using a different time scale
Let X(t) be the population size at timieClearly, {X(t);t = 0} is a continuous-
time Markov process with transition rates
g(n,n+1) = v+ na, n=0,
g(n,n—1) = ny, n>1
g(n,0) = 1, n>1
q(L0) = p+1

We are concerned with the transient solution of population size distribution at
any timet = 0 (i.e., of X(t)). Assume that the initial population distribution is

P(X(0) = n) = p,, n=0,1,..., (1)

and let
h(x) = X pax"
n=0

Note that if the system is initially emptthenh(x) = 1.
Let

P.(t) = P(X(t) = n), n=0,1,...;
then the Kolmogorov forward differential equation fyt) is (see e.qg., Rosg19])
Pa(t) = (N =DA + »)Poa(t) + (N + PR, 4(T)

— (NA + nu+ v + )R, (1), n=12,..., (2)
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Po(t) = HPy(t) + 2 Fo(t) = »Po(t)

= HP(t) = (v + DPo(t) + 1. 3)

Let

P(tX) = 3, Pu(t)xs
n=0

then it follows from(2) and(3) thatP(t, x) satisfies

aP(t, X) aP(t, x)
T=()\X2—(A+u)x+ W) x + (vx—v—1DP(t,x) + 1, 4)
with initial-boundary conditions
P(t1) =1  P(0Xx) =h(x). (5)

We are interested in solving the partial differential equatiénwith initial
condition(5). The following theorem gives the complete solution to this problem

THEOREM 2.1: Solutions to partial differential equation (4) and (5) are given as
follows. ForA = p=» = 0, the solution is

P(t,x) = e '(h(x) + et — 1)

forall x € (—oo0,00). For A = p= 0andv > 0, the solution is

P(t, X) — e(XVfol)t |:h(X) + (e(fxv+u+l)t _ 1):| (6)

—Xv+v+1

for all x € (—oo,00) except x=1 + 1/v, and at this point,

1 1
(o) =nfa+ ) e
14 14

For A =0, u> 0, andv = 0, the solution is

P(t,x) = explvp 1(x —1)(1— e H) — t]
X {h(xo) +ft exp—vu H(x—1e (e —1) + 7] d’r}, )
0

where

Xo=1+eM™M(x—1) (8)
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for all x € (—oo,00). For A > 0, u= A, andv = 0, the solution is

P(t,x) = e [1+ At(1— x)]""*h(Xo)

t
+et f e [1+ A(1—x)(t— )] A dr, 9)
0
where
1 -1
Xo=1+|[—— At 10
() o
for all x € (—o0,1+ 1/(At)), t > 0. For A > 0, u# A, and» = 0, the solution is
Alxo—1 v/A
P(t,x) =e™ [1 + % (et — 1)]

t _ —v/A
X {h(xo) +f0 e’ {1+ MJ+)\D (ew M7 — 1)] dr}, (12)

where

ef(pf}\)t A -1
Xo= 1+ [ - (WMt — 1)] (12)
x—1 H—A

for allt > 0 and

A ef(uﬂ\)t(ewﬁ)t _ 1)*1_

—oo<x<1—|—L1

Note that % in (12) is a function of x, t), but not ofr, even when it is used in the
integrand of (11).

Proor: We use thenethod of characteristicsee for example John[11]. We first
form the characteristic equation

df
G- AT O =x. (13)

Each solution of13) is called acharacteristic curvewhich is parameterized by the
initial positionx,. Lety = f — 1. We have

dy _ 2 _
E__)‘y + L=y, Y0 =x—-1

This is a Bernoulli equatianiWe can integrate it by introducing= 1/y to obtain

9 (u-Ng+A qO=
dt_ M q s q _Xo_l'
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Foru # A, this first-order linear equation has solution

t) = e (BNt 0) + (h=Mt _q
q(t) =e {q() Ll_)‘(e )},
or
-1
=1+ ekt + (=Mt _ .
f(=1+e [Xo_l i’ 1)] (14)
For the special cage= A, we find that
df
— = —-)XTf—-12
at A( )
The solution is
1 -1
f(t)y=1+ +At) . 1
(t) (Xo_ 1 A > (15)

These characteristic curves cover at least the refgiorD, —co < f <1} exactly
once More preciselythese characteristic curves cover the upper half-pjare0,
| f| < oo} exactly once for the case= 0. For the case > 0 andA = |, they cover
the domain

1
{t>0,—oo<f<l+—}
At

exactly onceFor the cas@ > 0 andA # |, they cover the domain

{t >0,—co<f<1l+ H e (K= Mt(gl=Mt — 1)1}

exactly onceSee Figures 1-5

So far we givexg and find a characteristic curde= f (t) starting af (0) = xin
(14) and(15). These solutions depend ap, S0 we write them ab= f (t, X). Now,
if we are given a paifx, t) in the upper half-planave can solve the parametey
from the equatiom = f (t, Xp) to find an equatiomng, = Xy(X, t), which is what we use
in the statement of the theoremt is easy to solve fox, and the solutiong, =
Xo(X, 1) are given in the theorem

Along each characteristic curye= f(t), we do the following calculation

dP(t, f(1))  aP(t,X) . IP(t,x) df(t)
dt ot ox  dt
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w>A>0

0 1

Ficure 1. Characteristic curves for the cage> A > 0.

0 1 x X

FiGuRre 2. Characteristic curves for the cage= A > 0.

Using the characteristic equatioh3) and the partial differential equatiqd), we
find that the partial differential equation becomes an ordinary differential equation

dP(t, f (1))
g efO=r=DPETM))+1 - PO,1(0) =hix).
This equation is first order and linedts solution is

t

P(t, f(t)) = e”d’(t)”tt[h(xo) +f exp—ve(r) + vr + 7]dr |,
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t H<A

WA 1 xq x

Ficure 3. Characteristic curves for the cage< A.

! L>0, A= 0

{x 1)

0 1 Xy

FIGURE 4. Characteristic curves for the cage> 0 andA = 0.

where

t
o(t) =f f(s)ds
0
Forpu= A > 0, we have

(L) =t+ % In(A(xg — Dt +1).
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p=A=0

(x.1)

0 1 xo

FiGcure 5. Characteristic curves for the cage= A = 0.

Whereas fopt = A = 0, we have
() = Xot.
If u# A andx > 0, we have

A(Xo—1)

A (eth=Mt — 1)}.

1
p(t) =t+ — In[1+
A
Also, whenu > A = 0, we have

$(t) =t+ P (% —1(e" —1).

We insert thep(t) functions back tdP(t, f (t)). We have thatfor p= A > 0,
t
P(t, f(t)) = e '[A(xo — Dt + 1] {h(xo) +f e [A(Xg—1)7 + 1]~ dr],
0

and forp# A > 0,

A(Xo—1)

P(t,f(1) =" [1 + (et — 1)} "

t _ —v/A
X [h(xo) +J; e’ {1+ % (em V7 — 1)] dﬂr}.

The solution for other cases 04, 4, ») can be similarly obtainedis a resultwe
have found all the solutions for partial differential equatighand(5). |
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CoROLLARY 2.1: For A > u= 0, there holds

. ( u) A
imPlt,- | = ———
t—>o0 A A4+ (A—pr

for all initial condition h(-).

(16)

Proor: We note foru < A thatf(t) = p/A is a characteristic curve along which we

have
t
P t E — e—te(p//\—l)vl h E +f e’re—(p/)\—l)m' dT
A A o
A
S
A+ A=Wy
ast — oo for any initial h. |

We remark that the asymptotic vali&6) agrees with the valu€38) of the
equilibrium solution

Let h™(x) be thenth derivative of functionh at x. Recall that under some
condition onh (i.e., the moment generating function of the initial population distri-
bution), we have
(”)(X)

n

h(x+y) = i

In particular it follows from (1) that

h(")(O)
n!

= P(X(0) = n) = p,, n=0,1,....

We are now ready to present the closed-form transient solution to the stochastic

system

THEOREM 2.2.: Forthe case\ = u=vr = 0, the transient probability distribution at
time tis

Po(t) =poet+1—¢e7!
P.,(t) =p,e™, n=1 a7

For the caser = p= 0and» > 0, we have for all r= 0 that

N1 ) 1 v \"
P.(t) = e (w+Dt = (w)ip., + ——
n(t)=e ,—goj!(y)pn] V+1<V+1>

e <V+1>12 = (vt)J< 1>nj. (18)

1/+l
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For the caser = 0, u> 0, andv = 0, we have for all r= 0 that

P.(t) = exp[—ﬁ (1—e™)— t]

n 1 [ p\ o
X —— M — (1 — e—ul)n—Jh(J)(l — e—ut)
<,—onl(n—1)! <u)

L1 <K>n f exp[z e H(eh — 1) + T](l —e )N d‘r)- (19)
nN\u/ Jo H

For the casex > 0, u= A, andv = 0, we have for all r= 0 that

Pn(t) — e—t(1+ )\t)fv/)wn(/\t)n

. At
Z{kl( — k! L+ A7y kH( +k+]>h(k)<1+/\t>]

—H< ) Jtef[1+)\(t—T)]-v/A-n(t—T)ndT. (20)
j= )

For the caser > 0,u# A, andv = 0, we let

(t) = —>
9(t) = =

Y (e(“*/\)t — 1)

a(t) = 1—(g(t) +e )

b(t) = """V (g(t) + e )2

c(t) = g(t)(g(t) + e~ V)™ (21)
then, the transient probability distribution for anyt 0 is

Pa(t) = e™'(1+g(t)e't V)=

x 3 [ i (C) )N @)

m+j+k=n

xjr[l<3 —i)(j +1)(j +k+l)-~-(n—1)}
i—o\ A

+ %exp[(—%nL V_l>trlj:<§ + i>

X fo e"[e" WV +g(t) — g(m)] A "(g(t) — g(7)" dr. (22)
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Remark: If the initial population size is a constakit thenh(x) = xX and
h™(a) = nltak™" n=12,...,K,

andh™(a) = 0 forn > K. Thus the transient solution for the case of initial condition
P(X(0) = K) = 1 is much simplifiedIn particular if the system is initially empty
the solution is even more simplified becalg® (a) = 0, except fom = 0, in which
caseitis1

Proor oF THEOREM 2.2: Formulag(17) follow easily from the Taylor expansion of
h(x) atx = 0. To establisi{18), we first note that the function i(6) (for x near zero
say |x| < 1) can be rewritten as

l -1
P(t,x) = e @Dih(x)e"* + —— (1— Y x>

v+1 v+1
e—(V+1)t v -1
- 1- x| e™
v+1 v+1

Now, apply the Taylor expansions

21
el/tx — Z p— (vt)nxn,
n=0 n!

v -1 it v \"
1- X = x"
( v+1 ) nzo<v+1> ’

h(x) = > px",
n=0

and the product formula

<§anx”)(§ bnx"> =S Sab, X (23)
n=0 n=0

n=0j=0

we then obtair(18).
We now prove(19). The function in(7) can be rewritten as

P(t,x) = exp{—f1 1—e™) — t] {exp[ﬁ 1- e“‘)x] h(1—e ™+ xe™)
t v
— o Ht(aur _ 1
+foexp[pe (e )+T]

14
X exp[a (1- e‘““‘”)x} dT}.
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Since

e 1
QX — 2 i a“X”,
n=0 n!
1
h(1—e ™+ xe™) = o h™ (1 — e H)e Hxn

n=0 'l

for

a=2(1—e*) and a=—(1—e ")
u u

applying the product formulé23) yields (19).
We next proveg20). We can write(10) as

gx
1—px

Xo=pP+

’

where

p and g=(1+At)"2

T 1+t

Expandingh as

o) =h(p+ 72 ) = 3 e (12 |

1 n—o n! 1-—px

S 9" _
=3 - h™(pX"(L—po"
n=0 'l

Note that the function it9) is the sum of two functionB, andP,,, where
P, = e Y1+ At — AtX)"*h(X,)
=e Y1+ At)"" (1 — px) "*h(X,)

=e {(1+At) A > % h™ (p)x™(1— px)~™*/,
m=0 J
Using Taylor expansion
=1 ) :
(1+X)"‘=§:j—la(a—l)--~(a—]-|—1)xJ (24)
j=0J:

for @ = —m— v/A and the product formulé23), we obtain the first part of20).
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The second par®, takes the form

P, = etfteT [1+AX1—x)(t—7)] " dr

(25)

- tfteT[l+A(t—T)]”/A[1— ML) ]_Wdf

1+ A(t—n)
Applying Taylor expansioii24) for

Alt—1)
1+ A(t—17)

a=—

in (25) gives rise to the second part &0).

Finally, we establisii22). We use the notation ¢21). Observe that the function
(12) can be written as

bx
1—cx

XO =a-+
Also, the function(11) is the sum of two functions
Axo—1 v/A
P = et[l + % (et — 1)] h(xo),

/\(XO - 1)

t Axo—1 o
X f eT |:1 + M (e(“fl\)‘r _ 1):| dT.
0 H— A

After some simple manipulatigmve can rewriteP, as

cx \A bx
P = e '[1+4 ge V] A <1+ ) h(a+ )
: [ 9 ] 1—cx 1—cx

wherea, b, c, andg are as defined if21). We now use expansions

<1+ o >VM—213<——1) <3—'+1> ixI(1— X))
1-cx)  Shjr A ! ¢ )

o) k
h<a+ bx ): E%h(‘o(a)x"(l—cx)*k. (26)

1-—cx k=0

v/A
P“ - e7I |:1 + (e(ui)\)t - 1):|
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The product of the two expansions(i26) is

cx \A bx
1+ h{a+ ——
1-—cx 1-—cx

o jhk
= EO{Xm(l—cx)‘m'Z %%(%—Qm(%—j+1>h(k)(a)}.
m= jtk=m J: R

We use the Taylor expansion

o

1-cx) ™™= 2 |ll m(m+1)---(m+i— 1)c'x.

i=0
Applying the product formulas agaiwe obtain the first part of22).
To find the second part dR2), we rewriteP,, as

t

Py = e [1—(1—Xo)g(t)] ”/*J e7[1— (1= x)g(7)] " dr.

0
It can be shown that

1-(1- t
1- - xgt) = o0,

1-(1- b
1- (1 %0)g(r) = %[” (#(;)g() _CH’

)
1-@1-agt)’

e*(“*/\)t
1-(1-a)gt) = e Nt g’

e M+ g(t) — g()
e W+ g(t)

1-(1-ag(7) =

We obtain

t

Py = &e ] [ e+ gt) — gl

0

g(7) g(t) —v/A
8 [“ b(l— 1-agn 1-@1- a)g(t))x] dr.

Because

9(7) - 9(t) _ 9(r) —g(®)
1-(1-ag(r) 1-QQ-ajgt) [e ™M +g(t)—g(n)]b’
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we have

t

Py = & e 1] [ erer o+ gt - glr]

0

g(t) —g(7) —v/A
X[l_e<““+gﬂr—mﬂ%l ar.

Using the Taylor expansigmve then obtain the second partRf of (22).
This completes the proof of Theoren2 u

3. STEADY-STATE ANALYSIS

The equilibrium solution of the system can be obtained by lettirgoo in Theo-
rem 22. However since the resulting differential equation for the steady state is
much easier to solyeve choose to analyze the steady-state case separately

Let the equilibrium distribution be denoted by,. Clearly, the equilibrium dis-
tribution always exists in the case of a positive catastropheTatefollowing bal-
ance equation is satisfied

v+m+np+D)m, =@ +—DN)7y 1+ (N+ D)y, n=1 (27)

oo

Vg = v+ O, i = ary + 1 — . (28)
i-1

LetI1(x) be the moment generating function{ef,;n = 0}; that is
(x) = > mpX",
n=0

then it follows from(27) and(28) that
(AXZ2—= A+ WX+ WI'(X)+ (px—v —DII(X) +1 =0, (29)

and the initial condition for the differential equationlig1) = 1.

We are interested in obtaining a closed-form solution(&8). We note that
Kyriakidis [15], using a renewal argumenibtained a closed-form solution far,
and he also provided a computational procedure to calcuigte > 0.

For conveniencewe let

A 1

A: —
p—A

B= .
H—A

v,

The following result completely characterizes the solution of differential equa-
tion (29).
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THEOREM 3.1: If p > A > 0, then (29) has a unique solution in& [0, u/A]; the
solution is given by

1 A/A 1 —A/A—1
1(x) = X(E_ ) (1—x)*Bf (;—t) (1-tPdt  (30)

on x€ [0,1], and is given by

1 A/A X —A/A—1
M(x) = X(‘—; - ) (><—1)BJ1 (% —t) (t—1)81dt (31)

on x € (1, p/A]. The equation has an infinite number of solutions or xi/A. If
K < A, the differential equation (29) has a unique solution i 4; the solution is
given by

1 A/ WA —A/A-1
1(x) = X(% - ) (1—x)’Bf <; —t> 1-1)81dt  (32)

onx&€ [0,u/A), and

— E — E A _ -B * _ E At _ B—1
I1(x) = /\(x A> (1—x) fw<t A) (1-1)tdt (33)

on x € [W/A,1], and the equation has an infinite number of solutions on &. If
A = u> 0, then (29) has a unique solution &, 1] given by

1
H(X) — % (1 _ X)*u/)\el/(/\(lfx))f (1 _ t)u//\fzefl/(/\(lft)) dt, (34)
X

and the equation has an infinite number of solutions on % If A = 0 and p> 0,
(29) has a unique solution on allx 0, and it is given by

X

1
I(x) = ﬁ e/WX|x — 1|*1/“f e WMWYt — 1| ¥ (t—1)"tdt (35)

1

Finally, if A = p= 0, the differential equation has a unique solution given by

I(x) = (36)

v+1—wvx

which is defined for all x wheln = 0, and it is defined for all x* 1 + 1/v when
v > 0.

https://doi.org/10.1017/50269964803171057 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803171057

100 X. Chao and Y. Zheng

Proor: We rewrite the differential equatiai29) as

I (x) + a(X) I (x) = /\1<§1 - )l(X -1 (37)
where
B v+1—wX A N B
a(x) = u T p—Aax o x—1
/\(X — x)(x -1

We thus find an integration factor

—A/A
|x — 1|8

‘ u

- =X
A
Because this factor contains absolute value which is not convenient to handle
what follows we treat several cases individually

Case 1: p< A. Inthis casexr > 0, A < 0, andB < 0. Forx < p/A, we choose the

integration factor
Hoy
- = 1—-x)B
( Iy > (1-x)

Multiplying both sides 0f37) by this factor we obtain

u —A/A 5 /_ . E_ -1 B . E_ —A/A B s
[(X_> (1-x) H(x)] = </\ x> (x—=1) </\ x> (1—x)°"

Because\ < 0, integrating this equation in the interv@, p/A] yields(32). Itis easy
to verify that the left limit of solutior(32) satisfies

H<E_)—+ 38
A ) A+ (A—pr (38)

Forx € (p/A,1), we take the integration factor

<x - LXl)_AM(l —x)®.

Consequentlywe have

“ —A/A 5 r_ . E_ -1 B . _E —A/A 3 5
[(x—;) (1-x) H(X)] = </\ ) (x—=1) <x /\) (1—-x)°"
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Similar to the previous reasoninge integrate the above equation in the interval
(p/A, x] and obtain(33). We can verify that the left- and right-hand side limits of this
solution at the poink = /A are consistenthat is

of2)of2)

implying that the solutiodI(x) is continuous for alk < 1. Finally, there holds
nmi-) =1
Case 2. p= A > 0. In this case

(x) v+1-—wvx 1 +1/ 1
a(X) = = - .
—“A(x—1)? —A(x—-1%? Arx-1

We find an integration factor
|1 _ Xlu//\efl/()L(lfx)) — (1 _ X)u/)xefl/(/\(lfx))
for x = 1. There are infinitely many solutions x> 1 so we restrict ourselves to
x = 1. We have
1
[(1 _ X)V/’\e_l/<'\(l_x))H(X)]' — (1 _ X)V/)\—Ze—l/(/\(l—x)).
A
To obtain the bounded solutidh(x) onx < 1, integrating the above equation yields
(34), which satisfies
mi-) =1
Case 3: > A > 0. Forx < 1, we take the integration factor
Hooy
- - 1-x)°5
(2 "o

Multiplying both sides of(37) by this factor and integrating yield80). For x €
(1, u/A), we take the integration factor

(E - >M(x —-1)B

Again, multiplying both sides 0f37) by this factor and integrating yield81). We
can verify that

II(x)—»1

asx — 1 from both sides of limplying that the solutiodI(x) is continuous on
[0, u/A].
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Case 4: A = 0 andu > 0. The differential equation becomes

M(X—=DIT'(x) + (v +1 — wX)II(X) —1 = 0.
An integration factor for this equation is

e‘(”/“)x\x — 1|1/u.
Multiplying the equation with this factowe obtain
(IT(x) e~ /WX | x — 1|¥H) = ﬁ e WX x — 1| YH(x—1)7L
Integrating this equation between 1 axdnd using the boundednessiofl), we
obtain(35). This solution satisfiesl (1) = 1 and it is defined for alk = 0.
Case 5: A = p= 0. The differential equation becomes
(rv+1-wvx)I(x)—1=0. (39)

The solution is given by36). The solution is defined for all, except for the point
x=1+1/r whenr > 0. The case’ = 0 is trivial, and it can be seen fro39) that
the solution id1(x) = 1.
This completely solve®9) for all ranges of parameters and proves Theorgim 3
[ |

In the next theoremwe present the explicit formulas fat, for all n = 0. First,
we need a lemma

LeEmMA 3.1: For u> A > 0, the function (30) can be written as

100 = um s [ um a1 A0 ey o

For A > pu= 0, the function (32) is equal to
(%) = (A = fol(/\y“A - [1— )\A(;/:—j__i) X} " dy.  (41)

For A = p> 0, the function (34) is equal to
II(x) = fl(l— Alny)=»/A <1+ MX>VM dy. (42)

0 1-Alny
For A = 0 and p> 0, the function (35) is equal to

I(x) = e”/“folexp{ﬁy“]exp[%1 (1—y“)x] dy. (43)
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Proor: We prove(43) first. We use the transformation

s=(1—-t)¥
in the function(35) to obtain
(1—x)¥¥ v
II(x) = e”/¥(1— x)l/“fO exp[—a a1- s“)] ds (44)
We use the transformation
s=y(l-x)

in (44) to find that

1(x) = e”X/“J exp[—ﬁ 1-@- x)y“)] dy.

0

A few steps of simplification will result irf43).
We prove(42) next We use the transformation

— exp| - T ]
s—exp_ AL—1)

in the function(34) to obtain

expl—1/A(1—x)]
II(x) = (1—x)"" exp[ f (=Alns)™*ds (45)
0

A(l—X) |

We use another transformation

1
S:yexp[_m—x)}

in (45) to obtain

1 1 —v/A
(— —Aln y> dy. (46)

I(x) = (1—x)*”/AJ T

0

Multiplying the integrand ir{46) by this factor and performing some simple algebra
yields (42).
We then proveé40). We use the transformation

s=(1-1)B

in function (30) to obtain

- A A/X (1—x)B —A/A—1
I(x) = H—<E— ) (1—X)’Bf <E—1+sw> ds  (47)
Ao\ 0 A
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Take another nontrivial transformati¢ttonformal transformation”

Hsw/\ B
V- (m) | (49)

This transformation has the property tlyat 0 whens= 0, and

(B =x)\B s
y_<u—Ax> ats=(1—x)"-

Furthermorethe inverse transformation is

_ (U yr?
H= Ayt

shA
Using the conformal transformatidd8) in (47), we obtain

A WA (HA=X)/(n=Ax)®
H(X) = (p—)\)v//\ (l— aX) (1—X)*Bf (u_)\yufx\)fv/)\ dy
0

(49)

We perform yet another transformation
3 ( H(1—x) )B
y= M — AX T

)\ —v/A 1
H(x)=(u—)\)V/"<1—ﬁx> f H— ATH A
0

in (49) to obtain

1-—x \7"

dr.

Multiplying the integrand by this factor and performing some simple algabea
obtain(40).

To prove(41), we do the same set of transformations on the fundid@pas we
did for the function(30) (the casqt> A > 0). The only differences are that the lower
integration limit in(47) is now

B
()
A

instead of Qand the corresponding valuein the transformatiof48) at this point
remains Qsincepl < A. The proof of Lemma 3 is thus complete u

Applying Lemma 31 and Theorem 3, we obtain the closed-form equilibrium
distribution for the stochastic system
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THEOREM 3.2: For u> A > 0, the equilibrium distribution of the process is

1
mo= (=0 | (uaye ) gy (50)
(0]

AN n v 1
™= (=7 (H (X +i- 1))[() (M= A" )27 (L= yr= )" dy,

i=1
n=12,.... (51)

For A > u = 0, the equilibrium distribution of the process is

1
mo= (A=W [ Gy =i ay, 52)
0

)\n n
Ty = EM—W”(H( +i- ))f (AYH7A = ATy = 1) dy,

n=12,.... (53)
For A = pu> 0, we have
1
T = fo (1—Alny)~"Ady, (54)
T ( /\) (f[( 1)) fol(l—/\lny)”“"(lny)”dy,
n=12,.... (55)
For A =0,u> 0, we have
S <5>newfexp[z yu](l— yWdy,  n=012,... (56)
nt \ 0 u

For A = pu= 0, there holds

_ 1 ( z > =0 57
™= i\p+1) T (57)

Proor: First, formula(57) follows directly from Taylor expansion of the function

(36) atx = 0. Formulag’50)—(56) follow from Lemma 31 and Taylor expansions of

the exponential functioe¥ and(1 — x)". The proof of Theorem .2 is complete
|

Remark: The equilibrium probability for the system to be emjite., 7o) is con-
sistent with the solution obtained by Kyriakidis5]. Howeverwe point out an error
in Kyriakidis [15] that in his formula forzro for the caset > A > 0, there should be
absolute value for the multiplication factor and the integrand

https://doi.org/10.1017/50269964803171057 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803171057

106 X. Chao and Y. Zheng

Acknowledgments

This research was partially supported by NSF grants under DMI-9908294 and DMI-01@6084C.)
and NSF-DMS-00718560 Y. Z.).

References

1

10.

11
12

13
14

15.

16.

17.

18.

19
20.

21

22,

23.

BartoszynskyR., Buhler W.J, Chan W., & Pearl D.K. (1989. Population processes under influ-
ence of disasters occurring independent of population Saernal of Mathematical Biolog27:
179-190

. Boucherig R.J (1992. Product form in queuing network&npublished PID. thesis Tin Bergen

Institute The Netherlands

. Brockwell, PJ (1985. The extinction time of a birthdeath and catastrophe process and of a related

diffusion model Advances in Applied Probability7: 42-52

. Brockwell, P (1986. The extinction time of a general birth and death process with catastrophes

Journal of Applied Probability23: 851-858

. Brockwell, PJ, Gani J, & Resnick S.I. (1982. Birth, immigration and catastrophe processes

Advances in Applied Probability4: 709-731

. Chag X. (1995. A queueing network model with catastrophe and product form solu@perations

Research Letter$8: 75-79

. ChenA. & RenshawE. (1997). TheM/M/1 queue with mass exodus and mass arrivals when empty

Journal of Applied Probabilityd4: 192-207

. Gripenberg G. (1983. A stationary distribution for the growth of a population subject to random

catastropheslournal of Mathematical Biolog$7: 371-379

. Halfin, S. & Whitt, W. (1981). Heavy-traffic limits for queues with many exponential serv€p-

erations ResearcR9: 567-588

Jaiswa) N.K. (1960. Time-dependent solution of the bulk-service queuing probl®mperations
Researct8: 755772

John F. (1982. Partial differential equationsNew York: Springer-Verlag

Kelton, W.D. & Law, A.M. (1985. The transient behavior of thd/M/s queue with implication for
steady-state simulatio®perations ResearcB3: 378—396

Kleinrock L. (1975. Queueing systemsol |: Theory New York: Wiley.

Kumar, B.K. & Arivudainambi D. (2000. Transient solution of akl/M/1 queue with catastrophes
Computers & Mathematics with ApplicatioA§: 1233-1240

Kyriakidis, E.G. (1994. Stationary probabilities for a simple immigration—birth—death process un-
der the influence of total catastroph&atistics and Probability Letterd0: 239-240

MasseyW.A. & Whitt, W. (1993. Networks of infinite-server queues with nonstationary Poisson
input Queueing Systems: Theory and Applicati@8s183-250

Morseg PM. (1955. Stochastic properties of waiting line®urnal of Operations Research Society
of America3: 255-261

PegdenC.D. & RosenshingM. (1982. Some new results for tHd/M/1 queue Management Sci-
ence28: 821-828

Ross S. (2000. Introduction to probability mode]s7th ed San Diego CA: Academic Press
Rothkopf M.H. & Oren, S.S. (1979. A closure approximation for the nonstationayM/s queue
Management Scien@s: 522-534

Saaty T.L. (1960. Time-dependent solution of the server Poisson quéyerations Researc&
773-781

van Doorn E. (1981). Stochastic monotonicity and queueing applications in birth—death processes
Lecture Notes in Statistics Voi. New York: Springer-Verlag

Whitt, W. (1981). Comparing counting processes and queéelwances in Applied Probability3:
207-220

https://doi.org/10.1017/50269964803171057 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964803171057

