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Several new results on the bifurcation and instability of nonlinear periodic travelling
waves, at the interface between two fluids in relative motion, in a parametric
neighbourhood of a Kelvin–Helmholtz unstable equilibrium are presented. The
organizing centre for the analysis is a canonical Hamiltonian formulation of the
Kelvin–Helmholtz problem presented in Part 1. When the density ratio of the upper
and lower fluid layers exceeds a critical value, and surface tension is present, a
pervasive superharmonic instability is found, and as u → u0, where u is the velocity
difference between the two layers and u0 is the Kelvin–Helmholtz threshold, the
amplitude at which the superharmonic instability occurs scales like (u0 − u)1/2 with
u < u0. Other results presented herein include (a) new results on the structure of
the superharmonic instability, (b) the discovery of isolated branches and intersect-
ing branches of travelling waves near a critical density ratio, (c) the appearance
of Benjamin–Feir instability along branches of waves near the Kelvin–Helmholtz
instability threshold and (d) the interaction between the Kelvin–Helmholtz, superhar-
monic and Benjamin–Feir instability at low amplitude.

1. Introduction
In Part 1 (Benjamin & Bridges 1997), a new Hamiltonian structure for the Kelvin–

Helmholtz problem for both a single-valued interface and an overhanging multi-
valued or breaking interface, as well as the implications for conservation laws and
the linearized Kelvin–Helmholtz (KH) problem, were presented. In this paper the
implications of the Hamiltonian formulation for the bifurcation and stability of
nonlinear travelling waves (TWs) near a KH unstable equilibrium are studied. The
finite-amplitude TWs and their instabilities near the KH threshold are likely to
provide a backbone for the complex roll-up, leading to interfacial wave-breaking
and a complicated mixing layer, which is observed in experiments and numerical
simulations (cf. Drazin & Reid 1981, §1.4). One of the results of the analysis of
TWs in this paper is the discovery of a pervasive superharmonic (SH) instability
of finite-amplitude TWs, which coalesces with the KH unstable equilibrium and is
a potential mechanism for interfacial wave breaking and KH roll-up, before the
KH threshold. Other new results to be presented include (a) for all density ratios
exceeding a critical value, the positive-energy and negative-energy TWs are globally
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Figure 1. Schematic of the interfacial wave problem.
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Figure 2. Neutral curve for KH instability. The parameter τ is defined in §2.

connected and this connected branch has both a Benjamin–Feir (BF) instability and
an SH instability at low amplitudes. (b) In the neighbourhood of a critical density
ratio, the negative-energy and positive-energy TWs intersect transversely (see figure
16) with a change of SH stability precisely at the bifurcation point. (c) Saffman’s
theory for the SH instability is extended in order to determine whether positive or
negative slope, in the energy–wave speed diagram, corresponds to SH instability.
It is found that both positive and negative slopes may correspond to instability;
further information, which is available within the Hamiltonian formulation, is used to
determine precisely which slope corresponds to instability (cf. §§3.1, 3.2 and Appendix
B). (d) A novel interaction between the KH unstable equilibrium, and the SH and BF
instabilities of a nearby TW branch (see figure 4). In addition to their importance for
insight into the nonlinear KH problem, the results presented here are also of basic
interest for understanding the SH instability since it occurs at low amplitude in the
KH problem, in contrast with the classic water-wave problem, and can be studied, in
some completeness, analytically.

A schematic of the interfacial wave problem is shown in figure 1. The neutral
curve for the linearized KH problem – when surface tension is present – is shown in
figure 2. The equation for the neutral curve will be given below. The parameters ρ
and U and ρ′ and U ′ correspond to the constant densities and velocities in the lower
(unprimed) and upper (primed) fluid layers and

u
def
= U −U ′ and r

def
=
ρ− ρ′
ρ+ ρ′

.

The first nonlinear analysis of the KH problem is in the work of Drazin (1970).
Using a Stuart-Watson expansion, an ordinary differential equation model for the
bifurcation and stability of weakly nonlinear TWs was derived. In fact the instability
predicted by Drazin’s model equation is precisely an SH instability. Further aspects
of this model are considered in §2.4. Nayfeh & Saric (1972) derive the first space-
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time modulation equation for the KH problem valid in the neighbourhood of the
neutral curve in figure 2 away from resonances and the minimum point. Weissman
(1979) gives a comprehensive treatment including a multiple-scaling analysis in two
space dimensions and time and shows that a complex Klein–Gordon equation is the
appropriate modulation equation near the minimum point of the neutral curve in
figure 2. Some analysis of this modulation equation was presented by Weissman,
including exact solutions for kinks and pulses and a numerical study of the initial-
value problem, but surprisingly, the sideband instability of TWs was not considered
(see §4.2 for further discussion). Miles (1986) presented the first Lagrangian analysis
of the KH problem and recovered the previous results of Drazin (1970) and Nayfeh
& Saric (1972). There has also been a number of numerical studies of aspects of the
the KH problem including roll-up (cf. Yuen 1984; Bontozoglou & Hanratty 1988 and
the references in Drazin & Reid 1981, §1.4 and Part 1) as well as numerical studies of
sideband instabilities (cf. Yuen 1984; Pullin & Grimshaw 1985). The experiments of
Thorpe (1969, 1978) show substantial agreement between the theoretical predictions
of the KH theory and experiments with immiscible fluids. In Bridges, Christodoulides
& Dias (1995) the spatial bifurcations of interfacial waves are considered with
U = U ′ = 0 and surprisingly the bifurcation structure of the TWs, when considered
as functions of the wavenumber, is similar to that found for the nonlinear TWs near
the KH instability. In Dias & Bridges (1994) the Hamiltonian formulation of Part 1
is used to study the interaction between interfacial standing waves and TWs.

In this paper the nonlinear TWs near a KH unstable equilibrium are studied from
a Hamiltonian perspective as follows. Let η(x, t) be the interfacial wave height and
define

Φ(x, t) = φ(x, y, t)

∣∣∣∣
y=η(x,t)

and Φ′(x, t) = φ′(x, y, t)

∣∣∣∣
y=η(x,t)

(1.1)

where φ and φ′ are the velocity potentials in the lower and upper fluid layers
respectively. Throughout this paper the fluid layers will be taken to be infinite in
extent. Define

ζ(x, t) = ρΦ(x, t)− ρ′Φ′(x, t) . (1.2)

Then the main result of §3 of Benjamin & Bridges (1997, hereafter denoted by I), is
that the governing equations for the KH problem are completely characterized by the
canonical Hamiltonian representation

∂

∂t

(
η
ζ

)
=

[
0 1
−1 0

](
δH/δη
δH/δζ

)
(1.3)

where H(η, ζ) is the total disturbance energy. The novelty of (1.3) is that the potentials
φ and φ′ do not appear independently but only their boundary values constrained
in the form (1.2). For periodic TWs the dependent variables are expanded in Fourier
series,

η(x, t) =
∞∑
n=1

An(t) cos nkx+ Bn(t) sin nkx,

ζ(x, t) = 1
2
C0(t) +

∞∑
n=1

Cn(t) cos nkx+ Dn(t) sin nkx ,

 (1.4)

where the average of η is set to zero. The analysis throughout the paper will be based
on an N-term approximation of the Fourier series (1.4).

For any fixed N let X (t) = (X 1(t), . . . ,XN(t)) ∈ R4N with

X n(t) = (An(t), Bn(t), Cn(t), Dn(t)) ∈ R4 , t ∈ R .
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330 T. B. Benjamin and T. J. Bridges

Then the object of §2.1 of the present paper is to reduce (1.3), for arbitrary but finite
N, to the finite-dimensional Hamiltonian system

X t = JN∇H(X ) , X (t) ∈ R4N (1.5)

where H(X ) is the total (disturbance) energy evaluated on the finite Fourier series and
JN is a standard symplectic operator on R4N . The difficulty with the reduction from
(1.3) to (1.5) is that the functional dependence of the energy on ζ is not apparent.
The variational principle of I, §3.1 proves that the energy depends on ζ and provides
an explicit and constructive method for obtaining this dependence.

Before proceeding to the nonlinear problem, an analysis of a single-mode approx-
imation to the KH problem is instructive. It indicates how the variational principle
of I, §3.1 generates a non-degenerate symplectic structure and also relates the KH
instability to a classic – collision of imaginary eigenvalues of opposite Krein signature
– instability in Hamiltonian systems. A single-mode approximation for the interfacial
position η(x, t), satisfying the linearized equations, is

η(x, t) = q1(t) cos kx+ q2(t) sin kx (1.6)

where k is a fixed wavenumber. For the velocity potentials in the lower and upper
layers let

φ(x, y, t) = eky[e1(t) cos kx+ f1(t) sin kx],
φ′(x, y, t) = e−ky[e′1(t) cos kx+ f′1(t) sin kx] .

}
(1.7)

The functions φ and φ′ are harmonic in the lower and upper fluid layers respectively
and satisfy the far-field boundary conditions. It remains to satisfy the (linearized)
boundary conditions at the interface (Drazin & Reid 1981, p. 17; I §2)

ρηt + ρUηx − ρφy = 0
ρ′ηt + ρ′U ′ηx − ρφ′y = 0

ρ(φt +Uφx)− ρ′(φ′t +U ′φ′x) + (ρ− ρ′)gη − σηxx = 0

 at y = 0 (1.8)

where g and σ are the coefficients of gravity and surface tension respectively.
Substitution of (1.6) and (1.7) into (1.8) results in the following six ordinary

differential equations:

ρ
de1

dt
− ρ′de

′
1

dt
+ ρkUf1 − ρ′U ′kf′1 + [(ρ− ρ′)g + σk2]q1 = 0,

ρ
df1

dt
− ρ′df

′
1

dt
− ρkUe1 + ρ′U ′ke′1 + [(ρ− ρ′)g + σk2]q2 = 0,

ρ
dq1

dt
+ ρkUq2 − ρke1 = 0,

ρ
dq2

dt
− ρkUq1 − ρkf1 = 0,

ρ′
dq1

dt
+ ρ′kU ′q2 + ρ′ke′1 = 0,

ρ′
dq2

dt
− ρ′kU ′q1 + ρ′kf′1 = 0 ,

which can be recast into the interesting form

KZ t = ∇H(Z) (1.9)
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with

Z =


q1

q2

e1

f1

e′1
f′1

 and K =

[
0 −ρI 2 ρ′I 2

ρI 2 0 0
−ρ′I 2 0 0

]
.

The function H(Z) is the quadratic part of the total (disturbance) energy for the
system evaluated on the single-mode solution (1.6) and (1.7) (cf. §2, (2.2) and (2.3));
that is, H = K + V , with K the (disturbance) kinetic and V the potential energy and

K = 1
2
ρk(e2

1 + f2
1) + 1

2
ρ′k(e′21 + f′

2
1 )− ρUk(e1q2 − f1q1) + ρ′U ′k(q2e

′
1 − q1f

′
1),

V = 1
2
[(ρ− ρ′)g + σk2](q2

1 + q2
2) .

}
(1.10)

The system (1.9) is a Hamiltonian system in a generalized sense. The operator
K is skew-symmetric but it is not invertible (it has a two-dimensional kernel). The
degeneracy arises because the kinetic energy depends on too many variables. This
degeneracy can be eliminated by using the variational principle of I, §3.1. Let

ζ(x, t) = p1(t) cos kx+ p2(t) sin kx . (1.11)

Then the constraint [ρφ− ρ′φ′]|y=0 = ζ for the single-mode approximation is

ρe1 − ρ′e′1 = p1, ρf1 − ρ′f′1 = p2 . (1.12)

In the single-mode setting the variational principle of I §3.1 is then

K(q, p) = minK(e1, f1, e
′
1, f
′
1, q) subject to the constraint (1.12)

with q : R→ R2 fixed. This is an elementary constrained variational problem on R4

with unique solution e1

f1

e′1
f′1

 =
1

ρ+ ρ′

 p1

p2

−p1

−p2

+
U −U ′
ρ+ ρ′

 ρ′q2

−ρ′q1

ρq2

−ρq1

 . (1.13)

In other words, the variational principle leads to a transformation from (e1, f1, e
′
1, f
′
1, q)

to (q, p) that reduces the overspecified system onR6 to a standard Hamiltonian system
on R4. In terms of the transformed variables (q, p) the Hamiltonian function for the
system is

H =
1

2

k

ρ+ ρ′
(p2

1 + p2
2) + kc0(p2q1 − p1q2) +

1

2

ρρ′k

ρ+ ρ′
(u2

0 − u2)(q2
1 + q2

2) (1.14)

where

c0 =
ρU + ρ′U ′

ρ+ ρ′
, u2

0 =
ρ+ ρ′

ρρ′k
(σk2 + (ρ− ρ′)g) and u = U −U ′ . (1.15)

Note that H is again the quadratic part of the total (disturbance) energy but in
terms of the new coordinates. The governing equations for the single-mode linear
approximation are then

q̇j =
∂H

∂pj
and ṗj = −∂H

∂qj
j = 1, 2
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u = u0 u " u0u = u*u = 0

Figure 3. Schematic of the eigenvalue position in the complex λ-plane for the linear Hamiltonian
system (1.14), as a function of u = U −U ′ when U ′ = 0. The KH instability corresponds to u > u0.

or

d

dt

 q1

q2

p1

p2

 =



0 −kc0

k

ρ+ ρ′
0

kco 0 0 kρ+ ρ′

− ρρ′k

ρ+ ρ′
(u2

0 − u2) 0 0 −kc0

0 − ρρ′k

ρ+ ρ′
(u2

0 − u2) kc0 0


 q1

q2

p1

p2

 .

With the ansatz (q, p) = eλt(q̂, p̂) the eigenvalues of the above linear system are

λ = ±i

(
kc0 ±

k

ρ+ ρ′

[
ρρ′(u2

0 − u2))
]1/2)

. (1.16)

The positions of the eigenvalues (1.16) in the complex λ-plane are shown in figure 3
as a function of u for the case U ′ = 0. Note that at some intermediate value of u
(denoted u∗) two eigenvalues pass through the origin but do not destabilize. Figure 3
shows that the KH instability corresponds, in the Hamiltonian setting, to a collision
of eigenvalues of opposite Krein signature (opposite energy sign) on the imaginary
axis. This instability has been well-studied in the Hamiltonian mechanics literature.
The most well-known example of an instability of this type is the instability of the
Lagrange equilibrium points in the restricted 3-body problem (cf. Deprit & Henrard
1968). A normal-form theory for the nonlinear problem near such an instability has
been developed by van der Meer (1985) and named Hamiltonian Hopf bifurcation.
A theory for bifurcation and stability of nonlinear periodic solutions near such an
instability, including degeneracies and an example of a spinning double pendulum,
is given in Bridges (1990, 1991). Some of the these results will be appealed to when
analysing the nonlinear bifurcating TWs near the KH instability in §2.

The critical value of u0 as a function of wavenumber k is shown in figure 2
recovering the usual hydrodynamic neutral curve for the KH instability (cf. Weissman
1979, figure 1). The annotation along the neutral curve will be discussed in §2.

As shown in I, §5 and figure 3, the KH instability corresponds to a collision of
modes of opposite energy sign. In §2 the nonlinear TWs emanating from these modes
of opposite energy sign are studied. Depending on the density ratio, these waves
may or may not interact at finite amplitude, and when they do interact there are
interesting implications for the stability along the branch. A critical value of the
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SH unstable

‘Stable’

BF unstable

cc0

<è<

Figure 4. Globally connected positive- and negative-energy TWs for r > r0 and u < u0

and their stability assignments.

density ratio is also studied and complicated bifurcations of TWs are found as well
as isolated branches of TWs above the KH unstable equilibrium.

The SH instability of TWs near the KH unstable equilibrium is studied in §3.
The SH instability for the classic water-wave problem was first investigated by
Longuet-Higgins (1978). Tanaka (1983, 1985) discovered in numerical calculations
the connection between the SH instability and the energy maximum for TWs. Saffman
(1985) gave an analytic proof, based on the Zakharov Hamiltonian formulation for
water waves, that a maximum (or minimum) of energy corresponds to a change in SH
stability. Recent work on SH instability has focused on the connection between SH
instability and wave breaking (cf. Tanaka et al. 1987; Jillians 1989; Longuet-Higgins
& Cleaver 1994). In the numerical study of Jillians (1989), all SH unstable modes
investigated led to wave breaking.

In the present work, a pervasive SH instability is found at low amplitudes near (but
before: u < u0) the KH unstable equilibrium with an amplitude scaling like (u0−u)1/2

as u → u0. Therefore, since SH instability has been shown to lead to wave breaking
in the classic water-wave problem, and KH roll-up is a form of wave breaking, it
is natural to propose SH instability as a new mechanism for the formation of KH
billows. We do not argue that this is the only – or even the predominant – mechanism:
indeed, a vortex sheet model explains roll-up quite adequately (cf. Saffman 1992, Chap.
8). However, the SH instability occurs for u < u0, at low amplitude, and for a wide
range of parameters and therefore provides a new mechanism for roll-up, before the
KH threshold. It also includes the physically important effect of interfacial tension.
In the experiments of Thorpe (1978), interfacial wave breaking was observed before
the KH threshold but there is insufficient evidence to determine if SH instability is
the mechanism there. In a similar vein, there are experimentally observed cases in
which a free mixing layer, which is stable according to the linear stability criterion of
Miles & Howard (minimum Richardson number exceeding 1

4
), is induced to undergo

turbulent collapse (Drazin & Reid 1981, §44.3).
The BF instability also plays a role near the KH threshold, but does not seem to

be as pervasive. A comprehensive treatment of BF instability of the TWs found here
will not be given but a particularly interesting case is treated in some detail (see figure
4 and §4). When r = (ρ−ρ′)/(ρ+ρ′) > r0, where r0 is a critical value of r and u < u0,
the bifurcating TWs are globally connected as shown in figure 4 (details in §§2–4).
Figure 4 shows a branch of TWs in the (c, ‖η‖)-plane, where c is the phase speed and
‖η‖ is the wave amplitude. The positive- and negative-energy TWs connect exactly
at finite amplitude. As u→ u0 this branch collapses into zero amplitude (noting that
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zero amplitude represents the KH unstable equilibrium). A surprising result is that,
for low amplitude, both the positive- and negative-energy TWs are BF unstable but
stabilize and then lose stability at finite (but small) amplitude to an SH instability.
The intermediate ‘stable’ region is in quotes since it is BF and SH stable but may
be unstable to other classes of disturbances. The bifurcation and stability structure
in figure 4 exists for a large region in parameter space near the KH threshold. The
detailed verification of figure 4 is given in §4.

2. KH instability, TWs and bifurcations
The governing equations for the KH problem can be found in Drazin & Reid

(1981, p. 17) and I, §2. The starting point of this section is the result of I, §3, that the
governing equations take the following Hamiltonian form:

∂

∂t

(
η
ζ

)
=

(
0 1
−1 0

)(
δH/δη
δH/δζ

)
. (2.1)

The Hamiltonian function is the total disturbance energy H = K +V and on a space
of `-periodic functions the potential energy is

V =
2

`

∫ `

0

{
1
2
(ρ− ρ′)gη2 + σ(

(
1 + η2

x

)1/2 − 1)
}

dx . (2.2)

The kinetic energy is composed of two parts, K = K1 +K2, with

K1 =
2

`

∫ `

0

{∫ η

−∞

1
2
ρ|∇φ|2dy +

∫ ∞
η

1
2
ρ′|∇φ′|2dy

}
dx,

K2 =
2

`

∫ `

0

{−ρUΦ+ ρ′U ′Φ′} ηx dx ,

 (2.3)

(cf. I, §3.1). The symplectic form for the system is

Ω =
2

`

∫ `

0

( dζ ∧ dη ) dx . (2.4)

In this section the KH problem will be reduced to a finite-dimensional Hamiltonian
system by expanding η and ζ in Fourier series. Fixing the mean interfacial elevation
to be zero, the finite Fourier series expansions take the form

η(x, t) =
N∑
n=1

An(t) cos nkx+ Bn(t) sin nkx,

ζ(x, t) = 1
2
C0(t) +

N∑
n=1

Cn(t) cos nkx+ Dn(t) sin nkx,

 (2.5)

where k = 2π/`. Introduce the 4N-vector of t-dependent Fourier coefficients

X (t) =

 X 1(t)
...

XN(t)

 ∈ R4N with X n(t) =

An(t)
Bn(t)
Cn(t)
Dn(t)

 , n = 1, . . . , N . (2.6)

The system (2.1) will be reduced to a finite-dimensional Hamiltonian system of the
form

X t = JN∇H(X ) , X (t) ∈ R4N (2.7)
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where N is arbitrary but finite. The operator JN is a standard symplectic operator in
the sense that J−1

N = JTN = −JN and H is the disturbance energy of the KH problem
restricted to the finite Fourier series.

The difficulty with this reduction is that the kinetic energy apparently depends on
φ and φ′ and not ζ. However the variational principle of I, §3.1 provides an explicit,
and constructive, method for eliminating the dependence on φ and φ′ in favour of ζ:

K(ζ, η) = min
ρΦ−ρ′Φ′=ζ

K(φ, φ′, η) (with η fixed) . (2.8)

2.1. The KH problem on Fourier space

To obtain the reduced Hamiltonian system (2.7), a finite-dimensional version of the
variational principle (2.8) will be implemented. Let

φ(x, y, t) = 1
2
e0(t) +

N∑
n=1

enky(en(t) cos nkx+ fn(t) sin nkx),

φ′(x, y, t) = 1
2
e′0(t) +

N∑
n=1

e−nky(e′n(t) cos nkx+ f′n(t) sin nkx) .

 (2.9)

The coefficients c0(t), e0(t), e
′
0(t) and the mean value of η(x, t) are important for mean

flow effects. The development throughout is for the case of infinite depth and therefore
the mean of η(x, t) is set to zero and c0(t), e0(t) and e′0(t) can be determined from
the other Fourier coefficients. However, the analysis can be generalized to include the
case where the mean-flow interactions are important, for example, when the upper
and/or lower fluid layers are of finite extent.

On the finite-dimensional space of Fourier coefficients, the constraint (1.2) takes
the vector form

ρM+h− ρ′M−h′ = ζ̂ , (2.10)

where

ζ̂ =

{
C
D

}
, h =

{
e
f

}
and h′ =

{
e′

f′

}
(2.11)

are 2N-dimensional vectors of Fourier coefficients. The matrices M± are non-
symmetric 2N × 2N matrices with

M± =

[
M±1 M±2
M±3 M±4

]
(2.12)

where M±j , j = 1, . . . , 4 are N × N matrices that depend on Aj and Bj , j = 1, . . . , N.

Explicit expressions for the matrices M± are given in Appendix A.
Define Γ± to be the following 2N × 2N symmetric matrices:

Γ± =

[
C± −S±
S± C±

]
(2.13)

where C± are N×N symmetric matrices and S± are N×N skew-symmetric matrices.
Explicit expressions for Γ± are given in Appendix A. The matrices Γ± are used to
express the kinetic energy in matrix form. Substituting (2.5) and (2.9) into K1 in
equation (2.3) and using (2.13) results in

K1 = 1
2
ρhTΓ+h+ 1

2
ρ′h′

T
Γ−h′ . (2.14)

For K2 further notation is needed. Let A′ ∈ RN have entries A′n = nkAn (n = 1, . . . , N)
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and B′ ∈ RN have entries B′n = nkBn (n = 1, . . . , N). Define the 2N-vector

R′ =

{
A′

B′

}
(2.15)

and the 2N × 2N unit symplectic matrix,

J =

[
0 IN
−IN 0

]
. (2.16)

Then K2 in (2.3) becomes

K2 = ρUR′
T
JM+h− ρ′U ′R′TJ M−h′ (2.17)

where M± are the matrices (2.12) that also appear in the definition of the constraint
(2.10). The variational principle (2.8) is now the straightforward finite-dimensional
constrained variational problem

K(X ) = minK(h, h′;A,B) for fixed (A,B) subject to the constraint (2.10).

This minimization problem can be carried out by introducing λ ∈ R2N as a vector of
Lagrange multipliers. Then a necessary condition for (h, h′) to minimize K is that the
Lagrange functional

L = K1(h, h
′) +K2(h, h

′)− λT
{
ρM+h− ρ′M−h′ − ζ̂

}
should be stationary with respect to variations of h and h′. The variations

δL
δh

=
δL
δh′

= 0 ,

result in the following linear equations:

Γ+h = UM+TJR′ +M+Tλ,

Γ−h′ = −U ′M−TJR′ −M−Tλ .

}
(2.18)

The matrices Γ± are invertible (they are a perturbation of a diagonal matrix (see
Appendix A)); therefore h and h′ can be expressed as functions of Aj , Bj (j = 1, . . . , N)
and λ. The vector of Lagrange multipliers is eliminated by substituting (2.22) into the
constraint set (2.10). Introduce the matrices

P = ρP+ + ρ′P− where P± = M±Γ±
−1
M±

T
, (2.19)

which are 2N × 2N and symmetric. Substituting (2.18) into the constraint (2.10) and
using (2.19) results in the following expression for the vector of Lagrange multipliers:

Pλ = ζ̂ − [ρUP+ + ρ′U ′P−]JR′ . (2.20)

Let

η̂ =

{
A
B

}
∈ R2N (2.21)

represent the vector of Fourier coefficients for the wave height. In (2.20) the 2N-vector

of Lagrange multipliers is a function of η̂ and ζ̂ only. Therefore substitution of (2.20)
into the kinetic energy results in the unique solution of the minimization problem.
After some algebra we obtain
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K = 1
2
ζ̂
T
P−1ζ̂ − c0ζ̂

T
JR′

+
ρρ′

ρ+ ρ′
(U −U ′)ζ̂

T
P−1[P+ − P−]JR′

+ 1
2
ρρ′(U −U ′)2R′

T
JP+P−1P−JR′ (2.22)

where c0 is defined in (1.15).

Let X̂ = (η̂, ζ̂)T ∈ R4N , then it is clear that K is a function of the vector X̂ of

Fourier coefficients. The vector X̂ is related to the vector X (cf. equation (2.6)) by a

permutation matrix, say X̂ = QX (an explicit expression for Q is easily written down
but is not needed). Therefore the total energy – Hamiltonian function – takes the
form

H(X ) =K(X ) +V(X ) , X ∈ R4N (2.23)

for arbitrary but finite N, with K given in (2.22) and V(X ) obtained by substituting
the first equation of (2.5) into (2.2).

To obtain the symplectic form for the reduced system, ΩN , substitute (2.5) into Ω
in (2.4), resulting in

ΩN =
2

`

∫ `

0

(
1
2
dC0

)
∧
(

N∑
n=1

dAn cos nkx+ dBn sin nkx

)
dx

+
2

`

∫ `

0

(
N∑
n=1

dCn cos nkx+ dDn sin nkx

)
∧
(

N∑
n=1

dAn cos nkx+ dBn sin nkx

)
dx

=

N∑
n=1

(dCn ∧ dAn + dDn ∧ dBn)

or in terms of a skew-symmetric bilinear form

ΩN(Y 1,Y 2) = −〈JNY 1,Y 2〉

where Y 1 and Y 2 are arbitrary vectors in R4N , 〈·, ·〉 is the standard inner product on
R4N and

JN = diag(J2, . . . , J2︸ ︷︷ ︸
N times

) with J2 =

(
0 I 2
−I 2 0

)
. (2.24)

This completes the reduction of the KH problem on spatially periodic functions to
the Hamiltonian system (2.7) on R4N with N arbitrary but finite.

2.2. Critical points of the energy and TWs

The translation invariance in x of the equations and the Hamiltonian structure
together lead to a natural variational principle for periodic TWs (cf. Benjamin 1984;
I, §3.3).

The translation symmetry of the full KH problem will result in an SO(2) symmetry
on Fourier space. A representation for this group on the finite-dimensional space of
Fourier coefficients is obtained as follows. The action of the translation group on
functions is

T θ · η(x) = η(x+ θ) ∀θ ∈ R . (2.25)

To obtain the action of T θ on the space of Fourier coefficients, act on η(x, t) in the
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first expression in (2.5) with T θ to obtain,

T θ · η(x, t) = η(x+ θ, t) =

N∑
n=1

An cos nk(x+ θ) + Bn sin nk(x+ θ)

=

N∑
n=1

(An cos nkθ + Bn sin nkθ) cos nkx

+

N∑
n=1

(−An sin nkθ + Bn cos nkθ) sin nkx . (2.26)

Therefore on Fourier space, with coordinates X ∈ R4N (cf. equation (2.6)),

T θ · X = (T 1θ · X 1, . . . ,T nθ · X n, . . . ,TNθ · XN) (2.27)

with

T nθ · X n
def
=

 cos nkθ sin nkθ 0 0
− sin nkθ cos nkθ 0 0

0 0 cos nkθ sin nkθ
0 0 − sin nkθ cos nkθ


An
Bn
Cn
Dn

 .

On Fourier space, the translation invariance results in an action which is the direct
sum of irreducible representations of the group SO(2). The SO(2)-invariance of the
Hamiltonian system (2.7) implies

H(T θX ) = H(X ) and TTθ JNT θ = JN ∀θ ∈ SO(2) . (2.28)

The connection between symmetry and conservation laws (I, §3.4) will also have a
finite-dimensional counterpart. The impulse is given by

I = −2

`

∫ `

0

ζηx dx =

N∑
n=1

nk(AnDn − BnCn) .

In vector notation the impulse on Fourier space can be written in the two equivalent
forms

I(X̂ ) = −ζ̂
T
JR′ or I(X ) = 1

2
〈X ,KX〉 (2.29)

where

K = diag(K1, . . . ,KN) with Kn = nk

 0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .

Since ∇I(X ) = KX , a short calculation, using (2.27), verifies that

JN∇I(X ) = JNKX = − d

dθ
T θX

∣∣∣∣
θ=0

(2.30)

which is the finite-dimensional counterpart to I, equation (3.12). Note that the SO(2)
invariance of H and (2.30) combine to prove that I(X) is an invariant since

0 =
d

dθ
H(T θX)

∣∣∣∣
θ=0

=

〈
∇H(X ),

d

dθ
T θX

∣∣∣∣
θ=0

〉
= −

〈
JNX t,

d

dθ
T θX

∣∣∣∣
θ=0

〉
(X t = JN∇H(X ))
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=

〈
X t, JN

d

dθ
T θX

∣∣∣∣
θ=0

〉
(skew-symmetry of JN)

= 〈X t,∇I(X )〉 (equation (2.30))

= It .

The advantage of this variational structure is that periodic TWs are relative
equilibria and given explicitly by

X (t) = T θ(t)U with θ(t) = −ct+ θ0 (2.31)

for some constant vector U ∈ R4N , from which it follows that

X t =
d

dt
T θ(t)U = −cT θ(t)

d

dθ
T θ

∣∣∣∣
θ=0

U = cT θ(t)JN∇I(U) (using (2.30)) .

Therefore, substituting (2.31) into (2.7) and using the Tθ invariance of H results in

cT θ(t)JN∇I(U) = JN∇H(Tθ(t)U) = JNT θ(t)∇H(U) = T θ(t)JN∇H(U)

or, since Tθ(t)JN is invertible,

∇H(U) = c∇I(U) ,

which defines the vector U in (2.31) and is the Lagrange necessary condition for the
constrained variational principle: TWs correspond to relative equilibria of the form
(2.31) with U a critical point of the energy on level sets of the impulse; a finite-
dimensional version of I, §3.3, equation (3.14). Comparing (2.31) with (2.25) shows
that (2.31) is a finite-dimensional version of a TW: η(x, t) = T θ(t)η(x) = η(x− ct+ θ0).

Let

F(U, c) = H(U)− cI(U), U ∈ R4N .

The 4N-vector of Fourier coefficients satisfying ∇F = 0 is obtained by solving the
4N nonlinear equations

∂F
∂An

=
∂F
∂Bn

=
∂F
∂Cn

=
∂F
∂Dn

= 0 for n = 1, . . . , N . (2.32)

In the remainder of this section the 4N algebraic equations (2.32) are solved for ‖U‖
small and N = 3. First we obtain some general simplifications that are independent
of N but require ‖U‖ small.

The first step in the elimination is to solve for the vector ζ̂ in terms of η̂. The

equation δF/δζ̂ = 0 must be solved where, by (2.22) and (2.29),

F(ζ̂, η̂; c) = V (η̂) + 1
2
ζ̂
T
P−1ζ̂ + (c− c0)ζ̂

T
JR′

+
ρρ′

ρ+ ρ′
(U −U ′)ζ̂

T
P−1[P+ − P−]JR′

+ 1
2
ρρ′(U −U ′)2R′

T
JP+P−1P−JR′ . (2.33)

The variation of F with respect to ζ̂, with η̂ fixed, results in a linear equation for

ζ̂ which after some algebraic manipulation becomes

ζ̂ = −(c− co)PJR′ −
ρρ′

ρ+ ρ′
(U −U ′)[P+ − P−]JR′ , (2.34)

where co = (ρU + ρ′U ′)/(ρ + ρ′) (cf. equation (1.15)). Explicit expressions for the
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matrices P± are given in Appendix A for N = 3. Back substitution of (2.34) into F
in (2.33) reduces F to a function of η̂. After some algebra we obtain

F(ζ̂(η̂; c), η̂; c) = V (η̂) + 1
2
(c− c0)

2R′
T
JPJR′

+
ρρ′

ρ+ ρ′
(U −U ′)(c− c0)R

′TJ[P+ − P−]JR′

+ 1
2

ρρ′

(ρ+ ρ′)2
(U −U ′)2R′

T
J[ρP− + ρ′P+]JR′ . (2.35)

It remains to give an explicit expression for V (η̂). When N = 3 we find

V (η̂) = 1
2
[(ρ− ρ′)g + σk2](A2

1 + B2
1) + 1

2
[(ρ− ρ′)g + 4σk2](A2

2 + B2
2)

+ 1
2
[(ρ− ρ′)g + 9σk2](A2

3 + B2
3) + 5

128
σk6(A2

1 + B2
1)3

− 1
8
σk4

[
3
4
(A2

1 + B2
1)2 + 12(A2

1 + B2
1)(A2

2 + B2
2)
]

− 3
8
σk4

[
(B3B

3
1 − A3A

3
1) + 3A1B1(A3B1 − A1B3)

]
+ · · · . (2.36)

Using P± in Appendix A and V in (2.36) it is now straightforward to solve the four
equations

∂F
∂A3

=
∂F
∂B3

=
∂F
∂A2

=
∂F
∂B2

= 0 (2.37)

to obtain A3, B3, A2 and B2 as functions of A1 and B1. Introduce the parameters

χ =
ρρ′

ρ+ ρ′
(U −U ′)2

k
and βn = −(ρ− ρ′)g + (χ− nσ)nk2, n = 1, 2, . . . . (2.38)

Then, assuming β2 · β3 6= 0, ∂F/∂A3 = ∂F/∂B3 = 0 results in

A3 =
k4

8β3

(3σ − 2χ)A1(A
2
1 − 3B2

1)− 2χrk3

β3

(A1A2 − B1B2) + · · · ,

B3 = − k4

8β3

(3σ − 2χ)B1(B
2
1 − 3A2

1)−
2χrk3

β3

(A1B2 + B1A2) + · · · ,

 (2.39)

and ∂F/∂A2 = ∂F/∂B2 = 0 results in{
A2

B2

}
=
[
γ1 + γ2(A

2
1 + B2

1)
]{A2

1 − B2
1

2A1B1

}
+ · · · (2.40)

where

γ1 = − 1
2

χrk3

β2

+
2

β2

χk3

(U −U ′) (c− c0), (2.41)

γ2 = 3
4

χrk7

β2
2

(2σ − χ)− 2χ3r3k9

β3β
2
2

+
1

β2

[
7
24
χrk5 − χrk7

4β3

(3σ − 2χ)

]
. (2.42)

The conditions βn 6= 0 for n > 2 are due to the presence of Wilton-type resonances.
In particular when β2 = 0 TW solutions with wavenumber k and 2k simultaneously
become unstable. The Wilton-type resonances near the KH instability are very
interesting (cf. Nayfeh & Saric 1972, §5; Weissman 1979, Appendix B). Recent results
on Wilton-type resonances for interfacial waves are given in Christodoulides & Dias
(1994). The present analysis will be restricted to classes of TWs that occur away from
such resonances.

Back substitution of (2.39)–(2.40) into F results in a reduced function depending
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only on A1, B1, c and parameters,

G(A1, B1; c) =F(ζ̂(η̂(A1, B1; c); c), η̂(A1, B1; c); c)

= − 1

2k2
(β1 + k(ρ+ ρ′)(c− c0)

2)z − 1

4k2
v1z

2 − 1

6k2
v2z

3 + · · · , (2.43)

where z = k2(A2
1 + B2

1),

v1 = 1
2
k2

[
3
4
σ − χ− χ2r2k2

β2

+
8rχ2k2

β2(U −U ′)
(c− c0)

]
(2.44)

and

v2 =
k2

64
(22χ− 15σ) +

k3

64β3

(3σ − 2χ)[96rχγ1 − 3k(3σ − 2χ)]

+ 1
4
γ2

1

[
14

k2
β2 − 18(χ− 2σ)− 48

χ2r2k2

β3

]
. (2.45)

The parameter γ1 is defined in (2.41). The fact that G(A1, B1; c) depends on the
combination A2

1 + B2
1 only is due to the SO(2)-invariance of the functional F.

The function G is the reduced ‘bifurcation function’ for the TWs. Setting

g1 =
∂G

∂A1

= 0 and g2 =
∂G

∂B1

= 0 (2.46)

results in a relation between the amplitude and the wave speed for travelling waves.
However the nonlinear algebraic equations that result from (2.46) are quite compli-
cated and contain some surprising results (cf. §2.3 and §2.5).

Before proceeding to the analysis of the critical points of G it is shown that the
equations (2.46), when suitably restricted, agree with previous results in the literature.
Both Weissman (1979) and Miles (1986) obtain the coefficient v1 using other methods
and with suitable change of notation this expression agrees with theirs. The coefficient
v2 is new. However we can compare with previous results for special cases. When
ρ′ = U = U ′ = 0 and the amplitude is converted to the wave steepness, the expression
for the velocity c agrees with Hogan (1980, equation (3.7g)). Previous analytical results
for interfacial waves carried to the fifth order are those of Tsuji & Nagata (1973) and
Holyer (1979) who studied travelling waves at the interface between two quiescent
fluids without surface tension. Setting σ = U = U ′ = 0 (resulting in c0 = 0) and
furthermore setting B1 = 0 (wave height taken to be an even function), ∂G/∂A1 = 0
results in

c2 =
ρ− ρ′
ρ+ ρ′

g

k

[
1 +

ρ2 + ρ′
2

(ρ+ ρ′)2
k2A2

1 +
(ρ− ρ′)2

4(ρ+ ρ′)4
(5ρ2 − 14ρρ′ + 5ρ′

2
)k4A4

1

]
,

which (with suitable changes of notation) agrees precisely with the result of Tsuji &
Nagata (1973, p. 65, equation (19)). Furthermore with B1 = σ = U = U ′ = 0 the
coefficients A2 and A3 (obtained in (2.39) and (2.40)) for the wave height reduce to
those obtained by Tsuji & Nagata (1973, p. 64, equation (15)).

2.3. Generic bifurcation of TWs near the KH threshold

TWs in the finite-dimensional Hamiltonian representation correspond to relative
equilibria of the form X (t) = T θ(t)U with U ∈ R4N satisfying ∇H(U) = c∇I(U). For
N = 3, and ‖U‖ sufficiently small, the solutions of this constrained critical point
problem were shown to be in one-to-one correspondence with critical points of the
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functional G(A1, B1; c) in (2.43). In this subsection the critical points of G for v1 6= 0
and their dependence on c, u and r are considered. Let

x = (x1, x2)
def
= (kA1, kB1) , z = x2

1 + x2
2 and τ =

(ρ− ρ′)g
σk2

(2.47)

with the restriction 0 < τ < 2 (τ = 2 corresponds to the Wilton-type 1 : 2 resonance).
Then the bifurcation equation for periodic TWs is

g(x, c, u, r)
def
= h(z, c, u, r)

(
x1

x2

)
= −k

(
∂G/∂A1

∂G/∂B1

)
= 0 , (2.48)

where

h(z, c, u, r) = D(c, u, r) + v1z + v2z
2 + · · · (2.49)

and

D(c, u, r) = β1 + k(ρ+ ρ′)(c− c0)
2,

with v1 and v2 defined in (2.44) and (2.45), and β1 is defined in (2.38). The parameter τ
does not appear explicitly in the parameter list. It is a ratio of gravitational forces to
surface-tension forces and is important but will play a secondary role in the analysis.
Non-trivial periodic TW solutions of small amplitude correspond to solutions of
h(z, c, u, r) = 0.

The idea is to expand h(z, c, u, r) in a Taylor series about the point (z, c, u) =
(0, c0, u0). A straightforward calculation using the definitions of h, v1 and v2 results in

h0 = h(0, c0, u0, r) = D(c0, u0, r) = 0,

h0
c = hc(0, c0, u0, r) = ∂D

∂c

∣∣∣∣
(c0 ,u0 ,r)

= 0,

h0
cc = hcc(0, c0, u0, r) = ∂2D

∂c2

∣∣∣∣
(c0 ,u0 ,r)

= 2k(ρ+ ρ′),

 (2.50)

h0
z = hz(0, c0, u0, r) = v1(c0, u0, r) = 1

2
σk2 (τ+ 1)2

2− τ (r2 − r2
0), (2.51)

h0
u = hu(0, c0, u0, r) =

2

u0

(1 + τ)σk2 , (2.52)

where c0 and u0 are defined in (1.15) and

r2
0 =

(4τ+ 1)(2− τ)
4(τ+ 1)2

.

Then, since h0 = h0
c = 0, the leading terms in the Taylor expansion of g are

g = x[ 1
2
h0
cc(c− c0)

2 + h0
zz + h0

u(u− u0) + · · ·] . (2.53)

When r 6= r0 it follows that h0
z 6= 0 and from (2.50) hocc > 0, therefore introduce the

scaling transformation

c̃− c̃0 = (c− c0)
(

1
2
h0
cc

)1/2
, z̃ = |h0

z |z and ũ− ũ0 = h0
u(u− u0) .

Substitution into (2.53) and neglect of the higher-order terms in the Taylor expansion
results in

x̃[(̃c− c̃0)
2 + εz̃ + (ũ− ũ0)] = 0 (2.54)

where ε = sign(h0
z). Equation (2.54) is the normalised truncated equation for the local
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ccc0c

r " r0

ccc0c

r ! r0

u ! u0 u = u0 u " u0

Figure 5. Branches of TWs in the amplitude–wave-speed plane near the KH instability when r 6= r0.
The dashed axis for u > u0 corresponds to the KH unstable equilibrium and the dashed part of the
branch for r > r0 and u < u0 corresponds to SH unstable TWs.

bifurcation of nonlinear periodic TWs near the KH instability (nearness measured
by |u − u0|). The KH threshold is u = u0 and when u > u0 the equilibrium solution
(represented by x = 0) is unstable.

The bifurcation diagrams for the TW solutions of (2.54) are shown in figure 5.
The vertical direction in each diagram of figure 5 corresponds to scaled amplitude
(z̃1/2 > 0). The two branches that join together when r < r0 and u = u0 detach
from the origin and persist ‘above’ the unstable region. On the other hand when
r > r0 and u < u0 the two families of TWs are globally connected and vanish into the
origin when u > u0 resulting in an absence of TW solutions when u > u0 (at least
locally). The SH instability that occurs along the branch for r > r0 and u < u0 will be
verified in §3. The bifurcation of TWs for r < r0 and r > r0 is dramatically different.
The singularity r = r0 is considered in §2.5; it leads to quite complicated branching
behaviour including bifurcation points and detached branches.

2.4. Drazin’s theory and time-modulation equations

The critical features of the bifurcation of TWs and the SH instability for the case
r 6= r0 are already contained in the analysis of Drazin (1970). Using a Stuart–
Watson expansion, Drazin derives a second-order ordinary differential equation for
the complex amplitude A(T ) of a normal mode, as a model equation for the weakly
nonlinear dynamics near the KH neutral curve, of the form

d2A

dT 2
= −αA+ a|A|2A, (2.55)

where sign(α) = sign(u0 − u) and sign(a) = sign(r − r0) (cf. Drazin (1970, equation
(41); Weissman 1979, §3). Drazin restricts A to be real in (2.55) but a more complete
picture is obtained by taking A to be complex-valued.

In the model equation (2.55) TWs, of the full problem, are represented by

A(T ) = A0e
iωT with ω2 + a|A0|2 = α . (2.56)

Taking into account that ω is shifted and scaled, (2.56) recovers exactly the results in
equation (2.54) and figure 5.

Linearizing (2.55) about the state (2.56) results in

d2B

dT 2
= −αB + 2a|A0|2B + A2

0e
2iωTB ,

which can be reduced to a constant-coefficient ODE by taking B(T ) = eiωTC(T ) with
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H (ω)

I (ω)

Figure 6. Evaluation of the functions H(ω) and I(ω), in equation (2.59) and below, along the
branch of TWs (2.56) when α > 0 and a > 0.

C(T ) satisfying

d2C

dT 2
+ 2iω

dC

dT
− a|A0|2C − aA2

0C = 0 . (2.57)

Taking C(T ) = C1e
λT + C2e

λT the stability exponent λ ∈ C satisfies

λ4 + 2(2ω2 − a|A0|2)λ2 = 0 . (2.58)

When a > 0 and α > 0 an instability – a superharmonic instability – occurs on the
branch of TWs when a|A0|2 > 2ω2 (cf. figure 5). In other words, the model equation
(2.55) predicts all the features of figure 5 including the SH instability. Although the
model equation (2.55) and its prediction of SH instability predate the discovery of
SH instability for water waves by several years, the precise nature of the instability
predicted by (2.55) was not recognized at that time.

The model equation (2.55) is also a Hamiltonian system. Let

A = q1 + iq2 ,
dA

dT
= p1 + ip2

and

H(q, p) = 1
2
(p2

1 + p2
2) + 1

2
α(q2

1 + q2
2)− 1

4
a(q2

1 + q2
2)2 . (2.59)

Then (2.55) is equivalent to

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
for j = 1, 2

which is precisely the truncated normal form for the Hamiltonian Hopf bifurcation
(cf. van der Meer 1985, p. 64). The above Hamiltonian system is integrable and the
second integral is

I = p2q1 − p1q2 = Im(AAT ) .

A useful geometric picture is obtained by plotting the solution (2.56) in the (H, I)-
plane. For example take α > 0 and a > 0 and evaluate H and I on the branch of
solutions (2.56),

H = 1
2
ω2|A0|2 + 1

2
α|A0|2 − 1

4
a|A0|4 =

1

4a
(α− ω2)(3ω2 + α),

I = ω|A0|2 =
ω

a
(α− ω2) .

Varying ω between −α1/2 and α1/2 results in a cut through a swallowtail with two
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1

0 1 2
s

r0
2

Figure 7. Critical value of the density ratio along the KH neutral curve.

cusp points as shown in figure 6 (compare with figure 4.19 of van der Meer 1985,
p. 79). The cusp points correspond to the change from SH stable to SH unstable. In
fact, in §3.3, this picture will be recovered for the full KH problem with H and I the
energy and impulse for the KH problem (see Figure 15).

The model equation (2.55) breaks down if a = 0 (i.e. r = r0) or a is near zero. The
KH problem near this degeneracy has never been considered. Weissman (1979, p. 653)
suggests that when the coefficient a is near zero the appropriate model equation is

d2A

dT 2
= −αA+ a|A|2A+ b|A|4A

but this equation is incorrect. It is now well known that modulation equations with
a small cubic term require more than the addition of a quintic term (cf. Johnson
1977; Eckhaus & Iooss 1989; Bridges 1994). One can infer from these results that the
modulation equation (2.55) when a is near zero has the form

d2A

dT 2
= −αA− 2im|A|2AT + a|A|2A+ b|A|4A

where the additional cubic term with coefficient m ∈ R is to be noted. Another
argument in support of this form is that with A(T ) = A0e

iωT the results to be
presented in §2.5 are recovered (cf. equations (2.60) and (2.68)). However we will
not consider this approach further, as, once the Hamiltonian framework for the
bifurcation and SH instability are in place it is straightforward to consider the
degenerate case in some completeness.

2.5. Degenerate bifurcation (r ≈ r0) and multiple branching

The singularity r = ro is associated with a distinguished value of the density ratio. The
parameter ro depends on τ and the parameter τ can be thought of as parameterizing
the KH neutral curve in the (k, u)-plane (see figure 2). The value τ = 2 corresponds to
k = ((ρ− ρ′)g/2σ)1/2 and at τ = 2 a resonance occurs between waves of wavenumber
k and 2k. The point τ = τ1 ≈ 1.68 will be defined shortly. Increasing k, and moving
along the neutral curve, τ continuously decreases from τ = 2 to τ = 0 (as k → ∞).
The value τ = 1 is associated with the minimum value of u such that a KH instability
occurs.

The distinguished point r0 depends on τ and this dependence is plotted in figure 7.
For example when τ = 1, r0 = 1

4

√
5, therefore when τ = 1, r = r0 corresponds to

ρ′

ρ
=

4−
√

5

4 +
√

5
≈ 0.28

which is physically realistic. In other words, at any point along the neutral curve, with
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0 < τ < 2, a degeneracy (r = r0) can be found at some physically realizable value
of the density difference. Another reason for the interest in the singularity r = ro is
that complicated bifurcations, that normally occur at large amplitude, arise at lower
amplitudes due to the singularity and can therefore be studied analytically.

Recall the Taylor expansion of g about the base point (0, c0, u0),

g =
[

1
2
h0
cc(c− c0)

2 + h0
zz + h0

u(u− u0) + · · ·
]
x .

When r = r0, h
0
z = 0 and therefore higher-order terms must be included to determine

non-degenerate local branching behaviour. Expand hz about the point r = r0 and the
base point:

hz = h0
z + h0

zr(r − r0) + 1
2
h0
zzz + h0

zc(c− c0) + · · · .
Therefore when h0

z = 0 a candidate local bifurcation equation is

g =
[

1
2
h0
cc(c− c0)

2 + h0
cz(c− c0)z + 1

2
h0
zzz

2 + h0
u(u− u0) + h0

rz(r − r0)z + · · ·
]
x = 0 .

(2.60)

Here, we will truncate the higher-order terms and analyse the solution set. The solution
set will correspond to the local bifurcation of TW branches in the neighbourhood
of the singularity (u = u0, r = r0). The fact that the truncated Taylor expansion
results in a non-degenerate function can be justified using Z2-equivariant singularity
theory of Golubitsky & Schaeffer (1985, Chap. VI). An analysis along these lines has
been carried out by Bridges (1990, 1991) for the general case of a finite-dimensional
Hamiltonian systems with a collision of imaginary eigenvalues of opposite sign.

In (2.50) and (2.52) it was found that h0
cc > 0 and h0

u > 0. It remains to determine
the derivatives h0

zz , h
0
cz and h0

rz . Since h = β1 + v1z + v2z
2 + · · · a straightforward

calculation using the definitions for v1 and v2 in (2.44)–(2.45) results in

h0
zr =

∂v1

∂r

∣∣∣∣
(c0 ,u0 ,r0)

= σk2r0
(τ+ 1)2

2− τ > 0 , (2.61)

h0
zc =

∂v1

∂c

∣∣∣∣
(c0 ,u0 ,r0)

= −4σk2 r0

u0

(τ+ 1)2

2− τ < 0 , (2.62)

h0
zz = 2v2(c0, u0, r0) =

σk2

64(2− τ)(3− τ) [30 + 67τ+ 326τ2 − 224τ3] . (2.63)

In order for the truncated expression in (2.60) to be solvable it must be non-degenerate
in some sense. First, it is necessary for all the Taylor coefficients to be non-zero and
h0
zr and h0

zc are non-zero. Let

f(τ) = 30 + 67τ+ 326τ2 − 224τ3,

then h0
zz 6= 0 is equivalent to f(τ) 6= 0 for τ ∈ (0, 2). However f(τ1) = 0 where τ1 ≈ 1.68

(the exact value is easily obtained but is not necessary here) and when 0 < τ < τ1,
f(τ) > 0 and for τ1 < τ < 2, f(τ) < 0 (see figure 2 for the location of τ1 on the KH
neutral curve). Therefore define

ε = sign(h0
zz) =

{
+1, 0 < τ < τ1,
−1, τ1 < τ < 2 .

(2.64)

The singularity τ = τ1 is not considered here. It is a singularity of codimension-3
and a complete analysis in the neighbourhood of τ = τ1 would require retention of
eighth-order terms in the reduced functional G(A1, B1, c). Henceforth τ is restricted to
τ ∈ (0, τ1) ∪ (τ1, 2) in which case h0

zz 6= 0.
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u

r

(1)

(2)

(2′) (3′)
(3)

(4)

(0 31 "1 32 (0

"0

(u0, r0)
(5)_ (5)+

Figure 8. Components in the (u, r)-plane near (u0, r0) with qualitatively distinct bifurcation
diagrams for the case 0 < τ < τ1 (ε = +1).

The leading-order terms in (2.60) when r = r0 and u = u0 form a homogeneous
quadratic in (c− c0) and z; that is,

h = 1
2
h0
cc(c− c0)

2 + h0
cz(c− c0)z + 1

2
h0
zzz

2 + · · · .

Therefore, in order for this expression to be non-degenerate we impose the additional
condition that (

h0
zc

)2 − h0
cch

0
zz 6= 0 (2.65)

which we will show is always satisfied. Let

m =
h0
zc

(|h0
cch

0
zz|)1/2

. (2.66)

Then the condition in (2.65) is equivalent to m2 6= ε (using the fact that h0
cc > 0) where

ε is as defined in (2.64). Using the expressions for h0
zc and h0

zz in (2.62) and (2.63) we
find that

m = −2
√

2

[
(8τ2 + τ+ 2)(3− τ)(4τ+ 1)

(τ+ 1)|f(τ)|

]1/2

(2.67)

and it is easy to show that m < −1 for all τ ∈ (0, 2). Consequently m2 > 1 and the
non-degeneracy condition m2 6= ε is never violated. Introduce the scaled variables

z̃ = z
(

1
2
|h0
zz|
)1/2

, c̃− c̃0 = (c− c0)
(

1
2
h0
cc

)1/2
,

ũ− ũ0 = h0
u(u− u0) and r̃ − r̃0 =

h0
rz(r − r0)(
2|h0

zz|
)1/2

.

Then g is transformed to (neglecting the higher-order terms)

g = x[(̃c− c̃0)
2 + 2m(̃c− c̃0)z̃ + εz̃2 + (ũ− ũ0) + 2z̃(̃r − r̃0)]

where m < −1 according to (2.67) and ε = ±1. For simplicity drop the tildes in the
scaled variables, then the normalized bifurcation equation for bifurcating TWs in the
neighbourhood of u = u0 and r = r0 is

g(x, c, u, r) = xh(z, c, u, r) (2.68)

with

h(z, c, u, r) = (c− c0)
2 + 2m(c− c0)z + εz2 + (u− u0) + 2z(r − r0) .

The bifurcation diagrams are obtained by setting h = 0 for fixed (u, r). There are
qualitatively two sets of bifurcation diagrams, depending on whether ε = ±1.
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(5)+ c
(0)

(1) (4) c(3)(2)

(2′) (3′) c

(5)

Figure 9. Branches of TWs in the amplitude–wave-speed plane corresponding to each of the
components in figure 8 for 0 < τ < τ1 (ε = +1). The label (0) corresponds to the point (u0, r0).

u

r

(1)

(2)

(2′) (3′)
(3)

(4)

(0 31 "132(0

"0

(u0, r0)
(5)_ (5)+

Figure 10. Components in the (u, r)-plane near (u0, r0) with qualitatively distinct bifurcation
diagrams for the case τ1 < τ < 2 (ε = −1).

The two-dimensional space (u, r) will be composed of components each with a
distinct branching diagram (cf. figures 8 and 10). The set of curves separating the
components in figures 8 and 10 are defined as follows:

B0
def
= {(u, r) : ∃ c such that h = hc = 0 and z = 0}
= {(u, r) : u− u0 = 0},

B1
def
= {(u, r) : ∃ (c, z), z > 0 such that h = hz = hc = 0}
= {(u, r) : (r − r0)2 + (m2 − ε)(u− u0) = 0, u 6 u0, r > r0},

H0
def
= {(u, r) : ∃ c such that h = hz = 0 and z = 0}
= {(u, r) : (r − r0)2 + m2(u− u0) = 0, u 6 u0} .

Along the curves B0 and B1 a bifurcation occurs in the wave-speed–amplitude (c, |x|)
plane and along the curve H0 a hysteresis point occurs in the (c, |x|) diagram. The
curves S1 and S2 are associated with the SH instability and are defined in §3.4. To
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(5)+ c
(0)

(1) (4) c(3)(2)

(2′) (3′) c

(5)–

Figure 11. Branches of TWs in the amplitude–wave-speed plane corresponding to each of the
components in figure 10 for τ1 < τ < 2 (ε = −1). The label (0) corresponds to the point (u0, ro).

the left of the curve S1 in the (u, r)-plane all branches of TWs are SH stable. The
bifurcation diagrams associated with figures 8 and 10 are shown in figures 9 and 11
respectively.

In the (u, r)-plane in figures 8 and 10 the region u > u0 is the (KH) unstable region
and is labelled (5)±. Note that isolated branches of TWs persist in this region for
both r < r0 and r > r0 (but |r − r0| small). The bifurcation diagrams for u < u0

(diagrams (1), (2), (3) and (4)) show the breakup of the global loops. Note that the
branching diagram in region (1) of figure 9 is identical to figure 5 (with r < r0 and
u < u0) at low amplitude. However, at large amplitude (figure 9 region (1)) the left
branch has a turning point and between regions (2) and (3) a bifurcation point moves
in from infinity pinching off the global loop that must exist for r� r0. In addition an
isolated branch exists ‘above’ the global loop in region (4) and the isolated branch
persists into the unstable region (5)+. Although figure 5 showed the absence of TWs
when r > r0 and u > u0, figures 9 and 11 show that in fact (at least for |r − r0|
small) isolated branches of TWs do exist above the (KH) unstable equilibrium region
when r > r0. Using a numerical scheme, Robinet (1993) has confirmed many of the
bifurcation pictures in figures 9 and 11. The dashed (solid) lines in figures 9 and
11 correspond to SH unstable (stable) TWs and these stability results are verified
in §3.

3. Interaction between the SH instability and KH instability
The SH instability corresponds to a loss of stability of a TW to a class of

perturbations of the same wavelength as the basic state. Moreover it corresponds to
an eigenvalue of the linearized stability equation passing through the origin. The SH
instability was first found in the numerical calculations of Longuet-Higgins (1978).
Subsequently Tanaka (1983, 1985) discovered, in further numerical calculations, that
the SH instability for water waves is associated with a maximum of the (disturbance)
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energy, considered as a function of the wave speed. Saffman (1985) proved that when
dH/dc = 0, where H is the total (disturbance) energy and c the wave speed, there
is a quadruplet of eigenvalues of the time-dependent problem which accumulate at
zero, with two due to symmetry, and the other two associated with a change of
stability (cf. figure 13). The proof of Saffman used only the Hamiltonian structure; in
particular, a finite-dimensional approximation for water waves based on the Zakharov
formulation. Recent work on the SH instability has focused on the connection between
SH instability and wave breaking (cf. Tanaka et al. 1987; Jillians 1989; Longuet-
Higgins & Cleaver 1994). Jillians’ numerical calculations indicate that all periodic SH
unstable modes develop to wave breaking.

In this section, Saffman’s theory for the SH instability is extended and applied
to the bifurcating TWs near the KH unstable equilibrium. When dH/dc 6= 0,
Saffman’s theory does not indicate whether dH/dc positive or negative is associated
with stability. In other words, a change of stability occurring when dH/dc = 0 may
correspond to either stability → instability or instability → stability.

However, with additional information, which is available within the Hamiltonian
structure, we will show that the sign of dH/dc associated with stability and instability
can be determined. First we note that, since ∇H(U) = c∇I(U) for a TW, it follows
that sign(dH/dc) = sign(dI/dc) when c > 0. Therefore without loss of generality
we can analyse dI/dc. Let L(U, c) be the linear operator associated with the second
variation of H(U)− cI(U),

L(U, c) = D2H(U)− cD2I(U), (3.1)

which, for the finite-dimensional Hamiltonian system (2.7), is a 4N × 4N symmetric
matrix. Let Π be the product of the non-zero eigenvalues of L(U, c). Then we will
show that when ΠdI/dc < 0 the TW is SH unstable. In fact, for the bifurcating TW
near the KH instability, the spectrum of L(U, c) can be explicitly analyzed. From the
spectral information we will be able to show that the bifurcating TWs are SH stable
(unstable) precisely when ΠdI/dc > 0 (respectively ΠdI/dc < 0). Using this theory
we will be able to verify the SH instabilities that are shown in figures 5, 9 and 11.

3.1. Impulse, wave speed and unstable eigenvalues

The Hamiltonian system (2.7) is taken as a starting point, and it is assumed that
there exists a one-parameter family of relative equilibria (TW) of the form (2.31) with
∇H(U) = c∇I(U), denoted by (U(c), c). Define the tangent vector to the solution
orbit by

g(U) = − d

dθ
T θU

∣∣∣∣
θ=0

. (3.2)

Then from (2.30) we have that

g(U) = JN∇I(U) . (3.3)

Given a branch of relative equilibria the linear stability problem is formulated as
follows. Linearizing (2.7) about T θ(t)U results in

Ẑ t = JND
2H(T θ(t)U)Ẑ ,

which has time-dependent coefficients. Therefore let Ẑ(t) = T θ(t)Z(t), with
θ(t) = −ct + θ0. Then, noting from the SO(2)-invariance of H , that T θD

2H(U) =
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(a)   D″(0) ! 0 (b)   D″(0) " 0 (c)   D″(0) " 0

Re (λ)

D (λ)

Figure 12. Possible behaviour of the spectral function D(λ) along the Re(λ) axis
when (a) D′′(0) < 0, (b) D′′(0) > 0 and (c) D′′(0) > 0.

D2H(T θU)T θ , the linear stability equation reduces to

d

dt
(T θ(t)Z(t)) = JNT θ(t)D

2H(U)Z(t) = T θ(t)JND
2H(U)Z(t)

and so, after dividing out T θ ,

Zt = JND
2H(U)Z − cJN∇I(Z) = JN[D2H(U)− cD2I(U)]Z = JNL(U, c)Z (3.4)

which has constant coefficients. The second equality in (3.4) follows since ∇I(Z) =
KZ = D2I(U)Z (see equation (2.29)). Therefore λ ∈ C is a stability exponent of the
linearised system (3.4) if D(λ) = 0 where

D(λ) = det[L(U, c) + λJN]. (3.5)

The linear operator L(U, c) is defined in (3.1). The relative equilibrium (TW) T θ(t)U
is linearly unstable if there exists a λ ∈ C with Re(λ) > 0 satisfying D(λ) = 0. Note
that D(λ) is real when λ is real.

Since det(JN) = 1 and the dimension of the matrix JN is even it follows that

D(λ) = λ4N + terms of lower degree

and so, when D(λ) is restricted to the real axis, D(λ) is positive for Re(λ) sufficiently
large.

D(λ) is an even function of λ since L(U, c) is symmetric, JN is skew-symmetric and
the determinant is invariant under transposition:

D(λ) = det[L(U, c) + λJN] = det[L(U, c)T + λJTN] = det[L(U, c)− λJN] = D(−λ) .

Because of symmetry D(0) = 0. This can be seen as follows. Since H(X ) and I(X )
are T θ-invariant it follows that

∇H(T θU)− c∇I(T θU) = 0 ∀θ ∈ SO(2)

and so defining ξ1 = g(U)

0 =
d

dθ
[∇H(T θU)− c∇I(T θU)]

∣∣∣∣
θ=0

= L(U, c)ξ1 .

Since D(0) = det[L(U, c)] and D(λ) is even we have proved that

D(0) = D′(0) = 0 .

Therefore D′′(0) < 0 is a sufficient condition for instability; that is, since D(λ) is
positive for λ ∈ R with λ sufficiently large, there is at least one value of λ ∈ R with
λ > 0 such that D(λ) = 0. A typical picture when D′′(0) < 0 is shown in figure 12(a);
although, under the stated conditions, it is also possible for D(λ) to have more (but
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an odd number of) real zeros. To connect the sign of D′′(0) with dI/dc, the spectrum
of L(U, c) and the identity (3.3) are used.

The matrix L(U, c) is symmetric and therefore its spectrum is real. Denote the
eigenvalues of L(U, c) by µj , j = 1, . . . , 4N and the corresponding eigenvectors by ξj ,
j = 1, . . . , 4N,

L(U, c)ξj = µjξj , j = 1, . . . , 4N .

Owing to symmetry, L(U, c)ξ1 = 0 and so µ1 = 0. Assuming µ2, . . . , µ4N are non-zero,
we will prove that

D′′(0) = 2Π
dI

dc
where Π =

4N∏
j=2

µj . (3.6)

Let Σ be the 4N× 4N matrix whose columns are the orthonormalized eigenvectors
of L(U, c). Then

ΣTL(U, c)Σ = Λ = diag[0, µ2, . . . , µ4N] ,

and

D(λ) = det[L(U, c) + λJN] = det[ΣT (L(U, c) + λJN)Σ] = det[Λ+ λK]

where

K = ΣTJNΣ =

[
0 −aT
a K̂

]
.

The particular form of K̂ , which is a (4N − 1)× (4N − 1) skew-symmetric matrix, is
not important. However the vector a has an interesting characterization:

a ∈ R4N−1 with aj = −〈ξ1, JNξj〉 , j = 2, . . . , 4N .

But JNξ1 = JNg(U) = −∇I(U) (using (3.3)) and so aj are the coefficients of the
eigenfunction expansion

− ∇I(U) =

4N∑
j=2

ajξj . (3.7)

Define Λ̂ = diag[µ2, µ3, . . . , µ4N] and suppose λ is sufficiently small so that

det[Λ̂+ λK̂] 6= 0. Then

D(λ) = det

[
Λ+ λ

(
0 −aT
a K̂

)]
= det

[(
0 −λaT

+λa Λ̂+ λK̂

)]
= det

[(
0 −λaT

+λa Λ̂+ λK̂

)(
1 0T

−λ[Λ̂+ λK]−1a I 4N−1

)]
= λ2det[Λ̂+ λK̂]aT [Λ̂+ λK̂]−1a (3.8)

and so, since detΛ̂ = Π ,

D′′(0) = 2 det[Λ̂]

4N∑
j=2

1

µj
a2
j = 2Π

4N∑
j=2

1

µj
a2
j . (3.9)

Now, differentiating ∇H(U) = c∇I(U) with respect to c results in

L(U, c)dU
dc

= ∇I(U) = −
4N∑
j=2

ajξj , (3.10)
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p dI
dc " 0 dI

dc = 0 p dI
dc ! 0

λr

λi

Figure 13. Position of the critical eigenvalues in the spectrum of the linearization
in (3.4) near Ic = 0.

the second equality following from (3.7). Equation (3.10) is solvable using an eigen-
function expansion resulting in dU/dc = −

∑4N
j=2 aj/µjξj , plus an arbitrary multiple

of ξ1. Therefore

dI

dc
= 〈∇I(U), dU/dc〉 =

4N∑
j=2

a2
j /µj ,

which when substituted into (3.9) completes the proof of (3.6). Saffman’s Theorem is
implicit in (3.6) since dH/dc = 0 implies dI/dc = 0 (when c 6= 0) and dI/dc = 0 and
the evenness of D(λ) imply that 0 is an eigenvalue of multiplicity four – assuming that
L(U, c) has only one zero eigenvalue. But (3.6) also contains sufficient information to
determine which sign of dI/dc (or dH/dc) corresponds to instability.

D′′(0) > 0 is a necessary but not sufficient condition for SH stability. When
D′′(0) > 0 the spectral function D(λ) could behave along the real axis as shown in
either figure 12(b) or 12(c). It could also have roots with non-zero imaginary parts
and Re(λ) > 0. However, for the TW branches near the KH instability we will
prove that when ΠdI/dc > 0 the spectral function D(λ) has no roots in the complex
half-plane Re(λ) > 0, and hence the TW solutions are SH stable. When ΠdI/dc > 0
for a TW, it is shown in Appendix B that it is a strict minimum of the energy on the
constraint set of constant impulse and therefore the spectrum of JNL(U, c) is purely
imaginary, with the only zero eigenvalue due to symmetry. The position of the critical
eigenvalues in the spectrum of JNL(U, c), along a branch of TWs near a point where
dI/dc = 0 is depicted in figure 13.

3.2. L(U, c) near the KH instability

In this subsection we show that the spectrum of L(U, c), evaluated at a TW near the
KH point, has the following characterization:

Σ(L(U, c)) = {0} ∪ µ2 ∪ σp (3.11)

where σp consists of 4N − 2 positive eigenvalues. Moreover, it will be shown that

sign(µ2) = −sign(hz) (3.12)

where h(z, c, u, r) is the reduced bifurcation function defined in equation (2.49). Based
on (3.11), (3.12) and the theory for SH instability in §3.1 we define the following
function whose sign will be in one-to-one correspondence with the SH stability
(∆SH > 0) and SH instability (∆SH < 0):

∆SH (z, c, u, r) = −hz
dI

dc
, since sign(Π) = sign(µ2) . (3.13)

It follows immediately from the analysis in §3.1 that ∆SH < 0 corresponds to SH
instability. The converse is a necessary but not sufficient condition for stability.
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However we show in Appendix B that ∆SH > 0 corresponds to SH stability. The BF
class of instabilities will be considered in §4.

The spectrum of L(U, c) is composed of three parts as indicated in (3.11). The zero
eigenvalue is due to symmetry. For the critical eigenvalue µ2 the expression in (3.12),
verified in Appendix C, is quite natural and is related to the Hessian of the reduced
function G(A1, B1; c), defined in (2.43), since(

∂G

∂A1

,
∂G

∂B1

)
= −2(A1, B1) h(z, c, u, r) = 0 . (3.14)

Therefore the Hessian of G is

Hess(A1 ,B1)(G) =

[
−2h− 4A2

1hz −4A1B1 hz
−4A1B1 hz −2h− 4B2

1hz

]
.

Along a solution branch h = 0 and it is clear that the determinant of Hess(A1 ,B1)(G)
evaluated at a solution is zero. Therefore the sign of the only non-zero eigenvalue of
the Hessian of G is

sign(Tr(Hess(A1 ,B1)(G))) = −sign(hz) .

(The minus sign arises due to the convention introduced in §2.3 when analyzing the
bifurcation equation.)

It remains to verify that L(U, c) has 4N − 2 positive eigenvalues. The argument is
that if L(0, c0) has 4N − 2 positive eigenvalues then, for ‖U‖ and |c− c0| sufficiently
small, these eigenvalues will remain positive. When U = 0 the matrix L(0, c0) is
diagonal . This follows from the expression forF in (2.33) by noting that the matrices
P± are diagonal when U = 0. Let L0 represent L(0, c0), then

L0 = diag[L(1)
0 , . . . ,L

(n)
0 , . . . ,L

(N)
0 ], (3.15)

where each of the matrices L(n)
0 are 4× 4 diagonal matrices given by

L(1)
0 =

∂2F
∂U2

1

(0, c0) = diag

[
0, 0,

k

ρ+ ρ′
,

k

ρ+ ρ′

]
,

L(n)
0 =

∂2F
∂U2

n

(0, co) = diag

[
−βn,−βn,

nk

ρ+ ρ′
,
nk

ρ+ ρ′

]
n = 2, . . . , N .

Clearly, L0 has two zero eigenvalues. The other 4N − 2 eigenvalues of L0 are positive
if βn < 0 for n > 2. Recall from equation (2.38) that βn is given by

βn = −(ρ− ρ′)g +

(
ρρ′

ρ+ ρ′
u2

k
− nσ

)
nk2

but at the KH instability point,

(ρ− ρ′)g = τσk2 and ρρ′ku2/(ρ+ ρ′) = (τ+ 1)σk2 .

Therefore

−βn = (n− 1)(n− τ)σk2 .

With the restrictions n > 2 and 0 < τ < 2 it is clear that −βn > 0, verifying that L0

has 4N − 2 positive eigenvalues.
Application of the result in (3.13) requires an expression for the impulse along a

solution branch. The impulse in matrix form was given in equation (2.29). Combining
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(2.29) with the expression for the vector ζ̂ given in (2.34) the impulse is

I = −(c− c0)R
′TJPJR′ − ρρ′

ρ+ ρ′
uR′

T
J[P+ − P−]JR′, (3.16)

where R′ is defined in (2.15) and explicit expressions for the matrices P± are given in
Appendix A. For N = 3 the expression in (3.16) can be simplified to

I = (ρ+ ρ′)k(c− c0)(A
2
1 + B2

1)− 2
ρρ′

ρ+ ρ′
uk2[A2(A

2
1 − B2

1) + 2A1B1B2] + · · · .

Substitute for A2 and B2 using (2.40), let z = k2(A2
1 + B2

1) and use the constants h0
cc

and h0
zc defined in (2.50) and (2.62), then

I =
1

2k2

[
h0
cc(c− c0) z + 1

2
h0
zcz

2 + · · ·
]
. (3.17)

Differentiating I with respect to c: dI/dc = Ic+Izzc, with zc obtained by differentiating
h(z, c, u, r) = 0: zc = −hc/hz , results in the following interesting expression for the SH
stability index:

∆SH (z, c, u, r) = −hz
dI

dc
= Izhc − Ichz = det

∣∣∣∣ hc hz
Ic Iz

∣∣∣∣ . (3.18)

To summarize, the analysis has shown that, locally, all existing branches of periodic
travelling waves are given by the zeros of the scalar function h(z, c, u, r) in (2.49)
and the SH stability type for the waves is determined by the sign of the second
scalar function ∆SH (z, c, u, r): ∆SH > 0 (∆SH < 0) corresponds to stability (respectively
instability).

3.3. SH instability when r 6= ro

When r 6= r0 the reduced function h(z, c, u, r) simplifies to

h(z, c, u, r) = 1
2
h0
cc(c− co)2 + h0

zz + h0
u(u− u0) + · · · ,

where expressions for h0
cc, h

0
z and h0

u are given in (2.50)–(2.52). In this case the impulse
simplifies to

I =
1

2k2
h0
cc(c− c0)z + · · ·

(the higher-order terms in I may be retained but will not change the local bifurcation
results qualitatively). The SH stability index in (3.18) becomes

∆SH = Izhc − Ichz =
1

2k2
h0
cc

[
h0
cc(c− c0)

2 − h0
zz
]

+ · · · . (3.19)

When r 6= r0 then sign(h0
z) = sign(r − r0) and sign(h0

cc) = +1 always, therefore ∆SH is
positive definite when r < r0, but when r > r0 the index ∆SH is positive only if

z <
h0
cc

h0
z

(c− c0)
2 . (3.20)

Application of the above result to figure 5 verifies that the branches for r < r0 are
SH stable whereas the globally connected branches occurring when r > r0 and u < u0

become SH unstable at finite amplitude as shown in figure 5.
Since changes of SH stability occur when dI/dc changes sign there is some advan-

tage in plotting the bifurcation diagrams in (I, c)- or (H, c)-space. When r 6= ro the
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(a) (b)I

c

c

H – c0I

Figure 14. Energy and impulse invariants versus wave speed along the branch of TWs in figure 5
when r > r0 and u < u0 with (a) impulse and (b) shifted energy: H − c0I .

I

H – c0I

Figure 15. Image of (H(c)− coI(c), I(c)) along the branch of TWs
in figure 5 in energy–impulse space.

impulse simplifies to I = (1/k)(ρ+ρ′)(c− c0)z+ · · ·. With u fixed, z can be considered
as a function of c by inverting h = 0, resulting in

I =
ρ+ ρ′

kh0
z

(c− c0)
(
−h0

u(u− u0)− 1
2
h0
cc(c− c0)

2
)

+ · · · . (3.21)

The impulse is plotted as a function of c in figure 14(a). The unstable branches in
figure 5 are clearly associated with a positive slope of dI/dc (since in this case h0

z > 0).
Note that the TWs when c < c0 (c > c0) are negative (respectively positive) impulse
waves.

The leading-order expression for the total disturbance energy along a branch of
TWs is

H = c0I +
1

2k2
[k(ρ+ ρ′)(c− c0)

2 − h0
u(u− u0)]z −

1

4k2
h0
z z

2 + · · · .

Again, considering u fixed and inverting h = 0, to obtain z as a function of c, H can
be considered as a function of c:

H = c0I +
1

4hozk
2

[
(h0
u)

2(u− u0)
2 − 2h0

uk(ρ+ ρ′)(u− u0)(c− c0)
2

− 3k2(ρ+ ρ′)2(c− c0)
4
]

+ · · ·
with I given in (3.21). The shifted energy, H − c0I , is plotted in figure 14(b) as a
function of c along the global branch in figure 5. The two changes of stability along
the branch occur when dH/dc = 0.

The pictures in figures 14(a) and 14(b) can be combined into a single figure in
energy-impulse space. The two functions H(c)− c0I(c) and I(c) parameterize a curve
in (H, I) space which turns out to be a cut through the swallowtail singularity as shown
in figure 15. The interesting feature of figure 15 is that the changes of SH stability
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for the TWs arise as cusp singularities in energy–impulse space! It is interesting
to compare figure 15 with figure 6 which was obtained using Drazin’s modulation
equation. Note also that the swallowtail singularity in figure 15 is precisely what
occurs in a normalized Hamiltonian system in the neighbourhood of a collision of
purely imaginary eigenvalues when plotted in energy–momentum space (see van der
Meer 1985, p. 79).

The change of SH stability along a branch is the dominant qualitative feature in
figure 5 when r > r0 and u < u0. The SH unstable branch occurs for all density ratios
satisfying r > r0 and in an open neighbourhood of the KH neutral curve and it occurs
at low amplitude, with the amplitude scaling like (u0−u)1/2 as u→ u0. Therefore, since
SH instability has been shown to lead to wave breaking in the classic water-wave
problem, and KH roll-up is form of wave breaking, it is natural to propose SH
instability as a new mechanism for the formation of KH billows, in the region of
parameter space just before (u < u0) the KH threshold.

3.4. SH instability when r ≈ r0
When r ≈ r0 it was shown in §2.5 that higher-order terms need to be retained in h;
we found that

h = 1
2
h0
cc(c− c0)

2 + h0
cz(c− c0)z + 1

2
h0
zzz

2 + h0
rz(r − r0)z + h0

u(u− u0) + · · ·

(with the coefficients defined in expressions (2.61)–(2.63)) from which it follows that

hc = h0
cc(c− c0) + h0

czz + · · · ,
hz = h0

cz(c− c0) + h0
zzz + h0

rz(r − r0) + · · · .

Dropping the 1
2
k−2 factor in the expression (3.17) for the impulse (which does not

affect the sign of ∆SH ) it follows that

Ic = h0
ccz + · · · ,

Iz = h0
cc(c− c0) + h0

czz + · · · .

Note that Iz=hc to the order shown. The expression (3.18) for the SH stability index
is therefore

∆SH =
[
h0
cc(c− c0) + h0

czz
]2 − h0

ccz [h0
cz(c− c0) + h0

zzz + h0
rz(r − r0)] .

Introduce the scaling that was used in §2.5: z̃ = z
(

1
2
|h0
zz|
)1/2

, c̃− c̃0 = (c−c0)
(

1
2
|hocc|

)1/2

and (̃r− r̃0)(2|h0
zz|)1/2 = h0

rz(r−r0). Then using m as defined in (2.66) ∆SH is transformed
to

∆SH = 2h0
cc

[
(̃c− c̃0)

2 + mz̃(̃c− c̃0) + (m2 − ε)z̃2 − (̃r − r̃0)z̃
]
,

with ε = ±1 as defined in equation (2.64). For simplicity the tildes are dropped in the
further discussion of the above expression. Noting also that the factor 2h0

cc does not
affect the sign of ∆SH , the SH stability index for TWs near the point (u0, r0) simplifies
to

∆SH = (c− c0)
2 + m(c− c0)z + (m2 − ε)z2 − (r − r0)z . (3.22)

A solution (z, c) of h(z, c, u, r) = 0 is SH stable if ∆SH (z, c, u, r) > 0 and SH unstable
if ∆SH (z, c) < 0. Setting ∆SH = 0 results in a curve in the (|x|, c)-plane separating
regions of stable and unstable type. Changes of stability along a branch will occur at
points that satisfy h = 0 and ∆SH = 0 simultaneously.
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Some general observations about ∆SH can be made. Recast equation (3.22) as

∆SH =
[
(c− c0) + 1

2
mz
]2

+ ( 3
4
m2 − ε)z2 − (r − r0)z . (3.23)

In §2.5 it was shown that m2 > 1 for all τ ∈ (0, 2) (see definition for m in (2.66)). In
fact it is easy to show that m2 > 4/3 for all τ ∈ (0, 2) (for example m2 ≈ 2.21 when
τ = 1). Therefore, 3

4
m2 − ε > 0 and it follows from (3.23) that ∆SH is positive definite

if r < r0; that is, all TWs are SH stable when r < r0.
A second observation is that ∆SH = 0 forms a closed compact curve in the (|x|, c)-

plane that always intersects the point (0, c0). This is seen by noting that ( 3
4
m2− ε) > 0

and recasting (3.23) as

∆SH =
[
(c− c0) + 1

2
mz
]2

+ ( 3
4
m2 − ε)

(
z − 1

2

(r − r0)
( 3

4
m2 − ε)

)2

− 1

4

(r − r0)2

( 3
4
m2 − ε)

.

Note also that ∆SH is negative in the region interior to the curve ∆SH = 0 and
furthermore, when r > r0, the region enclosed by the curve grows with increasing
r − r0. Therefore any solution of h = 0 passing through the interior (exterior) of the
curve ∆SH = 0 is of unstable (respectively stable) type.

The solution sets of h = 0 depend on whether ε = ±1 and furthermore depend
on the region in the (u, r)-plane (figures 8 and 10). In figures 9 and 11 the branches
of TWs with ∆SH < 0 (∆SH > 0) are SH unstable (SH stable) and are marked with
dashed lines (respectively solid lines).

When r 6 r0 the curve ∆SH = 0 is simply the point (0, c0), since, from (3.23),
∆SH = 0 implies (r − r0)z > 0, so the only solution when r < r0 is z = 0. However,
for r > r0, the curve ∆SH = 0 grows as r is increased. A critical value of r (say r̂) is
reached with

r0 < r̂ < r0 + [−(m2 − 1)(u− u0)]
1/2

when the region ∆SH < 0 first intersects a branch of solutions. This curve is marked as
S1 in figures 8 and 10. For r > r̂ and u < u0 some solutions of h = 0 pass through the
interior of ∆SH = 0 resulting in SH unstable TWs. Note that the detached branches in
figures 9 and 11 are SH stable and furthermore the globally connected branches for
r� r0 have stability assignments in agreement with figure 5. The detached branches
of TWs that persist into component (5) of figure 8 or 10 (component (5) corresponds
to u > u0 where the equilibrium state is KH unstable) are SH stable.

3.5. Intersection of branches of positive- and negative-energy TWs

In crossing from region (2) to (3) in figure 8 and from region (3) to (4) in figure 10 a
bifurcation point occurs. There is an exact intersection of two branches of TWs. The
exact intersection of the two branches exists along a line in (u, r)-space: by perturbing
the density ratio the branches break apart as shown in the bifurcation diagrams for
regions (2) and (3) in figure 9 and regions (3) and (4) in figure 11. However the
changes of stability are interesting along this line in parameter space and furthermore
the SH stability index ∆SH reduces to a particularly simple and illuminating form.

For the transversal intersection of branches to occur at some point P in the (c, |x|)-
plane, it is necessary that the reduced function h(z, c, u, r) given below equation (2.68)
satisfies h = hz = hc = 0 at P . The equations hz = hc = 0 are easily solved as

c− c0 = − m

m2 − ε (r − r0) and z =
1

m2 − ε (r − r0)
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(a) (b)

c cc0 – δε c0 + δε c0 – δε c0 + δε

Figure 16. Intersection of TW branches along the curve B1 in figures 8 and 10 with (a) ε = +1
and (b) ε = −1. SH stable (unstable) branches are indicated by solid (dashed) lines.

under the circumstances, and with the additional necessary conditions for the appro-
priate region of parameter space,

r > r0 , u− u0 < 0 , h = 0 reduces to (r − r0)2 + (m2 − ε)(u− u0) = 0 . (3.24)

The condition (3.24) is the curve B1 in figures 8 and 10 and it represents the curve
in parameter space for which transversal intersection of the branches in (c, |x|)-space
can occur. For parameter values satisfying this, h = 0 now reduces to

h = (c− c0 + mz)2 − (m2 − ε)
(
z − (r − r0)

m2 − ε

)2

= 0

which describes the branches in the (c, |x|)-plane, and is solved as

c− c0 = ∓δε + [−m± (m2 − ε)1/2]z where δε
def
=

r − r0
(m2 − ε)1/2

. (3.25)

The two curves in (3.25) form two intersecting parabolas in the (c, |x|)-plane as shown
in figure 16(a) (for ε = +1) and figure 16(b) (for ε = −1). The stability results along
the branches are obtained by substituting (3.25) into the SH stability index; we find

∆±SH = (m2 − ε)1/2
(
z − r − r0

m2 − ε

) (
(2(m2 − ε)1/2 ∓ m)z − δε

)
. (3.26)

The function ∆±SH changes sign twice along each branch and when ∆±SH is positive
it indicates that the TW is SH stable. The bifurcation points z = (r − r0)/(m2 − ε)
correspond to a change in SH stability type. In addition there is a change in SH
stability at

z± =
δε

(2(m2 − ε)1/2 ∓ m)
,

where the upper sign corresponds to the left branch and the lower corresponds the
right-hand branch. Note that the bifurcation points z± depend linearly on |r − ro|
and arise out of the singularity r = ro. Using the fact that m2 > 4/3 and m < −1 the
stability assignments are as shown in figure 16.

The bifurcation point occurs in parameter space when the identity (3.24) is met
exactly. The expression in (3.24) is in scaled coordinates but is essentially a relation
between r (the density ratio) and u (the relative velocity) that depends on τ. It is a
parabola in the (u, r)-plane as shown in figures 8 and 10 (the B1 curve). Therefore,
there exists a physically realizable value of the fluid density ratio, for each given
value of u ≈ u0 but u < u0, at which the two bifurcating branches of periodic TWs
intersect transversely, with SH stability properties qualitatively similar to those shown
in figure 16.
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4. Interaction between the BF instability and KH instability
The BF instability corresponds to the loss of stability of a Stokes’ TW to sideband

perturbations (cf. Benjamin & Feir 1967). The critical feature of this instability is
that the class of perturbations has a wavelength which is different from that of the
basic TW. A rigorous proof of the BF instability for the Stokes’ TW, when the fluid
depth is sufficiently large, has been given by Bridges & Mielke (1995). For interfacial
waves, without a basic velocity difference, a comprehensive analytical treatment of
the BF instability is given in Grimshaw & Pullin (1985), with numerical results for
large amplitude in Pullin & Grimshaw (1985). Numerical results on BF instability
of interfacial gravity waves with a velocity difference are given in Yuen (1985). In
this section we consider, formally, the BF instability for bifurcating TWs near a KH
unstable equilibrium, with particular interest in the case where the branches of TWs
are globally connected and have both SH and BF instabilities at low amplitude.

4.1. BF unstable TWs near the KH unstable equilibrium

There are a variety of approaches to the analysis of the BF instability (Benjamin &
Feir’s Fourier theory, nonlinear Schrödinger equation model, Whitham modulation
theory, Zakharov equation, etc.). Here we will apply the Whitham–Lighthill instability
criterion, based on the Whitham modulation theory, since this analysis fits in well
with the Hamiltonian formulation of the KH problem.

The Whitham–Lighthill instability criterion is stated as follows (cf. Whitham
(1974)). Let A(ω, k) and B(ω, k) be the action and action flux respectively eval-
uated at a TW. Then the particular TW is BF unstable if

∆BF
def
= det

∣∣∣∣Aω Ak

Bω Bk

∣∣∣∣ > 0 . (4.1)

That ∆BF > 0 implies BF instability of the TW is formally established using the
Whitham modulation theory (cf. Whitham 1974, Chap. 14).

To apply the criterion (4.1), a definition for A(ω, k) and B(ω, k) is needed in the
context of the Hamiltonian structure of the KH problem. First suppose that η(x, t)
and ζ(x, t) are evaluated on a periodic TW, in particular are functions of θ = kx−ωt.
The action for the KH problem was defined in I, §4.4. Averaging the action with
respect to θ and introducing a minus sign (since θt = −ω), we have

A(ω, k) = − 1

π

∫ 2π

0

ζηθ dθ . (4.2)

Treating the least-action functional
∫ t2
t1

(H − A)dt (cf. I, §4.4) as a Lagrangian, the

action flux is obtained from B(ω, k) = Lk = Hk where H is the total energy averaged
with respect to θ. From the definitions of K and V in equations (2.2) and (2.3)
we have

H(ω, k) =
1

π

∫ 2π

0

[∫ η

−∞

1
2
ρ(k2φ2

θ + φ2
y) dy +

∫ ∞
η

1
2
ρ′(k2φ′

2
θ + φ′

2
y) dy

]
dθ

+
1

π

∫ 2π

0

k(−ρUΦ+ ρ′U ′Φ′)ηθ dθ

+
1

π

∫ 2π

0

[
1
2
(ρ− ρ′)gη2 + σ((1 + k2η2

θ)
1/2 − 1)

]
dθ
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and therefore

B(ω, k) =
1

π

∫ 2π

0

[
ρk

∫ η

−∞
φ2
θ dy + ρ′k

∫ ∞
η

φ′
2
θ dy

]
dθ

+
1

π

∫ 2π

0

[
(−ρUΦ+ ρ′U ′Φ′)ηθ +

σkη2
θ

(1 + k2η2
θ)

1/2

]
dθ . (4.3)

It is now straightforward to substitute the Fourier expansions into A(ω, k) and
B(ω, k). After some algebra we obtain

A(ω, k) = − 1
4
Dω(ω, k)(A2

1 + B2
1) + · · · ,

B(ω, k) = − 1
4
Dk(ω, k)(A

2
1 + B2

1) + · · · ,

}
(4.4)

where

D(ω, k) =
ρ

k
(ω − kU)2 +

ρ′

k
(ω − kU ′)2 − (ρ− ρ′)g − σk2 (4.5)

and the nonlinear dispersion relation is

D(ω, k) + k2v1(A
2
1 + B2

1) + · · · = 0 . (4.6)

The dispersion relation D(ω, k) in (4.5) is exactly the expression in the equation below
(2.49) but with c replaced by ω/k and (4.6) is precisely (2.49) with D now treated as
a function of ω and k.

In the remainder of this subsection, the BF instabilities of the bifurcating TWs near
the KH instability are considered when r > r0 and k ≈ k0 where k0 is the minimum
point on the KH neutral curve (cf. τ = 1 on figure 2),

k0 =

(
(ρ− ρ′)g

σ

)1/2

and ω0 = c0k0,

with c0 as defined in (1.15). In the neighbourhood of (ω0, k0, u0) the dispersion relation
takes the form

D(ω, k) = D0
u(u−u0)+

1
2
D0
ωω(ω−ω0)

2+D0
ωk(ω−ω0)(k−k0)+

1
2
D0
kk(k−k0)

2+· · · (4.7)

with

D0
u =

2ρρ′k0u0

ρ+ ρ′
> 0 , D0

ωω = 2
ρ+ ρ′

k0

> 0

D0
ωk = −2

ω0

k2
0

(ρ+ ρ′) < 0 and D0
kk =

2(ρ+ ρ′)ω2
0

k3
0

− 2σ .

Note in particular that

ϑ2 def
= −

∣∣∣∣D0
ωω D0

ωk

D0
kω D0

kk

∣∣∣∣ =
4σ

k0

(ρ+ ρ′) > 0 . (4.8)

We are now in a position to evaluate ∆BF in (4.1). Dividing A and B by − 1
4

(which
does not affect the sign of ∆BF ), we find

∆BF =
z

k4
ov1

{
v1z

∣∣∣∣Dωω Dωk
Dkω Dkk

∣∣∣∣+

∣∣∣∣∣Dωω Dωk Dω
Dkω Dkk Dk
Dω Dk 0

∣∣∣∣∣
}

+ · · ·
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where sign(v1) = sign(r − ro) and z = k2
o(A

2
1 + B2

1). Since∣∣∣∣∣Dωω Dωk Dω
Dkω Dkk Dk
Dω Dk 0

∣∣∣∣∣ = D3
ω

dcg
dk

= ϑ2[D0
ωω(ω − ω0)

2 + 2D0
ωk(ω − ω0)(k − k0) + D0

kk(k − k0)
2] + · · · ,

where cg is the group velocity, the BF-stability index can be written in the form

∆BF =
zϑ2

k4
0v1

(−v1z+D0
ωω(ω−ω0)

2 +2D0
ωk(ω−ω0)(k−k0)+D0

kk(k−k0)
2)+ · · · . (4.9)

This index is now applied to the branch of TWs in figure 5 when r > r0 and u < u0

in order to verify the results in figure 4. First, since v1 > 0 for r > r0, as z → 0

sign(∆BF ) = sign[D0
ωω(ω − ω0)

2 + 2D0
ωk(ω − ω0)(k − k0) + D0

kk(k − k0)
2]

= sign[D0
u(u0 − u)] > 0

for (|ω0−ω|, |k− k0|, |u− u0|) sufficiently small. Therefore, it follows that ∆BF > 0 for
z sufficiently small when u < u0, verifying that the branches of TWs are BF unstable
at low amplitude. However there exists a critical value of the amplitude at which
∆BF = 0 and this amplitude is lower than (or possibly equal to) the amplitude at
which SH instability occurs, verifying the stability assignments in figure 4.

As k → k0 the change of BF instability coalesces with the change of SH instability
and furthermore as u→ u0 these two instabilities coalesce with the KH instability.

Along the branch of TWs in figure 4 there is a region of ‘stability’. The word
stability is in quotes because the wave is BF and SH stable but could be unstable
to finite-wavelength disturbances. For example, it is now well known that when the
BF instability stabilizes a band of unstable wavenumbers may persist but no longer
limits on zero wavenumber (cf. the shift of the band of unstable wavenumbers along
the p-axis in figures 2(c) and 2(d) of McLean 1982).

There is an additional interesting feature that appears in figure 4 which seems to
be a general property of wave instabilities. First note that Aω = 0 at a change of
SH instability where Aω is the partial derivative of A with respect to ω with the
wavenumber fixed. This can be argued from a number of viewpoints: for example,
Hc = 0 is equivalent to Hω = 0 when k is fixed, and from the least-action principle
it follows that Hω = 0 implies Aω = 0. Since Ak = Bω in (4.1) it follows that,
generically (assuming Ak 6= 0), at a change of SH stability

∆BF = −A2
k < 0 .

Therefore, if along a branch of TWs there is a BF instability at a particular amplitude
(implying ∆BF > 0), and at another amplitude there is a change in SH instability
(implying ∆BF < 0), then by the intermediate-value theorem there is a point in
between at which ∆BF = 0. This property is clearly evoked in figure 4 and also occurs
in the classic water-wave problem in deep water, where at low amplitude the Stokes’
TW is BF unstable and at large amplitude there is an SH instability.

4.2. Weissman’s theory and space–time modulation equations

The interaction between the BF instability and the SH instability along a branch
of TWs near the KH instability can also be obtained from Weissman’s space-time
modulation equation. Weissman (1979), using a multiple-scale perturbation analysis,
showed that the relevant model partial differential equation near the KH instability,
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in the neighbourhood of the minimum point of the KH neutral curve, takes the form

∂2A

∂T 2
= ϑ2 ∂

2A

∂X2
− αA+ a|A|2A, (4.10)

where X and T are slow space and time scales, sign(α) = sign(u0 − u) and sign(a) =
sign(r − ro). The positive real parameter ϑ2 is as defined in equation (4.8) (although

Weissman 1979, equation (2.21b) normalizes it by dividing by D0
ωω

2
). When ϑ =

0 equation (4.9) reduces to Drazin’s time-modulation equation (2.55). Weissman
considers many solutions of (4.10) including numerical solutions but surprisingly
does not consider the BF or sideband instability. Here we show that equation (4.10)
contains the critical picture, figure 4, and includes both the SH instability and BF
instability of branches of TWs.

The basic TW solution of (4.10) is

A(X,T ) = A0e
i(kX+ωT ) with ω2 − ϑ2k2 + a|A0|2 = α . (4.11)

For purposes of the present subsection, we take a > 0 and α > 0. To analyse the
linear stability of the basic state (4.11), let

A(X,T ) = (A0 + B(X,T ))ei(kX+ωT ) ;

then B(X,T ) satisfies

BTT + 2iωBT − ϑ2BXX − 2iϑ2kBX = a(|A0|2B + A2
0B) .

With B(X,T ) = B1e
i(pX+ΩT ) + B2e

−i(pX+ΩT ), where p ∈ R is the sideband exponent
and Ω ∈ C is the stability exponent, we find the following characteristic equation for
Ω:

Ω4− 2(ϑ2p2− a|A0|2 + 2ω2)Ω2 + 8ϑ2ωkpΩ+ ϑ2p2[ϑ2p2− 2a|A0|2− 4ϑ2k2] = 0 . (4.12)

The SH instability is recovered by taking p = 0, reducing (4.12) to

Ω4 − 2(2ω2 − a|A0|2)Ω2 = 0 ,

recovering equation (2.58) (with λ = iΩ). The branch of TWs in (4.11) is therefore
SH unstable when a|A0|2 > 2ω2.

For the sideband instability, suppose p�1 and let

Ω = pΩ1 + O(p2) . (4.13)

Then, substituting (4.13) into (4.12) results in

(a|A0|2 − 2ω2)Ω2
1 + 4ϑ2kω Ω1 − ϑ2(a|A0|2 + 2ϑ2k2) = 0 . (4.14)

The basic wave (4.11) is BF unstable when the discriminant of (4.14) is negative or

aϑ2|A0|2
[
−a|A0|2 + 2(ω2 − ϑ2k2)

]
> 0 ,

recovering the result in (4.9), with appropriate change in notation.
For a ≈ 0 (r ≈ r0), the modulation equation (4.10) is no longer valid. The appropri-

ate model equation in that case is not known and would likely be very complicated.
On the other hand the geometric criterion (4.1) extends in a straightforward manner
to the case when r ≈ r0.
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5. Concluding remarks
The canonical Hamiltonian structure of the KH problem has been used as an

organizing centre for an analysis of nonlinear periodic TWs near the KH instability
threshold. Several new and surprising results on the bifurcation of TWs as well as
the SH and BF instability of TWs were found.

The SH instability of TWs near the KH threshold was treated in some completeness.
An extension of Saffman’s theory for the SH instability was introduced, leading to
a precise relation between the slope in an impulse–wave-speed diagram and SH
unstable eigenvalues. For r > r0 the SH instability is pervasive in the neighbourhood
of the KH threshold, and it probably persists at larger amplitude for u�u0. For
r ≈ r0 a complicated structure of bifurcation points, isolated branches and interesting
SH stability changes was found, which also probably persists at large amplitude
for r 6= r0. The analysis has pointed to several open questions about the precise
connection between the SH instability and KH billows, as well as the effect of finite
depth and three-dimensionality on the SH instability, in general, and for the KH
problem, in particular. For example, in finite depth, the mean flow may have an
important effect on the SH instability.

Some results on the BF instability were presented for branches of TWs near the
KH instability. The most interesting case is when r > r0 and u < u0 and this case was
treated in detail. When r ≈ r0 there is a rich bifurcation structure as well as interesting
changes of SH stability. Therefore it is reasonable to expect that the changes of BF
instability near this singularity will also be quite rich. It is not clear that the analysis
of BF instability for TWs near the singularity r = r0 will add to the understanding
of the nonlinear KH problem but it is certainly of great fundamental interest. A
singularity like r = r0 brings down to low amplitude complicated bifurcations and
stability changes that normally occur at large amplitude, and can therefore be studied
analytically. An analysis of the interaction between the KH instability, SH instability
and BF instability for r ≈ r0 would require the simultaneous analysis of the three
functions h, the bifurcation function, ∆SH , the SH stability function, and ∆BF , the
BF stability function, all considered as functions of amplitude, wavenumber and
frequency, as well as the parameters u and r. Addition of three-dimensionality would
then add considerable complexity to such a bifurcation and stability analysis.

The authors are grateful to the referees for a careful reading of Parts 1 and 2 and
for helpful suggestions.

Appendix A. Details of the matrices in §2
In the construction of the Hamiltonian structure in §2, using the variational

principle of I, §3.1, the operations on the vectors of Fourier coefficients were done
using representative matrices. The details of the matrices needed for this construction
as well as the construction of the impulse for the superharmonic instability analysis
are recorded here.

A.1. The matrices M± and Γ±

Explicit expressions for the entries in the matrices M± and Γ± are constructed. The
2N × 2N non-symmetric matrices M± are a convenient way to represent the finite-
dimensional version of the constraint set ρΦ− ρ′Φ′ = ζ (cf. equation (2.10). With the
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partitioning

M± =

[
M+

1 M+
2

M+
3 M+

4

]
the submatrices M±j j = 1, . . . , 4 have entries

M±1 m,n =
2

`

∫ `

0

e±nkη(x) cosmkx cos nkx dx,

M±2 m,n =
2

`

∫ `

0

e±nkη(x) cosmkx sin nkx dx,

M±3 m,n =
2

`

∫ `

0

e±nkη(x) sinmkx cos nkx dx

M±4 m,n =
2

`

∫ `

0

e±nkη(x) sinmkx sin nkx dx .

These integrals are evaluated using the following observation. Let

Υ±n =
2

`

∫ `

0

e±nkη(x) dx

with n any positive integer. The wave height η(x) is a linear function of its Fourier
coefficients and so

∂η

∂Am
= cosmkx ,

∂η

∂Bm
= sinmkx , m = 1, . . . , N .

Therefore

± 1

nk

∂Υ±n
∂Am

=
2

`

∫ `

0

e±nkη(x) cosmkx dx, (A 1)

± 1

nk

∂Υ±n
∂Bm

=
2

`

∫ `

0

e±nkη(x) sinmkx dx . (A 2)

The basic observation is that the only integral to be evaluated is Υ±n . After integration
Υ±n is a polynomial function of the Fourier coefficients Aj , Bj (j = 1, . . . , N), for any

finite N. The integrals in the matrices M± are then obtained by differentiation:

M±1 m,n =
1

n2k2

∂2Υ±n
∂Am∂An

, M±2 m,n =
1

n2k2

∂2Υ±n
∂Am∂Bn

M±3 m,n =
1

n2k2

∂2Υ±n
∂Bm∂An

, M±4 m,n =
1

n2k2

∂2Υ±n
∂Bm∂Bn

 for m, n = 1, . . . , N.

Letting N = 3, and retaining terms to sufficient order to obtain the results in §2 to
sixth order, the polynomial Υ±n is

1

n2k2
Υ±n =

2

n2k2
+ 1

2
(A2

1 + B2
1) + 1

2
(A2

2 + B2
2)

± 1
4
nk[A2(A

2
1 − B2

1) + 2A1B1B2] + 1
32
n2k2(A2

1 + B2
1)2

+ 1
8
n2k2[A2

1(A
2
2 + B2

2 + B1B3) + B2
1(A2

2 + B2
2 − A1A3)]

± 1
48
n3k3[A2(A

4
1 − B4

1) + 2A1B1B2(A
2
1 + B2

1)]

+ 1
2
(A2

3 + B2
3) + 1

24
n2k2(A3

1A3 − B3
1B3) + 1

1152
n4k4(A2

1 + B2
1)3

± 1
2
nk[A1(A2A3 + B2B3) + B1(A2B3 − B2A3)] + · · · . (A 3)
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The matrices Γ±, used in the construction of the kinetic energy in §2, can also be
characterised in terms of the functions Υ±n . The matrices Γ± are 2N × 2N symmetric
matrices that can be partitioned as

Γ± =

[
C± −S±
S± C±

]
,

where C± are N × N symmetric matrices and the matrices S± are N × N skew-
symmetric matrices. Upon evaluation of the kinetic energy with the finite-dimensional
Fourier approximation for each of the velocity components φ and φ′, it is found that

C±m,n = k
mn

m+ n

2

`

∫ `

0

e±(m+n)kη(x) cos(m− n)kx dx,

S±m,n = k
mn

m+ n

2

`

∫ `

0

e±(m+n)kη(x) sin(m− n)kx dx .

Using (A1) and (A2), the entries of Γ± can be given in terms of the polynomial Υ±n ,

C±m,n =

±
mn

(m+ n)2

∂Υ±m+n

∂A|m−n|
if m 6= n

1
2
nk Υ±2n if m = n

 for m, n = 1, . . . , N

and

S±m,n =

±sign(m− n) mn

(m+ n)2

∂Υ±m+n

∂B|m−n|
if m 6= n

0 if m = n

 for m, n = 1, . . . , N.

The entries of the matrices Γ± are now easily constructed using Υ±n in (A3).
The inverse of Γ± is necessary in the reduction of the system of algebraic equations.

When Aj = Bj = 0 for j = 1, . . . , N the matrices S± are identically zero and the

matrices C± are diagonal. Therefore, for Aj , Bj j = 1, . . . , N, sufficiently small, Γ±

can be considered as a perturbation of a diagonal matrix,

Γ± =

(
C± −S±
S± C±

)
=

(
C± 0
0 C±

)[(
I 0
0 I

)
−
(

0 Ŝ
−Ŝ 0

)]
where Ŝ = C±

−1
S±, and so

Γ±
−1

=

[(
I 0
0 I

)
+

(
0 Ŝ
−Ŝ 0

)
+

(
0 Ŝ
−Ŝ 0

)2

+ · · ·
](

C±−1 0
0 C±−1

)
.

Retaining terms sufficient for the sixth-order bifurcation equation, the inverse is

Γ±
−1

=

[
[I − Ŝ

2
+ Ŝ

4
][C±]−1 Ŝ[I − Ŝ

2
]C±−1

−Ŝ[I − Ŝ
2
]C±−1 [I − Ŝ

2
+ Ŝ

4
]C±−1

]
with the explicit entries for N = 3 given by

[I − Ŝ
2

+ Ŝ
4
]C±−1 =

1

k

[
γ̂11 γ̂12 ∓kA2 + k2(A2

1 − B2
1)

γ̂12
1
2
(1 + 4k2(A2

1 + B2
1)) ∓kA1

∓kA2 + k2(A2
1 − B2

1) ∓kA1
1
3
− k2(A2

1 + B2
1)

]
,
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where

γ̂12 = ∓kA1 ∓ 9
8
k3A1(A

2
1 + B2

1) + 3
2
k2(B1B2 + A1A2),

γ̂11 = 1 + k2(A2
1 + B2

1) + 2k2(A2
2 + B2

2) + 1
4
k4(A2

1 + B2
1)2

±k3A2(B
2
1 − A2

1)∓ 2k3A1B1B2

and

Ŝ[I − Ŝ
2
]C±

−1
=

1

k

[
0 θ12 ∓kB2 + 2k2A1B1

−θ12 0 ∓kB1

±kB2 − 2k2A1B1 ±kB1 0

]
with

θ12 = ∓kB1 − 3
2
k2(B1A2 − A1B2)∓ 9

8
k3B1(A

2
1 + B2

1) .

A.2. The matrices P±

The entries in the matrices P± that appear in the finite-dimensional expression for
the kinetic energy are recorded here. The matrices P± are of order 2N and symmetric
and can be partitioned into

P± =

[
P±1 P±2
P±3 P±4

]
where P±1 and P±3 are N ×N symmetric matrices and P±2 are N ×N non-symmetric
matrices. With N = 3 the above matrices take the explicit form

P±1 =
1

k

P±1 1,1 P±1 1,2 0

P±1 1,2
1
2

0

0 0 1
3


where

P±1 1,1 = 1± kA2 + 1
2
k2(A2

2 + B2
2) + 1

4
k2(A2

1 − B2
1)

− 1
2
k2(A1A3 + B1B3)± 1

2
k3A1B1B2 ∓ 3

4
k3B2

1A2

± 1
4
k3A2A

2
1 + 1

96
k4(11B4

1 + 6A2
1B

2
1 − 5A4

1),

P±1 1,2 = ±kA3 ± 1
24
k3A3

1 ∓ 1
8
k3A1B

2
1 + 1

2
k2A1A2 − 1

2
k2B1B2 .

For P±2 we find

P±2 =
1

k

P±2 1,1 P±2 1,2 0

P±1 1,2 0 0
0 0 0


where

P±2 1,1 = ±kB2 + 1
2
k2(B1A3 − A1B3) + 1

2
k2A1B1,

∓ 1
2
k3(B2A

2
1 + B2

1B2)− 1
6
k4A1B

3
1 −− 1

6
k4A3

1B1,

P±2 1,2 = ±kB3 + 1
2
k2(B1A2 + A1B2)± 1

24
k3(3A2

1 − B2
1)A1 .

For P±3 we find

P±3 =
1

k

P±3 1,1 P±3 1,2 0

P±3 1,2
1
2

0

0 0 1
3

 ,
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where

P±3 1,1 = 1∓ kA2 + 1
2
k2(A2

2 + B2
2)− 1

4
k2(A2

1 − B2
1)

+ 1
2
k2(A1A3 + B1B3)± 1

2
k3A1B1B2 ± 1

12
k3A2(9A

2
1 + 3B2

1)

+ 1
96
k4(11A4

1 + 6A2
1B

2
1 − 5B4

1),

P±3 1,2 = ∓kA3 ± 1
24
k3A1(3B

2
1 − A2

1) + 1
2
k2(B1B2 − A1A2) .

Note that when Aj = Bj = 0 for j = 1, 2, 3 the matrix P± is a diagonal matrix.

Therefore P± has a well-defined inverse for A2
1 + B2

1 sufficiently small.

Appendix B. Impulse, wave speed and critical point type
In this Appendix the analysis at the end of §3.2 is completed by showing that when

the spectrum of L(U, c) has the decomposition (3.11) and µ2dI/dc > 0, where µ2 is
the critical eigenvalue of L(U, c) defined in (3.11), (3.12) and Appendix C, the basic
TW state is a constrained minimum of the energy and therefore linearly stable. The
connection between constrained minima and orbital stability is now well-established
in the literature (cf. Benjamin 1972; Oh 1987; Maddocks 1991 and references therein).

Let U ∈ R4N be the vector giving rise to a TW and satisfying

∇F(U, c) = ∇H(U)− c∇I(U) = 0 , (B 1)

and let

L(U, c) def
= D2H(U)− cD2I(U) . (B 2)

Suppose the spectrum of L(U, c) is decomposed in the form given in equation
(3.11) with orthonormalized eigenvectors ξ1, . . . , ξ4N . The eigenvalue µ1 is zero with
eigenvector ξ1, µ2 may be positive or negative and µ3, . . . , µ4N are positive. Under the
above conditions on the spectrum of L(U, c) we will prove that U ∈ R4N minimizes
H on the constraint set I(U) = I ∈ R when µ2Ic > 0. This is proved by showing
that the quadratic form S(Y ) = 〈Y ,L(U, c)Y 〉 is strictly positive for all Y such that

〈ξ1,Y 〉 = 0 and 〈∇I(U),Y 〉 = 0 (B 3)

when

µ2

dI

dc
> 0 .

The first condition in (B3) eliminates the zero eigenvalue of L(U, c) and the second
condition ensures that Y is in the tangent space of the constraint set.

Express the class of admissible variations Y in a spectral expansion

Y =

4N∑
j=2

yjξj . (B 4)

Since LY =
∑4N

j=2 µjyjξj it follows that

S(Y ) = µ2y
2
2 +

4N∑
j=3

µjy
2
j . (B 5)
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A critical point U ∈ R4N satisfies ∇H(U)− c∇I(U) = 0, therefore

d

dc
{∇H(U)− c∇I(U)} = L(U, c) dU

dc
− ∇I(U) = 0 .

Since admissible variations Y are required to be orthogonal to ∇I(U) (cf. equation
(B3)),

〈Y ,∇I(U)〉 = 〈Y ,L(U, c)Uc〉 = 0 . (B 6)

Let Uc =
∑4N

j=2 wjξj; then L(U, c)Uc =
∑4N

j=2 µjwjξj and therefore

0 = 〈Y ,L(U, c)Uc〉 =

4N∑
j=2

µjyjwj

or −µ2y2w2 =
∑4N

j=3 µjyjwj resulting in

µ2y
2
2 =

(
4N∑
j=3

µjyjwj

)2

µ2w
2
2

. (B 7)

Substitute (B7) into the expression for S(Y ) in (B5),

S(Y ) =

(
4N∑
j=3

µjyjwj

)2

µ2w
2
2

+

4N∑
j=3

µjy
2
j . (B 8)

However, the condition µ2dI/dc > 0 leads to

µ2

dI

dc
= µ2〈∇I(U),Uc〉 = µ2〈L(U, c)Uc,Uc〉 > 0

or in terms of the spectral expansion for Uc,

µ2
2w

2
2 + µ2

4N∑
j=3

µjw
2
j > 0 . (B 9)

If µ2 > 0 it is clear from (B8) that S(Y ) > 0. If µ2 < 0 let µ2 = −|µ2| then (B9) is
equivalent to

−1

|µ2|w2
2

>
−1

4N∑
j=3

µjw
2
j

. (B 10)

Now substitute (B10) into the expression for S(Y ) in (B8) to find

S(Y ) =

(
4N∑
j=3

µjyjwj

)2

µ2w
2
2

+

4N∑
j=3

µjy
2
j > −

(
4N∑
j=3

µjyjwj

)2

4N∑
j=3

µjw
2
j

+

4N∑
j=3

µjy
2
j > 0 ,

where positivity of S(Y ) follows from the Cauchy–Schwartz inequality, completing
the proof.
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Appendix C. The critical eigenvalue of L(U, c) and the bifurcation
function h

In this Appendix it is shown that the critical eigenvalue µ2(U, c) of L(U, c), the
second variation of F(U, c), has the same sign as the trace of the second variation
of the reduced functional G(A1, B1; c) for ‖U‖ sufficiently small.

The idea is to partition both the vector U and the 4N × 4N matrix L(U, c). Let

U = (x,Λ) with x =

(
A1

B1

)
∈ R2 and Λ ∈ R4N−2 , (C 1)

where Λ contains C1, D1 A2, B2, C2, D2, . . ., AN , BN , CN and DN . Now partition the
second variation of F(U, c) in a like manner:

L(U, c) =

[
Fxx FT

Λx

FΛx FΛΛ

]
, (C 2)

where

Fxx =


∂2F
∂A2

1

∂2F
∂A1∂B1

∂2F
∂B1∂A1

∂2F
∂B2

1

 (C 3)

is a 2× 2 matrix, FΛx is the (4N−2)× 2 matrix

FΛx =
(
∂2F
∂Λ∂A1

∂2F
∂Λ∂B1

)
(C 4)

and FΛΛ is a square matrix of dimension 4N−2 containing the second partial
derivatives of F with respect to the elements of Λ. The reason for the partition of
L is that FΛΛ is invertible when A1 and B1 are sufficiently small since FΛΛ|A1=B1=0

has 4N − 2 positive eigenvalues, (cf. §3.2). The linear operator L(0, c0) has two zero
eigenvalues, one of which remains zero under perturbation due to the group orbit of
solutions. It is the perturbation of the other zero eigenvalue that is of interest here.
Denote it by µ2(U, c) with µ2(0, co) = 0.

Consider the characteristic equation for L,

det[L(U, c)− µI ] = 0 . (C 5)

Let I 2 be the identity on R2 and let Î be the identity on R4N−2, then (C5), using the
decomposition (C2), is equivalent to∣∣∣∣( I 2 −FT

Λx(FΛΛ − µÎ )−1

0 Î

)(
Fxx − µI 2 FT

Λx

FΛx FΛΛ − µÎ

)∣∣∣∣ = 0

or

|FΛΛ − µÎ | · |Fxx −FT
Λx(FΛΛ − µÎ )−1FΛx − µI 2| = 0 . (C 6)

For µ sufficiently small (near a zero eigenvalue of L(0, c0)) the determinant |FΛΛ−µÎ |
is non-zero and the first factor in (C6) may be divided out. Note that the zero
eigenvalue of L(0, c0) due to symmetry is contained in the second factor of (C6)
resulting in the identity

|Fxx −FT
ΛxF−1

ΛΛFΛx| = 0 . (C 7)

Define the 2× 2 matrix F̂xx by

F̂xx =Fxx −FT
ΛxF−1

ΛΛFΛx (C 8)
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and let

FT
Λx

(
(FΛΛ − µÎ )−1 −F−1

ΛΛ

)
FΛx = µE(µ), (C 9)

where E(µ) is a 2× 2 symmetric matrix with

E(0) =FT
ΛxF−2

ΛΛFΛx .

Since FΛx = 0 when A1 = B1 = 0 it follows that E(0) can be made as small as
required by choosing A2

1 +B2
1 sufficiently small. Using (C8) and (C9) the characteristic

equation in (C6) simplifies to

0 = |F̂xx − µ(I 2 + E(µ))| = |(I 2 + E(µ))| |(I 2 + E(µ))−1F̂xx − µI 2| (C 10)

which, for ‖E(µ)‖ sufficiently small-leads to

µ2 − Tr
{

(I 2 + E(µ))−1F̂xx

}
µ+ |(I 2 + E(µ))−1F̂xx| = 0 .

Comparison of (C7) and (C8) shows that |F̂xx| = 0. Therefore the expression for the
critical eigenvalue µ2 is

µ2 = Tr
{

(I 2 + E(µ))−1F̂xx

}
= Tr F̂xx + · · · . (C 11)

When ‖E(µ)‖ is sufficiently small (i.e. A2
1 + B2

1 and |µ| sufficiently small)

sign(µ2) = sign(TrF̂xx) . (C 12)

It remains to show a relation between Tr(F̂xx) and the reduced bifurcation equation
h(z, c, u, r). First note that F(U, c) = H(U) − cI(U), with U decomposed as in (C1),
and that ∇F(U, c) = 0. Solving the 4N − 2 equations ∂F/∂Λ = 0 for Λ as a function
of A1, B1 and c results in the identity

∂F
∂Λ

(A1, B1,Λ(A1, B1; c); c) = 0 . (C 13)

Differentiate (C13) with respect to A1 to obtain

∂2F
∂Λ∂A1

+
∂2F
∂Λ2

∂Λ

∂A1

= 0,

implying that

∂Λ

∂A1

= −F−1
ΛΛ

∂2F
∂Λ∂A1

(C 14)

and similarly

∂Λ

∂B1

= −F−1
ΛΛ

∂2F
∂Λ∂B1

. (C 15)

Recall the definition of h(z, c, u, r) given in equation (2.48) (noting also (2.43) and
(2.46)) and substitute Λ(A1, B1; c) into ∂F/∂A1 = 0 and ∂F/∂B1 = 0 to obtain

−2A1h(z, c, u, r) =
∂F
∂A1

(A1, B1,Λ(A1, B1; c); c) = 0, (C 16)

−2B1h(z, c, u, r) =
∂F
∂B1

(A1, B1,Λ(A1, B1; c); c) = 0 . (C 17)

Differentiate (C16) with respect to A1 and (C17) with respect to B1 and use the fact
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that z = k(A2
1 + B2

1) and h = 0 along a solution branch:

−4k2A2
1hz =

∂2F
∂A2

1

+

(
∂2F
∂Λ∂A1

)T
∂Λ

∂A1

, (C 18)

−4k2B2
1hz =

∂2F
∂B2

1

+

(
∂2F
∂Λ∂B1

)T
∂Λ

∂B1

. (C 19)

Now add equations (C18) and (C19) and use (C14) and (C15):

−4zhz =
∂2F
∂A2

1

−
(
∂2F
∂Λ∂A1

)T
F−1

ΛΛ

(
∂2F
∂Λ∂A1

)
+
∂2F
∂B2

1

−
(
∂2F
∂Λ∂B1

)T
F−1

ΛΛ

(
∂2F
∂Λ∂B1

)
.

But recalling the definition ofFxx andFΛx it is clear that the right-hand side of this

expression is simply the trace of F̂xx. We have proved the following identity:

sign(µ2) = −sign(hz) ,

for the sign of the critical eigenvalue of L(U, c).
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