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Abstract
This paper considers the task allocation problem under the requirement that the assignments of some critical tasks
must be maximized when the network capacity cannot accommodate all tasks due to the limited capacity for each
unmanned aerial vehicle (UAV). To solve this problem, this paper proposes an extended performance impact algo-
rithm with critical tasks (EPIAC) based on the traditional performance impact algorithm. A novel task list resizing
phase is developed in EPIAC to deal with the constraint on the limited capacity of each UAV and maximize the
assignments of critical tasks. Numerical simulations demonstrate the outstanding performance of EPIAC compared
with other algorithms.

1. Introduction

Research into multiple unmanned aerial vehicles (UAVs) has received increasing interest for its capacity
to handle difficult and complex missions in various fields including search and rescue, space and under-
water exploration, environmental surveillance and monitoring, pick-up, and delivery [1, 2, 3, 4, 5]. Task
allocation among a team of homogeneous or heterogeneous UAVs is vital to improve the performance
of completing complex missions [6]. For multiassignment problems where each UAV can accomplish a
fleet of tasks, a conflict-free and most profitable solution is necessary. However, due to the strong syn-
ergies that exist between different tasks, the multiassignment problem is not easy to solve [7]. Hence,
the mission can be divided into several subtasks, and an efficient approach is imperative for each UAV
to perform a schedule of tasks sequentially to optimize the global objective required by the mission [8].

The task assignment problem considered in this paper is that each UAV can only perform one task at
a time, where each task requires only one UAV and each UAV may be assigned to multiple tasks with
a compatible type that they can execute based on a schedule [9]. This specified problem is described as
a single-task (ST), single-robot (SR), and time-extended assignment (TA) problem [10, 11]. ST-SR-TA
problems have been shown to be NP-hard as they are complex and combinatorial decision problems [12].
This paper considers task allocation problems in the scenario where there are critical tasks (e.g., pick-up
or delivery of highly valuable materials, surveillance or attack of critical targets), and the capacity of each
UAV is fixed due to physical limitations (e.g., fuel, battery, or weapon resource). With the constraints on
limited capacities for heterogeneous UAVs, the assignments of these critical tasks should be prioritized
due to the peculiar requirement. Moreover, all tasks must be started in their specified time windows,
and it is assumed that the UAV starts executing tasks as long as it arrives at the position of the task.
The tasks will obtain different scores after being accomplished, which is determined by their start time
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and static reward. In conclusion, the main objectives of this task allocation problem of the multi-UAV
system in the described scenario are as follows: (1) maximizing the number of assigned critical tasks;
(2) maximizing the total score of all assigned critical tasks (critical score); and (3) maximizing the total
score of the whole task assignment solution.

To provide a satisfactory solution for the described problem, this paper develops an extended PI
algorithm with critical tasks (EPIAC) to achieve the aforementioned objectives. First, the criteria for
task inclusion and conflict resolution are modified by using maximizing the total score instead of min-
imizing the average waiting time of the final assignment solution as the global objective. In addition,
a time-discounted reward strategy regarding the time window is defined and incorporated in the global
function to guide the solution process in this paper. Finally, to fulfill the constraint on limited capacity
and maximize the assignments of critical tasks, a task list resizing phase is proposed. Numerical results
demonstrate that the EPIAC can obtain a feasible and conflict-free solution in the described scenario.
Moreover, it can provide better performance concerning the total score, critical score, the number of
assigned tasks, and critical tasks compared with other algorithms.

The organization of the paper is as follows: The related work is discussed in Section 2. Section 3
presents the definition of problem and introduces the traditional PI algorithm. Section 4 describes the
EPIAC proposed in this paper. Simulation results are presented in Section 5, and Section 6 concludes
the paper with final remarks.

2. Related work

A considerable part of the literature focuses on specific methods to address the task allocation problem
[13]. In past decades, centralized methods have been widely applied to task assignments problems, where
a centralized server, such as a ground station or a leader UAV, collects all information of the whole system
and generates a conflict-free and optimal solution based on the complete information [14]. The main
advantages lie in their ability to obtain a solution that is optimal or very close to it. Much research effort
has been done toward extending some traditional centralized approaches, such as ant colony optimization
[15], genetic algorithm [16], simulated annealing [17], practical swarm optimization, [18] and artificial
neural networks [19]. However, centralized methods may suffer from several weaknesses, especially for
large-scale systems. First, the computation time of these algorithms for solving ST-SR-TA problems
increases exponentially with the problem size, which leads to imposing a heavy computational burden
on the server [20]. Second, the consistent communication between the centralized server and all UAVs is
difficult to maintain, while the limited communication ranges for UAVs also reduce the mission coverage.
Third, centralized approaches are vulnerable to a single point of failure.

Therefore, particular attention has been paid to the distributed task allocation algorithms, and great
efforts have been made for the market-based mechanism [21, 22]. Due to the superiority in terms of
robustness and scalability, the auction algorithms have been one of the most popular market-based
mechanisms applied in task allocation problems [23, 24], where each UAV calculates the bids for tasks
synchronously according to the information from their situational awareness, then the one with the high-
est bid wins the task and includes the task in its schedule. A specific UAV can be the auctioneer and all
bids must be transmitted to the auctioneer in some way that is limited by the network topology.

Recently, the consensus-based bundle algorithm (CBBA) has attracted considerable research interest
since it combines the positive properties of the auction and conflict resolution to produce a conflict-free
assignment [25]. Unlike traditional auction-based approaches, each UAV individually runs this algo-
rithm without an auctioneer, and a consensus mechanism is used to reach consensus on the winning
bids rather than situational awareness. It has been proven that this method can offer similar solutions
to some centralized sequential greedy algorithms and 50% optimality is guaranteed [25]. In recent
years, several modifications regarding CBBA have been proposed to extend its functions and appli-
cation areas, such as heterogeneity of UAVs [26, 27], communication constraints [28, 29], dynamic
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task planning [30, 29], complex cooperation constraints, [31, 32] and others [33, 34, 35]. However,
CBBA is based on the auction principles where generally each UAV is selfish in reducing the local
cost generated by it. Since a bid in CBBA is calculated according to an extra bundle list for recording
the order of adding tasks into its task list, if the inclusion sequence of tasks changes, the bids for the
corresponding tasks are no longer valid. Hence, it has to remove all the tasks after the newly added
or deleted task in the task list. Inspired by CBBA, Zhao et al. [36] proposed the performance impact
(PI) algorithm, which is a distributed heuristic algorithm and directly optimizes the global objective
mathematically formulated under the problem of interest. In addition, the PI algorithm places a planner
on every UAV and cooperates all UAVs with linked topology and runs concurrently on every UAV by
assigning tasks in parallel. It is designed for search and rescue scenarios and aims to minimize the over-
all waiting time for all survivors. Compared with CBBA, the PI algorithm has been validated to have
better performance for solving difficult and time-critical problems [36]. The global objective function
can be optimized by iterating the task inclusion phase and conflict resolution phase according to satisfy-
ing certain criteria when switching tasks between different UAVs. In recent years, the PI algorithm has
been further extended. For example, Whitbrook et al. [37] permitted dynamic online rescheduling and
incorporated a soft-max action-selection procedure to improve the exploratory properties of PI. The PI-
MaxAssignment was proposed in [38] to maximize task allocations by shifting the assignments to create
feasible slots for unassigned tasks. To improve the robustness of PI algorithm, Whitbrook et al. [39] pro-
posed three variants and validated the significant performance of them compared with a robust version
of CBBA.

However, there are several drawbacks and challenges for the PI algorithm. First, the solutions are
computed based on the assumption that all tasks have identical importance, which means that the priority
for some critical tasks is neglected. Second, they cannot assign some specific tasks first when the network
capacity of the entire UAV system cannot accommodate all tasks due to the limited capacity. Third, only
the deadline for each task is considered in existing PI algorithms, while the specific time window for
each task to start is ignored. Finally, all existing PI algorithms are devoted to minimizing the average
waiting time for all survivors in search and rescue scenarios. However, maximizing the total global score
by executing assigned tasks is the main objective in some specific scenarios, while existing PI algorithms
cannot offer a satisfactory solution.

3. Problem description and PI algorithm

This section provides the formal statements of the described task allocation problem and introduces the
procedure of PI algorithm.

3.1. Problem description

Consider a scenario with Nu heterogeneous UAVs V= [v1, ..., vNu ]T and Nt tasks T= [
t1, ..., tNt

]T ,
with Nt > Nu. An allocation A= [

a1, ..., aNu

]T is a part of total task set T and stores the schedule of
each UAV, where A is ordered by the sequence number of UAVs from 1 to Nu and ai = [ti1 , ..., ti|ai | ]

T ,
i= 1..., Nu is ordered by the arrival time of UAV vi that arrives at the assigned tasks and is ordered by
the actual start time for assigned tasks. The actual size of task list ai is decided by the number of tasks
assigned to vi. Since each task can only be assigned to the UAVs with the capability, a compatibility
matrix H with element hi,j is used to define whether UAV vi is able to perform the task tj . It is assumed
that each UAV is able to autonomously identify the subset of tasks it can perform. G(t) denotes a sym-
metric communication matrix, where gi,j = 1 indicates that UAV vi can directly communicate with UAV
vj at time t. It is assumed that every UAV can execute maximum number Lt of tasks; that is, the limited
capacity for each UAV is Lt . The described task assignment problem can be written as the following
integer program [36]:

https://doi.org/10.1017/S0263574721000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000102


Robotica 2011

max
Nu∑
i

|aT1
i | (1a)

max
Nu∑
i

∣∣∣aT1
i

∣∣∣∑
j

Si,j

(
aT1

i

)
(1b)

max
Nu∑
i

|ai |∑
j

Si,j(ai) (1c)

subject to:
|ai| ≤ Lt (2)

ai ∈T, ai
⋂

aj = φ ∀i �= j (3)

T1
⋂

T2 = φ, T1
⋃

T2 =T (4)

hi,j = 0, 1 (5)

where aT1
i represents the assigned critical tasks in the task list ai of UAV vi. The function Si,j (ai) denotes

the score obtained by UAV vi servicing task tj in its task list ai. T1 and T2 are the critical task set and
noncritical task set, respectively. Eqs. (1a), (1b), and (1c) express the three objectives considered in this
paper: (1) maximizing the number of assigned critical tasks; (2) maximizing the critical score of the
whole solution; and (3) maximizing the total score of the whole solution, respectively. In this paper,
the first two objectives are achieved by the newly proposed task list resizing phase. The third objective
is used to guide the whole algorithm process, where Si,j(ai) defined in the third objective measures the
scores obtained by UAV completing tasks and is used to calculate the RPI and IPI in all three phases.
Eq. (2) represents that the number of tasks assigned to a UAV must be less than or equal to the limited
capacity Lt . Eq. (3) shows that each set of allocations is a subset of all tasks and each task can only be
assigned to one UAV. In Eq. (4), it is used to show that the whole task set is divided into two individual
subsets, namely, critical tasks set T1 and noncritical tasks set T2. Eq. (5) indicates that the element of
the compatibility matrix is set to either 0 or 1.

3.2. Score scheme

For the above problem, the following definitions are given:

(1) Time Cost: The time cost τij for UAV vi to execute the task tj is defined as the predicted time taken
by vi to arrive at the location of the task tj in its schedule ai, which includes the duration of earlier
tasks in ai and travel time to and from those earlier tasks. Actually, the time cost τij is the actual start
time for UAV vi to execute task tj , which is used to calculate the reward of completing the task and
constrain the specified time windows.

(2) Time Window: The time window in which the task tj is allowed to be started is the time interval
between the earliest start time τjes and the latest start time τjls. If the actual start time of a task is out
of the specified time window, this task cannot be allocated. The time window for task tj is defined
as

uj
(
τij

)=
{

1, τjes ≤ τij ≤ τjls

0, otherwise.
(6)
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(3) Time-Discounted Reward: The reward a UAV receives from task tj is related to the time cost τij and
the static reward Rj , which is defined as

R
′
j
(
τij

)= e−λj(τij−τjes)Rj (7)

where τij-τjes is the lag time between the task earliest start time and the UAV actual arrival time. The
static reward is defined as the contribution of completely completing the task to the overall goal, and we
can also regard the static reward as the inherent importance of the task tj . To measure the degree of late
arrival, a discount parameter λj > 0 is used to penalize task reward. Obviously, the earliest start time τjes

is the best time to start task tj , and the task reward would be R′j
(
τij

)= Rj without time discounting.
In conclusion, the score function for a task can be represented as

Sij
(
τij , ai

)= e−λj(τij−τjes)Rjuj
(
τij

)
(8)

which reflects the impact of the actual arrival time for UAVs on decreased reward.

3.3. PI algorithm

The PI algorithm is a distributed heuristic task allocation algorithm that runs simultaneously on each
UAV in the multi-UAV system [36]. It uses a novel concept called performance impact as the global
score function to build task lists iteratively by adding and removing tasks. The removal performance
impact (RPI) measures the benefits of removing a task from a task list, while the inclusion performance
impact (IPI) measures the benefits of adding a task, and both are incrementally updated by swapping
tasks between UAVs as the algorithm proceeds. The PI algorithm considers the total performance impact
of task exchanges for all UAVs. Unlike CBBA that targets on optimizing local score, it aims to directly
optimize a specified overall objective [38].

Analogous to CBBA, the PI algorithm iterates over a task inclusion phase and a conflict resolution
phase. At the beginning, there are two ways to initialize the task lists, winning UAV lists and RPI and
IPI lists. The first way is to directly adopt the task assignment results produced by other methods as the
initial input. The other way is to initialize all task lists and winning UAVs lists to empty and initialize
RPI and IPI lists to 0. During the first phase, each UAV builds a list of tasks that provide the greatest
improvement to the global objective determined by the greatest difference between the current global
RPI and IPI of a task assignment. Since every UAV builds their task lists locally, two or more UAVs
may be assigned to the same task. Therefore, once there are no more tasks to be added or the task lists
are full, the second phase, that is, conflict resolution phase, is followed to reach consensus where all
UAVs first communicate the information and reach agreement of their current task lists and RPI lists for
all tasks with all connected UAVs based on a specified procedure. After that, the UAV with the lowest
RPI keeps the conflict task, while others release it through a task removal procedure. The two phases
are repeated until a conflict-free task assignment is reached by all UAVs. The main procedure of the PI
algorithm is expressed in Algorithm 1.

Regarding the convergence analysis, the PI algorithm is a heuristic distributed algorithm essentially
working on the iteration optimization principle (as also used by other centralized optimization methods,
for example, genetic algorithms and particle swarm optimization) where each UAV aims to decrease
the overall cost at each iteration [36]. In detail, each UAV tries to reduce the overall cost as much as
possible by recursively adding/removing tasks into/from the proper position of its task list based on the
received RPIs. The RPI and IPI of a task are highly correlated with other tasks in the task list, and they
should be updated to reflect the current allocation. Hence, the PI algorithm converges to a feasible and
conflict-free solution when no changes can be made in the RPI and IPI values in both the task inclusion
phase and consensus phase.

Regarding the computational complexity of the PI algorithm on every UAV, in the task inclusion
phase, the major computation complexity comes from the calculation of the IPI of each task that is
intended to be inserted into the current task list. Since the benefits of including a task in all possible
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Algorithm 1 PI Main Program
1: Define World, UAVs, Tasks, Network Topology
2: for each UAV vi do
3: Initialize the task list ai, winning UAV lists, RPI and IPI lists
4: end for
5: Initialize Timer T← 1
6: converged← false
7: while converged is false do
8: Phase1: Task Inclusion Phase
9: Phase2: Conflict Resolution Phase

10: converged← Check Convergence
11: T← T + 1
12: end while

positions should be taken into consideration, the update of the scores for the following tasks is much
larger. In addition, there are relatively few computations required for the consensus of the winning UAV
list and winning RPI list as most operations are simple rule-based logical judgments. Additionally, the
computations requested by determining which tasks are intended to be deleted from the current task list
can be omitted. Therefore, the major computational complexity of the conflict resolution phase comes
from the update of RPI values of the intended removal tasks and the update of the scores for the remaining
tasks in the task list.

4. Extended performance impact algorithm for critical tasks (EPIAC)

To extend the PI algorithm to the scenario with limited capacity and time windows, this paper investi-
gates an extended PI algorithm for critical tasks (EPIAC) to maximize the assignments of critical tasks
and critical scores. First, a conflict-free assignment based on fictitious capacity is obtained by repeat-
ing the task inclusion phase and conflict resolution phase whose architectures are retained from the PI
algorithm. However, to maximize the global total score in EPIAC, the ways to measure the IPI and RPI
values for tasks have been changed while the criteria to insert and remove tasks are also modified in
these two phases. After generating an original task allocation solution, a novel task list resizing phase is
developed to address the constraints related to limited capacity and mandatory assignments of critical
tasks. In this newly proposed phase, all UAVs that exceed the limited capacity classify tasks in their
task lists based on the consensus information obtained in the conflict resolution phase, and some over-
capacity tasks are chosen to be deleted based on the Task Selection to Prune mechanism. After that,
another mechanism, Priority Task Inclusion Procedure, is followed to allocate the critical tasks removed
in the previous mechanism. As a consequence, a new iteration for maximizing the global optimization
is triggered to achieve a new conflict-free assignment. In conclusion, EPIAC iterates between the task
inclusion phase and the conflict resolution phase, with some occurrences of the task list resizing phase,
until a global conflict-free and constraint-fulfilling task assignment solution is agreed upon by all UAVs.
The algorithm terminates when the total score cannot be improved and limited capacity is fulfilled. The
main procedure of EPIAC is given in Algorithm 2, where T1 represents the iteration number for phase 1
and phase 2 to reach convergence, and T2 denotes the iteration number for phase 3 to fulfill the constraint
on limited capacity. Subsection 4.1 introduces some basic definitions of EPIAC, and three phases are
described in Subsections 4.2, 4.3, and 4.4.

4.1. Basic definitions of EPIAC

There are two types of local performance impact values used to test the impact of adding and remov-
ing tasks on the global cost. It should be noted that the inclusion and removal of a task will have
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Algorithm 2 EPIAC Main Program
1: Define World, UAVs, Tasks, Network Topology
2: for each UAV vi do
3: Initialize ai, γ i, γ ∗i , β i, zi, � i, si
4: end for
5: Initialize Timer T1← 1 and T2← 1
6: overcapacity← true
7: while overcapacity is true do
8: converged← false
9: while converged is false do

10: Phase1: Task Inclusion Phase
11: Phase2: Conflict Resolution Phase
12: converged← Check Convergence
13: T1← T1 + 1
14: end while
15: Phase3: Task List Resizing Phase
16: overcapacity← Check Overload
17: T2← T2 + 1
18: end while

corresponding impacts on the start executing time and score of following tasks, while earlier tasks in the
task list are not affected. With the objective of maximizing the score, the RPI of task tk in ai is measured
by the difference in score (with and without the removed task) of performing the removed task and all
subsequent tasks. It represents the contribution of a task to the local score generated by a UAV. Given a
task tk assigned to UAV vi, the RPI is defined as

wk(ai 	 tk) =Si,b(ai)+
|ai |∑

z=b+1

(
Si,z(ai)− Si,z(ai 	 tk)

)
(9)

where ai 	 tk denotes the removal of task tk from the task list ai of UAV vi, and b symbolizes the position
of task tk in the task list, that is, ai,b = tk . Si,b(ai) is the score of the task at position b in task list ai. The RPI
of each task for UAV vi is stored in an RPI list γ i =

[
γi,1, ..., γi,Nt

]
, i= 1, ..., Nu where γi,k represents

wk(ai 	 tk) for simplicity. To facilitate consensus, define a winning UAV list β i =
[
βi,1, ..., βi,Nt

]
,i=

1, ..., Nu to represent which UAV is assigned to which task in vi’s local view. A global consensus is
reached when all UAVs have an identical copy of these two lists.

The IPI is used to measure the newly added task’s local performance impact generated by the UAV.
The starting time for the tasks after the newly inserted task in the task list could be delayed, which would
lead to the decrease on score for the following tasks. As a result, the IPI w∗k (ai ⊕ tk) of task tk to UAV
vi is the greatest difference in score (with and without the added task) of the added task and subsequent
tasks for all possible insert positions and is defined as

w∗k (ai ⊕ tk)= |ai |+1
max
l=1

{
w�

k,i,l
}

(10)

w�
k,i,l = Si,z(ai⊕ltk)+

|ai |∑
z=l

(
Si,z+1(ai⊕ltk)− Si,z(ai)

)
(11)

where ai⊕ltk denotes adding the task tk into the task list ai of UAV vi at the lth position. The w�
k,i,l is

calculated as the performance impact value of all possible positions in the task list, and the maximum is
chosen as w∗k (ai ⊕ tk). When the task has been included in the task list or does not satisfy the constraints,
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the IPI is set to 0. An IPI list γ i
* = [

γ ∗i,1, ..., γ ∗i,Nt

]
, i= 1, ..., Nu is constructed to store the IPI of each task

for UAV vi, where γ ∗i,k represents w∗k (ai ⊕ tk) for simplicity.

4.2. Phase 1: Task inclusion phase

During the task inclusion phase, each UAV selects the compatible tasks freely to add to their task lists
until no more tasks can be included. The pseudocode of this phase is shown in Algorithm 4. First, the
algorithm computes the IPIs for all candidate tasks according to Eqs. (10) and (11) (lines 3–11), where
candidate tasks are those compatible and not already in ai. The RPIs of candidate tasks are initialized
as 0 if unassigned or a specific value it received in the conflict resolution phase. Due to the 0 value of
initialized RPIs for all tasks, the RPIs must be greater than 0 once assigned. If the IPI of task tq in ai is
higher than tq’s RPI in another UAV’s task list aj , the global score can be improved by tq reallocating to
vi. Based on the new definitions of RPI and IPI, it should be decided which task can be inserted into the
current task list ai of UAV vi according to Eq. (12) (line 12).

g= Ntmax
k=1

{
γ ∗i,k − γi,k

}
(12)

If g > 0, the task with the greatest difference of IPI and RPI in current candidate task list, that is, the task
that can provide the greatest objective improvement, should be selected to add to ai. The corresponding
task tg = arg

Ntmax
k=1

{
γ ∗i,k − γi,k

}
is inserted into the ordered task list ai at the position litg = arg w∗i,l

(
ai ⊕ tg

)
(line 14), and the RPI of task tg is updated using the IPI of task tg, that is, γi,l=γ ∗i,l (line 15). If g≤ 0, IPIs
of all tasks are equal to or lower than the current RPIs, which means that the current assignment cannot
be improved or the constraints on time windows cannot be met. In this case, the task inclusion process
ends. The information of RPI list γ i and UAV list β i are updated at the end of the task inclusion phase
(line 16). By iteratively computing the task IPI from Eqs. (10) and (11) and satisfying the criterion (12),
the above process continues. The process stops when the criterion is no longer met or the maximum
number of Nt tasks has been included in the task list. It is noted that the constraint on limited capacity
of each UAV defined in (2) is neglected in this phase; that is, it is assumed that each UAV can include up
to Nt tasks. Since each UAV only includes tasks it can execute, the IPI of tasks that cannot be performed
will always be set to 0.

4.3. Phase 2: Conflict resolution phase

Because every UAV locally builds its own task list, two or more UAVs may include the same task. To
this end, a conflict resolution phase is demonstrated in Algorithm 3. During this phase, some fundamen-
tal information should first be shared among all neighboring UAVs where a communication link exists
between them based on a network topology. There are five information vectors that should be communi-
cated (line 2), including winning RPI lists γ i, winning UAV lists β i, second winning RPI lists zi, second
winning UAV lists � i and time stamps si. Every UAV transmits zi and � i across the UAV network with
the same procedure used for γ i and β i. The zi stores the second winning RPI values for each task and � i
contains the corresponding second winning UAVs. The iteration numbers of the last information update
from each of the other UAVs are stored in si. In the process of transmitting information, each UAV is
able to determine the operation (update, leave and reset) by evaluating five vectors when receiving the
information from its neighbors [27]. The fundamental idea of this consensus procedure is the following:
the received information is compared with the local winning RPI value for a task; if the received RPI is
larger than the local winning RPI, then the received one becomes the new winning RPI and the sender
UAV becomes the new winning UAV. At the same time, the second winning RPI is chosen between the
local old winning RPI and the received second winning RPI, while the second winning UAV is also
updated. At the end of this consensus procedure, the vectors γ i and β i are updated to select tasks that
need to be removed, while the vectors zi and � i are updated to be used in the task list resizing phase.
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Algorithm 3 Phase 1 of EPIAC: Task Inclusion Phase
1: for each UAV vi do
2: while |ai| ≤Nt do
3: for each tasks tk in problem do
4: if UAV vi and task tk are compatible then
5: if task tk not already in task list ai then
6: for each insertion position do
7: Compute w∗k (ai ⊕ tk) from (10) and (11)
8: end for
9: end if

10: end if
11: end for
12: Compute g from (12) and l from (10) and (11)
13: if g > 0 then
14: Add task yielding max g to task list ai at position l
15: Set wk(ai 	 tk)=w∗k (ai ⊕ tk)
16: Update the RPI list γ i and UAV list β i
17: end if
18: end while
19: end for

In this way, the aforementioned four important vectors could reach global consensus and the time stamp
vector si is also updated (line 3).

After the consensus procedure, two local copies of RPI list γ i and winning UAV list β i on UAV vi
have been updated by communicating with the neighbors and are now ready to determine if any tasks
in the task list should be removed. First, the candidate task list di intended to be removed from the task
list ai is determined by di =

{
ai| β i(ai) �= vi

}
(line 4). In detail, each UAV vi checks the winning UAVs

of all assigned tasks in its task list β i(ai) according to the updated winning UAV list β i. Then, the tasks
whose winning UAVs are not UAV vi itself, that is, β i(ai) �= vi, are regarded as conflicting tasks.

Since a higher RPI implies a better assignment, the UAV with lower RPI for a conflicting task should
remove the task from its task list. The updated RPI list γ �i =

[
γ �i,1, ..., γ �i,Nt

]
, i= 1, ..., Nu denotes the

RPI values of tasks and is calculated based on the current task list according to (9). The vector γ �i is
iteratively compared with the previous RPI list γ i =

[
γi,1, ..., γi,Nt

]
,i= 1, ..., Nu that emerged from the

initial part of the consensus phase. For all candidate tasks di, the following criterion is computed (line 5):

h= |di |max
k=1

{
γi,k − γ �i,k

}
(13)

If h≥ 0, then the task with the maximum h is removed from both the task list ai and the candidate task
list di (line 7). Additionally, the time cost and task score of remaining tasks in ai as well as the value of
γ �i are recomputed and updated again due to the removal of the task (lines 8–9). For each removed task
tk , values of γi,k , βi,k ,zi,k and �i,k are reset, while the time stamps si are updated with the last information
UAV vi received for task tj . Continuing this removal process until the criterion is no longer satisfied or
the di is empty, the remained tasks in di (if they actually exist) are put back into the task list ai again.

4.4. Phase 3: Task list resizing phase

After obtaining a conflict-free assignment based on the fictitious capacity by repeating the task inclu-
sion phase and conflict resolution phase, the task list resizing phase (see Algorithm 5) is designed to
address the constraints on limited capacity of each UAV and the assignments of critical tasks. First, after
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Algorithm 4 Phase 2 of EPIAC: Conflict Resolution Phase
1: for each UAV vi do
2: Communicate the winning RPI list γ i, winning UAV list β i, second winning RPI lists zi and

second winning UAV lists � i with UAV vj , where gi,j(t)= 1;j = 1, ..., Nu;j �= i
3: Perform the consensus procedure to update γ i, β i, zi and � i
4: Find candidate tasks for removal di =

{
ai| β i(ai) �= vi

}
5: Compute h for tasks in di from (13)
6: while di �= φ and h > 0 do
7: Remove the task yielding max h from task list ai and candidate list di
8: Update scores for the tasks followed after the removed tasks in ai
9: Update the winning RPI list γ �i

10: end while
11: end for

Algorithm 5 Phase 3 of EPIAC: Task List Resizing Phase
1: for each UAV vi do
2: Check the cardinality of the task list for all UAVs based on the updated winning UAV lists β i
3: if there is a UAV vk exceeding capability |ak|> Lt then
4: Determine the total number of tasks to be removed ni,r = |ai| − Lt
5: if ni,r > 0 then
6: Classify the tasks in ai into six subsets according to (14)
7: Determine the involved subsets from subset ζ i1 to ζ i6 until

∑K
k=1 |ζ ik| ≥ ni,r , where 0 < K ≤

6
8: Determine the number of tasks that should be removed in each involved subset nk

i,r , k =
1, ..., K

9: for each subset ζ ik , k = 1, ..., K do
10: if nk

i,r > 0 and nk
i,r = |ζ ik| then

11: UAV vi removes all tasks in subset ζ ik
12: else if nk

i,r > 0 and nk
i,r < |ζ ik| then

13: Determine and remove nk
i,r tasks chosen from (15)

14: end if
15: end for
16: Construct a priority inclusion matrix P2×|Ti,cri |

i to store the tasks that are critical and removed
as the overloaded tasks

17: Communicate P2×|Ti,cri |
i with UAV vj , where gi,j(t)= 1;j = 1, ..., Nu;j �= i

18: Construct a priority task list ηi according to P2×|Ti,cri |
i

19: Execute the task inclusion phase to allocate the tasks in ηi
20: end if
21: end if
22: end for

the consensus on winning UAV lists β i has been reached, each UAV uses this updated information to
locally evaluate if there is an overloaded UAV whose |ai|> Lt (line 2). If all UAVs do not violate the
constraints of limited capacity, the algorithm stops and the final solution is obtained. Otherwise, each
UAV vi determines the total number of tasks to be removed according to ni,r = |ai| − Lt (line 4). The
case of ni,r < 0 means that UAV vi is not an overloaded UAV and does not need to delete any task.
If ni,r > 0, UAV vi runs two main mechanisms: Task Selection to Prune and Priority Task Inclusion
Procedure to deal with the overloaded tasks. More specifically, the task selection to prune procedure is
utilized for overloaded UAVs to remove tasks until Eq. (2) is fulfilled (lines 6–15). Afterward, a priority
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task inclusion procedure is introduced to let the second winning UAV include the critical tasks pruned in
the previous procedure (lines 16–19). The task selection to prune mechanism and priority task inclusion
mechanism are demonstrated more clearly in following Subsections 4.4.1 and 4.4.1, respectively.

4.4.1. Task selection to prune
There are two main criteria for selecting the tasks to be removed (lines 6–16). One is obtaining the
maximum assignments of critical tasks, and the other is choosing the tasks causing the least penalty in
terms of score when swapped between UAVs.

For the first criterion, tasks assigned to overcapacity UAV vi are classified into six subsets described
as follows (line 6):

ζ i1=
{
tj ∈ ai and tj ∈T2|�ij > 0 and

∣∣∣a�ij

∣∣∣ < Lt

}
ζ i2=

{
tj ∈ ai and tj ∈T2|�ij > 0 and

∣∣∣a�ij

∣∣∣≥ Lt

}
ζ i3=

{
tj ∈ ai and tj ∈T2|�ij = 0

}
ζ i4=

{
tj ∈ ai and tj ∈T1|�ij > 0 and

∣∣∣a�ij

∣∣∣ < Lt

}
ζ i5=

{
tj ∈ ai and tj ∈T1|�ij > 0 and

∣∣∣a�ij

∣∣∣≥ Lt

}
ζ i6=

{
tj ∈ ai and tj ∈T1|�ij = 0

}

(14)

The subsets ζ i1, ζ i2, and ζ i3 are composed of noncritical tasks with a nonfull second winning UAV, a
full or overcapacity second winning UAV and no second winning UAV, respectively, while the subsets

ζ i4, ζ i5, and ζ i6 are similar to ζ i1, ζ i2, and ζ i3 but for critical tasks. It is noted that
6∑

k=1
ζ ik = ai and each

subset is individual in terms of other subsets.
After the tasks in the task list ai have been classified, the involved subsets that tend to be removed

are chosen according to the total number of tasks to be removed ni,r and the size of each subset (line
7). In detail, the first subset ζ i1 is the first selection for UAV vi and then subset ζ i2, and subset ζ i6 is
the last one. Furthermore, the sum size of involved subsets must cover the number of tasks need to be
deleted, that is,

∑K
k=1 |ζ ik| ≥ ni,r (line 7). The sequence number of the last involved subset is denoted as

K, where 0 < K ≤ 6. Next, the number of tasks that should be removed for each involved subset nk
i,r is

determined with
∑K

k=1 nk
i,r = ni,r (line 8). Obviously, if nk

i,r = |ζ ik|, UAV vi removes all tasks in subset
ζ ik (lines 10–11), while the algorithm does not remove any tasks in subset ζ ik if nk

i,r = 0. When nk
i,r > 0

and nk
i,r ≤ |ζ ik|, the UAV vi must choose nk

i,r tasks from subset ζ ik with the least penalty reduction, which
is referred to in the second criterion.

For example, if |ai|=10, Lt=6, there are four tasks that need to be removed. It is supposed that the
size of subsets ζ i1 to ζ i6 is 2, 0, 3, 3, 2, and 0, respectively. As a result, the subsets ζ i1, ζ i2, and ζ i3 are
selected since the total number of tasks in these three subsets is |ζ i1| + |ζ i2| + |ζ i3| = 5 and is larger
than ni,r = 4, which means that the sequence number of the last involved subset K is 3. At the same
time, the two tasks in ζ i1 are all selected to be removed with the other two tasks from subset ζ i3. The
procedure of choosing two tasks to be removed from the three tasks in subset ζ i3 is described in the
second criterion.

The second criterion is used to select a specific number nK
i,r = |ζ iK | − Lt of tasks in the last selected

subset whose |ζ iK |> nK
i,r based on RPI and IPI, where the tasks causing the least penalty of the score

are chosen as

q=
|ζ iK |
min
k=1

(
γ i,k−γ ∗�ik ,k

)
(15)

https://doi.org/10.1017/S0263574721000102 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721000102


Robotica 2019

where |ζ iK | represents the number of tasks in the last selected subset. γ ∗�ik ,k denotes the IPI of the second
winning UAV �ik to task tk , and γ ∗�ik ,k=0 if there is no second winning UAV, that is, tk belongs to subset
ζ i3 or ζ i6. q≥ 0 means that UAV vi removes task tk and the second winning UAV �ik includes tk , which
will reduce the total score. Hence, the task with the least score loss tq= min|ζ iK |

k=1

(
γi,k − γ ∗�ik ,k

)
is selected;

then, UAV vi removes it from its task list ai, and the values of γi,q, βi,q, zi,q, and �i,q are set to 0. At the
same time, the task list ai and local RPI list γ i should be updated. For each task tk in subset ζ iK , the RPI
of the winning UAV removing task tk is iteratively compared with the IPI of the second winning UAV
including tk , as shown in Eq. (15). This process stops when nK

i,r tasks are removed from the last subset
ζ iK (lines 12–14). The removed task tq is not allowed to be inserted into ai again and the assignability
is set to 0, that is, hi,q = 0, which guarantees the convergence of EPIAC. Moreover, a novel priority
inclusion matrix P2×|Ti,cri |

i is designed for UAV vi to store the critical tasks removed in this mechanism
and their corresponding second winning UAVs’ IDs, where |Ti,cri| denotes the amount of critical tasks
pruned by UAV vi in phase 3 (line 16). The first row of P2×|Ti,cri |

i stores the task IDs and the second row
stores second winning UAV IDs.

4.4.2. Priority task inclusion procedure
After the selected tasks have been removed for all overcapacity UAVs, the matrix P2×|Ti,cri |

i of UAV vi is
communicated between all UAVs by network topology, where each UAV receives the priority inclusion
information about itself and constructs a priority task list ηi (lines 17–18). Then, each UAV first tries to
include the tasks in ηi to maximize the number of assigned critical tasks, while the limited capacity and
score optimization are neglected (line 19). It is noted that the same inclusion method as in phase 1 is used
with the difference that the tasks that need to be allocated here are the tasks in ηi. After that, all UAVs start
the normal task inclusion phase to rebuild their task list locally and synchronously, which means that a
new cycle of phases 1 and 2 is performed to achieve a new conflict-free assignment after the priority task
inclusion procedure is completed. In detail, there are two parts of information communicated between
all UAVs, including five vectors (γ i, β i, zi, � i, si) as well as the priority inclusion matrix P2×|Ti,cri |

i .
In addition, the task inclusion phase is composed of priority task inclusion and normal task inclusion,
which is determined to allocate more critical tasks and achieve a higher score, respectively.

4.5. Convergence analysis

As EPIAC inherits the same architecture of the PI algorithm and the modifications in this paper do not
change the behavior of the two phases concerning convergence; the convergence property is still valid
for EPIAC; that is, the convergence time for phases 1 and 2 to generate a conflict-free solution is finite.
Therefore, the convergence of EPIAC is mainly determined by the executions of phase 3.

Now, we will show that the phase 3 can only occur a finite number of times. First, define a dynamic
assignability matrix A(k) ∈ {0, 1}Nu×Nt with elements α

(k)
ij . In addition, if bij ≤ cij for all elements and

bij < cij for at least one element, define the relation between two matrices as B < C. The algorithm
starts with A(1) =H, and the fundamental idea of EPIAC is to modify the element of the dynamic
assignability matrix to 0, that is, fewer pairs of the task and UAV. Therefore, the following part verifies
that the condition A(k+1) < A(k) is always fulfilled as algorithm proceeds.

After a conflict-free assignment has been achieved by repeating phases 1 and 2, all UAVs execute
phase 3 to remove overloaded tasks, and consequently a new iteration takes place to converge to a new
solution. It is supposed that the dynamic assignment element is set as α

(k+1)
ij =0 when UAV vi removes

task tj in phase 3. Moreover, the element hij of compatibility matrix H is set to 0, which means that
the UAV vi cannot include task tj any more. This precaution may remain the searching ability of the
approach and prevent tasks to be repeatedly included in and excluded from the same UAV. Hence, as the
approach proceeds, the number of UAVs that can include task tj decreases, which leads to a decrease in
conflicts over time. In detail, for noncritical task tj or critical task tj ∈ ζ i6 deleted in phase 3, the element
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α
(k+1)
ij is reset to 0 with hij=0 leading to A(k+1) < A(k). If the removed critical task tj belongs to subset ζ i4

or ζ i5, the second winning UAV vg for task tj includes tj into its task list, with α
(k+1)
gj =1. Since vg is the

currently winning UAV for task tj , it will not remove tj in phase 1 with Eq. (12) fulfilled, that is, no UAV
with a higher RPI for task tj . Moreover, unlike the principle in which the CBBA needs to remove all the
tasks after the added or deleted task in the task list, the inclusion and removal of a task will not lead to
the removal of other tasks in the task list. Hence, tj will not be released due to the task list truncation
in phase 1. Despite this, it is still possible that vg deletes tj in phase 3 for |ag|> Lt , with α

(k+1)
gj =0 and

hgj=0. After that, a new second winning UAV �gj = vp with p �= g adds tj into ap. This allows us to
conclude that the condition of the removed critical task tj assigned to a UAV can arise for a maximum of
Nu − 1 times for each task, that is, the condition A(k+1) < A(k) occurs as the algorithm proceeds. Hence,
the maximum number of occurrences for phase 3 is

∑
j∈T1

∑Nu
i=1hij +∑

j∈T2

∑Nu
i=1hij <

∑
j∈T

∑Nu
i=1hij <

Nu ×Nt which is finite. Therefore, this method can converge to a feasible solution in a finite time.

4.6. Computational complexity and optimality

In this section, the computational complexity of EPIAC is first analyzed. First, as shown in Ref. [36, 37],
the major computational complexity for phases 1 and 2 arises from the calculation of RPI and IPI values
and the updated scores for the remaining tasks in the task list. In phase 1, a maximum computational
complexity of (|ai| + 1) (|ai| + 2) M1σ/2+ |ai|σ is requested to compute the IPI and update the scores
for remaining tasks in order to include a new task into ai. M1 denotes the number of tasks that are not
assigned to vi and fulfill the constraints in Eq. (5). Considering phase 2, it is assumed that a total of
M2 tasks are intended to be removed from the task list ai, and this requires a computational complexity
of |ai|M2σ −M2(M2 + 1)σ/2+ (|ai| − 1)σ maximally, where σ denotes the complexity of computing
the score of a task. Obviously, the major computational complexity is dominated by the task inclusion
phase, and it is O

(
(mi − |ai|) |ai|2M1σNu

)
at each iteration of the algorithm, where mi − |ai| =∑Nt

j=1 hij
denotes the maximum number of tasks that can be inserted into the task list ai.

Furthermore, regarding phase 3, there are relatively few computations required for the task selec-
tion to prune as most operations are simple rule-based logical judgments and assignments. The simple
computations involved in classifying the assigned tasks in the task list into six different subsets and in
determining which tasks can cause the least reduction in terms of the total score can be omitted. The pri-
ority task inclusion procedure can be incorporated in the normal task inclusion phase since priority tasks
can be regarded as normal tasks that are not assigned vi and fulfill Eq. (5). Therefore, we can conclude
that the major computational complexity is still dominated by phase 1, which is O

(∑Nt
j=1 hij |ai|2M1σNu

)
at each iteration.

Then, the optimality of the proposed method is discussed. First, as mentioned in the Introduction,
the task allocation problem of multi-UAV systems is described as an ST-SR-TA problem which is NP-
hard in complexity theory. As the computation time for obtaining a globally optimal solution of such a
problem increases exponentially with the problem size, analytic methods are not suitable for large-scale
ST-SR-TA problems and most algorithms for solving ST-SR-TA problems can only provide suboptimal
solutions [40]. In general, heuristic algorithms are less complex and find a good enough solution within
an acceptable time, although the trade-off is that they often provide suboptimal solutions. Therefore,
heuristic methods are employed to speed up the process of task allocation while maintaining an efficient
and scalable algorithm [40, 41, 42, 43].

Second, many algorithms are discussed, none of which can provide the optimal solution. Among
them, the market-based multirobot (MR) coordination has been applied successfully to the ST-SR-TA
problem to find suboptimal solutions efficiently in a distributed fashion, as discussed in [40]. In addition,
the auction-based algorithms [44, 45, 46] are another kind of distributed method that has been applied to
solve ST-SR-TA problems and have been shown to be able to efficiently produce suboptimal solutions,
as they employ greedy-based strategies in their task inclusion phase. This reason also applies to the
CBBA [25] since a market-based decision strategy is utilized as the mechanism for the decentralized
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Table I. Specific scenario.

Reconnaissance Attack

UAV Velocity 30 m/s 50 m/s
Task Duration 300 s 350 s
UAV Start Position 10,000 m × 10,000 m × 0 m ground space
Task Position 10,000 m × 10,000 m × 1000 m 3-D space
Task Existence Time Task Duration × 2
Time Discounting Factor 0.002

task inclusion phase. Furthermore, it is suggested that PI algorithm suffers from suboptimality because
the solution is prone to becoming trapped in local optima rather than reaching global optimality [36],
and its modifications can only provide suboptimal solutions [9, 39, 38, 37].

Although the EPIAC retains the same architectures of the first two phases in the PI algorithm and
a new task list resizing phase is developed, the nature of the heuristic has not been changed due to the
addition of a new phase. Hence, EPIAC cannot guarantee the optimal solution.

5. Numerical results

To verify the effectiveness of EPIAC, five series of simulations are constructed. The scenario descrip-
tions and simulation settings are introduced in Section 5.1; then, the detailed simulation results for
increasing limited capacity, increasing the UAV number and increasing the number of critical tasks
are demonstrated in Sections 5.2, 5.3, and 5.4, respectively. Next, the effects of the proposed method
under different reward schemes and network topologies are illustrated in Sections 5.5 and 5.6, respec-
tively. Finally, a simple scenario is displayed in Section 5.7 to intuitively show the specific task
assignment result. All the algorithms are conducted in MATLAB with an Intel Core i5-7400 CPU
@3.00 GHz.

5.1. Scenario and simulation setup

To test the performance of EPIAC, the scenario in [38] is used and is summarized in Table I. Two types
of heterogeneous UAVs (reconnaissance UAVs and attack UAVs) are considered, the velocity is set to
30 m/s for reconnaissance UAVs and 50 m/s for attack UAVs, and the velocities remain constant all the
time. Likewise, there are two types of tasks being introduced here, namely, reconnaissance tasks and
attack tasks, where the reconnaissance tasks can only be performed by reconnaissance UAVs and attack
tasks are only available for attack UAVs. It is assumed that the tasks and UAVs are equally split into
two types, respectively, and a predefined number of tasks are chosen to be critical arbitrarily. The tasks
are randomly generated in a 3-D space spanning 10, 000 m × 10, 000 m × 1000 m, and the UAVs are
randomly placed on the corresponding 2-D ground plane. The allowed time window for each task to be
started is set as double task duration time, where the task duration is 300 s for executing a reconnaissance
task and 350 s for an attack task. The discounting factor λ is set to 0.002. Given the random initialization
parameters of tasks and UAVs, it is possible that some tasks cannot be executed by any UAV before their
deadlines. A total of 50 simulations are conducted for each condition in the following section according
to different scenarios randomly generated in the specific region.

5.2. Simulation results of increasing limited capacity

Fig. 1 displays the results obtained with Nu=4, Nt=100, and |T1|=50 where limited capacity Lt ranges
from 8 to 18 and the upper bound, which denotes the maximum value for generating the earliest start
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Figure 1. Analysis of limited capacity effect on (a) critical task assignment percentage, (b) critical score,
(c) all tasks assignment percentage, (d) total score for CBBA (blue line, circle marker), PI algorithm
(red line, diamond marker), EPIAC (yellow line, square marker). All curves show the mean value over
50 simulations.

time τjes, increases from 4000 to 9000 s. The increasing upper bound is used to avoid tight time windows.
For example, the upper bound of 4000 s is considerably urgent when the limited capacity is 18 since the
durations for two types of tasks are 350 and 300 s, respectively, which means that each UAV can perform
up to 13 tasks theoretically with a 4000 s upper bound and that the actual limited capacity is far from
the given limited capacity of 18. In this paper, the upper bound is retained from [9, 27]. In addition, the
rewards for noncritical tasks are generated between [10-90], while the reward for critical tasks is 100.

Fig. 1(a) indicates that EPIAC always assigns more critical tasks than CBBA and PI algorithm as
the limited capacity increases. Moreover, before the limited capacity rises to 13, which is the minimum
value for all UAVs to accommodate all critical tasks, the critical task assignment percentage gradually
rises to approximately 90% which indicates that it can assign most critical tasks. Additionally, Fig. 1(b)
shows that the critical score of the whole assignment increases as the limited capacity increases because
UAVs tend to include more critical tasks in the task list. Moreover, EPIAC always achieves a higher
critical score than the other two algorithms. The task assignment percentage is displayed in Fig. 1(c)
with the result that it increases linearly with the same trend as the PI algorithm, and network capacity
is always fully utilized in both algorithms. When NuLt > Nt , PI, and EPIAC obtain the same solutions
all the time since phase 3 is not triggered in EPIAC to remove overloaded tasks. For case NuLt ≤Nt , the
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Figure 2. Iteration analysis of limited capacity effect on EPIAC. All the values are obtained from the
average value of 50 independent simulations.

simulation results show that the PI algorithm can always make full use of its network capacity, which
means that the length of task lists for all UAVs are equal to Lt . For EPIAC, a conflict-free task assignment
result that ignores the limited capacity constraint is first achieved by phase 1 and 2. Then, after phase 3
is utilized to remove all overloaded tasks, the task lists of all UAVs are equal to Lt . Hence, we conclude
that the PI algorithm always has exactly the same task assignment percentage as EPIAC as network
capacity increases. In contrast, the performance of CBBA is relatively poor in assigning all tasks, and it
cannot fully utilize every UAV’s capacity. Because EPIAC can include more critical tasks with higher
rewards, its total score is higher than the other two algorithms. Fig. 2(a) and (b) demonstrate the number
of iterations of EPIAC and phase 3 alone, respectively. It is noted that the iteration numbers of phase
3 decrease as the limited capacity increases since overloads are less frequent when limited capacity
increases. At the same time, because the occurrence of phase 3 will result in a new cycle of phases 1 and
2 to achieve convergence again, EPIAC is able to converge with fewer iterations as there are decreased
iterations of phase 3.

5.3. Simulation results of increasing the UAV number

The second series of simulations focuses on the analysis of EPIAC scalability for the number of UAVs.
Fig. 3 shows the simulation results obtained with Lt=5, Nt=100, and |T1|=50. The upper bound of time
windows for each task is set to 3000 s, with rewards of critical tasks set to 100 and [10–90] for noncritical
tasks. Fig. 3(a) and (b) show that the critical task assignment percentage and the critical score increase
with a similar trend as the UAV number improves before the threshold (at approximately 10) which is
the minimum value to guarantee the assignments of all critical tasks. After this threshold, that is, the
limited capacity is greater than 11, the critical task assignment percentage gradually rises to 100%,
which means that all critical tasks can be assigned. It is noted that the critical score still slowly increases
when all critical tasks are assigned with the limited capacity. Moreover, the critical score and the critical
task assignment percentage of CBBA and PI algorithms are both lower than EPIAC. Fig. 3(c) and (d)
indicate that the proposed method can always offer a constraint satisfaction solution to assign all tasks
and achieve a higher total score. The iteration numbers of EPIAC and phase 3 are illustrated in Fig. 4(a)
and (b), respectively. Since every UAV includes tasks individually and locally, there are more conflicts
with increased UAVs, which results in more iterations to reach convergence. As a consequence, the
iteration numbers of EPIAC increase as the number of UAVs increases. Moreover, the network capacity
grows to accommodate more tasks (including critical tasks); hence, fewer occurrences of phase 3 are
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Figure 3. Analysis of UAV number effect on (a) critical task assignment percentage, (b) critical score,
(c) all task assignment percentage, (d) total score for CBBA (blue line, circle marker), PI algorithm (red
line, diamond marker), and EPIAC (yellow line, square marker). All curves show the mean value over
50 simulations.

required to maximize the assignments of critical tasks, which leads to a decrease in the iteration numbers
of phase 3 in Fig. 4(b).

5.4. Simulation results of increasing the number of critical tasks

The third series of simulations is conducted to test the performance of EPIAC under different numbers
of critical tasks. The results displayed in Figs. 5 and 6 are obtained with Nu=6, Nt=100, and Lt=8 using
different numbers of critical tasks that range from 30 to 80 and an upper bound of time windows is set as
6000 s. The rewards for noncritical tasks are generated between [10–90] and the reward of critical tasks
is set as 100. Fig. 5(a) demonstrates that the critical task assignment percentage decreases as the number
of critical tasks increases, since the network capacity NuLt=48 is fixed. Due to the increasing number of
critical tasks among all tasks, all three algorithms prefer to include the critical tasks that can be started
as early as possible to achieve higher scores. Hence, the critical scores for the three algorithms increase
all the time, as shown in Fig. 5(b). Furthermore, Fig. 5(c) and (d) show the results of the overall task
allocation percentage and total score. EPIAC and PI can allocate the same number of tasks all the time,
while CBBA assigns relatively few tasks. However at the same time, CBBA and EPIAC can achieve
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Figure 4. Iteration analysis of UAV number effect on EPIAC. All the values are obtained from the
average value of 50 independent simulations.
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Figure 5. Analysis of critical task number effect on (a) critical task assignment percentage, (b) critical
score, (c) all task assignment percentage, (d) total score for CBBA (blue line, circle marker), PI algo-
rithm (red line, diamond marker), and EPIAC (yellow line, square marker). All curves show the mean
value over 50 simulations.
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Figure 6. Iteration analysis of critical task number effect on EPIAC. All the values are obtained from
the average value of 50 independent simulations.

approximately the same total score, and PI has a poor performance, which means that CBBA can obtain
a higher score for each task in the task list. It can be concluded that the EPIAC has an outstanding
performance with different numbers of critical tasks compared to the other two algorithms. Fig. 6(a)
and (b) display the iteration numbers of EPIAC and phase 3, respectively. As the number of critical
tasks increases and the network capacity is fixed, more phase three scenarios are triggered to allocate
more critical tasks. Therefore, the iteration numbers of the algorithm increase as the iteration numbers
of phase 3 increase.

5.5. Simulation results of different rewards

To further verify the significant performance of EPIAC under different reward schemes, two additional
different reward schemes for all tasks are utilized. For the results illustrated in Fig. 7(a) and (b), the
reward of the first reward scheme for all tasks is randomly generated between [10-100], while all rewards
are set to 100 in the second reward scheme displayed in Fig. 7(c) and (d). Four settings are considered
including Nu = 4 with Lt = 8 and 16, Lt = 6 with Nu = 6 and 12, respectively, for settings 1 to 4. At
the same time, the condition Nt = 100, |T1| = 50 always holds. Obviously, as shown in Fig. 7(a) and
(c), the critical score of the EPIAC is much higher than that of the CBBA and PI algorithms for both
reward schemes. At the same time, CBBA can obtain a higher critical score than PI when the first
reward scheme is adopted, which means that CBBA is preferred to allocate more valuable tasks than PI.
In addition, the PI and CBBA have a similar performance when all tasks are assigned the same static
reward. Furthermore, EPIAC can also assign more critical tasks compared with PI and CBBA, as shown
in Fig. 7(b) and (d). When all three algorithms adopt the first reward scheme, a slight improvement in
the allocation percentage of critical tasks can be ignored. We can conclude that EPIAC can ignore the
effect of different rewards on critical tasks and always allocate more critical tasks than the other two
algorithms.

5.6. Simulation results of different network topologies

Since EPIAC is a distributed task allocation algorithm and runs on each UAV concurrently, it is neces-
sary to test the effect of different network topologies on the communication burden. Fig. 8 shows four
common topologies. In a mesh topology as in Fig. 8(a), every UAV in the network is connected to all
other UAVs, while every UAV only has connections to its two neighbors in a row topology shown in
Fig. 8(b). Moreover, the circle topology shown in Fig. 8(c) connects the tail of the row topology. The
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Figure 7. Analysis of different reward scheme effects on EPIAC for critical score and critical task
assignment percentage. In (a) and (b), the reward for all tasks are randomly generated between [10-100],
while all rewards are set to 100 in (c) and (d).

star topology depicted in Fig. 8(d) is extended by row communication with a center UAV that is able to
correspond with several other UAVs.

Table II displays the iteration numbers and run time for all four network topologies considering dif-
ferent settings. This paper considers three settings to test the effect of the communication network on the
three algorithms with Lt=6, Nt=100, |T1|=50, and the upper bound is set to 3000 s. There are three condi-
tions where the number of UAVs Nu=6, 12, 18 represents NuLt < |T1|, |T1|< NuLt < Nt , and Nt < NuLt ,
respectively. The maximum differences of the iteration numbers and run time for four different commu-
nication topologies are also shown in Table II. All results are obtained from the average value of 50
independent simulations.

In the mesh network topology, all UAVs can exchange information directly, so the least iteration
numbers are required to reach consensus, as shown in Table II, and most iterations are requested in the
star network topology in most cases compared with the other three topologies. The same conclusion
holds for the run time of four different network topologies. Furthermore, the results indicate that the
EPIAC consumes more iterations and run time to converge to a conflict-free solution than the other
two algorithms due to processing the overloaded tasks. Since the allocation of critical tasks is the main
focus when considering the constraint on the limited capacity of UAVs, the run time is not the most
important factor. Therefore, the run time of EPIAC is acceptable. In addition, the results demonstrate
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Table II. Analysis of four network topologies on three algorithms.

Network
Topology

CBBA PI EPIAC
n = 6 n = 12 n = 18 n = 6 n = 12 n = 18 n = 6 n = 12 n = 18

Iteration
numbers

Mesh 11.94 22.38 31.64 14.70 24.94 52.92 136.00 189.97 63.93
Row 12.86 28.04 41.36 15.20 29.80 73.14 137.60 242.80 69.80
Circular 12.86 28.04 41.36 15.20 29.80 73.14 137.40 251.23 69.80
Star 14.54 30.86 43.34 16.56 30.16 70.24 144.17 252.30 75.17

max %diff. 21.77% 38.25% 37.03% 12.38% 20.93% 38.21% 5.88% 32.82% 17.58%

Run
time

Mesh 0.497 1.618 3.715 0.267 0.884 3.334 1.053 2.703 4.262
Row 0.484 1.677 3.553 0.274 1.008 3.869 1.386 2.715 4.433
Circular 0.489 1.657 3.565 0.285 1.009 3.965 1.202 2.803 4.558
Star 0.503 1.699 3.888 0.282 1.004 3.454 1.177 3.082 4.999

max %diff. 3.925% 4.767% 9.593% 6.315% 11.95% 15.91% 24.02% 12.29% 14.74%

(a) (b)

(c) (d)

Figure 8. Four different network topologies among UAVs tested in this paper. (a) Mesh Topology. (b)
Row topology. (c) Circular topology. (d) Star topology.

that the maximum difference percents of iteration numbers for the three algorithms are 38.25%, 38.21%,
and 32.82%. The maximum difference percents of run times are 9.593%, 15.91%, and 24.02% for the
three algorithms. Therefore, it can be concluded that the effect of the network topology is tolerable.

5.7. A specific task assignment scenario

To intuitively show the results of task assignment for a multi-UAV system, one scenario with all
critical tasks assigned is shown in Fig. 9. This scenario involves Nu=6 heterogeneous UAVs (three
reconnaissance UAVs and three attack UAVs) and each UAV can perform up to Lt=4 tasks. There are
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Figure 9. Each UAV’s execution time schedule from EPIAC, where the critical tasks are expressed in
bold red font. The actual execution time period for each task is plotted as the horizontal line, and the
time window for starting each task is denoted by the vertical lines.
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Figure 10. UAV movements through time. One color represents the path of one UAV. The locations of
UAVs are denoted as circles and the tasks as crosses. The triangle indicates the actual start time and
finish time of an assigned task.

Nt=30 tasks in this scenario of which |T1|=10 are critical tasks. The upper bound to generate the earliest
start time of each task is 3000 s. For simplicity, the allowed time window for each task to be started is
set as a ST duration.

The overall task assignment results are shown in Fig. 9, where 10 critical tasks are all allocated. It is
noted that the actual start time of most tasks is just slightly after their earliest start time to be executed,
especially for critical tasks. It means that EPIAC can ensure that each critical task is implemented as
early as possible and thus obtain a higher task reward. Fig. 10 shows the UAV movements through time
where the locations of UAVs are denoted as circles and crosses represent tasks. In Fig. 10(a), the Z-axis
represents time, and the Z-axis coordinate of each allocated task indicates its earliest start time. Each
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of two triangles represents the actual start time and completion time of each assigned task. It can be
seen that all tasks are started after their earliest start time. The two-dimensional paths followed by UAVs
projected on the XY-axis are shown in Fig. 10(b).

6. Conclusion

The task allocation of multi-UAV systems is regarded as a very challenging problem, and many research
efforts have been made. However, rarely has research considered the task allocation problem under the
scenario with constraints on the limited capacity of each UAV and the maximization of the assignments
of critical tasks. To this end, this paper proposed an EPIAC, which is a distributed heuristic algorithm,
to maximize the assignments of critical tasks with the limited capacity of each UAV and the tight time
window for each task. First, the task inclusion phase and conflict resolution phase are used to obtain a
no-conflict solution without considering the limited capacity of each UAV. The same architectures of
these first two phases are retained from the PI algorithm, while the criteria to insert and remove tasks
are modified to maximize the total score of the final solution. Second, the third phase, that is, the task
list resizing phase, is proposed to address the constraints on limited capacity for each UAV. In detail,
there are two mechanisms composed of the task selection to prune mechanism that is designed to select
overloaded tasks to remove, and the priority task inclusion procedure that is used to allocate the critical
tasks removed in the task selection to prune mechanism.

Simulations results show that EPIAC offers a significant performance in different conditions (increas-
ing UAV number, increasing limited capacity, and increasing critical task numbers) when not all tasks
can be assigned. Although the EPIAC requires more iterations to converge to a feasible and conflict-
free solution, it can assign more critical tasks with limited capacity than CBBA and PI algorithms. In
addition, it is able to achieve a higher critical score and a total score with significant performance in
assigning time-critical tasks.

Future work will focus on further improving the critical task assignment percentage and reducing the
iteration numbers to converge to a feasible solution.
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