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Abstract

According to both cybernetics and general system theory, a subject develops and uses an adequate model of a system to
widen his/her knowledge about the system. Models are then the interface between a subject and a real-world system to solve
a problem and to construct knowledge. Hence, evaluating these models is crucial to ensure the quality of the constructed
knowledge. We propose here an evaluation framework to assess complex models based on the intrinsic properties of these
models as well as the properties of the derived knowledge. A series of 40 evaluation criteria are proposed under the four
systemic axes: ontology, functioning, evolution, and teleology. Through a case study, we show how our evaluation model
allows both presenting a given model and assessing it.
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1. INTRODUCTION

Modeling is a human process intrinsic to any human task (Le
Moigne, 1999). The system’s behavior is administrated ex-
plicitly or implicitly by at least one model, which is directly re-
lated to a perception of the world. Models are then the basis of
problem solving and knowledge construction. In an industrial
engineering context as well as in a social area, models are
used to construct systems. Indeed, any designed system is
based on a given representation of the context and the envi-
ronment in which it is supposed to evolve. For instance, to
launch a transport company, an investor has to implement a
representation of the market. Models are also used to analyze
an existing system and therefore to understand and predict its
behavior to steer it. For instance, a decision maker (DM) in a
transport company implements a representation of the trans-
portation system rationale as well as of its environment stating
constraints to be satisfied, thus determining the system behav-
ior and consequently its performances. Thereafter, the DM’s
actions and decisions are guided explicitly or implicitly by
this representation. Hence, as the constructivism theory
suggests, models found any knowledge construction.

Because models are, in a sense, the interface between a sub-
ject and a real-world system, the evaluation of these models is
crucial to ensure the quality of the constructed knowledge.
Evaluation has been well studied in the fields of education,
health, business, industry, and management, to mention a
few. Many journals and conferences deal with evaluation issues

in various areas (e.g., Performance Evaluation, American
Journal of Evaluation, International Journal of Value Based
Management, Business Ethics, European Journal of Engineer-
ing Education, AI EDAM). However, the main issue considered
in this paper is conceptual and addresses the epistemology of
evaluation. In other words, we do not address the issue of eval-
uating a given real system, but the issue of evaluating the quality
of the model construction stage and thus the model itself.

In the second section of this paper, we present a state-of-the-
art of the evaluation issue and the epistemological foundations
of our research. In the third section, we present an evaluation
framework intended to allow a subject to assess existing model
or models under construction. The fourth section is dedicated to
a case study explaining how our evaluation framework has been
applied in the kansei (sense) engineering field to be used as
a guideline in a modeling process intended to build road acci-
dent models. [Kansei engineering or emotional engineering
(Nagamachi, 1997; Schütte, 2005) is aimed at providing de-
signers with models to help them understanding customers’
needs and thereby predict their appreciation level of a new
product.] In the fifth section, we propose to characterize the in-
terrelationships between model evaluation criteria and knowl-
edge evaluation criteria on the one hand, and within model
evaluation criteria themselves on the other hand.

2. STATE-OF-THE-ART

Most theories and epistemologies agree to the fact that mod-
els are the interface between a subject and the real world.
However, these epistemologies give different definitions to
the notions of system, model, and knowledge. Therefore, we
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stress that it would be misleading to deal with model evalu-
ation without defining these notions as well as the notion
of evaluation itself.

2.1. Definitions

The definitions of the following notions are required to under-
stand the epistemological foundation of our work.

Subjectivism: the doctrine that states that knowledge and
value are dependent on and limited by our subjective
experience

Relativism: the philosophical doctrine that all criteria of
judgment are relative to the individuals and situations
involved

Positivism: a doctrine taught by Auguste Comte (1798–
1857) that states that positivism is a form of empiricism
that bases all knowledge on perceptual experience (not
on intuition or revelation)

Constructivism: a philosophical perspective derived from
the work of Immanuel Kant, which views reality as ex-
isting mainly in the mind, constructed or interpreted in
terms of one’s own perceptions. Note: in this perspec-
tive, an individual’s prior experiences, mental structures,
and beliefs bear upon how experiences are interpreted.
Constructivism focuses on the process of how knowl-
edge is built rather than on its product or object.

2.2. Systems, models, knowledge, and evaluation

Epistemology is known as the branch of philosophy that deals
with questions related to the nature, the scope, and the sources
of knowledge. According to Heylighen (1993), the most fun-
damental question that any epistemology must answer is
“how an infinitely complex environment can be represented
by a model that is necessarily much simpler than this environ-
ment and that allows a subject to derive knowledge leading to
valuable predictions.” We may distinguish two main epis-
temologies: positivism and constructivism.

Positivism, as Platonic idealism and empiricism, stresses
the absolute, passive, and permanent character of knowledge.
It assumes that science should not pretend to be more than
what is observable and measurable. A real system in a posi-
tivist perspective (also called “hard” perspective) is seen as
a set of existing and real entities. In other words, it has fea-
tures, which are universally valid, embedded in its nature,
and can be identified and studied as such. Thus, a model in
such a perspective is universal, objective, and independent
from the subject who builds it. The value of a model (or of
an object in general) is then independent from the evaluation
context and from the subject who performs the evaluation.

However, the constructivist epistemology points out the
relativity and context dependence of knowledge as well as its
continuous evolution. Cybernetics (Ashby, 1956; Von Foerster,
1995) and general system theory (Bertalanffy, 1969) are two

approaches derived from this epistemology. They claim that
real systems are open to, and interact with, their environments,
and that they can qualitatively acquire new properties through
emergence, resulting in continual evolution. Rather than reduc-
ing an entity only to the properties of its parts or constituting
elements, cybernetics, and the general system theory focus on
the relationship between the parts, which gathers them as a
whole (the holism principle). Hence, a model is considered as
a perception of the real world in a given context. It is con-
structed by a subject for a given purpose. Then, in contrast to
positivism, a model in constructivism is not dissociated from
the subject who builds it.

2.3. Evaluation’s influence on attitudes, perceptions,
and actions

In this paper, we assimilate an evaluation task to an interaction
process between the subject who performs the evaluation and
the evaluated object (which is the model in our case). As it is
emphasized by relativism, subjectivism, and constructivism,
the perception of the subject and his/her personal background
influence the values he/she assigns to the object. However, in
contrast, during the interaction process, the evaluation tasks
may, in turn, influence the evaluators’ perception. In fact, in
Kirkhart (2000), Henry (2003), and Henry and Mark (2003),
the authors have noticed that assessments can influence per-
ceptions of social problems, selection, and implementation
of social policies. Furthermore, they encourage evaluators to
rethink the outcomes influenced by assessments.

Based on these researches, one may notice that assessment
can influence perceptions and thereby actions. Because mod-
els are the result of perceptions, we can assume that model
evaluation can influence the modeling task itself. This can
be explained as feedback behavior when a subject evaluates
a model (or an object in general), his/her perception may be
influenced: he/she may notice some incompleteness, mis-
represented aspects, and so forth. Then, he/she may carry
out new actions to tackle the identified limits, and thereby
the model may be changed.

Because evaluation affects the subject’s perception, and
because modeling is based on perceptions, it would be mis-
leading to carry out a modeling task without focusing on
the issue of model evaluation. This is why it is worth deter-
mining some criteria to assess, for each stage of the modeling
process, the adequacy of the model with the initial modeling
objectives. The aim of this paper is to develop a framework
for model evaluation and to use this framework as a guideline
in the modeling process or as a guide to select a given model
for a given objective. The context dependency and the subjec-
tivity of models as well as of their evaluation from a construc-
tivist point of view may lead to pure relativism. Nevertheless,
the present paper advocates that, despite the variability and
subjectivity of models, a number of criteria can be formulated
to help a user selecting an adequate model among a list of ex-
isting alternatives or to validate the a priori quality of a model
being implemented.
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2.4. Knowledge evaluation

As we mentioned in the introduction, a model is not an objec-
tive in itself, but a tool to develop a goal-dependent knowledge.
An adequate model is then the one that permits to derive an
adequate knowledge. Thus, the question about model assess-
ment may be transformed into a question about knowledge as-
sessment as shown in Figure 1.

The basic question the epistemology attempts to answer is
what distinguishes true (or adequate) knowledge from false
(or inadequate) knowledge (Campbell, 1974; Heylighen,
1993, 1997). In other words, how can knowledge quality,
soundness, and so forth, be evaluated?

The dualistic debate between absolutism and relativism in
philosophy arises in epistemology. Indeed, on the one hand,
positivist theories stress the absolute, passive, and permanent
character of knowledge, and thereby try to formulate unambig-
uous and fixed criteria for distinguishing “true” or “real” knowl-
edge from “false.” On the other hand, constructivist theories
stress the relativity and evolution of knowledge and therefore
try to formulate subjective criteria that are more context depen-
dent (i.e., see Campbell, 1974; Heylighen, 1993; Reich, 1994).

Despite the variability and subjectivity of knowledge, a
number of researches have been carried out to formulate cri-
teria that allow distinguishing between adequate knowledge
and inadequate knowledge (see Campbell, 1974; Heylighen,
1993; Reich, 1994).

As a matter of fact, Turchin (1991) claims that the essential
function of knowledge is prediction, and because there is no uni-
versal and absolute criterion of truth, the unique criterion of truth
is the prediction power that the concerned knowledge is able to
provide. In other words, “true” knowledge is the one that allows a
system to handle different types of perturbations by anticipating
them and testing (and further selecting among) possiblyadequate
actions that could contribute to its survival (Heylighen, 1993).

Another point of view provides a natural definition of what
“true” or “real” knowledge means: it is the selectionist point

of view which states that “true” or “real” knowledge is knowl-
edge that can survive. This selectionist point of view stems
from Campbell’s evolutionary epistemology (Campbell, 1974)
and Heylighen’s (1993) evolutionary–cybernetic epistemology.
Hence, knowledge assessment criteria may result in knowledge
selection criteria.

Reich (1995), using a constructivist approach, addressed
the issue of the measure of knowledge. In particular, he dem-
onstrated the need to use several different measures simul-
taneously rather than a single assessment.

Heylighen (1993) distinguishes three superclasses of criteria
that are used by a subject to select a given knowledge: objective
criteria, subjective criteria, and intersubjective criteria.

Objective criteria are those used for judging “objectivity” or
“reality” of knowledge or a given perception in general. The
first objective criterion is related to knowledge invariance. In-
deed, there is a part of “solid”/objective knowledge related to a
given phenomenon that must persist even when its perception
(i.e., how perception is carried out, perception context, percep-
tion means, time of perception, etc.) is no more active or chan-
ged. Heylighen distinguishes three types of invariance: invar-
iance over modalities: perception should be the same even
though it is performed through different senses, points of
view, or means of observation; invariance over time: percep-
tion should be the same even though it is performed at different
moments in time; invariance over persons: perception should
be the same even though it is performed by different observers.
The second objective criterion is related to knowledge distinc-
tiveness: a “real” perception is the one that can be characterized
in details, structured in a coherent manner, and represented by a
distinct pattern. Dreaming, for example, is not “real” because it
is a coarse-grained and fuzzy set of perceptions. The third
objective criterion is controllability: a knowledge that reacts
differentially to the different actions performed on it is more
likely to be real than one that changes randomly or not at all.

Subjective criteria are those related to how efficiently
knowledge can be assimilated by the individual subject. For

Fig. 1. The relationship between model evaluation and knowledge evaluation.
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instance, despite its objectivity, the relativistic quantum field
model of the beryllium atom is assimilated by very few people.
Because the capacity of a cognitive system is limited and learn-
ing is based on strengthening associations, useless knowledge,
complex knowledge, and knowledge into conflict with exist-
ing knowledge burdens the subject and reduces the chances
for survival. Therefore, the first subjective criterion is related
to the individual utility of knowledge: it is postulated that a
subject will only make the effort to learn and retain an idea
that can help him/her reach his/her goals. The second subjec-
tive criterion is related to the simplicity of knowledge (easy to
learn): the more complex an idea, the higher the burden on the
cognitive system, the lower the chance for the knowledge in
question to be selected. This idea is the same as the information
axiom within the axiomatic design theory by Suh (1993): the
lighter the information required for the design process of a
product to put on the market, the more likely the product is
to be inexpensive, robust in terms of adaptability to a usage
context, easy to reengineer, and finally, the more competitive
it is likely to be and the more certain to survive. This is also re-
lated to the information entropy theory. The third subjective
criterion is related to knowledge consistency: the ease with
which a cognitive system assimilates new ideas depends on
the support it gets from ideas assimilated earlier. In other
words, ideas that do not connect to existing knowledge simply
cannot be assimilated. The last subjective criterion is novelty:
new, unusual, or unexpected ideas or perceptions tend to attract
the attention, and thus arouse the cognitive energy that will fa-
cilitate their assimilation.

Intersubjective criteria are related to the capacity of knowl-
edge to be transmitted and assimilated easily. Heylighen
(1997) proposes the following criteria:

Publicity: It may be related to the subject’s motivation (the
effort the subject carrying the idea invests in making it
known to others) or to knowledge itself (simplicity, con-
sistency, novelty, etc.).

Expressivity: It depends on the whether the knowledge can
be expressed in a clear and easy language.

Formality: The possibility for an idea to be formulated in a
less context-dependent way, so it can be assimilated
equally by different subjects.

Collective utility: Some forms of knowledge benefit to the
community, while being useless for an isolated individual.

Conformity: Campbell stresses that a community achieves
a selective pressure that removes individual selfish de-
viations from these collective beliefs.

Authority: The backing of a recognized expert contributes
to the acceptance and the legitimacy of a given idea.

3. GENERIC FRAMEWORK FOR MODEL
EVALUATION

One of the main issues when considering model evaluation is
how complete the evaluation framework is. Moreover, many

viewpoints may be used to evaluate a model; what are the
relevant viewpoints? Which criteria must be satisfied to pro-
duce an “adequate knowledge”?

To address these issues, we use the cybernetic and systemic
approaches: we consider a model as ontology (ideas, expres-
sions, rules, patterns) that is open to and that interacts with its
environments through a given functioning. It can qualitatively
acquire new properties, resulting in continuous evolution to
fulfill a given teleology (goal/motivations of the subject prior
to the model implementation).

Hence, our evaluation framework consists of four generic
viewpoints: ontology, functioning, evolution, and teleology.
We are thus proposing a collection of evaluation criteria
according to each of these systemic viewpoints.

3.1. Evaluating the model ontology

The model ontology consists of concepts used to represent the
real system and/or the phenomena we are modeling. A con-
cept is an abstract idea or a mental symbol, typically associ-
ated with a corresponding representation in a language or
symbology. Hence, two important aspects must be consid-
ered in the evaluation of model ontology: the model concepts
and the model representation formalism. To assess a model
ontology, we propose the following criteria:

† Self-descriptiveness of the model ontology: It is the abil-
ity of the model concepts to embed enough information
to explain the model objectives and properties. This cri-
terion is related to the choice of the model concepts as
well as the representation formalism in which these con-
cepts are expressed. There exist several representation
techniques such as graphs (Sowa, 1984), text, mathe-
matical grammars, frames, rules, and so forth, to repre-
sent a model ontology. The model representation for-
malism is crucial to help; for instance, a subject to
present and transmit his/her models or a group to share
a common model. The more self-descriptive the model,
the more expressive the knowledge expressed through
the model (i.e., easy to be expressed in a clear and easy
language) and the easier the publicity of this knowledge.

† Consistency of the model ontology: This is a second cri-
terion to ensure the model coherence and self-descrip-
tiveness. It is related to the degree of uniformity, stan-
dardization, and freedom from contradiction among
the model concepts. Consistency is crucial to satisfy
the two following knowledge subjective criteria: sim-
plicity and consistency, and thereby the publicity inter-
subjective criterion. Indeed, the more consistent the
model ontology, the easier the knowledge expressed
through this ontology (i.e., simplicity), the higher the
support this knowledge gets from ideas assimilated ear-
lier (i.e., consistency), thereby the better the concerned
knowledge is transmitted (i.e., publicity).

† Incompleteness of the model ontology: It is related to the
lack of a concept or a misspecification of one of the
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concepts. An incomplete model might make the con-
cerned knowledge more difficult to formulate and there-
fore more difficult to transmit and assimilate.

† Independence of the model ontology: This is related to the
independency of the model from the subject who has elab-
orated it. Model ontology satisfying this criterion would
improve the formality of the concerned knowledge (i.e.,
possibility to formulate knowledge in a less context-
dependent way), its collective utility (i.e., its benefit to
the community, while being useless for an isolated indi-
vidual) and its invariance over persons.

3.2. Evaluating the model functioning

The model functioning is characterized by the model interac-
tion with its environment (constraints of use, objective of use,
inputs, etc.) to satisfy the model teleology (i.e., goal). Three
important aspects must be considered to correctly assess the
model functioning: the model interaction with users, the
model behavior under normal conditions, and the model be-
havior under stressful conditions (e.g., erroneous input, var-
ied constraints, etc.). In other words, criteria that should be
satisfied by model functioning are related to these three as-
pects. Furthermore, these criteria should be defined such
that the knowledge expressed through the concerned model
satisfies the knowledge criteria we have defined. Based on
these assumptions, we define the following criteria grouped
into the three superclasses already mentioned:

3.2.1. Evaluating the model interaction with users

The evaluation of a model interaction with its users con-
sists of characterizing the facility of use and the reusability
of the model. This leads to the following criteria:

The attractiveness of the model is related to how attractive
the model may be to the user. This refers to attributes of
the model ontology intended to make the model more at-
tractive for the user, especially attributes related to the
representation formalism such as the use of color, the na-
ture of the graphical design, and so forth. This criterion
is also related to the previous criteria (i.e., consistency, self-
descriptiveness, and independence). This criterion may im-
prove the publicity criterion of the expressed knowledge.

The reusability of the model is related to the efficiency of
the model in facilitating a selective use of its compo-
nents or submodels.

The usability of the model is related to how the model al-
lows the user to learn to operate, prepare inputs for, and
interpret outputs.

The abstractness of the model is how a model allows a user
to perform only the necessary functions relevant to a
particular purpose.

The understandability of the model is related to how the
model permits the user to understand whether the model
is suitable for a given modeling purpose, and how it can
be used for particular tasks and conditions of use.

The learnability of the model is related to how the model
itself helps the user learn more on the modeled phenom-
ena and application.

The adaptability of the model is related to the ease with
which the model meets contradictory and variable users’
constraints and users’ needs.

The operability of the model is related to how the model al-
lows the user to operate and control it. Aspects of suitabil-
ity, changeability, and adaptability may affect the model
operability. Operability corresponds to controllability, er-
ror tolerance, and conformity with users’ expectations
that we will present in the following paragraphs.

Criteria related to the model–user interaction such as re-
usability, understandability, adaptability, learnability, and so
forth, play a relevant role to ensure certain subjective criteria
of the knowledge expressed through the model. Indeed, the
more usable, reusable, understandable, adaptable, learnable,
and operable the model is, the higher the individual utility,
the simplicity, and consistency of the inherent knowledge.

3.2.2. Evaluating the model behavior under normal
conditions

The evaluation of the model behavior under normal condi-
tions consists of the following concepts:

† The controllability of the model is related to how
efficiently the model reacts differentially to the different
actions it is submitted to.

† The repeatability of the model is related to how the
model generates the same results under the same func-
tioning conditions.

† The generality of the model is related to how the model
performs a broad range of functions.

† The interoperability of the model is related to the ability
of two or more models or model components to exchange
information and to use the information exchanged.

† The replaceability of the model is related to how the
model can be used instead of another specified model
for the same purpose in the same environment.

† The usability compliance of the model is related to how
the model complies with standards, conventions, style
guides or regulations relating to usability.

3.2.3. Evaluating the model behavior under stressful
conditions

Stressful conditions may be related to input quality (e.g., er-
rors, incompleteness, noise, inconsistency, etc.), model com-
ponent faults, and constraints of use (e.g., use duration, use pe-
riod, validity domain, different types of stimulation allowed,
etc.). The general criteria referring to the assessment of a model
functioning under stressful conditions is robustness and reli-
ability. It is defined as the ability of a model or a model com-
ponent to function correctly in the presence of invalid inputs or
stressful environment conditions or unexpected circumstances.
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Robustness and reliability can be characterized through the fol-
lowing criteria:

† Error tolerance is related to the ability of the model to
continue an operation normally despite the presence of
erroneous inputs.

† Fault tolerance is related to the ability of a model to con-
tinue an operation normally despite the presence of
model component faults.

† Error proneness is related to the ability of a model to al-
low the user to intentionally or unintentionally introduce
errors into the model or misuse the model.

The model robustness criteria (i.e., error tolerance, error
proneness, reliability, controllability, etc.) make the knowl-
edge expressed through the model concerned satisfy espe-
cially the objective criteria introduced previously. Indeed, ro-
bustness criteria improve knowledge invariance over input
modalities, knowledge invariance over time, and knowledge
invariance over persons and knowledge controllability.

3.3. Evaluating the model evolution

The model evolution is characterized by its transformation (i.e.,
structural or functional) because of an internal or external
change. An internal transformation may affect a given func-
tion, component, or attribute of the model itself. For example,
when a function or a component is defective, another compo-
nent or function is added or improved and so forth. An external
transformation may affect the model environment. For exam-
ple, a new use environment, a new input, a new application, a
new requirement, a new user, new constraints, and so forth.

The evaluation of a model evolution consists in assessing the
modifiability of the model: the ease with which a model or
model component can be modified to correctly fit evolutions
and changes. To handle changes, a model should be able to
evolve. Hence, model evolution refers the following criteria:

Flexibility depends on how easily modifications can be
carried out to use the model in applications or environ-
ments other than those for which it has been specifically
designed.

Extendibility (or expandability) is related to how easily
modifications can be performed to increase the model
functional capacity.

Maintainability is related to how easily modifications can
be carried out to correct model faults.

Testability is related to how easily modifications can be
performed within the validation stage of the complete
model under construction.

3.4. Evaluating the model teleology

The model teleology is the goal of its elaboration. Assessing
model teleology consists of measuring the gap between the

users’ needs and the effective functions the model fulfills.
This gap is measured through the following criteria:

† accuracy/precision: how well the model provides the
right or agreed results or effects with the expected
degree of accuracy;

† efficiency: how well the model provides an appropriate
performance, relative to the amount of resources used
(time, human resources, etc.), under stated conditions;
and

† effectiveness: the ability of the model to target all as-
pects of the goal.

4. A CASE STUDY OF MODEL EVALUATION

In the following sections, we show how our evaluation model
allows both presenting a given model and evaluating it. We
choose as a case study a model we constructed and presented
in Ben Ahmed and Yannou (2009).

A set of 11 automotive experts (of sales departments) was
gathered for a whole day of evaluation of 10 dashboards of
recent cars belonging to the same marketing segment (of
small cars), namely, Audi A2, Citroën C2, Fiat Idea, Lancia
Ypsilon, Nissan Micra, Peugeot 206, Renault Clio, Renault
Modus, Toyota Yaris, and Volkswagen Polo. The 11 subjects
were immerged in a decision context and described as a target
user profile and a purchasing situation. During this workshop,
the 11 subjects were asked to assess dashboard pictures with-
out actually seeing or touching these dashboards. We were
conscious that there was a bias, but it was also a way to isolate
the dashboards because the car brands were not displayed and
were even removed from the pictures.

4.1. Presentation of our model

4.1.1. Presentation of the model teleology (objective)

A design process can be seen as an iterative and complex
process guided by a final and ultimate objective, which is
to make the developed product fitting the customer aspira-
tions. Hence, predicting customers’ satisfaction level when
one develops a new product is fundamental. That is the aim
of the model we use here as a case study. It stems from kansei
engineering (or emotional engineering; Nagamachu, 1997;
Schütte, 2005) that provide designers with models to help
them understanding customers’ needs and thereby predict
their appreciation level of a new product.

In other words, the teleology of our model is to allow de-
signers answering the two following questions:

1. What is the impact of a given decision related to the
design parameters (i.e., technical and/or functional
parameters) on the final customer perception?

2. Given a customer’s expected need, what are the optimal
technical choices a designer has to perform in order to
satisfy the customer need?
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The relevance of the answer to these questions depends on the
quality of our kansei model. Thereby, the evaluation of this
model is crucial.

4.1.2. Presentation of the model ontology

As we noticed in Section 3.1, the model ontology includes
the model concepts as well as the representation formalism.

Presentation of the model concepts. The several concepts
of our kansei model are described in Figure 2.

A kansei model can be seen as an interaction between the
following concepts:

† The product to be designed: in our case, car dashboards
(like those represented in Fig. 3).

† The customer: car users.
† The designer: dashboard designers.

The interaction between these three concepts is expressed
through two types of attributes:

† Technical attributes characterize the dashboards. The
role of a designer is to choose the adequate technical at-
tributes. In a sense, technical attributes are the result of
the interaction between designers and dashboards

† Perceptual attributes describe the customer assessment of
the dashboards. In a sense, perceptual attributes are the re-
sult of the interaction between customers and dashboards.

The model building is based upon a data colleting protocol
that has been described in Yannou and Coatanea (2007), and al-
ready experimented on another case study in Petiot and Yannou
(2004) and Yannou and Petiot (2004). Ten automotive dash-
boards (Audi A2, Citroen C2, Fiat Idea, Lancia Ypsilon, Nissan
Micra, Peugeot 206, Renault Clio, Renault Modus, Toyota
Yaris, and VW Polog are evaluated by 11 customers (cf. Fig. 3).

We defined a set of eight technical attributes characterizing
the dashboards with corresponding modalities (two at least but
the number may increase): the “speedometer dial position” ¼
fbehind steering wheel, at the center of the dashboardg, “dis-
play layout” ¼ fanalog, digitalg, “air conditioner control” ¼
fbutton, otherg, “air vent shape”¼ frounded, squareg, “dash-
board color” ¼ fsingle color, two colorsg, “aerator shape” ¼
frounded, squareg, “arrangement space” ¼ fmany, fewg,
and “style layout”¼ fcurved lines, straight linesg. The charac-
terization of the 10 dashboards according to the technical attri-
butes is objective and does not depend on the preference of
customers. It is presented in Table 1.

We also defined a set of 11 perceptual attributes, which
describe the customer assessing of the “space organization,”
“control button comprehensibility,” “aerator layout,” “ar-
rangement space,” “comfort,” “simplicity,” “sportive layout,”
“masculinity layout,” “quality,” “novelty,” and “harmony”
(for details on attributes, see Harvey, 2005). The customer
evaluations of the dashboard perceptual attribute levels is
made in qualitatively pairwise comparing the 10 dashboards
under each of the 11 perceptual attributes (for mathematical
details, see Limayem & Yannou, 2004). It leads to 11 normal-
ized score vectors. The advantage of this method is that the
value scale is automatically built thanks to the pairwise com-
parison mechanism without the need to define a specific
metrics (i.e., a score of 0.1 for the “masculinity layout” means
much more feminine than a score of 0.3). Next, each normal-
ized score vector (the scores sum is 1) is transformed to fit
into a standard scale of [0, 20]. Finally, continuous attribute
levels are projected into discrete categories: [0, 5] ¼ very
low, [6, 10] ¼ low, [10, 14] ¼ medium, [15, 17] ¼ high,
[18, 20] ¼ very high.

Eleven customers participated in this study, so a 110�19
matrix was then constructed: rows¼ 10 dashboards�11 cus-
tomers, columns ¼ 8 technical attributes and 11 perceptual
attributes.

Fig. 2. Several concepts of a kansei model.
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Presentation of the model representation formalism. As
we noted in Section 3.1, we can use several representation
techniques such as graphs (Sowa, 1984), text, mathematical
grammars, frames, rules, and so forth, to construct our model.
In Yannou and Petiot (2004), we used the principle compo-
nent analysis, although in Yannou and Coatanea (2007) we
used Bayesian networks (BNs; Jensen, 1996) as the represen-
tation formalism. In this paper we briefly describe the second
model.

BNs are directed acyclic graphs used to represent uncertain
knowledge in artificial intelligence (Jensen, 1996). A BN is

defined as a couple,

G ¼ (S, P),

where

† S¼ (N, A) represents the structure (i.e., the graph) and N
is a set of nodes. Each node represents a discrete variable
X having a finite number of mutually exclusive states
(modalities). In our case study, X may be a perceptual
attribute as well as a technical attribute. Here, A is a

Table 1. The technical characterization of the 10 dashboards

Dashboards
Speedometer
Dial Position

Display
Layout

Air Conditioner
Control

Air Vent
Shape

Dashboard
Color

Aerator
Shape

Arrangement
Space Style Layout

Audi A2 Behind steering wheel Analog Button Square One color Square Many Straight lines
Citroen C2 Behind steering wheel Digital Other Rounded One color Rounded Few Curved lines
Fiat Idea At center Analog Other Square Two colors Square Many Straight lines
Lancia Ypsilon At center Analog Other Square Two colors Square Many Curved lines
Nissan Micra Behind steering wheel Analog Button Rounded One color Rounded Few Straight lines
Peugeot 206 Behind steering wheel Analog Other Rounded Two colors Rounded Few Curved lines
Renault Clio Behind steering wheel Analog Other Square One color Square Few Straight lines
Renault Modus At center Digital Button Rounded Two colors Rounded Many Curved lines
Toyota Yaris At center Digital Other Rounded One color Rounded Many Curved lines
VW Polo Behind steering wheel Analog Other Square One color Square Few Straight lines

Fig. 3. The 10 dashboards evaluated by customers.
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set of edges, and the relation “N1 is a parent of N2” is
represented by an edge linking N1 to N2. In our case
study, an edge may be interpreted as a causal relation.

† P represents a set of probability distributions that are asso-
ciated with each node. When a node is a root node (i.e., it
does not have a parent), P corresponds to the probability
distribution over the node states. When a node is not a
root node, that is, when it has some parent nodes, P corre-
sponds to a conditional probability distribution that quanti-
fies the probabilistic dependency between that node and its
parents. It is represented by conditional probability tables.

Figure 4 represents the BN we obtained through an auto-
matic learning on the data. The presentation of the learning
approach is out of the scope of this paper (for more details
on the learning approach we used, see Lam & Bacchus,
1994; Ben Ahmed & Yannou, 2008).

Edges in this BN can be interpreted as causal relationships.
For instance, according to Figure 4, the subjective attribute nov-
elty depends on the two physical attributes air vent shape and
speedometer position. Each relation (i.e., edge) is expressed
through a conditional probability table, which is automatically
computed. For example, the relation between novelty, air vent
shape, and speedometer position is represented through Table 2.

4.1.3. Presentation of the model functioning

We notice here that the constructed model (cf. Fig. 5)
allows the identification of three types of relationships:

1. Relationships within technical attributes. For exam-
ple, air vent shape has a direct impact on the aerator
shape.

2. Relationships within perceptual attributes. For ex-
ample, harmony perception has a direct impact on com-
fort perception.

3. Relationships between technical and perceptual at-
tributes. For example, the two physical attributes air
vent shape and speedometer position have an impact
on the novelty perception.

Because a BN is a complete model for the attributes and
their relationships, it can be used to answer probabilistic quer-
ies about them. For example, the network can be used to find
out updated knowledge of the state of a subset of attributes
when other attributes (the evidence attributes) are observed.
This process of computing of the posterior distribution of
attributes given evidence is called probabilistic inference. In-
ference in BN (Huang & Dawiche, 1996) allows then taking
any state attribute observation (an event) into account so as to

Fig. 4. Unsupervised learning to identify probabilistic relationships within the data [i.e., between the dashboard’s physical (car icon) and
perceptual (face icon) attributes].

Table 2. Conditional probabilities representing the causal relation
among air vent shape, speedometer position, and novelty

Novelty

Speedometer
Dial Position

Aerator
Shape

Very
Low Low Medium High

Very
High

At center Rounded 13.6 36.4 31.8 9.1 9.1
Square 27.3 36.4 27.3 0.0 9.1

Behind
steering
wheel

Rounded 24.2 60.6 9.1 6.1 0.0
Square 75.8 24.2 0.0 0.0 0.0

According to this table, P (novelty¼ very low/speedometer dial position¼
at center þ air vent shape ¼ rounded) ¼ 13.6%.
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update the probabilities of the other attributes. Without any
event observation, the computation is based on a priori prob-
abilities. When observations are given, this knowledge is in-
tegrated into the network and all the probabilities are updated
accordingly.

A kansei BN provides designers with several use, or simu-
lation, scenarios. We present here only the main scenarios:
the analysis scenario and the synthesis scenario (for all the
use scenarios presentation, see Ben Ahmed & Jannou, 2008).

Analysis scenario. The analysis scenario allows answer-
ing the question “what is the probable impact of the choice re-
lated to physical attributes on the other design attributes and
especially on the perceptual attributes.” Let us consider the
speedometer dial position as an example of such a design im-
pact. According to the model presented in Figure 4, the speed-
ometer dial position has an impact on the dashboard “novelty
perception” as well as on the “control comprehensibility.”
This model not only helps the design to identify the relevant
relations between this particular technical attribute and the
other design attributes, but also allows him knowing in which
proportions it impacts them. For instance, the model states
that a dashboard whose speedometer dial is located at the cen-
ter is perceived by customers as more novel than a dashboard
whose speedometer dial is located behind the steering wheel.
However, that choice deteriorates the control comprehensibil-
ity. In a sense, the model allows a designer to compare the
two possible technical choices related to the speedometer
dial position (i.e., at the center or behind the steering wheel)
in a multicriteria way (cf. Fig. 5) with a certain confidence
depending on the learning set of assessed dashboards.

Synthesis scenario. The synthesis scenario allows answer-
ing the question “what are the best choices (related to technical

attributes) the designer must make so as to configure the level
of a perceptual attribute as expected.” The same model pre-
sented in Figure 4 allows a designer to identify all possible de-
sign choices that let him optimizing the level of a given percep-
tual attribute (or performance). As an example, we take the
“dashboard novelty perception” as target attribute to optimize
and show how our BN model allows identifying the best tech-
nical choices designers can perform to improve that attribute.

Figure 6 shows that to improve “dashboard novelty percep-
tion,” designers should carry out the following choices: a
speedometer dial position at the center of the dashboard,
two colors instead of single color, digital display instead of
analog, rounded air vent shape, many arrangement spaces
and curved lines, and so forth.

4.1.3. Presentation of the model evolution

As noted in Section 3.3, a model evolution is characterized
by its transformation (i.e., structural or functional) because of
an internal or external change. One of the main determining
advantages of a BN approach is its ability to evolve to inte-
grate changes. Many reasons may be a cause of change:

† A structural inconsistency: Because input data may be
not representative of the reality, there may be an incon-
sistent relationship between two nodes (i.e., attributes).
In this case, the user may easily modify the model struc-
ture to handle such an inconsistency instead of using the
causal network computed after a given learning algo-
rithm. Then, the user may remove an edge if he believes
that there is no apparent causal relation between the cor-
respondent nodes and restart a quantitative updating of
inner conditional probability tables. Likewise, the user
may add an edge between two nodes if he believes there

Fig. 5. The influence of the speedometer dial position on the dashboard novelty layout and the control comprehensibility: a dashboard with
the speedometer dial located at the center is perceived by customers as more novel than a dashboard with the speedometer dial located
behind the steering wheel. However, that choice may deteriorate the control comprehensibility.
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is a causal relationship between them even if the learning
algorithm has not detected the relation. He may also
modify the orientation of a given edge. Let us take the
example of the model presented in Figure 4. This model
states a strong probabilistic correlation between “com-
fort” perception and “aerator style-out” perception.
However, the edge orientation states that “comfort” per-
ception has an impact on “aerator style-out” perception.
It is easy to detect this “structural” inconsistency be-
cause the inverse is more coherent. In such a case, the
user has just to change the edge orientation to make
this relationship causally more relevant. There is appar-
ently no change in the levels of node modalities, but
there is a local recomputation of the conditional prob-
ability table, and a next simulation through the BN
will lead to different results.

† An analytical incoherence: This is related to conditional
probabilities characterizing attributes relationships. Let
us take the example presented in Table 2: based on his
experience, the user can change the figures that represent
the conditional probabilities linking attributes if he be-
lieves that the figures do not represent the reality
(when there is a lack of data form example).

† An update of the mode inputs: If there is an evolution of
the input data used to learn the BN model, the user has
just to perform a new learning of the BN model on the
new data. The structure as well as the conditional prob-
abilities is automatically updated.

In a sense, a BN model allows a user to integrate his knowl-
edge as well as the knowledge embedded in new data.

4.2. Evaluation of our kansei model

In the following we present the different assessment of our
model along the four systemic axis as developed above.

4.2.1. Evaluation of our model ontology

In Table 3, we assess the model ontology (concepts and
representation formalism) according to the criteria we pre-
sented in Section 3.1.

4.2.2. Evaluation of our model functioning

Table 4 provides the criteria for the evalutation of the
model interaction with the user. Tables 5 and 6 present the cri-
teria for the evaluation of the model behavior under normal
and stressful conditions, respectively.

4.2.3. Evaluation of our model evolution

For the criteria to evaluate our model evolution, see
Table 7.

4.2.4. Evaluation of our model teleology

Table 8 contains the criteria for evaluating the model
teleology.

5. INTERRELATIONSHIPS BETWEEN
EVALUATION CRITERIA

5.1. Introduction to the selection of criteria

The main technical issue that this work faced was related to
the criteria identification. Coming from various fields such
as education, policy making, information theory, economy,
philosophy, the criteria evolved with the progress in under-
standing the processes. In most cases these criteria appear
as single to undertake the assessment of a specific character.
Based on the work of Reich (1994, 1995) and the cybernetic
of the second order we have considered all the potential
scientific fields that have explicitly addressed the evaluation
theory and methodology, and their associated criteria. We
have then suggested consensus on their definitions based
on the work of Heylighen (1993, 1997).

Fig. 6. The optimal technical choices that a designer should carry out in order to improve the novelty perception of a dashboard.
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Table 3. Evaluation of the model ontology

Evaluation Criteria Related to Model Concepts Evaluation: Assessment of Kansei Model Concepts

Incompleteness: the risk of missing a concept or a
misspecification of one of the concepts

Consistency: the degree of uniformity, standardization,
and freedom from contradiction among the model
concepts

As we noticed in Section 4.1.1, the aim of a kansei model is to provide designers with
models to help them understand customers’ needs and thereby predict their appreciation
level of a new product. The concepts of product (car dashboard), customer (car user)
and designer (car dashboard designer) as well as the interaction between them
(perceptual attributes and technical attributes) are sufficient, complementary, and
consistent enough to embed all needed information required to perform a complete
model. Hence, the completeness and consistency are satisfied.

Self-descriptiveness: the ability of the model to embed
enough information to explain the model objectives
and properties

Self-descriptiveness is one of the main powerful characteristics of models built using the
Bayesian network (BN) approach. In fact, the graphical formalism of BN (cf. Fig. 2)
allows the simultaneous representation of all the concepts as well as their qualitative
relationship (expressed through edges) and quantitative relationship (expressed through
conditional probabilities such as those presented in Table 2).

Independences: the independency of the model from the
subject who has elaborated it

The attributes (technical and perceptual) choice process as well as the collect data protocol
were performed in a way ensuring their independence from the persons who elaborated
them.a Of course, despite a clear elaboration process to obtain a list of major perceptual
attributes and technical parameters, it remains a part of nondeterminism.

Moreover, the model is automatically constructed using BN learning on data. Thereby, the
structural relationship (edges) as well as the analytical relationship (conditional
probabilities) between nodes (i.e., attributes) are automatically computed. They are
independent from the person who performed the model.

aSee Henry (2003).

Table 4. Evaluation of the model interaction with the user

Criteria Evaluation

Attractiveness: how attractive the model may be to the
user (the use of color, the nature of the graphical
design, etc.) This criterion is also related to the
previous criteria (i.e., consistency, self-descriptiveness
and independence)

Graphical formalism in general and the Bayesian network (BN) in particular are more
expressive and thereby more attractive compared to other representation formalisms.
Moreover, the graphical tool we used (BayesiaLabw) allows the graphical distinguishing of
technical and perceptual attributes in the user interface (see icon in Fig. 4). Causal
relationships between attributes are also easy to represent and interpret. This makes the model
easy to understand and use even by a nonexpert user.

Reusability: the efficiency of a model in facilitating a
selective use of its components or submodels

A BN model can be considered as a combination of submodels. Indeed, each group of nodes
can be analyzed separately as a single model interacting with the other nodes. The tool
we used allows carrying out selective analysis through a monitor (see Figs. 4 and 5).
Hence, a user can only focus on a given subset of the model nodes.

Usability: how the model allows the user to learn in order
to operate, prepare the model inputs, and interpret its
outputs

Learnability: how the model itself helps the user learn
more on its application

The construction of our kansei BN model can be seen as a classical task of extracting
information from data automatically. In other words, it is a machine learning task. It is a
well-structured task in artificial intelligence, consisting of a sequence of subtasks: data
preparation, model learning, and model interpretation. When a user constructs such a model,
he learns at the same time how to perform each of these subtasks.

Abstractness: how a model allows a user to perform only
the necessary functions relevant to a particular purpose

As we noticed in Section 4.1.3, thanks to the BN approach, the same model allows simultaneous
represention of the relationship within technical attributes, the relationship within
perceptual attributes and the relationship between technical and perceptual attributes.
Thereby, it allows the performing of at least two several use scenarios, analysis and synthesis,
the two main tasks in kansei engineering.

Understandability: how the model permits the user to
understand whether the model is suitable and how it
can be used for particular tasks and conditions of use

As we noticed in the previous point, a BN model embeds several interattribute relationships
as well as several use scenarios required in kansei engineering. It is sufficiently
intuitive to allow a given user, even she is not an expert in machine learning or the BN
approach or kansei engineering, to understand and use such a model.

Operability: how the model allows the user to operate
and control it

The use of the BN approach allows a user to easily perform several tasks of kansei engineering
(see Section 4.1.3). It also allows easy updates as well as incoherence overtaking (see
Section 4.1.4).

Adaptability: the ease with which the model meets
contradictory users’ constraints and users’ needs

The same BN model allows us to perform several kansei tasks. It also allows a user to integrate
his own knowledge.

W. Ben Ahmed et al.118

https://doi.org/10.1017/S0890060409000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060409000171


5.2. Interrelationships between model evaluation
criteria and knowledge evaluation criteria

Because a model does not constitute an objective in itself, but is
a means to create new knowledge, a satisfactory model must be
the one that allows deriving adequate knowledge in given con-

texts. In other words, the model evaluation criteria must fulfill
the knowledge evaluation criteria (see Section 2.4 and Fig. 1).

The question of links between the two types of criteria sets
is worth studying. We propose, in this paper, a first sugges-
tion of such links, based on our experience (example used
in this paper and other initiatives). Table 9 is the result of a
first generic correlation that can exist between the two sets
of evaluation criteria.

Table 9 may be interpreted in both directions. In the verti-
cal direction, let us take the example of the criterion presented
in the first column, that is, knowledge invariance: to improve
this criterion (i.e.,þ), we can improve the model consistency,
self-descriptiveness, independency, and so forth. We can also
weaken the criterion model completeness. In the horizontal
direction, let us take the example of the criterion presented
in the third row, that is, model ontology independency: the im-
provement of this criterion (i.e., þ) may lead to the improve-
ment of the knowledge invariance, simplicity, and consis-
tency and/or the degradation (i.e., 2) of the knowledge
distinctiveness, controllability, and formality.

Only the approach related to the relationship between
knowledge evaluation criteria and model evaluation criteria
must be considered here, and the reader must not pay too
much attention to the table content, as it should be confirmed
by more model implementations and postvalidations. We in-
tend to provide Table 9 to a panel of researchers to figure out
whether it is possible and relevant to refine this general cor-
relation table. However, for the time being, we consider this
table as an architecture to adapt (a pattern to instantiate) to
any domain of application.

5.3. Interrelationships within model evaluation
criteria

We have thus far considered a complete independence be-
tween the evaluation criteria of a model. However, in practice,

Table 5. Evaluation of the model behavior under normal conditions

Criteria Evaluation

Controllability: how efficiently the model reacts
differentially to the different actions it is submitted to

The same Bayesian network (BN) model allows us to perform several kansei tasks (analysis
scenario and synthesis scenario; see Section 4.1.3).

Repeatability: how the model generates the same results
under the same functioning conditions

The structural relationship (edges) as well as the analytical relationship (conditional probability)
between attributes is automatically computed. Thereby, the result is repeatable.

Generality: how the model performs a broad range of
functions

The same BN model allows us to perform several kansei tasks (analysis scenario and synthesis
scenario; see Section 4.1.3).

Interoperability: the ability of two or more models or
model components to exchange information and to use
the information exchanged

Probabilistic inference in BN allows taking any state attribute observation (an event) into
account in order to update the probabilities of the other attributes. Without any event
observation, the computation is based on a priori probabilities. When observations are given,
this knowledge is integrated into the network and all of the probabilities are updated
accordingly (see Section 4.1.3).

Replaceability: how the model can be used instead of
another specified model for the same purpose in the
same environment

Neither of the other models we constructed using the same data but other data mining techniques
(logistic regression, principal component analysis, etc.) allows us to simultaneously perform
the use scenario and the synthesis scenario. A BN model can replace all of these models.

Usability compliance: how the model can comply with
standards, conventions, style guides, or regulations
relating to usability

This is not usable for our case.

Table 6. Evaluation of the model behavior under stressful
conditions

Criteria Evaluation

Error tolerance: the ability of the
model to continue an operation
normally despite the presence of
erroneous inputs

As we noticed in Section 4.1.4, a
Bayesian network (BN) model
allows a user to integrate his own
knowledge as well as knowledge
embedded in new data. Hence, if
there is erroneous input data, a
BN model allows the overtaking
of the structural and analytical
incoherencies.

Fault tolerance: the ability of a
model to continue an operation
normally despite the presence of
model component faults

As we noticed previously, a BN
model can be seen as a
combination of submodels.
Thereby, even though there are
incoherencies in some
relationship between a set of
attributes, the other relationship
can be used normally. In other
words, if an inference does not
include a fault part of the model,
we can use its result without risk.

Error proneness: the ability of a
model to allow the user to
intentionally or unintentionally
introduce errors into the model or
misuse the model

The user can easily introduce errors
into the model: he can add,
remove, or change the orientation
of an edge. He can also modify
conditional probabilities
characterizing a relationship
between nodes.
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the levels of compliance to the criteria turn out to be corre-
lated. Again, we have found no existing study on that subject
in the literature. We propose in Table 10 the generic correla-
tion matrix between the model evaluation criteria filled by the
knowledge gathered during this experiment. This result has to
be considered as a framework, and should not be adopted
without an extensive validation.

Table 10 may be interpreted in its two directions. Verti-
cally: let us take the example of the criterion presented in
the 18th column, that is, model flexibility: to improve this cri-
terion (i.e., þ), we can improve model consistency, indepen-
dency, and so forth. We can also weaken (i.e., 2) model com-
pleteness. Horizontally: let us take the same example of the
criterion model flexibility: the improvement of this criterion
(i.e.,þ) may lead to the improvement of model attractiveness,
reusability, and so forth. This may also lead to the weakening
(i.e., 2) of model controllability, model precision, and so
forth. We notice here (as in the previous section) that only
the approach related to the relationship within model evalu-

ation criteria must here be considered, and the reader must
not pay too much attention to the table content, as this content
should be confirmed by more model implementations and
postvalidations.

6. DISCUSSION OF THE APPROACH

There are several potential approaches to the representation of
the perceived world. Modeling is a natural human process that
started to be studied since the Greek civilization. The under-
standing of the explicit and implicit behavior of the “mod-
eler” has been influenced by most of the school of thoughts
in philosophy. It is too early to state that a Cartesian onto-
logical description of the world is obsolete. However, there
is a consensus in the scientific community for a need to
describe the component of the perceived real or artificial
world in terms of its components and its behavior or function-
ality. There are much more doubt and critics against the need
to describe the teleology of a system.

The approach used here to set the list of criteria to be con-
sidered is based on two stages. A top-down perspective based
on the general system theory that forces the consideration of
the four levels of description; and the bottom-up approach
based on a deep analysis of the criteria used in several disci-
plines. We provide here this classification.

The main drawback of the approach used belongs to the in-
trinsic characteristic of the approach dealing with the concept
of recursively. In fact, although at the epistemological level it
leaves the door open for a refinement of the description, at the
same time it closes the door for a perfect control of the system
behavior and thus lead to a risk of incompleteness.

Nevertheless, when applied in the design field (presented
here) and in more areas since the beginning of the 1900s (for
knowledge management, see Ben Ahmed et al., 2003; design
process documentation, Cantzler et al., 1995; Mekhilef et al.,
1998; and industrial maintenance, Baud, 1965), it provided

Table 8. Evaluation of the model teleology

Criteria Evaluation

Accuracy/precision: how well the
model provides the right or
agreed results or effects with the
expected degree of accuracy

We previously showed how to assess
the accuracy of supervised and
unsupervised Bayesian models
and to appropriately choose
between them, depending on the
design goal.a

Efficiency: how well the model
provides an appropriate
performance, relative to the
amount of resources used (time,
human resources, etc.), under
stated conditions

Effectiveness: the ability of the
model to target all aspects of the
goal

aSee Ben Ahmed and Yannou (2009).

Table 7. Evaluation of the model evolution

Criteria Evaluation

Flexibility: how easily modifications
can be carried out in order to use
the model in applications or
environments other than those for
which it has been specifically
designed

The same Bayesian model may be
used as a cause analysis tool.
Suppose a new dashboard has
negative customer appreciation.
Our model can be used to attempt
to identify the cause of this
negative evaluation provided that
the present design context is
compatible with the Bayesian
network (BN) hypotheses such as
the car segment market and the
customer segment. The synthesis
scenario is then used.

The same model can be used to carry
out supervised and unsupervised
learning to carry out local or
global optimization of a given
design.a

Extendability (or expandability):
how easily modifications can be
performed in order to increase the
model functional capacity

In our case, increasing the model
functional capacity consists of
increasing its precision and
accuracy. The fact that we can
easily introduce expert
knowledge as well as knowledge
embedded in new data (see
Section 3.3) improves the scope
of our model.

Maintainability: how easily
modifications can be carried out in
order to correct model faults

As we noticed in Section 4.1.4, a BN
model allows the user to integrate
easily his own knowledge as well
as knowledge embedded in new
data in order to handle structural
and analytical incoherencies.

Testability: how easily modifications
can be performed within the
validation stage of the model

See the previous point.

aSee Ben Ahmed and Yannou (2009).
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Table 9. Interrelationships within model evaluation criteria

Knowledge Evaluation Criteria

Objective
Subjective Intersubjective

Model Evaluation Criteria Invariance Distinctiveness Controllability
Individual

Utility Simplicity Consistency Novelty Publicity Expressivity Formality
Collective

Utility Authority

Model Ontology

Representation formalism
Consistency þ þ þ þ þ þ þ

Self-descriptiveness þ þ þ þ þ

Independency þ 2 2 2 þ þ þ þ 2 þ 2

Completeness 2 þ þ þ 2 2 þ 2

Model–user interaction
Attractiveness þ þ þ

Usablity þ þ þ þ þ

Reusability þ þ þ þ þ

Understandability þ þ þ þ þ þ

Learnability þ þ þ þ þ þ

Operability þ þ þ þ þ þ

Adaptability 2 2 2 þ þ þ þ

Model Functioning

Stressful conditions
Error tolerance þ 2 2 þ þ þ

Fault tolerance þ 2 2 þ þ þ

Reliability þ þ þ þ þ

Error proneness þ 2 2 þ þ þ

Normal conditions
Controllability þ þ þ þ

Generality 2 2 2 þ þ þ þ

Replaceability 2 2 2 þ þ

Model Evolution

Modifiability
Flexibility 2 2 2 þ þ þ

Maintainability þ

Testability þ þ þ þ þ þ

Extendability 2 2 2 þ þ þ

Stability þ þ þ þ þ

Model Teleology

Accuracy 2 þ þ þ 2 þ 2

Efficiency þ þ þ

Effectiveness þ þ þ

A plus or minus in case (i, j) means that model criterion i is positively or negatively correlated to the improvement of model criterion j, respectively.
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Table 10. The interrelationships within model evaluation criteria

Model Evaluation Criteria

Model Ontology

Representation Formalism Model–User Interaction

Model Evaluation
Criteria Consistency

Self-
Descriptiveness Independency Completeness Attractiveness Usability Reusability Understandability Learnability Operability Adaptability

Model Ontology

Representation formalism
Consistency þ þ þ þ þ þ þ þ þ

Self-descriptiveness þ þ þ þ þ þ þ

Independency þ 2 þ þ þ þ

Completeness 2 þ þ þ þ þ þ

Model–user interaction
Attractiveness þ þ

Usability þ þ þ

Reusability þ þ þ þ

Understandability þ þ þ þ þ þ

Learnability þ þ þ þ

Operability þ þ þ þ þ þ

Adaptability þ þ þ þ

Model Functioning

Stressful conditions
Error tolerance þ þ þ þ þ þ

Fault tolerance þ þ þ þ þ þ

Error proneness þ þ þ þ þ

Normal conditions
Controllability þ þ þ 2

Generality þ þ

Replaceability þ þ þ

Model Evolution

Modifiability
Flexibility þ þ þ þ

Maintainability þ þ þ þ

Testability þ þ þ þ þ þ

Extendability þ þ þ

Stability þ þ þ

Model Teleology

Accuracy
Efficiency
Effectiveness
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Model Evaluation Criteria

Model Functioning Model Evolution

Stressful Conditions Normal Conditions Modifiability Model Teleology

Model Evaluation
Criteria

Error
Tolerance

Fault
Tolerance

Error
Proneness

Control-
lability Generality

Replace-
ability Flexibility

Maintain-
ability Testability

Extend-
ability Stability Accuracy Efficiency

Effective-
ness

Model Ontology

Representation formalism
Consistency þ þ þ

Self-descriptiveness
Independency þ þ þ þ þ 2 2 2

Completeness þ 2 2 2 2 þ þ 2 þ

Model–user interaction
Attractiveness
Usability þ

Reusability þ 2 þ

Understandability þ þ þ þ þ þ þ

Learnability
Operability þ þ þ þ

Adaptability þ þ þ 2 þ þ þ þ 2 þ 2

Model Functioning

Stressful conditions
Error tolerance 2 þ þ þ 2 þ 2 þ 2

Fault tolerance þ þ 2 þ þ þ þ þ 2 þ 2 þ 2

Error proneness þ þ 2 þ þ þ þ þ 2 þ 2 þ 2

Normal conditions
Controllability 2 2 2 2 2 2 2 þ 2 2 þ þ þ

Generality þ þ þ 2 2 þ 2 þ þ 2 þ 2

Replaceability þ þ þ 2 þ þ

Model Evolution

Modifiability
Flexibility þ þ þ 2 þ þ þ þ þ þ 2 þ þ

Maintainability þ þ þ 2 þ þ þ þ þ 2 þ þ

Testability þ

Extendability 2 2 2 þ þ þ þ

Stability þ þ þ 2 þ 2 þ 2

Model Teleology

Accuracy 2 þ

Efficiency
Effectiveness

A plus or minus in case (i, j) means that model criterion i is positively or negatively correlated to the improvement of model criterion j, respectively.
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us with a real new approach leading to a more mature descrip-
tion of the systems under studies.

Nevertheless, from the application perspective, one has to
consider that all the criteria might not be considered at the
same time. It is best suitable to introduce some weighting
or hierarchization according to the modeling objectives.
The use of house of quality method is recommended.

7. CONCLUSION

Is my model of the real world or my model of an artificial
world a satisfactory model? Here is the question that a biolo-
gist (relative to a model of bacteria), or, an industrial engineer
[relative to a model of a production system or of a product sys-
tem (digital mockup)] could ask when confronted to a model-
ing process aiming at generating the necessary knowledge that
could result in the best set of actions in a given context.

This paper has adopted an evolutionary–cybernetic episte-
mology to state that the model assessment criteria may also
derive from the assessment criteria of the generated knowl-
edge. This paper has also adopted a systemic approach in
systematically considering four viewpoints in the evaluation
process: ontology, functioning, evolution/transformation, and
teleology.

A generic model of a model evaluation has been defined
through the proposal of 28 model evaluation criteria and 12
knowledge evaluation criteria. We have been using this ap-
proach is several case studies and presented a specific case
in this paper.

In addition, we have proposed two correlation tables
between evaluation criteria that should help the modeler to
better characterize his/her application domain in terms of
expected modeling difficulties.

We hope that this model of a model evaluation will bring a
valuable aid to modelers in the future. The matrix presented
might be extended to include any missed criteria. The ulti-
mate question could then be “Is our model satisfactory?”
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