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Abstract

We analyse the jigsaw percolation process, which may be seen as a measure of whether
two graphs on the same vertex set are ‘jointly connected’. Bollobás, Riordan, Slivken,
and Smith (2017) proved that, when the two graphs are independent binomial random
graphs, whether the jigsaw process percolates undergoes a phase transition when the
product of the two probabilities is �(1/(n ln n)). We show that this threshold is sharp,
and that it lies at 1/(4n ln n).
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1. Introduction

1.1. Motivation and history

The jigsaw percolation process was introduced by Brummitt et al. [7] as a model for
how a group of people might collectively solve a problem which would be insurmountable
individually. The premise is that each person has a piece of a puzzle (or some knowledge, idea,
or expertise) and the pieces must be combined in a certain way to solve the puzzle.

This is modelled using two graphs on a common vertex set: a red people graph with an
edge if the two people know or collaborate with each other; and a blue puzzle graph if the two
corresponding pieces of the puzzle can be combined. If a pair of vertices are connected by both
a red and a blue edge, the two corresponding people share their information—modelled in the
graphs by merging the two vertices into one cluster. Subsequently, two clusters are merged if
a red and a blue edge runs between them. Thus, once parts of the puzzle have already been
assembled, they become easier to merge. The process continues until no additional merges are
possible. If it ends with one single cluster this indicates that the puzzle has been solved, in
which case we say that the process percolates. The process is formally defined in Section 1.4.
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This process was first studied by Brummitt et al. [7] and subsequently by Gravner and
Sivakoff [11]. They considered various deterministic possibilities for the blue graph and
random possibilities for the red graph, and determined some necessary and some sufficient
conditions for the process to percolate with high probability (w.h.p.), meaning with probability
tending to 1 as the number of vertices n tends to ∞.

Bollobás et al. [5] then considered the case when both the red and blue graphs are random.
Given a natural number n and a real number p ∈ [0, 1], the Erdős–Rényi binomial random
graph G(n, p) is a graph on vertex set [n] := {1, 2, . . . , n} in which each pair of vertices forms
an edge with probability p independently. Consider the binomial random graphs G1 = G(n, p1)
and independently G2 = G(n, p2) on the same vertex set. The random double graph created in
this way is denoted by G(n, p1, p2). For brevity, we refer to the jigsaw process rather than the
jigsaw percolation process.

Theorem 1.1. ([5].) There exists a constant c such that the following statements hold.

(i) If p1p2 < 1/(cn ln n) then w.h.p. the jigsaw process on G(n, p1, p2) does not percolate.

(ii) If p1p2 > c/(n ln n) and p1, p2 ≥ c ln n/n, then w.h.p. the jigsaw process on G(n, p1, p2)
percolates.

In other words, percolation of the jigsaw process undergoes a phase transition when the
product p1p2 has order 1/(n ln n). Note that connectedness of each graph is a necessary
condition for percolation, which is the reason for the additional assumption in the supercritical
case (statement (ii)): both p1 and p2 must be larger than ln n/n, which is the threshold for
connectedness, as first proved by Erdős and Rényi [10].

Indeed Buldyrev et al. [8] considered a related process, in which a set of vertices percolates
if the graph spanned by these vertices is connected both in the red and the blue graph.

Theorem 1.1 has subsequently been extended in various directions. Bollobás et al. [4]
proved a generalisation to k-uniform hypergraphs and a jigsaw percolation process on the
j-sets for each 1 ≤ j ≤ k − 1. In another direction, Cooley and Gutiérrez [9] proved an
analogous result for a set of r graphs on a common vertex set, where 2 ≤ r = o(

√
ln ln n).

1.2. Main theorem

All of the results previously described (except for two special cases in [11]) determine
their thresholds only up to a multiplicative constant. In this paper we strengthen the result of
Bollobás et al. [5] by determining the precise location of the threshold.

Theorem 1.2. Let ε > 0 be any constant.

(i) If p1p2 ≤ (1 − ε)/(4n ln n) then w.h.p. the jigsaw process on G(n, p1, p2) does not
percolate.

(ii) If p1p2 ≥ (1 + ε)/(4n ln n) and p1, p2 ≥ ln n/n, then conditioned on G1, G2 being
connected, w.h.p. the jigsaw process on G(n, p1, p2) percolates.

Let us observe that the jigsaw process has a natural generalisation to any number of graphs
on a common vertex set (see [9]), and, in particular, the analogous process on just one graph
would percolate if and only if the graph is connected. Thus, we may view jigsaw percolation
as a measure of whether two graphs on a common vertex set are jointly connected. In this way,
Theorem 1.2 may be considered a double-graph analogue of the classical result of Erdős and
Rényi [10] on the threshold for connectedness of a random graph.
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1.3. Proof strategy

For random graphs, the famous hitting time result of Bollobás and Thomason [3] relates the
threshold for connectedness of a random graph to the disappearance of the last isolated vertex,
implying that the critical obstruction for connectedness of random graphs is the minimal one,
and, in particular, whether a random graph is connected or not is essentially determined by local
conditions. In contrast, the critical obstructions for jigsaw percolation on at least two graphs
are not local ones—in fact they are of size �(ln n). This makes determining the threshold, and
the proofs of both subcritical and supercritical cases, significantly more complex.

The proof strategies for both the subcritical and supercritical cases of Theorem 1.2 are
influenced by the fact that there is a bottleneck in the jigsaw process. More precisely, if any
cluster reaches size around 1/(2np1p2), then it is large enough that w.h.p. it will go on to
incorporate all vertices. However, for small p1p2, no cluster will reach this size. In fact, the size
of the largest cluster is approximately the smallest positive solution of the implicit equation
2xNe−xN = n−1/x, where N = np1p2, which reaches 1/(2np1p2) when p1p2 is 1/(4n ln n),
i.e. at the threshold for percolation. Thus, there is a bottleneck in the process at size around
2 ln n. Therefore, in the subcritical case we will prove that w.h.p. no percolating set has size
at least 2 ln n. On the other hand, in the supercritical case, the main difficulty is to show that
w.h.p. some percolating sets reach size slightly larger than 2 ln n, after which it is relatively
straightforward to show that, in fact, w.h.p. one of these sets will also percolate with all
remaining vertices.

1.4. The jigsaw process

We now formally introduce the jigsaw process. A double graph is a triple (V, E1, E2), where
V is a set of vertices and, for i = 1, 2, we have Ei ⊂

(V
2

)
. In other words, (V, E1) and (V, E2)

are both graphs on a common vertex set.

Algorithm 1.1. (Jigsaw process.)
Input: Double graph (V, E1, E2).
Set i = 0, V (0) = V , E(0)

1 = E1 and E(0)
2 = E2.

Set H(0) to be the auxiliary graph (V (0), E(0)
1 ∩ E(0)

2 ).
while E(H(i)) 
=∅ do

Set V (i+1) to be the set of components of H(i).

For C, D ∈ V (i+1) and j = 1, 2 let {C, D} ∈ E(i+1)
j if and only if there is at least one edge

between C and D in E(i)
j .

Set H(i+1) to be the auxiliary graph (V (i+1), E(i+1)
1 ∩ E(i+1)

2 ).

Proceed to step i + 1.

end
Output: V (i).

Note that the process always terminates since |V (i)| is always positive, but strictly decreasing
with i. We say that the jigsaw process percolates if at the end of the process V (i) contains exactly
one vertex.
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1.5. Paper overview

The proofs of both the subcritical and supercritical cases are based on showing that, for k in
a suitable range, the probability that there exists a percolating set of size k + 1 is approximately

(2kn)k+1(p1p2)ke−k2np1p2eo(k) = (2knp1p2e−knp1p2 )kneo(k).

Very roughly, (2kn)k+1 is the number of configurations on k + 1 vertices (within a set of n
vertices) that can make these k vertices a percolating set, (p1p2)k is the probability that the
relevant edges are present, while e−k2np1p2 is the probability that this percolating set would
actually be obtained (with an appropriate algorithm) without other vertices also being added.

The main difficulty in each of the proofs is rigorously proving that this approximation is
valid, as a lower bound for the supercritical case and as an upper bound for the subcritical case.

Some preliminary results and notation are established in Section 2. This is followed by the
proof of the subcritical regime in Section 3 and by the proof of the supercritical regime in
Section 4. Finally, in Section 5 we discuss some further results and open problems.

2. Preliminaries

We first collect various auxiliary results and definitions that we will need throughout the
paper. First note that since the jigsaw process is symmetric in the two graphs, we may assume,
without loss of generality, that p2 ≤ p1 ≤ 1. Furthermore, since percolation of the jigsaw
process is a monotone property of double graphs, we may also assume that

p1p2 = (1 ± ε)
1

4n ln n
, (2.1)

i.e. we assume, for the subcritical case, that p1p2 = (1 − ε)/(4n ln n) and, for the supercritical
case, that p1p2 = (1 + ε)/(4n ln n). Furthermore, since connectedness of both graphs is a
necessary condition for the double graph to percolate, in both subcritical and supercritical
cases we may assume that

p1 ≥ p2 ≥ ln n − ln ln n

n
. (2.2)

This is already true by assumption in the supercritical case. In the subcritical case, if p2 does
not satisfy this condition then w.h.p. G(n, p2) is not connected by the classical result of Erdős
and Rényi [10], and, therefore, the conclusion of Theorem 1.2(i) certainly holds.

Note that (2.1) and (2.2) imply an upper bound on the individual probabilities, namely,

p1, p2 = O

(
1

(ln n)2

)
. (2.3)

Furthermore, observe that

p2 ≤ √
p1p2 =

√
1 + ε

4n ln n
≤ n−1/2

and

p1 ≥ √
p1p2 ≥

√
1 − ε

2
√

n ln n
. (2.4)

We will need to bound various random variables from above and below, which we do by
means of stochastic domination.
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Definition 2.1. Let X and Y be two positive integer-valued random variables. We say that X
stochastically dominates Y , and write X � Y if P[X ≥ r] ≥ P[Y ≥ r] for all r ∈N.

We will often use the following form of the Chernoff bound (see, e.g. [12]).

Lemma 2.1. For any binomial random variable X, we have

P[X ≥E[X] + t] ≤ exp

(
− t2

2(E[X] + t/3)

)

and

P[X ≤E[X] − t] ≤ exp

(
− t2

2E[X]

)
.

Throughout the paper we will ignore floors and ceilings when this does not significantly
affect the argument. We will use the following bounds on factorials which hold for every
positive integer (see, e.g. [14]):

(
n

e

)n

≤ √
2πn

(
n

e

)n

≤ n! ≤ e
√

n

(
n

e

)n

. (2.5)

The following will be a central definition in the paper.

Definition 2.2. A percolating set in a double graph (V, E1, E2) is a set of vertices U ⊂ V such
that given the two edge sets E′

i = Ei ∩
(U

2

)
for i = 1, 2, the jigsaw process on the double graph

(U, E′
1, E′

2) percolates.

Whenever we talk about a cluster of vertices, in particular this is always a percolating set.

3. Subcritical case: proof of Theorem 1.2(i)

3.1. Outline

As previously mentioned, to prove Theorem 1.2(i) we will show that w.h.p. there is no
percolating set of size at least 2 ln n. The key idea is to bound the number of configurations
which can cause a set of vertices to percolate.

Definition 3.1. A minimal percolating configuration is a percolating double-graph
(U, E1, E2), where U ⊂ [n] and Ei ⊂ E(Gi) for i = 1, 2, and each Ei forms a spanning tree
in U.

In other words, a minimal percolating configuration contains only the edges which are
needed for it to percolate. Note that we do not forbid additional edges in the host double
graph G(n, p1, p2), but they are not part of the minimal percolating configuration.

It is easy to see by induction that any percolating set admits a minimal percolating
configuration, since for two clusters to merge it is enough that there is just one red edge and
one blue edge between them.

In order to bound the number of minimal percolating configurations, we will analyse how
the jigsaw process might evolve on them by introducing the absorption process in Section 3.2.
In Section 3.3 we will characterise minimal percolating configurations according to certain
parameters related to their corresponding absorption processes, and state bounds on the number
of possibilities for configurations based on these parameters (Theorem 3.1 and Lemma 3.2).
These bounds will be proved in Section 3.5 and 3.6, after some technical preliminaries
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have been proved in Section 3.4. Finally, in Section 3.7 we show how these bounds prove
Theorem 1.2(i).

3.2. The absorption process

We need a variant of the jigsaw process, which we call an absorption process. In this process
we gradually construct a percolating set Si = {v1, . . . , vt(i)}.

Algorithm 3.1. (Absorption process.)
Input: Double graph (V, E1, E2), vertex v1 ∈ V and a set of clusters C partitioning V \ {v1}.
Set i = 1, t(i) = 1, C1 = C and S1 = {v1}.
while t(i) ≥ i do

Set C ′
i ⊂ Ci be the set of clusters of size at most t(i) which are adjacent to vi in one colour

and to some vertex from {v1, . . . , vi} in the other colour.

Set Si+1 = Si ∪ (
⋃

C∈C′
i

C).

Set t(i + 1) = |Si+1|.
Set vt(i)+1, . . . , vt(i+1) to be the vertices of Si+1 \ Si in any order.

Set Ci+1 = Ci \ C ′
i .

Proceed to step i + 1.

end
Output: Si.

If at the end of this algorithm we have Si = V , we say that the absorption process percolates.
If the double graph (V, E1, E2) is clear from the context then we sometimes abuse terminology
slightly by referring to (v1, C) as the input of the algorithm.

Lemma 3.1. For every percolating double-graph (V, E1, E2), there exists a vertex v1 and a
set of disjoint clusters C such that the absorption process with input (v1, C) percolates.

Proof. We prove this statement by induction on the size of V . Clearly, if |V| = 1 the
statement holds, so assume that it holds for every set of size at most k and that |V| = k + 1.

Since (V, E1, E2) percolates, in the final step of the jigsaw process, a connected auxiliary
graph H(i) was merged into one cluster. Consider a vertex of H(i) which is not a cut vertex. This
vertex corresponds to a set X of vertices in V , and let Y := V \ X. Then we have partitioned V
into two nonempty percolating sets.

Fix edges e1 = x1y1 ∈ E1 and e2 = x2y2 ∈ E2 such that x1, x2 ∈ X and y1, y2 ∈ Y . Note that
since (V, E1, E2) percolates, such edges must exist.

By the induction hypothesis, there exists a vertex vX ∈ X and a set of clusters CX within X
such that the absorption process on X with input (vX, CX) percolates. Let us denote by Xi the
percolating set constructed within X after i steps of this absorption process. Let i′ be the first
step in which Xi′ contains both x1 and x2. We define vY , CY , j′, and Yj′ analogously within Y .

Without loss of generality, we have |Xi′ | ≥ |Yj′ |. Recall that the vertices of Xi′ are ordered in
the absorption process, and let i′′ be the index of the later of x1, x2, without loss of generality x2.
Then when we reach x2 at step i′′, we have |Xi′′ | ≥ |Xi′ | ≥ |Yj′ | and, therefore, at step i′′, the
cluster Yj′ can be merged with Xi′′ . Thus, the absorption process on V with input vertex vX and
with input of clusters CX, Yj′ and {C ∈ CY | C ∩ Yj′ =∅} percolates. �
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Lemma 3.1 tells us that any percolating set can be discovered via an absorption process
with some input of starting vertex and clusters. Note that this is slightly nonconstructive, since
some percolating clusters are already in the input of the algorithm.

3.3. Bounding configurations

Our aim is to bound the number of possible minimal percolating configurations by analysing
how the absorption process evolves on them. For this analysis, we will need to define the order
in which clusters are added, which is primarily determined by the step in which a cluster is
added, but there may be more than one cluster added in a single step. In such a case we order
the clusters added in a single step according to the order of their smallest vertices (recall that
the vertices of G(n, p1, p2) are labelled 1, . . . , n).

Definition 3.2. Given integers k, �, and r, let Mk,�,r be the number of possible minimal
percolating configurations on vertex set [k + r] for which there exists some input of starting
vertex and clusters such that the absorption process with this input percolates in � steps, and
which adds a cluster of size exactly r in the �th step (and, therefore, has a percolating set of
size at most k after � − 1 steps).

Note that Definition 3.2 allows the possibility that, as well as the cluster of size r, there are
some further clusters which are also added in the �th step.

The main difficulty in the subcritical case is to prove the following.

Theorem 3.1. Given integers 1 ≤ r, � ≤ k, we have

Mk,�,r ≤
(

k + r

r

)
(k!)2(r!)22k+rer+� k�r3e582

2
.

In order to prove this we first approximate a slightly different parameter.

Definition 3.3. Let M′
k,� be the number of possible minimal percolating configurations on

vertex set [k] for which there exists some input of starting vertex and clusters such that the
absorption process with this input percolates in at most � steps.

Note that there are two crucial differences between this and the definition of Mk,�,r. First, we
do not consider the final cluster on r vertices and, second, we do not demand that the process
takes exactly � steps to percolate.

Let us observe that

Mk,�,r ≤
(

k + r

r

)
M′

k,�2r2�M′
r,r, (3.1)

since a configuration which contributes to Mk,�,r can be partitioned into a minimal percolating
set on k vertices whose absorption process takes at most � steps to percolate and a minimal
percolating set on r vertices, for which r − 1 ≤ r is certainly an upper bound on the number
of steps required for an absorption process on r vertices to percolate. There are

(k+r
r

)
possible

ways of partitioning the vertices and M′
k,�M′

r,r possible minimal percolating configurations on
the two resulting parts. There must also be an edge of each colour between the two vertex sets,
one of which has the last vertex of the set of size k as a neighbour, which leaves 2r2� choices
as claimed. Thus, in order to prove Theorem 3.1 it is enough to bound M′

k,�.

Lemma 3.2. Given integers 1 ≤ � ≤ k, we have

M′
k,� ≤ (k!)22ke� ke291

2
.
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We will prove Lemma 3.2 in Section 3.5. Subsequently, in Section 3.6 we will use
Lemma 3.2 to prove Theorem 3.1. Finally, we will show how Theorem 1.2(i) follows from
Theorem 3.1 in Section 3.7. But first in Section 3.4 we will collect a few auxiliary results that
we will need for the proof of Lemma 3.2.

3.4. Auxiliary results

Our aim in Lemma 3.2 is to bound M′
k,�, and we will need the following basic bound on M′

j,j,
i.e. the number of minimal percolating configurations on j vertices, with no restrictions on the
number of steps they take to percolate in an absorption process (since certainly j − 1 ≤ j is an
upper bound on the number of steps an absorption process on j vertices can take to percolate).
The following result was already proved in [5], but since the proof is easy, we include it here
for completeness.

Claim 3.2. ([5].) For any integer j ≥ 1, we have M′
j,j ≤ j2 j−4.

Proof. Recall that in a minimal percolating configuration, the red and blue edge sets each
form a spanning tree. By Cayley’s formula there are j j−2 spanning trees on j vertices and the
result follows. �

In the proof of Lemma 3.2 we also use the following technical proposition.

Proposition 3.1. For every j ≥ 3, we have
∞∑
i=j

1

(i + 1)(i + 2) · · · (i + j − 1)
= 1

(j − 2)

j!
(2 j − 2)! .

In particular,
∞∑
i=j

1

(i + 1)(i + 2) · · · (i + j − 1)
≤ e2 j!

j − 2

(
e

2 j

)2 j−2

.

Proof. The Chu–Vandermonde identity, which can be easily verified combinatorially, states
that, for nonnegative integers a, b, and c, we have

(
a + b

c

)
=

c∑
�=0

(
a

�

)(
b

c − �

)
.

In fact this equality also holds if a is negative, where we interpret
(a
�

)
as

a(a − 1) . . . (a − � + 1)

�!
(see, e.g. Corollary 2.2.3 of [1]). Setting a = −i − 1, b = i + j − 1, and c = j − 2 leads to

1 =
j−2∑
�=0

(−1)�
(i + 1)(i + 2) · · · (i + �)

�!
(i + j − 1)!

(j − 2 − �)! (i + � + 1)!

=
j−2∑
�=0

(−1)�
(i + �)!

�!
(i + 1)(i + 2) · · · (i + j − 1)

(j − 2 − �)! (i + � + 1)!

= 1

( j − 2)!
j−2∑
�=0

(−1)�
( j − 2)!

�!( j − 2 − �)!
(i + 1)(i + 2) · · · (i + j − 1)

i + � + 1
,
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implying that

1

(i + 1)(i + 2) · · · (i + j − 1)
= 1

(j − 2)!
j−2∑
�=0

( − 1)�
(

j − 2

�

)
1

i + 1 + �
. (3.2)

Summing this for j ≤ i ≤ m leads to

m∑
i=j

1

(i + 1)(i + 2) · · · (i + j − 1)

= 1

(j − 2)!
m∑

i=j

j−2∑
�=0

(−1)�
(

j − 2

�

)
1

i + 1 + �

= 1

(j − 2)!
m∑

i=j

(
1

i + 1
+ (−1) j−2

i + j − 1
+

j−3∑
�=1

(−1)�
((

j − 3

�

)
+

(
j − 3

� − 1

))
1

i + 1 + �

)

= 1

(j − 2)!
m∑

i=j

j−3∑
�=0

(−1)�
(

j − 3

�

)(
1

i + 1 + �
− 1

i + 2 + �

)

= 1

(j − 2)!
( j−3∑

�=0

(−1)�
(

j − 3

�

)
1

j + 1 + �
−

j−3∑
�=0

(−1)�
(

j − 3

�

)
1

m + 2 + �

)
,

implying that

∞∑
i=j

1

(i + 1)(i + 2) · · · (i + j − 1)
= 1

(j − 2)!
j−3∑
�=0

(−1)�
(

j − 3

�

)
1

j + 1 + �
.

We now apply (3.2) again, with j replaced by j − 1 and i replaced by j, to obtain

1

( j − 2)!
j−3∑
�=0

(−1)�
(

j − 3

�

)
1

j + 1 + �
= 1

j − 2

1

( j + 1)(j + 2) · · · (2 j − 2)

= 1

j − 2

j!
(2 j − 2)!

as required.
For the second statement, we simply apply (2.5) to obtain

1

(2 j − 2)! ≤
(

e

2 j − 2

)2 j−2

=
(

j

j − 1

)2( j−1)( e

2 j

)2 j−2

≤ e2
(

e

2 j

)2 j−2

and the result follows. �

3.5. Proof of Lemma 3.2

We aim to prove Lemma 3.2, i.e. that M′
k,� ≤ k(k!)22k−1e�+291 for � ≤ k. Recall that when

a cluster C is added in step i of the absorption process, the vertex vi will be joined to a vertex
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wC of C in one colour, and, for some i′ ≤ i, the vertex vi′ will be joined to a vertex w′
C of C in

the other colour.
For 1 ≤ j ≤ k/2, let cj be the number of clusters of size j which are added in the process

and set c = (c1, . . . , ck/2). Observe that no clusters of size larger than k/2 can be added, since
clusters can only be added to a percolating set which is at least as large as the cluster, and we
have only k vertices in total. Note also that the first vertex v1 does not count towards c1 (recall
that it is not considered a cluster), and so

k/2∑
j=1

j cj = k − 1. (3.3)

Initially, we order the clusters C1, . . . , Cd, where d := ∑k/2
j=1 cj is the total number of

clusters, according to the order of their smallest vertices. Recall that the absorption process
gives us a new order on the clusters according to the order in which they are added, so we have
a permutation σ on [d] such that Cσ (s) is the sth cluster to be added.

We further define the following parameters:

• let is denote the step in which Cs is added;

• let js denote the size of Cs;

• let ms := max (is, js).

In particular, this gives a vector i = (i1, . . . , id). Let I := I(c) denote the set of permissible
vectors, meaning that

(P1) iσ (s) ≤ 1 + ∑s−1
t=1 jσ (t) for all 1 ≤ s ≤ d, i.e. we do not run out of vertices before adding

the next cluster;

(P2) jσ (s) ≤ 1 + ∑s−1
t=1 jσ (t) for all 1 ≤ s ≤ d, i.e. we do not add a cluster larger than the current

percolating set;

(P3) is ≤ � for all 1 ≤ s ≤ d.

Note that conditions (P1) and (P2) are implicitly dependent on the vector i because σ is
dependent on i. Note also that while (P2) is necessary to ensure that we do not add a cluster
larger than the current percolating set, it is not quite sufficient as if we add multiple clusters to
a percolating set in a single step, this condition would allow for all but the first of these clusters
to be too large. However, since we are concerned with upper bounds, this is not a problem.

We may now bound M′
k,� by considering how many choices we have for various parameters

for each fixed c = (c1, . . . , ck/2) and i = (i1, . . . , id) and summing over all possibilities for c, i.
Given vectors c and i:

• we have k choices for the first vertex v1;

• there are (k − 1)!/(∏k/2
j=1 ( j!)cjcj!

)
distinct ways of assigning the remaining vertices to

clusters;

• for each cluster Cs of size js which is to be added in step is we have at most:

• j2s choices for the two vertices wC and w′
C;

• two choices for the colour of the edge from vis to wC;
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• M′
js,js

≤ j2 js−4
s possible minimal percolating configurations within C (by

Claim 3.2);

• is choices for i′s ≤ is.

Thus, we obtain

M′
k,� ≤

∑
c

{
k

(k − 1)!∏k/2
j=1 ( j!)cjcj!

( k/2∏
j=1

(2j2j2 j−4)cj

) ∑
i∈I

d∏
s=1

is

}
. (3.4)

We first consider the terms involving is, which require the most care. We have

∑
i∈I

d∏
s=1

is ≤
∑
i∈I

d∏
s=1

ms =
∑
i∈I

∏d
s=1 ms(ms + 1) · · · (ms + js − 1)∏d

s=1 (ms + 1) · · · (ms + js − 1)
. (3.5)

Here we use the convention that an empty product is interpreted as 1. We bound the numerator
in (3.5) with the following claim.

Claim 3.3. It holds that
∏d

s=1 ms(ms + 1) · · · (ms + js − 1) ≤ (k − 1)!

Proof. The conditions (P1) and (P2) together imply that mσ (s) ≤ 1 + ∑s−1
t=1 jσ (t), and,

therefore,
d∏

s=1

{ms(ms + 1) · · · (ms + js − 1)}

=
d∏

s=1

{mσ (s)(mσ (s) + 1) · · · (mσ (s) + jσ (s) − 1)}

≤
d∏

s=1

{( s−1∑
t=1

jσ (t) + 1

)( s−1∑
t=1

jσ (t) + 2

)
· · ·

( s−1∑
t=1

jσ (t) + jσ (s)

)}

=
( d∑

s=1

jσ (s)

)
!

= (k − 1)!
as claimed. �

We handle the denominator and sum in (3.5) with the following claim.

Claim 3.4. It holds that

∑
i∈I

1∏d
s=1 (ms + 1)(ms + 2) · · · (ms + js − 1)

≤ �c1 (2 ln (� + 1))c2

k/2∏
j=3

(
3e2 j!

(
e

2 j

)2 j−2)cj

.
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Proof. Let us note that we first fixed the assignment of vertices to clusters, which in
particular determines the js, and then chose the vector i, so in particular js is not dependent
on is (although which values of is are permissible does depend on the js). Therefore, we have

∑
i∈I

1∏d
s=1 (ms + 1)(ms + 2) · · · (ms + js − 1)

≤
�∑

i1=1

· · ·
�∑

id=1

d∏
s=1

1

(ms + 1)(ms + 2) · · · (ms + js − 1)

≤
�∑

i1=min ( j1,�)

· · ·
�∑

id=min ( jd,�)

d∏
s=1

js
(ms + 1)(ms + 2) · · · (ms + js − 1)

≤
�∏

j=1

( �∑
i=j

j

(i + 1) · · · (i + j − 1)

)cj k/2∏
j=�+1

(
j

( j + 1) · · · (2 j − 1)

)cj

≤
k/2∏
j=1

( �+j−1∑
i=j

j

(i + 1) · · · (i + j − 1)

)cj

.

In the third inequality we have used ms ≥ is, js. In the last inequality we have used the fact that
� + j − 1 ≥ �, j.

The j = 1 term in the product is simply

( �∑
i=1

1

)c1

= �c1 . (3.6)

We bound the term j = 2 as follows:

( �+1∑
i=2

2

i + 1

)c2

≤
( ∫ �+1

1

2

x
dx

)c2

= (2 ln (� + 1))c2 . (3.7)

For j ≥ 3, we apply Proposition 3.1 to obtain

∞∑
i=j

j

(i + 1) · · · (i + j − 1)
≤ je2 j!

j − 2

(
e

2 j

)2 j−2

≤ 3e2j!
(

e

2 j

)2 j−2

,

which gives

k/2∏
j=3

( �+j−1∑
i=j

j

(i + 1) · · · (i + j − 1)

)cj

≤
k/2∏
j=3

(
3e2j!

(
e

2 j

)2 j−2)cj

. (3.8)

Combining the bounds from (3.6), (3.7), and (3.8) proves the claim. �
Substituting the bounds from Claims 3.3 and 3.4 into (3.5), we have

∑
i∈I

d∏
s=1

is ≤ (k − 1)! �c1 (2 ln (� + 1))c2

k/2∏
j=3

(
3e2 j!

(
e

2 j

)2 j−2)cj

,
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and therefore (3.4) gives

M′
k,� ≤

∑
c

{
k!∏k/2

j=1 ( j!)cjcj!

( k/2∏
j=1

(2j2j2 j−4)cj

)
(k − 1)!

×
(

�c1 (2 ln (� + 1))c2

k/2∏
j=3

(
3e2j!

(
e

2 j

)2 j−2)cj
)}

= k! (k − 1)!
∑

c

{
(2�)c1

c1!
(16 ln (� + 1))c2

2c2 c2!
k/2∏
j=3

(2 j2 j−23e2j! (e/2 j)2 j−2)cj

( j!)cjcj!
}

(3.3)= k! (k − 1)! 2k−1
∑

c

{
�c1

c1!
(2 ln (� + 1))c2

c2!
k/2∏
j=3

1

cj!
(

3e2(e/2)2 j−2

2j−1

)cj
}

≤ k! (k − 1)! 2k−1
{ ∞∑

c1=0

�c1

c1!
}{ ∞∑

c2=0

(2 ln (� + 1))c2

c2!
}

×
{ k/2∏

j=3

∞∑
cj=0

1

cj!
(

3e2
(

e2

8

)j−1)cj
}

= k! (k − 1)! 2k−1 exp(�) exp(2 ln (� + 1))
k/2∏
j=3

exp

(
3e2

(
e2

8

)j−1)

≤ k(k!)22k−1e� exp

( k/2∑
j=3

3e2
(

e2

8

)j−1)
.

Note that in the last line we have used the fact that � ≤ k − 1, since this is an upper bound on
the number of steps it can take for the absorption process on k vertices to percolate. We bound
the remaining sum by

k/2∑
j=3

3e2
(

e2

8

)j−1

≤ 3e2

1 − e2/8
≤ 291,

since e2/8 < 1. Thus, we obtain

M′
k,� ≤ (k!)22ke� ke291

2
,

which completes the proof of Lemma 3.2.

3.6. Proof of Theorem 3.1

We can now prove Theorem 3.1. Observe that Lemma 3.2 gives a bound on M′
j,j which is

better than Claim 3.2 for large j,

M′
j,j ≤ ( j!)22 je j je291

2
. (3.9)
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We use (3.9) and Lemma 3.2 to obtain

Mk,�,r
(3.1)≤

(
k + r

r

)
M′

k,�2r2�M′
r,r

≤
(

k + r

r

)(
(k!)22ke� ke291

2

)
2r2�

(
(r!)22rer re291

2

)

=
(

k + r

r

)
(k!)2(r!)22k+rer+� k�r3e582

2
,

as claimed in Theorem 3.1.

3.7. Proof of Theorem 1.2(i)

To prove the subcritical case of Theorem 1.2, we need the following strengthening of the
notion of a minimal percolating configuration.

Definition 3.4. An optimal configuration in a double graph (V, E1, E2) is a minimal perco-
lating configuration (U, E′

1, E′
2), where U ⊂ V and E′

i ⊂ Ei for i = 1, 2, together with a vertex
v ∈ U and a set of clusters partitioning U \ {v} such that an absorption process with this input
will percolate, and, furthermore, the following holds. Let � be the number of steps it takes for
this absorption process to percolate, and let v = v1, . . . , v|U| be the vertices of U in the order
that they are added to the percolating set in the absorption process. Then no vertex in V \ U
has an edge to {v1, . . . , v�−1} in both E1 and E2.

In other words, an optimal configuration is a minimal percolating configuration which
allows the absorption process to percolate and includes all of the vertices which could be added
as clusters in the process before step �. Note that it is not necessarily a maximal percolating
set, since it is still possible that some clusters of size larger than one could have been added
to the process, that more single vertices could have been added in step �, or indeed that the
absorption process could have continued beyond � steps.

Set
k0 := 2 ln n.

If G(n, p1, p2) percolates then, by Lemma 3.1, there exists an input of starting vertex and
clusters such that running an absorption process with this input will lead to an optimal
configuration (and, in particular, a minimal percolating configuration) of size greater than k0.
Let us consider the first time at which this process becomes larger than k0, in step �, say. Then
it reached size k ≤ k0 in either the (� − 1)th or the �th step, and we next added a cluster of size
r in the �th step such that k + r > k0. We aim to bound the number of optimal configurations
with parameters k, �, and r, and sum over all k, �, and r, observing that

1 ≤ r, � ≤ k ≤ k0 < k + r. (3.10)

For 0 ≤ i ≤ �, define Xi to be the set of vertices in the percolating set after i steps of the
absorption process, which is terminated the moment we reach size larger than k0, so, in
particular, we have |X�| = k + r, and, furthermore, � ≤ |X�−1| ≤ k.

Since we have an optimal configuration, none of the vertices outside X� may have both a
red and a blue neighbour within the first � − 1 vertices {x1, x2, . . . , x�−1} of X�−1. Note that
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this holds for a given vertex with probability at most

(1 − p1)�−1 + (1 − p2)�−1 − (1 − p1)�−1(1 − p2)�−1 = 1 − (1 − (1 − p1)�−1)(1−(1 − p2)�−1).

By (2.3), we have p1(� − 1) ≤ p1k0 = o(1) and, similarly, p2(� − 1) = o(1). Therefore,

(1 − (1 − p1)�−1)(1 − (1 − p2)�−1) = (1 + o(1))(� − 1)2p1p2.

Thus, the probability that none of the vertices outside X� has both a red and a blue neighbour
within {x1, . . . , x�−1} is at most

(1 − (1 + o(1))(� − 1)2p1p2)n−k−r ≤ exp(−(1 + o(1))(� − 1)2p1p2(n − k − r))

≤ exp(−(1 − ε0)(� − 1)2np1p2),

where ε0 := ε/3.
Therefore, the expected number of optimal configurations with parameters k, �, and r is at

most (
n

k + r

)
Mk,�,r( p1p2)k+r−1 exp(−(1 − ε0)(� − 1)2np1p2).

Let us define S to be the set of triples (k, �, r) satisfying (3.10). We need to bound the
expression

∑
(k,�,r)∈S

(
n

k + r

)
Mk,�,r(p1p2)k+r−1 exp(−(1 − ε0)(� − 1)2np1p2)

≤
∑

(k,�,r)∈S

nk+r

(k + r)!
(

k + r

r

)
(k!)2(r!)22k+rer+� k�r3e582

2

×
(

1 − ε

4n ln n

)k+r−1

exp(−(1 − ε0)(� − 1)2np1p2)

≤ e582 · n · 2 ln n

1 − ε

( k0∑
k=k0/2

k · k!
(

1 − ε

2 ln n

)k k∑
r=k0−k

r! r3
(

e(1 − ε)

2 ln n

)r)

×
k0∑

�=1

�exp

(
� − (1 − ε0)(� − 1)2 1 − ε

4 ln n

)
. (3.11)

We first show that the summand involving � is increasing. Certainly the multiplicative factor
of � is increasing, so let us define x� := exp(� − (1 − ε0)(� − 1)2(1 − ε)/(4 ln n)). Then, for
� ≤ k0 = 2 ln n, we have

x�+1

x�

= exp

(
1 − (1 − ε0)(1 − ε)(2� − 1)

1

4 ln n

)
≥ exp(1 − (1 − ε0)(1 − ε)) ≥ eε > 1.
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Therefore, the sum over � in (3.11) can be bounded from above by replacing each summand
by the summand with � = k0, i.e.

k0∑
�=1

�exp

(
� − (1 − ε0)(� − 1)2(1 − ε)

1

4 ln n

)

≤ k2
0 exp

(
k0 − (1 − ε0)(k0 − 1)2(1 − ε)

1

2k0

)

= k2
0 exp

(
k0

(
1 − (1 − ε0)(1 − ε)

2

))
exp

(
(2k0 − 1)(1 − ε0)(1 − ε)

2k0

)

≤ k2
0 exp

(
k0

(
1 + ε + ε0

2

))
e. (3.12)

On the other hand, considering the sum over r in (3.11), we approximate as follows. Since
r ≤ k ≤ k0 and k0 ≥ e2, by (2.5), we have r! ≤ e

√
r(r/e)r ≤ k0(r/e)r, implying that

k∑
r=k0−k

r! r3
(

e(1 − ε)

2 ln n

)r

≤ k4
0

k∑
r=k0−k

(
r

e

)r(e(1 − ε)

k0

)r

= k4
0

k∑
r=k0−k

(
(1 − ε)r

k0

)r

≤ k4
0

(
1 − ε

k0

)k0−k k∑
r=k0−k

rr

kr−k0+k
0

≤ k4
0

(
1 − ε

k0

)k0−k k∑
r=k0−k

kk0
0

kk

(
k

k0

)r+k

. (3.13)

Note that since k0 − k ≤ r ≤ k, we have

1 ≤ k

k
+ r

k

(
1 − k + r

2k

)
≤ k + r

k
− k0 − k

k
· k + r

2k
.

Since 0 ≤ (k0 − k)/k ≤ 1, the Taylor expansion of ln (1 + x) leads to

(k + r) ln

(
1 + k0 − k

k

)
≥ (k + r)

k0 − k

k
− k + r

2

(
k0 − k

k

)2

= (k0 − k)

(
k + r

k
− k0 − k

k
· k + r

2k

)

≥ k0 − k.

Therefore, by (2.5), we conclude that

kk0
0

kk

(
k

k0

)r+k

≤ kk0
0

kk
ek−k0 ≤ e

√
k

k0!
k! ≤ k0

k0!
k! .

Thus, (3.13) gives
k∑

r=k0−k

r! r3
(

e(1 − ε)

2 ln n

)r

≤ k6
0

(
1 − ε

k0

)k0−k k0!
k! .

https://doi.org/10.1017/apr.2019.24 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2019.24


394 O. COOLEY ET AL.

Hence, the sum over k in (3.11) can be bounded by

k0∑
k=k0/2

k · k!
(

1 − ε

2 ln n

)k k∑
r=k0−k

r! r3
(

e(1 − ε)

2 ln n

)r

≤
k0∑

k=k0/2

k · k!
(

1 − ε

k0

)k

k6
0

(
1 − ε

k0

)k0−k k0!
k!

≤ k8
0

(
1 − ε

k0

)k0

k0! (3.14)

Substituting (3.12) and (3.14) into (3.11), we find that the expected number of optimal
configurations with parameters (k, �, r) ∈ S is at most

e582nk0

1 − ε

(
k8

0

(
1 − ε

k0

)k0

k0!
)

k2
0 exp

(
k0

(
1 + ε + ε0

2

))
e

≤ nk12
0

((
1 − ε

k0

)k0

k0

(
k0

e

)k0
)

exp

(
k0

(
1 + ε + ε0

2

))

≤ nk13
0

(
1 − ε

e
exp

(
1 + ε + ε0

2

))k0

≤ nk13
0

(
e−1−ε exp

(
1 + ε + ε0

2

))k0

= n(2 ln n)13 exp

((
−1

2
− ε

2
+ ε0

2

)
2 ln n

)

= n(2 ln n)13n(−1−ε+ε0)

= (2 ln n)13n−ε+ε0 .

Note that since we chose ε0 = ε/3 and ε is constant, this term tends to 0.
Thus, by Markov’s inequality, with high probability there is no such percolating set and,

therefore, the double-graph does not percolate.

4. Supercritical case: proof of Theorem 1.2(ii)

In this section we prove Theorem 1.2(ii). Recall that we assume that p1 ≥ p2 ≥ ln n/n and
the statement says that, conditioned on the individual graphs G1 ∼ G(n, p1) and G2 ∼ G(n, p2)
being connected, with high probability, the jigsaw process percolates on the double graph
G(n, p1, p2).

We first note that, for p1, p2 ≥ ln n/n, the probability of G1 and G2 being connected is
bounded below by a (nonzero) constant. Thus, any event that holds with high probability also
holds with high probability in the probability space conditioned on G1 and G2 being connected.
Therefore, for simplicity, in the following arguments we will suppress this conditioning.

The proof consists of three stages in which we construct a nested sequence of percolating
sets U1 ⊂ U2 ⊂ U3 = V, growing in size as we reveal more edges. In Section 4.1 we define and
analyse a construction algorithm (Algorithm 4.1) which constructs percolating sets, and show
in Lemma 4.2 that w.h.p. it constructs at least one percolating set of a reasonably large size.
Subsequently, in Section 4.2 we show that this percolating set expands to cover almost all its
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red neighbours (Lemma 4.7). Finally, we use a sprinkling argument to extend this percolating
set until it eventually covers all vertices and so prove the supercritical case.

We will reveal the red graph with two rounds of exposure. To this end, set

p(1)
1 :=

(
1 − ε

2

)
p1 and p(2)

1 := ε

2
p1,

and

p(1)
2 := p2 and p(2)

2 := 0.

Consider the double graphs G(n, p(i)
1 , p(i)

2 ) for i = 1, 2. For i = 1, 2, we denote by N(i)
1 (U) the

neighbourhood of U within G(n, p(i)
1 ).

Let us note that G(n, p(1)
1 , p(1)

2 ) ∪ G(n, p(2)
1 , p(2)

2 ) ∼ G(n, p∗
1, p2), where

p∗
1 = 1 − (1 − p(1)

1 )(1 − p(2)
1 ) ≤ p(1)

1 + p(2)
1 = p1.

Since percolation is a monotone increasing property, the probability that G(n, p1, p2) perco-
lates is at least the probability that G(n, p(1)

1 , p(1)
2 ) ∪ G(n, p(2)

1 , p(2)
2 ) percolates.

4.1. Getting past the bottleneck

We set

ω = ωn := ln ln n, k1 := 1

ωp(1)
1

and δ := ε

20
.

Our aim is to construct a percolating set of size k1 by means of an algorithm. Refining an
algorithm in [5], we grow a percolating set Xt by adding vertices in each step t.

We first describe the algorithm informally, suppressing the index t for simplicity. We begin
with X being a single vertex. At the start of step t, the set X will consist of vertices x1, . . . , xs

which form a percolating set, with s ≥ t. In addition, the set R consists of vertices which are
adjacent to at least one of x1, . . . , xt−1 in red, but not in blue.

In step t, we will reveal the red neighbours Q of xt (outside of X ∪ R). We will also reveal
any blue edges between Q and x1, . . . , xt—vertices incident to such a blue edge will be added
to X, while the remaining vertices of Q are added to R. We also reveal any blue edges between
R and xt, and vertices incident to such an edge will be moved from R to X.

There are two main differences between our algorithm and the algorithm described by
Bollobás et al. [5]: first, in their algorithm they only add one vertex to X in each step, and
second, they did not keep track of the set R and reveal blue edges between xt and R, but simply
discarded it along with any other vertices that could have been added to X. In order to prove
the sharper version of the theorem with the exact threshold, we require this more detailed
algorithm and significantly more precise analysis until it passes the bottleneck.

We will run the algorithm several times. Each attempt is called a round, indexed by �. At
the end of each round, we will discard the percolating set generated in the round—this ensures
independence between rounds. In order to make the analysis of each round identical, we will
artificially exclude some vertices from each round to ensure that we always have the same
number of vertices available.
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Algorithm 4.1. (The construction algorithm.)
Input: Double graph (V, E1, E2).
Set � = 1 and V ′

1 = V .
while |V ′

�| ≥ n − n1−δ do

Fix an arbitrary set V� ⊂ V ′
� of size n − n1−δ .

Pick an arbitrary vertex x1 = x1(�) ∈ V� and set X0 = X0(�) := {x1} and s0 = s0(�) := 1.

Also set R0 = R0(�) :=∅ and t = 1.

while t ≤ st−1 < k1 do

Set Qt = Qt(�) = N(1)
1 (xt) ∩ (V� \ (Xt−1 ∪ Rt−1)).

Set Bt = Bt(�) = N2(x1, . . . , xt) ∩ Qt.

Set Ct = Ct(�) = N2(xt) ∩ Rt.

Set Xt = Xt(�) = Xt−1 ∪ Bt ∪ Ct and st = st(�) := |Xt|.
Set Rt = Rt(�) = (Rt−1 ∪ Qt) \ (Bt ∪ Ct).

Proceed to step t + 1.

end

Set T = T(�) = t − 1.

Set V ′
�+1 = V ′

� \ XT(�) and proceed to round � + 1.

end
Set L = � − 1.
Output: XT(1), XT(2), . . . , XT(�−1).

Note that T(�) is the number of steps in round �, while L is the number of rounds run by the
construction algorithm.

We will apply the construction algorithm to G(n, p(1)
1 , p2) and reveal edges only as they are

required by the algorithm. The following lemma shows that the construction algorithm is well
defined and builds a percolating set.

Lemma 4.1. Algorithm 4.1 satisfies the following conditions:

(i) the algorithm terminates after a finite number of steps;

(ii) the rounds of the algorithm are mutually independent;

(iii) the set XT(�) forms a percolating set for 1 ≤ � ≤ L.

Proof. (i) For each round � of the algorithm, we perform T(�) steps and |XT(�)| ≥ T(�)
vertices are discarded, so the algorithm terminates after at most n1−δ steps.

(ii) Within a round, any edge is revealed at most once and every queried pair is incident to
XT(�). When the algorithm proceeds to the next round, it removes all the vertices of XT(�) from
the vertex pool V ′

�. Thus, the algorithm queries every edge at most once.

(iii) Assume that Xt−1 forms a percolating set. Every element in Bt has a red edge to xt and a
blue edge into {x1, . . . , xt} ⊂ Xt−1. Similarly, the elements of Ct have a blue edge to xt and a
red edge into {x1, . . . , xt−1}. Consequently, Xt also forms a percolating set and the assertion
follows by induction over t. �
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The heart of the supercritical case is the following result.

Lemma 4.2. Running the construction algorithm on G(n, p(1)
1 , p2), with high probability there

is a round � such that XT(�)(�) has size at least k1 and |RT(�)(�)| ≥ T(�)np(1)
1 /2.

The proof of Lemma 4.2 will be given in Section 4.1.3. As preparation, we first approximate
the sizes of various sets in the construction algorithm.

4.1.1. Poisson approximation. By Lemma 4.1 the rounds of the construction algorithm are
independent. Thus, the following results hold uniformly for all 1 ≤ � ≤ L and we will therefore
lighten the notation by dropping �. Moreover, we use the notation a = b ± c to mean that
b − c ≤ a ≤ b + c, and, similarly, a = (b ± c)d to mean (b − c)d ≤ a ≤ (b + c)d.

We aim to simplify the analysis of the algorithm by approximating the sizes of the various
sets constructed. In particular, our main aim is Lemma 4.4, in which we approximate the
distribution of the number of vertices added to the percolating set in each step. In order to
achieve this, we first need to know that various other sets are about as large as we expect.

Definition 4.1. Set ε∗ := ε/10 and define the events

Qt :=
{
|Qt| =

(
1 ± ε∗

2

)
np(1)

1

}
, Bt :=

{
|Bt| < ε∗

4
np(1)

1

}
,

Ct :=
{
|Ct| < ε∗

4
np(1)

1

}
, Rt :=

{
|Rt| = (1 ± ε∗)tnp(1)

1

}
,

H :=
⋂
t≤T

Ht :=
⋂
t≤T

Qt ∩ Bt ∩ Ct ∩ Rt.

The events Qt and Rt state that |Qt| and |Rt| are concentrated around their means.
Conditioned on Qt and Rt, the expected sizes of Bt and Ct are about tnp(1)

1 p2 and (t − 1)

np(1)
1 p2, respectively. Thus, observing that tp2 ≤ k1p1 = o(1), the events Bt and Ct only require

the corresponding random variables to be below a very crude upper bound. As a preliminary,
we show that these events are very likely to hold in every round of the algorithm.

Lemma 4.3. During one round of the construction algorithm on G(n, p(1)
1 , p2), the event H

holds with probability at least 1 − exp(−	(n1/3)).

Proof. We have

P[H ] =
T∏

t=1

P[Ht | H1, . . . , Ht−1] =
T∏

t=1

P[Qt, Bt, Ct, Rt | H1, . . . , Ht−1].

We will give a uniform lower bound for each of these terms. Recalling the defini-
tions of Rt, Qt, Bt, and Ct from the construction algorithm, conditional on Qt, Bt, Ct, and
Rt−1 ⊂ Ht−1, we have

|Rt| = |Rt−1| + |Qt| − |Bt| − |Ct|
= (1 ± ε∗)(t − 1)np(1)

1 +
(

1 ± ε∗

2

)
np(1)

1 ± ε∗

4
np(1)

1 ± ε∗

4
np(1)

1

= (1 ± ε∗)tnp(1)
1 ,
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i.e. Rt holds deterministically, implying that

P[Qt, Bt, Ct, Rt | H1, . . . , Ht−1]

= P[Qt, Bt, Ct | H1, . . . , Ht−1]

= P[Qt | H1, . . . , Ht−1]P[Bt | Qt, H1, . . . , Ht−1]P[Ct | Qt, Bt, H1, . . . , Ht−1].
(4.1)

Our goal is to show that each of these terms has probability 1 − exp(−	(n1/3)). We will
repeatedly use the fact that

np(1)
1 = 	(np1)

(2.4)= 	(n1/3).

First note that
|Qt| ∼ Bi(n − n1−δ − |Xt−1| − |Rt−1|, p(1)

1 ).

Since |Xt−1| ≤ k1 = o(n), and conditional on Ht−1, we have |Rt−1| = (1 ± ε∗)(t − 1)np(1)
1 =

O(k1np(1)
1 ) = o(n); thus,

E[|Qt|] = (1 + o(1))np(1)
1 = 	(n1/3).

Together with the Chernoff bound (Lemma 2.1), this implies that

P[Qt | H1, . . . , Ht−1] ≤ P

[
||Qt| −E[|Qt|]| ≥ ε∗

4
np(1)

1

]

≤ exp(−	(np(1)
1 ))

= exp(−	(n1/3)).

Next we consider Bt. Clearly,

|Bt| ∼ Bi(|Qt|, 1 − (1 − p2)t);

therefore, conditional on Qt we have

E[|Bt|] = O(|Qt|p2t) = O(np(1)
1 p2k1) = o(np2) = o(np(1)

1 )

and, thus, Lemma 2.1 implies that

P[B t | Qt, H1, . . . , Ht−1] ≤ exp(−	(np(1)
1 )) = exp(−	(n1/3)).

Finally,
|Ct| ∼ Bi(|Rt−1|, p2)

and conditional on Rt−1 ⊂ Ht−1 we have

E[|Ct|] = O(|Rt|p2) = O(k1np(1)
1 p2) = o(np2) = o(np(1)

1 ),

and again Lemma 2.1 implies that

P[Ct | Qt, Bt, H1, . . . , Ht−1] ≤ exp(−	(np(1)
1 )) = exp(−	(n1/3)).

Taking a union bound and substituting into (4.1), we have

1 − P[Qt, Bt, Ct, Rt | H1, . . . , Ht−1] ≤ 3 exp(−	(n1/3)).

The statement follows by applying the union bound over all steps in the round of the algorithm,
of which there are at most k1, and observing that

3k1 exp(−	(n1/3)) = exp(−	(n1/3)). �
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It will be convenient in future analysis to condition on H . Lemma 4.3 tells us that this
is reasonable. In order to compare binomials with Poisson random variables, we need the
following notation. For a nonnegative integer-valued random variable X and r ∈N, let X≤r be
the cutoff transform of X, i.e. the random variable with

P[X≤r = t] =
⎧⎨
⎩
P[X = t]

P[X ≤ r]
for t ≤ r,

0 otherwise.

The following claim shows how binomials dominate Poisson variables with suitable cutoff.

Claim 4.1. Let X ∼ Bi(N, p) and Y ∼ Po≤r((1 − θ )Np), with N > 0 and r/N < θ < 1. Then
X � Y .

Proof. Clearly, for every i > r, we have P[X ≥ i] ≥ P[Y ≥ i] = 0. For 0 ≤ i < r, we have

P[Y = i]

P[Y = i + 1]

P[X = i + 1]

P[X = i]
= i + 1

Np(1 − θ )

(N − i)p

(i + 1)(1 − p)
= 1 − i/N

(1 − θ )(1 − p)
> 1,

implying that
P[X = i + 1]

P[X = i]
≥ P[Y = i + 1]

P[Y = i]
.

Now suppose for a contradiction that, for some � ≤ r, we have P[Y ≥ �] > P[X ≥ �]. It
follows that P[Y = �] > P[X = �] and, hence, it also follows that P[Y = i] > P[X = i] for all
0 ≤ i ≤ �. But then we have

1 = P[Y ≥ 0] =
�−1∑
i=1

P[Y = i] + P[Y ≥ �] >

�−1∑
i=1

P[X = i] + P[X ≥ �] = P[X ≥ 0] = 1,

which is a contradiction. �

It is well known that the sum of Poisson variables is also Poisson, but we will need a similar
result for Poisson variables with a cutoff.

Claim 4.2. For every r ≥ 0, we have

Po≤r(λ) + Po≤r(μ) � Po≤r((λ + μ)).

Proof. Note that, for i ≤ r, we have

P[Po≤r(λ) + Po≤r(μ) = i] = P[Po(λ + μ) = i]

P[Po(λ) ≤ r]P[Po(μ) ≤ r]

≤ P[Po(λ + μ) = i]

P[Po(λ + μ) ≤ r]

= P[Po≤r(λ + μ) = i]

as required. �

Our cutoff point will be at ρ := ω−1np(1)
1 .
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Lemma 4.4. For any round and any step t ≤ T of the construction algorithm on G(n, p(1)
1 , p2),

conditional on H , we have

|Xt| − |Xt−1| � Po≤ρ

((
1 + ε

5

)
2t − 1

4 ln n

)
.

Proof. Conditional on H , the increment |Xt| − |Xt−1| = |Bt| + |Ct| dominates
the sum of two independent binomials B−

t ∼ Bi((1 − ε∗/2)np(1)
1 , (1 − ε∗/2)tp2) and

C−
t ∼ Bi((1 − ε∗)(t − 1)np(1)

1 , p2).
Set θ = ε∗ and, for t > 1, we have

ρ

(1 − ε∗)(t − 1)np(1)
1

≤ ω−1

1 − ε∗ = o(1) < ε∗

and
ρ

(1 − ε∗/2)np(1)
1

= ω−1

1 − ε∗/2
= o(1) < ε∗.

Hence, Claim 4.1, together with C−
1 = Po≤ρ(0) = 0, and Claim 4.2 yield

B−
t + C−

t � Po≤ρ((1 − ε∗)2tnp(1)
1 p2) + Po≤ρ((1 − ε∗)2(t − 1)np(1)

1 p2)

� Po≤ρ((1 − ε∗)2(2t − 1)np(1)
1 p2).

Now Lemma 4.4 follows immediately, since

(1 − ε∗)2np(1)
1 p2 = (1 − ε∗)2

(
1 − ε

2

)
1 + ε

4 ln n
≥ 1 + ε/5

4 ln n
. �

4.1.2. Two-stage analysis. We break the proof of Lemma 4.2 into two stages. To this end, for
k ∈N, define

Ek := {|XT | ≥ k + 1},
i.e. Ek is the event that the current round of the construction algorithm finds a percolating set
of size at least k + 1, or, equivalently, that it survives for at least k steps. First we show that
percolating sets of size k0 := 2 ln n (just above the bottleneck) are not too unlikely. Recall that
δ = ε/20.

Lemma 4.5. We have P[Ek0 | H ] ≥ n−1+2δ .

Proof. Let Z1, Z2, . . . be a family of independent random variables with distribution

Zt ∼ Po≤ρ

((
1 + ε

5

)
2t − 1

4 ln n

)
.

A sufficient condition for the construction algorithm to survive k steps in a round is that the
sum of increments |Xt| − 1 = ∑

1≤s≤t (|Xs| − |Xs−1|) never drops below t for 1 ≤ t ≤ k. Due to
Lemma 4.4, it holds that

P[Ek | H ] ≥ P

[ k∧
t=1

t∑
s=1

Zs ≥ t

]
. (4.2)
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We write i for a vector (i1, . . . , ik) ∈ [k]k and set

Ak :=
{

i ∈ [k]k :
k∑

t=1

it = k

}
and A∗

k :=
{

i ∈ Ak :
k∧

t=1

t∑
s=1

is ≥ t

}
.

Consequently, it holds that P[
∧k

t=1
∑t

s=1 Zs ≥ t] ≥ ∑
i∈A∗

k

∏k
t=1 P[Zt = it]. The additional,

seemingly arbitrary restriction that the entries it sum up to k will turn out to be very useful
for the following analysis. Set

Sk0 :=
∑

i∈A∗
k0

k0∏
t=1

(2t − 1)it

it! .

Since k0 ≤ ρ, we have

P

[ k0∧
t=1

t∑
s=1

Zs ≥ t

]
≥

∑
i∈A∗

k0

k0∏
t=1

exp

(
−

(
1 + ε

5

)
2t − 1

4 ln n

)
((1 + ε/5)(2t − 1)/(4 ln n))it

it!

× 1

P[Po((1 + ε/5)(2t − 1)/(4 ln n) ≤ ρ)]

≥ exp

(
− 1 + ε/5

4 ln n
k2

0

)
Sk0

(
1 + ε/5

4 ln n

)k0

· 1. (4.3)

Moreover, defining m := k2/3
0 and

Ãk0 :=
{

i ∈ Ak :
k∧

t=1

t∑
s=1

is < t + m

}
,

we observe that, for i ∈ A∗
k0

∩ Ãk0, the product
∏k0

t=1 (2t − 1)it is bounded below by

1m+1 · 3 · 5 · · · (2(k0 − m) − 1) = (2k0 − 2m − 1)!!. Hence,

Sk0 ≥ (2k0 − 2m − 1)!!
∑

i∈A∗
k0

∩Ãk0

k0∏
t=1

1

it!

= (2k0 − 2m)!
2k0−m(k0 − m)!

kk0
0

k0!
(

1

kk0
0

∑
i∈A∗

k0
∩Ãk0

(
k0

i1, . . . , ik0

))
. (4.4)

Let U = (U1, . . . , Uk0 ) ∈ Ak0 be a random vector created by independently assigning k0
labelled balls into k0 labelled bins, where Us denotes the number of balls in bin s. Then the
term in brackets describes the probability that U ∈ A∗

k0
∩ Ãk0 . Clearly,

P[U ∈ A∗
k0

∩ Ãk0 ] ≥ P[U ∈ A∗
k0

] − P[U /∈ Ãk0 ]

and, thus, we need a lower bound on P[U ∈ A∗
k0

] and an upper bound on P[U /∈ Ãk0 ].
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First let t∗ be the largest index such that

t∗∑
s=1

Us − t∗ = z := min
1≤t≤k0

t∑
s=1

Us − t.

We claim that (Ut∗+1, . . . , Uk0 , U1, . . . Ut∗ ) ∈ A∗
k0

implying that P[U ∈ A∗
k0

] ≥ 1/k0. We
observe that certainly Ut∗+1 + · · · + Ui ≥ i − t∗ for t∗ + 1 ≤ i ≤ k0 by the definition of t∗.
Furthermore,

Ut∗+1 + · · · + Uk0 = k0 −
t∗∑

s=1

Us = k0 − t∗ − z,

and so, for 1 ≤ i ≤ t∗, we have

Ut∗+1 + · · · + Uk0 + U1 + · · · + Ui ≥ k0 − t∗ − z + (i + z) ≥ k0 − t∗ + i

by the definition of z, as required. Secondly, since
∑t

s=1 Us ∼ Bi(k0, t/k0), by Lemma 2.1 and
a union bound, we obtain

P[U /∈ Ãk0 ] = P

[ k0⋃
t=1

{ t∑
s=1

Us > t + m

}]

≤
k0∑

t=1

P

[ t∑
s=1

Us > t + m

]

≤ k0 exp

(
− m2

3k0

)

≤ k0 exp

(
−k1/3

0

3

)
.

Consequently,

1

kk0
0

∑
i∈Ãk0

(
k0

i1, . . . , ik0

)
= P[U ∈ A∗

k0
∩ Ãk0 ] ≥ 1

k0
− k0 exp(−k1/3

0 ) ≥ k−2
0 .

Hence, (4.4) and (2.5) yield

Sk0 ≥ (2(k0 − m))2(k0−m)

2k0−m(k0 − m)k0−m

em−1

k0(k0 − m)

1

k2
0

≥ (2k0 − 2m)k0−m em−1

k4
0

= exp(k0 ln (2k0) − o(k0)). (4.5)
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Combining (4.2), (4.3), and (4.5) gives us

P[Ek0 | H ] ≥ exp

(
k0

(
−1 + ε/5

4 ln n
k0 + ln (2k0) − o(1)

))(
1 + ε/5

4 ln n

)k0

= exp

(
2 ln n

(
−1

2

(
1 + ε

5

)
+ ln

(
1 + ε

5

)
− o(1)

))

= n−1 exp

(
2 ln n

(
− ε

10
+ ln

(
1 + ε

5

)
− o(1)

))

≥ n−1+2δ,

where the last line holds since

− ε

10
+ ln

(
1 + ε

5

)
− o(1) ≥ − ε

10
+ ε

5
− 1

2

(
ε

5

)2

− o(1) >
ε

20
= δ

for sufficiently small ε. �
Lemma 4.5 gave a lower bound on the probability of constructing a percolating set of size

k0 in one round of the construction algorithm. Subsequently, there is a small but constant
probability of growing a percolating set of size k1 from a percolating set of size of k0.

Lemma 4.6. If we run a round of the construction algorithm in G(n, p(1)
1 , p2), then we have

P[Ek1 | Ek0 , H ] = �(ε).

Proof. We view the percolating set constructed in Algorithm 4.1 as a graph branching
process, in which the vertex xt gives birth to the vertices in Bt ∪ Ct. (Note that in fact while
they are certainly each adjacent to xt in one colour, they may not be adjacent in both, so
we are constructing an auxiliary graph.) It follows from Lemma 4.4 that, conditional on H ,
the branching process up to termination of the round, i.e. until it dies out or reaches size k1,
dominates a branching process with offspring distribution Po≤ρ(1 + ε/5). Since the expected
number of offspring is 1 + �(ε), this branching process survives forever with probability �(ε).
Therefore, conditioned on the percolating set constructed by Algorithm 4.1 reaching size k0,
with probability �(ε) it will also reach size k1. �
4.1.3. Proof of Lemma 4.2. With regard to the first statement of Lemma 4.2, i.e. that w.h.p.
there exists a round � in which |XT(�)(�)| ≥ k1, define the event D = ⋂

�≤L Ek1−1(�). Then the
assertion is simply P[D] = o(1). Let H∗ denote the event that H (�) holds for every 1 ≤ � ≤ L.
By Lemma 4.3, P[D] = o(1) follows from P[D | H∗] = o(1). Observe that if D holds then
we discarded at most k1 vertices in each round of the algorithm. Now let L0 be the number of
rounds in which Ek0 (�) does not hold, and let L1 be the number of rounds in which Ek0 (�) does
hold. Thus, L0 + L1 = L. Furthermore, if D holds then we have deleted at most k0L0 + k1L1
vertices during the algorithm, and, therefore,

k0L0 + k1L1 ≥ n1−δ .

We show that this is very unlikely by observing that by Lemma 4.6, P[D | L1, H∗] ≤
(1 − cε)L1 for some constant c > 0, while by Lemma 4.5, conditional on H∗, we have
L1 � Bi(L, n−1+2δ).

We analyse ∑
�0,�1

P[L0 = �0, L1 = �1, D | H∗].
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We split into various cases. Firstly, if L1 is large, then D is very unlikely:∑
�0

∑
�1≥ln n

P[L0 = �0, L1 = �1, D | H∗] ≤
∑

�1≥ln n

P[D | L1 = �1, H∗]

≤
∑

�1≥ln n

(1 − cε)�1

≤ exp(−cε ln n)

cε
= o(1).

On the other hand, we show that it is very unlikely that L0 is large, but L1 is small:∑
�0≥n1−3δ/2

∑
�1<ln n

P[L0 = �0, L1 = �1, D | H∗]

≤
∑

�0≥n1−3δ/2

∑
�1<ln n

P[L1 = �1 | L0 = �0, H∗]

≤
∑

�0≥n1−3δ/2

P[Bi(�0, n−1+2δ) ≤ ln n]

≤ nP[Bi(n1−3δ/2, n−1+2δ) ≤ ln n].

Using Lemma 2.1, we obtain

P[Bi(n1−3δ/2, n−1+2δ) ≤ ln n] ≤ P[Bi(n1−3δ/2, n−1+2δ) ≤ (1 − δ)nδ/2]

≤ exp

[
− nδ/2δ2

2

]

and, consequently, ∑
�0≥n1−3δ/2

∑
�1≤ln n

P[L0 = �0, L1 = �1, D | H∗] = o(1).

Finally, observe that if both L0 and L1 are small, but D holds, then we cannot have terminated
the algorithm because we have not deleted enough vertices. If D holds, �0 < n1−3δ/2, and
�1 < ln n, then

n1−δ ≤ L0k0 + L1k1 ≤ n1−3δ/22 ln n + ln n
1

ωp1
= o(n1−δ) + o(ln n

√
n ln n) = o(n1−δ),

which is clearly a contradiction. Thus, we have P[D | H∗] = o(1).
Moreover, from Lemma 4.3 we obtain that, conditional on H∗,

|RT(�)(�)| ≥ 1
2 T(�)np(1)

1 .

Finally, due to Lemma 4.3 this yields

P

[⋃
�≤L

Ek1−1(�) ∩
{∣∣∣∣RT(�)

∣∣∣∣ ≥ 1

2
np(1)

1 T(�)

}]
≥ P[D ∩ H∗]

≥ P[D | H∗] − P[H̄∗]

= 1 − o(1)

as required.
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4.2. Final stages

In the previous section we found a step � such that |XT(�)| ≥ k1 and |RT(�)| ≥ T(�)np(1)
1 /2.

Once again we drop the � from our notation.
We now show that XT grows into a larger percolating set by examining the red neigh-

bourhood of XT . Note that until this point no edge between xk1 and RT has been revealed.
In addition, any blue edge we have revealed so far is incident to a vertex of D1: = (V \ V ′

L).

Lemma 4.7. With high probability G(n, p(1)
1 , p(1)

2 ) contains a percolating set of size n/(4ω).

Proof. By Lemma 4.2, w.h.p. we have |XT | ≥ k1 and |RT | ≥ Tnp(1)
1 /2. Until this point, we

have only exposed the (partial) red neighbourhood of {x1, . . . , xT}. Now we expose the red
neighbourhood in V ′

L of {xT+1, . . . , xk1}, and denote this red neighbourhood by R′. Clearly,

|R′| ∼ Bi(|V ′
L|, 1 − (1 − p(1)

1 )k1−T )

and since E[|R′|] ≥ (1 − o(1))n(k1 − T)p(1)
1 → ∞, Lemma 2.1 implies that w.h.p.

|R′| ≥ (k1 − T)np(1)
1 /2. Therefore, for R = (RT ∪ R′) \ D1, we have

|R| ≥ k1np(1)
1

2
− n1−δ − k1 ≥ n

3ω
.

Now XT forms a percolating set and every vertex in R has a red neighbour in XT ,
and, therefore, the (blue) component of G2[{xk1} ∪ R] containing xk1 can be added to the
percolating set. Recall that no blue edges have been exposed in {xk1} ∪ R, and, therefore,
G2[{xk1} ∪ R] ∼ G(|R| + 1, p2). This graph has an expected average degree |R|p2 ≥
np2/(3ω) = ω(1) and, therefore, w.h.p. has a giant component covering all but o(|R|) vertices,
and in particular containing xk1 , and the result follows. �

We can now complete the proof of the supercritical case

Proof of Theorem 1.2(ii). Recall that since we assume that p2 ≥ ln n/n, the probability that
G2 ∼ G(n, p2) is connected is at least a positive constant. Therefore, any event that occurs
with high probability also occurs with high probability in the probability space conditioned
on G2 being connected. (Note that this is the only point in the argument at which we need
to condition on G2 being connected. We also no longer need to assume that G1 is connected
since we assumed (without loss of generality) that p1 ≥ p2, and it follows from (2.4) that G1 is
connected with high probability.)

In particular, let U2 be the percolating set provided with high probability by Lemma 4.7.
For all v /∈ U2, we have

P[v /∈ N(2)
1 (U2)] =

(
1 − εp1

2

)n/(4ω)

≤ exp

(
− εnp1

8ω

)
≤ exp(−n1/3) = o(n−2),

where we have used (2.4) and the fact that ω = ln ln n is subpolynomial. Hence, a union bound
over all at most n vertices of V \ U2 shows that w.h.p. all are in N(2)

1 (U2). On the other hand,
since the blue graph is connected by assumption, it is easy to see that the jigsaw process will
percolate. �
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5. Concluding remarks

5.1. The critical window

We have proved that Theorem 1.2 for ε > 0 an arbitrarily small constant. However, we
note that for connectedness, of which jigsaw percolation may be considered the double-
graph analogue, a much stronger result is true. Namely, the classical result of Erdős and
Rényi [10] implies that if p = (ln n + cn)/n then w.h.p. G(n, p) is not connected if cn → −∞
and w.h.p. G(n, p) is connected if cn → ∞. In other words, setting p = (1 − ε)ln n/n in the
subcritical case, or p = (1 + ε)ln n/n, w.h.p. we have G(n, p) being disconnected or connected,
respectively, provided that ε � (ln n)−1.

Similarly, it would be interesting to know for which ε = o(1) the statement of Theorem 1.2
is still true. With a little more care, our proof would show that ε � (ln n)−1/4 is sufficient, but
it seems likely that this is not best possible.

The key step required to understand the critical window seems to be the number of minimal
percolating sets on k vertices. We provide upper and lower bounds on the asymptotics of this
value, which differ by a factor of eo(k). More precise estimates on this value translate into
sharper bounds on the threshold.

5.2. Generalisations

It would also be interesting to determine the exact threshold for the various generalisations
of Theorem 1.1, including the analogous results for multiple graphs [9] and for hypergraphs [4].
The latter would be a particular challenge since the proof of the supercritical case in [4] simply
involved a reduction to the graph case, i.e. Theorem 1.1. Since Theorem 1.2 is a strengthening
of Theorem 1.1, it also makes the hypergraph result stronger; however, the reduction step is
not optimal, and it seems likely that significant new ideas would be required.

5.3. Other random graph models

Real world graphs, in particular social networks, tend to have a power-law degree
distribution. The binomial random graph does not have this property; however several other
random graph models do, for example, the preferential attachment model (introduced in [2]
and rigorously defined in [6]) and random graphs on the hyperbolic plane (introduced in [13]).
The threshold for jigsaw percolation when the people graph is modelled by such a random
graph and for any random or deterministic choice of the puzzle graph is still unknown. Indeed,
apart from a brief one-directional result in [7], jigsaw percolation involving random graphs
with a power-law degree distribution have not been studied.

5.4. Speed of percolation

One might also ask how many steps it takes for the jigsaw process to percolate in the
supercritical case, i.e. how often we have to construct an auxiliary graph and merge the
components in Algorithm 1.1. With a little care, the arguments in this paper could be adapted
to show that, for p1p2 = (1 + ε)/(4n ln n), where ε > 0 is constant, w.h.p. at most O(ln n) steps
are required, and indeed this can even be improved to (1 + o(1))2 ln n. It would be interesting
to know whether this upper bound is in fact tight w.h.p.
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