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A Problem for Confirmation Measure Z
Branden Fitelson*y

In this article, I present a serious problem for confirmation measure Z.
1. Confirmation Measure Z. Crupi, Tentori, and Gonzalez (2007) pro-
vide a very interesting set of theoretical and empirical arguments in favor
of the following ( piecewise) Bayesian measure of the degree to which ev-
idence E confirms hypothesis H, relative to background knowledge K:1

Z(H , EjK) 5

Pr(H E & K) 2 Pr(Hj jK)
1 2 Pr(H jK) if   Pr(H E & K) ≥ Pr(Hj jK)

Pr(H E & K) 2 Pr(Hj jK)
Pr(H jK) if   Pr(H E & K) < Pr(Hj jK)
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I will not go into their arguments in favor of Z here. Instead, I will present what
I take to be a serious problem with Z. This will require a brief digression into the
notion of independent evidence.

2. Independent Evidence Regarding a Hypothesis. Fitelson (2001) of-
fers the following Bayesian account of what it means for two pieces of ev-
idence E1 and E2 to be confirmationally independent, regarding hypothesis
H, according to a confirmation measure c.
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1. Several authors discussed/endorsed measure Z before Crupi et al. (2007). See, e.g.,
Rescher (1958) and Shortliffe and Buchanan (1975). However, Crupi et al. provide
the most compelling and comprehensive theoretical and empirical arguments in its favor.
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Independence. E1 and E2 are confirmationally independent regarding H,
according to c (i.e., E1, E2 are c-independent regarding H ) if and only if
both c(H , E1jE2) 5 c(H , E1) and c(H , E2jE1) 5 c(H , E2).2
Intuitively, E1 and E2 are confirmationally independent regardingH, accord-
ing to c, just in case the degree to which E1 (E2) confirms H (according to c)
does not depend on whether E2 (E1) is already known.

As Fitelson shows, this notion can be applied in various useful confirmation-
theoretic ways (e.g., to provide a Bayesian account of the value of varied/di-
verse evidence). I will not delve into Independence here. Rather, I will sim-
ply apply it to reveal that measure Z has a serious shortcomingwhen it comes
to the handling of certain sorts of independent evidence.

3. A Problem for Measure Z. Sometimes, we have conflicting evidence
regarding a hypothesis. That is to say, sometimes, the following property
holds for a triple E1, E2, and H.
Conflict. E1 and E2 constitute conflicting evidence regarding H if and only
if E1 confirms H, while E2 disconfirms H. Formally, E1 and E2 constitute
conflicting evidence regarding H if and only if Pr(H jE1) > Pr(H) and
Pr(H jE2) < Pr(H).
Intuitively, it should be possible for some triple E1, E2, and H to satisfy both
Independence and Conflict. That is to say, intuitively, there sometimes exists
independent, conflicting evidence regarding some hypotheses. More pre-
cisely, we have the following eminently plausible existence claim.
Existence. There exist some triples E1, E2, andH that satisfy both Indepen-
dence and Conflict.
Indeed, Existence strikes me as so plausible as to require little justifica-
tion. Having said that, it is worth giving a simple example that illustrates
the intuitive plausibility of Existence.3 Here, I borrow the following exam-
ple, which belongs to a class of examples used by Fitelson (2001) to pro-
vide an intuitive illustration of Independence (with individual degrees of
strength that can be tweaked via some simple parameters, which I have
set here).
re, c(H, E) is shorthand for c(H , Ej ⊤), where ⊤ is a tautology. This can be read sim-
s “the degree to which E confirms H (unconditionally), according to c.”

hank an anonymous referee for urging me to include an illustrative intuitive exam-
f Existence.
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The Urn Example. An urn has been selected at random from a collection
of urns. Each urn contains some balls. In some of the urns (the H-urns) the
proportion of white balls to nonwhite balls is 1/3, and in all the other urns
(the ∼H-urns) the proportion of white balls to nonwhite balls is 2/3. The
proportion of H-urns is 1/2. Balls are to be drawn randomly from the se-
lected urn, with replacement.
Let H be the hypothesis that the proportion of white balls in the urn is

1/3 (i.e., that the sampled urn is an H-urn). LetWi state that the ball drawn
on the ith draw (i ≥ 1) is white. Intuitively, ∼W1 andW2 are confirmationally
independent regarding H; that is, the triple h∼W1, W2, H i instantiates
Independence.4
Surprisingly, according to measure Z, Existence is false (a fortiori). That is,
according to measure Z, it is conceptually impossible for any pair of evi-
dence E1, E2 to be both independent regarding H and conflicting regarding
H (for any hypothesis H ).
Problem. According to measure Z, Existence is (analytically) false.

Proof. Suppose, for reductio, that there does exist some triple E1, E2,H that
satisfies both Independence (according to measure Z ) and Conflict. Then,
we may reason as follows.

(1) Pr(H jE1) > Pr(H ) Assumption (Conflict)

(2) Pr(H jE2) < Pr(H ) Assumption (Conflict)

(3) Z(H , E1) 5 Z(H , E1jE2) Assumption (Z-Independence)

(4) Z(H , E2) 5 Z(H , E2jE1) Assumption (Z-Independence)

(5)
Pr(H jE1) 2 Pr(H )

1 2 Pr(H ) 5 Pr(H jE1 & E2) 2 Pr(H jE2)
1 2 Pr(H jE2)

(1), (3), definition of Z

(6) Pr(H jE2) 2 Pr(H ) Pr(H jE1 & E2) 2 Pr(H jE1) (2), (4), definition of Z
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Now, let x 5 Pr(H jE1), y 5 Pr(H jE2), z5 Pr(H ), and u 5 Pr(H jE1 & E2).
Then, (5) and (6) can be rewritten as the following pair of algebraic
equations.

(5) x2z
12z 5

u2y
12y

(6)
y2z
z 5 u2x

x

anonymous referee points out that the following (formally similar) piecewise con
tion measure (on which see Mura [2006, 2008] and Crupi and Tentori [2014] fo
er discussion), which takes its theoretical inspiration from Törnebohm (1966), i
rdinally equivalent to Z:

, EjK) 5

log½Pr(H E & K)� 2 log½Pr(Hj jK)�
2log½Pr(H jK)� if   Pr(H E & K) ≥ Pr(Hj jK)

log½Pr ∼ H E & K)� 2 log½Pr(∼ Hj jK)�
2log½Pr(∼ H jK)� if   Pr(H E & K) < Pr(Hj jK)
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e been unable to determine whether Z| also falsifies Existence (because Z| involve
ithms, this question cannot be answered using standard algebraic techniques
on 2008). This is an interesting open question.
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Algebraically (assuming only that x, y, z, and u are real numbers), (5) and
(6) entail that either (7) x 5 z or (8) y 5 z. But, this contradicts our as-
sumption that both (1) x > z and (2) y < z. QED
In closing, it is worth noting that it seems to be the piecewise nature of Z
that causes Problem. For it can be shown that none of the non-piecewise-
defined confirmation measures that have been discussed in the literature (see,
e.g., Crupi et al. [2007] and Crupi and Tentori [2014] for recent surveys) have
this Problem (proof omitted). Finally, because Problem only rests on ordinal
features, it will plague any measure that is ordinally equivalent to Z.5
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