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An integro-differential model for evolutionary dynamics with mutations is investigated by

improving the understanding of its behaviour using numerical simulations. The proposed

numerical approach can handle also density dependent fitness, and gives new insights about

the role of mutation in the preservation of cooperation.
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1 Introduction

Evolutionary dynamics describes the dynamics of populations as the result of the interplay

between ecological interactions and phenotypic variation. The ecological mechanism of

replication/selection seems to be well described by an ordinary differential equation, where

the rate of growth of any specie (i.e. the balance between births and deaths) depends on

the composition of the entire population. Such rate, also known as the relative fitness,

is actually the difference between the absolute fitness of the species of interest and the

mean fitness of the population. Several shapes have been proposed for the absolute fitness.

When one is modelling phenotypes, the choice of a constant fitness seems fair, but, starting

with the seminal work by Maynard Smith and Price [7], an important amount of research

deals with ideas arising from mathematical game theory, see [6] and references therein. In

this framework, the prisoner’s dilemma has attracted a lot of attention: we mention [11]

for a detailed account of the state of the art about this topic. The first attempt of giving

account of mutations, dating back to the ’70, is the so called “quasispecies equation”,

where the growth rate of any specie is modified by considering the dispersion due to the

birth of mutated offspring. See, for instance, the reference book [5]. The same underlying

idea has been included in the evolutionary games setting with the “replicator-mutator”

equation in [12]. An interesting and exhaustive account of evolutionary dynamics can be

found in the book [10]. More recently, macroscopic PDE models have been proposed

and studied (see, for instance, [4]). A different approach focus on the stochastic dynamics
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of each individual in the population, as for instance Dieckmann and Law [3], who

analysed the related moment equations. Finally, the emerging field of adaptive dynamics

has emphasised that selection and mutation act in two different time-scales, and therefore

proposed models based on the combination of jump processes and ordinary differential

equations. See, for instance, the trait substitution sequences [8]. A unifying treatment

is provided in [2], where various macroscopic models are obtained as the limit of one

microscopic model by performing different types of rescaling.

In [1], it has been introduced a macroscopic stochastic model for the selection-mutation

process, that goes into the direction of adaptive dynamics. Selection is described by a

deterministic differential equation, where the relative fitness rules the reproductive rate.

Mutation, instead, is described by a marked point process. Unlike trait substitution

sequence, no assumption is made about the selection dynamics. Specifically, it is not asked

that there is invasion or extinction of the mutant trait between subsequent mutations.

The related stochastic differential equation has been studied and a Kolmogorov equation

has been deduced and investigated analytically. Such Kolmogorov equation is of integro-

differential type: the non-local term is the deterministic counterpart of the marked point

process modelling mutation and therefore shows up even if the total number of strategies

is finite. We focus here on the case of only two different strategies, that can be described

by a scalar equation, namely⎧⎪⎪⎨
⎪⎪⎩

∂tu = − s x(1−x)∂xu − λ1γ1f1xJ(u,−γ1x)

+λ0γ0f0(1−x) J(u, γ0(1 − x)) , x ∈ [0, 1], t > 0,

u(x, 0) = x, x ∈ [0, 1], t = 0.

(1.1)

Here, x is the (initial) frequency of the type labelled 1, and u(x, t) is the expected frequency

of the same type after time t. The functions f0(x) and f1(x) stand for the fitness of types

0 and 1, respectively, and

s(x) = f0(x) − f1(x),

is the selection spread among species 0 and 1. If s > 0 the specie 0 has a selection

advantage, and viceversa. The parameters γi and λi are related to the mutation process:

γ0 ∈ [0, 1] stands for the proportion of the offspring of individuals of type 0 that show

a type 1 by effect of mutation, and λ0 > 0 is related to the time intensity of the point

process driving mutations from type 0 to type 1, which is given by the product λ0f0(x); γ1

and λ1 play the same role with respect to mutations from type 1 to type 0. The quantity

J(u, z) is the finite increment related to the point process, precisely

J(u, z)(x, t) =

{
[u(x + z, t) − u(x, t)] /z if z� 0,

0 if z = 0.
(1.2)

In [1], the analytical theory of the solutions to problem (1.1) was started. Global existence

and regularity results were proved together with some results about the qualitative

behaviour of solutions for long times in the quasispecies case. Even if the main picture

was sufficiently clear, which is that there are situations where mutations are able to
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contrast dominant strategies, it is difficult to say what happens in the general case of

density-dependent fitness, for instance in the prisoner’s dilemma case. This is the main

motivation to study the problem by a numerical simulation side. From the numerical point

of view, there are two main difficulties in the approximation of problem (1.1) that require

some effort. We shall see in fact that, as time increases, a standard upwind approximation

mainly fails due to the blowing up of the first derivative ∂xu(1, t) and also due to the

presence of the non-local term. The numerical investigation then require extremely fine

meshes over a small portion of the domain to resolve the solution, especially for large

time simulations. To deal with these difficulty we shall propose to adopt an adaptive

numerical grid which thickens with the increasing of time near the right boundary x = 1,

and an ad-hoc approximation of the nonlocal term near at x = 1.

The paper is organised as follows: In Section 2, we settle the model and briefly recall

the main analytical results obtained in [1]. We also give some extensions that apply to

the density-dependent framework. Section 3 is devoted to the presentation of a suitable

numerical scheme and to some simulations. Section 4 contains some conclusions.

2 Analytical framework

Our main concern is exploring the relation among point type rare mutations, described

by equation (1.1), and continuous rare mutations, described by the canonical replicator

mutator equation, see [12],

ẋ = − s x(1 − x) + m0f0(1 − x) − m1f1x. (2.1)

Here s is the selection spread as before, m0 stands for the mutation probability from

species 0 to species 1, and viceversa for m1. To this aim, it is convenient to introduce the

flux associated to (2.1), i.e. the solution to the homogeneous transport equation{
∂tv = (− s x(1−x) − m1f1x + m0f0(1−x)) ∂xv, x ∈ [0, 1], t > 0,

v(x, 0) = x, x ∈ [0, 1], t = 0.
(2.2)

When both m0, m1 = 0, (2.2) gives back{
∂tw = − s x(1−x)∂xw, x ∈ [0, 1], t > 0,

w(x, 0) = x, x ∈ [0, 1], t = 0,
(2.3)

which is the flux of the simple replicator equation:

ẋ = − s x(1 − x). (2.4)

The analogy between equations (1.1) and (2.2) suggests to take

m0 = λ0γ0, m1 = λ1γ1.

This relation put in evidence that there are many point-mutations models (1.1) related

to the same selection-mutation equation (2.2). Indeed, there is a two-dimensional set of

parameters (γ0, λ0, γ1, λ1) that give back the same m0 and m1. When mi = 0, we may assume
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without loss of generality that γi = 0. Otherwise, we choose to use γi as a free parameter,

and select λi = mi/γi ∈ [mi,∞). As γi goes to 0, the time intensity λi increases, and the

paths of the point process driving mutations becomes continuous. Similarly, the discrete

increment J approaches the actual derivative ∂x. On the contrary, at γi = 1 the time

intensity gets its minimum λi = mi, and mutations are concentrated in rare events that

happen simultaneously to all the offspring.

In the remainder of this paper we take m0 and m1 as fixed, and write v(x, t) for the

solution of (2.2), and uγ0 ,γ1
(x, t) for the solution of (1.1) with λi = mi/γi, as i = 0, 1, i.e.

⎧⎪⎪⎨
⎪⎪⎩

∂tuγ0 ,γ1
=− s x(1−x)∂xuγ0 ,γ1

− m1f1xJ
(
uγ0 ,γ1

,−γ1x
)

+m0f0(1−x) J
(
uγ0 ,γ1

, γ0(1−x)
)
, x ∈ [0, 1], t > 0,

uγ0 ,γ1
(x, 0) =x, x ∈ [0, 1], t = 0.

(1.1)

2.1 Constant fitness: a modified quasispecies equation

A detailed analysis has been carried out in [1] for the point-mutation model in the

quasispecies case, where the fitness functions (and then also the selection spread) are

constant. To fix the ideas, we take

s > 0,

namely we label 1 the species with lower fitness. In this setting, it is not hard to show

that the functions uγ0 ,γ1
are convex w.r.t. x [1, Lemma 4.2]. This fact has two relevant

consequences. First, point mutations increase the survival opportunities of the low-fitness

species, for any choice of γ0, γ1. Next, the family of functions uγ0 ,γ1
is ordered both w.r.t. γ0

and γ1.

Proposition 2.1 For any (γ0, γ1), we have that uγ0 ,γ1
(x, t) � v(x, t) for all x, t.

For every (x, t), the function (γ0, γ1) �→ uγ0 ,γ1
(x, t) is continuous and nondecreasing w.r.t. to

both γ0 and γ1.

The first statement is given in [1, Propositions 4.2]. The second one is a straightforward

extension of [1, Proposition 4.6]. A relevant issue is the asymptotic behaviour for large

time. It is well known that the replicator-mutator equation (2.2) has a constant asymptotic

equilibrium at x̄ ∈ [0, 1] singled out by the relation

s x̄(1 − x̄) − m0f0(1 − x̄) + m1f1x̄ = 0.

We thus ask whether also the family of point mutation equations have a constant

equilibrium and, in positive case, if this equilibrium is the same of the standard replicator-

mutator, or rather depends by the value of the parameters γi. To give precise statements,

let us split the range of the parameters m0, m1 into four sub-ranges:

E : = {0} × (0, 1], the extinction range. Here mutation is fair, because the mutated

descendants have higher fitness than their progenitors. So, mutation helps selection in
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fixing the higher type, and x̄ = 0 is a globally stable equilibrium for the replicator-

mutator equation.

F : = [s /f0, 1] × {0}, the fixation range. Here mutation is unfair and happens with

high probability, so that it is able to overwhelm selection and the high-fitness species

extinguishes. According to the replicator-mutator model, x̄ = 1 is a globally stable

equilibrium.

C : = (0, s /f0) × {0} ∪ (0, 1]2, the coexistence range, where both species survive and the

equilibrium x̄ ∈ (0, 1). We further distinguish two different sub-ranges.

C0 : = (0, s /f0) × {0}. Here mutation is always unfair, but the quantity of mutated

offspring is not sufficient to get rid of selection. An unstable equilibrium shows up at

x = 1, so that the basin of attraction of x̄ = m0f0/ s is the set [0, 1) and v(1, t) ≡ 1.

C1 : = (0, 1]2. Here mutation can go backwards and forwards, and x̄ ∈ (0, 1) is a globally

stable equilibrium.

Let us explicitly remark that the replicator-mutator equilibrium x̄ is globally stable for

all values of the parameters mi outside C0. From a qualitative point of view, the whole

family of equations (1.1) behave similarly. We summarise in the following proposition

some results obtained in [1].

Proposition 2.2 (Asymptotic stability) (i) If (m0, m1) ∈ E ∪ F ∪ C1, then for any value

of the parameters γ0, γ1 there exists ū(γ0, γ1) ∈ [x̄, 1] a globally stable equilibrium

for equation (1.1). Actually uγ0 ,γ1
(x, t) converges to ū(γ0, γ1) as t → ∞, uniformly

w.r.t. x ∈ [0, 1]. Moreover the speed of convergence to equilibrium is exponential,

uniformly w.r.t. γo, γ1.

(ii) Suppose that (m0, m1) ∈ C0 and γ0 ∈ (0, 1) is different from the unique solution to the

equation

s γ + m0f0 log (1 − γ) = 0. (2.5)

Then there exists ū(γ0, 0) ∈ [x̄, 1) a locally stable equilibrium for equation (1.1). Pre-

cisely u(1, t) = 1 for every t, while uγ0 ,0(x, t) converges to ū(γ0, 0) as t → ∞, uniformly

w.r.t. x in any set of [0, 1 − δ] with δ ∈ (0, 1).

Moreover the convergence rate to equilibrium is controlled by the estimate

|∂tu(x, t)| �
c(δ)

(1 − γ0)α
e−βt, (2.6)

where α and β are respectively the maximum point and the maximum value of the

concave function

β(α) = m0f0
1 − (1 − γ0)

1−α

γ0
+ s(α − 1), 0 � α � 2. (2.7)

Remark 2.1 If (m0, m1) ∈ C0 and γ∗ satisfies (2.5), then we are only able to prove that

uγ0 ,0(x, t) converges to a continuous, nondecreasing and convex function ū(x), as t → ∞,

uniformly w.r.t. x in any closed subset of [0, 1). We conjecture that, even though the arguments
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of the proof of item (ii) do not apply, the same conclusion holds also in this case. In the

following we report numerical simulations that go into this direction, see Section 3.

Remark 2.2 The estimate of ∂tu (2.6) is obtained by plugging into equation (1.1) the

estimate of ∂xu obtained in [1, proof of Proposition 4.7]. The constant c(δ) can be

accurately computed. In particular, when interested in small values of x (precisely for

(s −m0f0)/ s < δ < 1)), we have c(δ) = 2m0f0 max{1, δ1−α}. We shall use this constant

in the following chapter, to compare the theoretical asymptotic rate (2.6) with the numerical

one.

We next address to a more quantitative aspect, and ask if the equilibria of the point

type mutations, ū(γ0, γ1), actually depend on γ0, γ1 and differ from the equilibrium of

standard mutations, x̄. We examine separately the four sub-regions.

In the extinction region E, the function u0,γ1
stays between the pure selection replicator

model (2.3), and the selection-mutation model (2.2) (see [1, Proposition 4.4]). Therefore

ū(0, γ1) = 0 = x̄.

In the fixation region F , the high-fitness species extinguishes according to both

replicator-mutator and point-mutation models, i.e. ū(γ0, 0) = 1 = x̄ for any γ0 (see [1,

Proposition 4.5]).

A new scenario arises in C , where the standard mutator-replicator model provides

that the two species coexist. The same holds for the point-mutation model, although the

composition of the mixed population at equilibrium is different. The concentration in time

of mutations, exhibited by the point-process model, favours the low fitness species. When

(γ0, γ1) approaches (0, 0) (continuously distributed mutations), the frequency of the lower

fitness type at equilibrium gets its minimum, which is the exact value x̄ of the standard

quasispecies equation. On the other side, when (γ0, γ1) approaches (1, 1) (very concentrated

mutations), it reach its maximum, given by m0f0/(m0f0 +m1f1) > x̄. It is remarkable that

the asymptotic equilibrium is ū1,0 = 1 for (m0, m1) ∈ C0 and γ0 = 1: in this limit case,

the time concentration of mutations is sufficient to overwhelm selection and cause the

extinction of the type with higher fitness. Precisely, we have that

Proposition 2.3 Take (m0, m1) ∈ C0, i.e. 0 < m0 < s /f0 and m1 = 0. For every (x, t), the

function (0, 1] 
 γ0 �→ uγ0 ,0(x, t) is nondecreasing and continuous, with

lim
γ0→0

uγ0 ,0(x, t) = v(x, t) and lim
γ0→1

uγ0 ,0(x, t) = u1,0(x, t).

Concerning the asymptotic equilibrium, we have

lim
γ0→0

ū(γ0, 0) = x̄ =
m0f0

s

and lim
γ0→1

ū(γ0, 0) = 1.

Moreover

ū(γ0, 0) � x̄/(1 − γ0), (2.8)

for all γ0 ∈ (0, 1 − x̄).
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The first two sentences have been proved, respectively, in [1, Propositions 4.6 and 4.8].

The estimate (2.8) follows by a slight variation of the proof of [1, Proposition 4.8]. These

results can be easily extended to the internal region C1, where mutations can happen from

0 to 1 and back from 1 to 0. This latter case, apparently more general than the previous

one, is actually easier to handle because we have a global equilibrium and x-continuity is

preserved when t → +∞.

Proposition 2.4 Take (m0, m1) ∈ C1. For every (x, t), the function (0, 1]2 
 (γ0, γ1) �→
uγ0 ,γ1

(x, t) is nondecreasing and continuous, with respect to γ0 and γ1, separately. Moreover

lim
(γ0 ,γ1)→(0,0)

uγ0 ,γ1
(x, t) = v(x, t), lim

(γ0 ,γ1)→(1,1)
uγ0 ,γ1

(x, t) = u1,1(x, t).

Concerning the asymptotic equilibrium, we have

lim
(γ0 ,γ1)→(0,0)

ūγ0 ,γ1
= x̄, lim

(γ0 ,γ1)→(1,1)
ūγ0 ,γ1

=
m0f0

m0f0 + m1f1
.

These analytical arguments do not allow to compute the asymptotic equilibrium ū(γ0, γ1),

nor to see if it depends continuously by the parameters γ0, γ1. It could also happen, at

the contrary, that there is a bifurcation value which separates a set of models that

converge to the quasispecies equilibrium x̄ from another one which brings to extinction

of the high-fitness specie. The numerical simulations, produced in the following chapter,

suggest that the asymptotic equilibrium ū(γ0, γ1) spans the segment line between x̄ and

m0f0/(m0f0 + m1f1).

2.2 Density dependent fitness

In evolutionary theory, the fitness functions f0 and f1 are assumed to depend on the pop-

ulation density in a linear way. A “payoff matrix” with nonnegative entries is introduced

A =

(
a0 b0

a1 b1

)
,

and the fitness functions are defined by means of

fi(x) = ai(1 − x) + bix, as i = 0, 1.

This makes the analytical study of equation (1.1) much more complicate: well-posedness

established in [1] still applies, but the qualitative results concerning quasispecies do not

extend in general. In particular, the selection spread s(x) = f0(x) − f1(x) depends itself by

x, therefore it possibly changes sign and there is not a clear separation between fair and

unfair mutations. The following comparison result states that point-type mutations can

even punish the low-fitness type, if compared with the standard replicator-mutator. This

can happen when the global amount of mutations is not enough to balance the increasing

of the fitness of the other type.

https://doi.org/10.1017/S0956792515000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000352


94 A. L. Amadori et al.

Proposition 2.5 If

m0(b0 − a0) + m1(b1 − a1) � min{2(a0 − a1) − (b0 − b1),−(a0 − a1) + 2(b0 − b1)},

then uγ0 ,γ1
� v pointwise, for any value of γ0 and γ1. On the contrary, if

m0(b0 − a0) + m1(b1 − a1) � max{2(a0 − a1) − (b0 − b1),−(a0 − a1) + 2(b0 − b1)},

then uγ0 ,γ1
� v pointwise, for any value of γ0 and γ1.

Proof We compute the equation in (1.1) along v, the solution to (2.2), and get

∂tv + s x(1 − x)∂xv − f0J0v − f1J1v

= −m0f0

γ0
T1v(x, γ0(1 − x), t) − m1f1

γ1
T1v(x,−γ1x, t), (2.9)

where T1 stands for the first order Taylor expansion w.r.t. x:

T1v(x, z, t) = v(x + z, t) − v(x, t) − z∂xv(x, t) =
1

2
z2

∫ 1

0

∂2
xxv(x + τz, t) dτ.

Besides, differentiating equation (2.2) w.r.t. x and applying comparison principle assures

that ∂xv � 0. Next, differentiating again gives that w = ∂2
xxv solves

{
∂tw + a(x)∂xw + 2a′(x)w = −a′′∂xv, 0 � x � 1, t > 0

w(x, 0) = 0, 0 � x � 1, t = 0,

with a(x) = s x(1 −x) −m0f0(1 −x)+m1f1x. Hence if a is concave, then 0 is a subsolution

and therefore ∂2
xxv � 0. Coming back to (2.9), we see that v is a subsolution to (1.1)

and therefore v � uγ0 ,γ1
. The opposite happens if a is convex. On the other hand, by

construction a′′ is a linear function of x, so the thesis readily follows by computations.

�

The particular case of quasispecies can be recovered by taking constant fitness, i.e.

b0 − a0 = b1 − a1 = 0. Hence the first part of Proposition 2.5 always holds, provided that

the type with higher fitness has been labelled 0.

Remark 2.3 Another interesting particular case stands in taking a constant selection spread,

i.e. a0 − a1 = b0 − b1 = s. Here Proposition 2.5 gives a complete picture and states that it

m0 + m1 < s /(b0 − a0), then uγ0 ,γ1
> v (respectively, >), while if m0 + m1 = s /(b0 − a0),

then uγ0 ,γ1
= v for any values of the γi’s.

Up to now, Proposition 2.5 is the only theoretical tool we have in hands to analyse

density dependent models. This is the reason we decided perform a series of numerical

investigations. In subsection 3.4 we shall focus on the prisoner’s dilemma.
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3 Numerical assessment

In this section, we shall discuss the numerical approximation and some numerical tests

for the models that have been described above. We shall start from the case of the simple

replicator equation (2.3). From this first example it is indeed possible to detect the major

difficulties on the approximation of the models we are looking at.

Let start by defining an uniform grid on the set [0, 1] × [0, T ]. For Δx, Δt ∈ �+, we

define the grid as the set of points G = {(xj, tn) = (jΔx, nΔt), j = 0, . . . , Nx, n = 0, . . . , Nt}
with NxΔx = 1 and NtΔt = T . A standard approximation of (2.3) on G, reads as

ũ(xj, t
n+1) =

(
1 − a(xj)Δt

Δx

)
ũ(xj, t

n) +
a(xj)Δt

Δx
ũ(xj−1, t

n), (3.1)

with initial and boundary conditions ũ(xj, 0) = xj and ũ(0, tn) = 0, respectively.

By standard computation, it is possible to point out that the numerical error estimate

substantially depends on the behaviour of the space derivatives of the exact solution u.

For the specific problem (2.3), the exact solution

u(x, t) =
xe− s(t−t0)

1 − x(1 − e− s(t−t0))
, (3.2)

can be computed by the method of characteristics. It is then easy to check that, for every

0 � x < 1 be fixed,

lim
t→+∞

u(x, t) = 0 and lim
t→+∞

∂xu(x, t) = 0,

while for all t > 0 u(1, t) = 1. Moreover, as time grows, ∂xu(1, t) grows exponentially in

time giving a loss of accuracy on the approximation (3.1).

We note that, for some set of problem parameters, we will get the same kind of

behaviour solving the more general problem (1.1). Moreover a second difficulty arises due

to the non-local nature itself. Looking for instance at the quantity J(u, γ0(1 − x)) defined

in (1.2), the point is to compute the non-local value u(xj + γ0(1 − xj), t
n) by means of

the known nodes values u(xk, t
n), k = 0, . . . , Nx. The simplest idea is of course to use a

linear interpolation. However, by the same arguments as before, we must be careful when

the non-local point falls in the last cell close to x = 1. Indeed, as it has been shown

in the previous section 2.1, for this problem too, the first derivative ∂xu(1, t) blows up

and the approximation by means of linear interpolation loses of accuracy close to the

boundary node x = 1, giving rise to incorrect solutions also in the interior of the domain.

It then turns out to be more accurate to compute the value u(xj + γ0(1 − xj), t
n) by an

extrapolation between the two last internal grid points (see Section 3.2, Figure 4). At the

same time, the extrapolation needs a fine grid to ensure accuracy. We will handle these

difficulties by adopting a variable numerical grid which thickens with the increasing of

time near the right boundary x = 1, and giving an ad-hoc approximation of the nonlocal

term J(u, γ0(1 − x)).
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3.1 Replicator equation

Here we look at the numerical solution of the replicator equation (2.3). As we have

already mentioned, to compute the numerical solution we shall adopt a variable grid

which thickens with the increasing of time near the right boundary x = 1.

Let us first fix the total number of nodes Nx and assume to have on the plane (x, t) at

each time tn, n = 0, . . . , Nt, the generic set of points Gn = {xnj , j = 0, . . . , Nx}, where the

space step Δxnj = xnj − xnj−1 is not constant, xn0 = 0, xnNx
= 1, for every n, and the time step

Δtn = tn+1 − tn varies according to the stability condition (see below). We then define our

numerical approximation as

ũ
(
xn+1
j , tn+1

)
=

(
1 − αnj

)
ũ
(
xnj , t

n
)

+ αnj ũ
(
xnj−1, t

n
)
. (3.3)

To define the αnj values we study the consistency of the scheme. By applying the Taylor

expansion with respect to the point (xnj , t
n) we get, for the exact solution u,

u
(
xn+1
j , tn+1

)
= u

(
xnj , t

n
)

+ Δtn∂tu
(
xnj , t

n
)

+
(
xn+1
j − xnj

)
∂xu

(
xnj , t

n
)

+O
(
(Δtn)2

)
+ O

((
xn+1
j − xnj

)2)
,

and (
1 − αnj

)
u
(
xnj , t

n
)

+ αnj u
(
xnj−1, t

n
)

=
(
1 − αnj

)
u
(
xnj , t

n
)

+ αnj
(
u
(
xnj , t

n
)

−
(
xnj − xnj−1

)
∂xu

(
xnj , t

n
)

+ O
((
Δxnj

)2)))
.

By matching the two last relations and by applying equation (2.3), i.e. ∂tu = −a(x)∂xu, we

get

(
− a

(
xnj

)
Δtn +

(
xn+1
j − xnj

)
+ αnj

(
xnj − xnj−1

))
∂xu(x

n
j , t

n) = O((Δtn)2) + O((Δxnj )
2)).

For

αnj =
a(xnj )Δt

n − (xn+1
j − xnj )

Δxnj
, (3.4)

the scheme (3.3) is then consistent of order one with problem (2.3). Notice that for

xn+1
j = xnj , scheme (3.3) reduces to the standard upwind scheme (3.1).

We shall now describe how to construct the variable space grid at each time step. We

start by fixing the total number of nodes Nx in [0, 1]. The main idea is to increase the

number of nodes in the region where the space gradient is higher. To this aim, we shall

use the fact that our solutions are monotone increasing and convex. Since ∂xu(x, 0) = 1

∀ x ∈ [0, 1], at each time tn we select the point X(tn) such that

X(tn) ∈ (0, 1] : ∀ xnj < X(tn) it holds ũ(xnj , t
n) − ũ(xnj−1, t

n) < Δxnj . (3.5)

Then, at each time step tn, the interval [0, 1] is divided into two parts, [0, X(tn)) and

[X(tn), 1]. Now, fix Nl and Nr , with Nr > Nl and Nr + Nl = Nx. As time grows, the

solution on the left side, defined by the points for which the numerical space derivative

is less than one, does not require a fine approximation and will be computed on a grid

with a few number of nodes Nl . On the other hand, the solution on the right part needs
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Figure 1. Test for Section 3.1. Example of Adaptive grid. The (+)-line is the solution computed at

time T = 2, the (x)-line is the solution computed at time T = 3 and the (∗)-line is the solution

computed at time T = 4. The values X(2), X(3), X(4) are the points defined in (3.5) that split the

interval [0, 1] into two parts, the left one where ∂xu(·, ·) � 1 and the right one where ∂xu(·, ·) > 1

respectively. Notice that X(4) > X(3) > X(2) and that, for construction, in all cases grid nodes are

more dense after X(·). Here, X(T = 2) ≈ 0.741, X(T = 3) ≈ 0.835, X(T = 4) ≈ 0.895.

a more accurate approximation and will be computed with a higher number of nodes Nr

(see for instance Figure 1). Then, we set

Δxnbig = X(tn)/Nl, and Δxnsmall = (1 − X(tn))/Nr. (3.6)

This procedure together with the expression (3.4), defines our numerical scheme. Hence-

forth, we shall refer to it as Adaptive grid scheme opposed to the Uniform grid scheme

defined by (3.1).

Let us observe that to make our scheme monotone, i.e. if ũ(x0
j , 0) � ṽ(x0

j , 0), then, for

every n > 0, ũ(xnj , t
n) � ṽ(xnj , t

n), we need the condition 0 � αnj � 1, which holds if

(xn+1
j − xnj ) � a(xnj )Δt

n � Δxnj + (xn+1
j − xnj ),

for all xnj , x
n+1
j ∈ (0, 1).

To guarantee this condition, for a given grid of space nodes, it is enough to fix the time

step according to the rule

Δtn = min
xnj ,x

n+1
j ∈(0,1)

Δxnj +
(
xn+1
j − xnj

)
a
(
xnj

) . (3.7)

Using this monotonicity, it is easy to obtain the stability of our scheme, observing that

v = 1 is a constant solution, and then convergence could be in principle deduced using

the Lax Equivalence Theorem, see [9].

In the numerical tests, we shall compare the results obtained by applying the Adaptive
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Figure 2. Test for Section 3.1. Comparison among the two solutions obtained by applying Adaptive

grid scheme (3.3)–(3.4) and Uniform grid scheme (3.1) with Δxbig = 0.07 at final time T = 5. Figure

(a): The (x)-line is the solution of Adaptive grid scheme, the (∗)-line is the solution of Uniform grid

scheme. The two solutions are compared to exact solution (3.2) in smooth line (−). Figure (b): graph

of the two errors (3.9) in log-scale. Figure (c): zoom in on the solutions in the subinterval [0, 0.8],

Figure (d): zoom in on the solutions in the subinterval [0.8, 1]. From the error graph (b), we observe

that for low values of x, the quality of the numerical solution given by the Adaptive grid scheme is

better than the one given by the Uniform grid scheme and then it is highly accurate in capturing the

asymptotic constant value u(x,+∞) ≡ 0 for x < 1. Such behaviour may also be seen in (c), where

we focus on subinterval [0, 0.8].

grid scheme and the Uniform grid scheme. For the latter, we shall fix the space step Δx

and consequently the time step

Δt = min
xj∈(0,1)

Δx

a(xj)
. (3.8)

In Figure 2, the numerical error is given as a function of time and space, and it has

been computed by the formula

e(xnj , tn) = |ũ(xnj , tn) − u(xnj , t
n)|, (3.9)
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Figure 3. Test for Section 3.1. Comparison among the solutions obtained by applying Adaptive

grid scheme (3.3)–(3.4) and Uniform grid scheme (3.1) with the same total number of nodes Nx = 31

at final time T = 5. Figure (a): The (x)-line is the solution of Adaptive grid scheme, the (∗)-line is the

solution of Uniform grid scheme. The two solutions are compared to exact solution (3.2) in smooth

line (−). Figure (b): graph of the two errors (3.9) in log-scale. Figure (c): zoom in on the solutions

in the subinterval [0, 0.8]. Figure (d): zoom in on the solutions in the subinterval [0.8, 1].

where u(xnj , t
n) is the exact solution given by (3.2) and ũ(xnj , t

n) is the numerical solution

given by the two schemes that we are looking at.

We also compare the two numerical schemes with different number of nodes Nx.

Specifically, the Uniform grid scheme is computed fixing the space step as Δx = Δxbig =

maxn=0,...,Nt
Δxnbig , where Δxnbig have been defined in (3.6). This test shows that Adaptive

grid scheme gives globally a better approximation. In particular, from the error graph in

Figure 2(b) we observe that the quality of the numerical solution given by the Adaptive

grid scheme is better for x < 1 and then it is highly accurate in capturing the asymptotic

constant value u(x,+∞) ≡ 0 for x < 1. Such behaviour may also be seen zooming the

graph near at x = 0, as done in 2(c).

These same conclusions are confirmed in Figure 3, where the two numerical approaches

with the same total number of space nodes Nx are compared at final T = 5. The difference
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between the two schemes is then mainly on the displacement of nodes on the interval

[0, 1]. It is clear from graphs that in both cases Adaptive grid scheme keeps on giving a

better approximation. As in the previous test, from the error graphs in Figure 3(b) we

observe that, for x < 1, the quality of the numerical solution given by the Adaptive grid

scheme is still better than the one given by the Uniform grid scheme and again it is highly

accurate in capturing the asymptotic constant value.

3.2 Point-type quasispecies with weak unfair mutation ((m0, m1) ∈ C0))

Here, we shall focus on problem (1.1) with (m0, m1) ∈ C0 = (0, s /f0) × {0}.
We shall apply the Adaptive grid numerical approach introduced in Section 3.1. The

differential part of (1.1) is then approximated by scheme (3.3)–(3.4) on the non-Uniform

grid {xnj }n,j defined in (3.5). We then get

ũ
(
xn+1
j , tn+1

)
=

(
1 − αnj

)
ũ
(
xnj , t

n
)

+ αnj ũ
(
xnj−1, t

n
)

−m0f0

γ0
Δt

(
ũ
(
xnj , t

n
)

− ũ
(
xnj + γ0

(
1 − xnj

)
, tn

))
,

(3.10)

under the monotonicity constraint

sup
xnj ,x

n+1
j ∈(0,1)

xn+1
j − xnj

a
(
xnj

) � Δtn � min
xnj ,x

n+1
j ∈(0,1)

γ0(Δx
n
j + xn+1

j − xnj )

γ0a(x
n
j ) + m0f0Δx

n
j

, (3.11)

that gives rise to a condition in selecting the Adaptive grid, namely

sup
xnj ,x

n+1
j ∈(0,1)

(xn+1
j − xnj ) <

γ0

m0f0
min

xnj ∈(0,1)
a(xnj ) =

γ0

m0f0
a(xn1), (3.12)

at each time step.

The main point now is to compute the non-local value ũ(xnj + γ0(1 − xnj ), t
n) by means

of the known nodes values ũ(xnk, t
n), k = 0, . . . , Nx. The simplest idea is of course to use a

linear interpolation. Specifically, for k = 1, . . . , Nx − 1 such that

xnk−1 < xnj + γ0(1 − xnj ) < xnk,

then

ũn(xnj + γ0(1 − xnj ), t
n) = ũ(xnk, t

n) +
ũ(xnk, t

n) − ũ(xnk−1, t
n)

xnk − xnk−1

(
(xnj + γ0(1 − xnj )) − xk

)
.

However, as we have already mentioned at the beginning of this section, we must be

careful when it happens that the non-local point falls in the last cell close to x = 1, i.e.

xnNx−1 < xnj + γ0(1 − xnj ) < xnNx
= 1.

In this case, it turns out to be more accurate to compute the value ũ(xnj + γ0(1 − xnj ), t
n)

by an extrapolation between the two last internal points xNx−2 and xNx−1. This fact is
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Figure 4. Unfair mutation with γ0 = 0.6 and x̄ = 0.25: solution value at point x = 0 as function

of time. The red line is the theoretical upper bound x̄/(1 − γ0) given in Proposition 2.3. The green

and the blue lines are the asymptotic value obtained by scheme (3.10); for the green one when the

non-local value xn
j + γ0(1. − xn

j ) falls close to x = 1 it has been computed by an extrapolation

with respect the two last internal grid nodes, while for the blue one it has been computed by an

interpolation with respect the last grid node and the boundary node x = 1. As it has been described

in Section 3.2, the use of the interpolation leads to an incorrect solution that grows asymptotically

in time.

made clear by Figure 4, where the solutions obtained by interpolation are compared with

the theoretical upper bound (2.8). One can see that the use of the interpolation leads to

an incorrect solution that grows asymptotically in time overcoming the theoretical bound

value.

3.2.1 Some qualitative tests for weak unfair mutations

Here we consider the weak unfair mutation case, since it is a case where we have some

analytical results, but the full behaviour of the solutions is not known. We shall give now

some numerical tests to highlight the following aspects:

(i) the better performance of our adaptive numerical scheme with respect to the uniform

one;

(ii) the dependence of the asymptotic equilibrium ū(γ0, 0) with respect to γ0;

(iii) the behaviour of the asymptotic equilibrium limt→∞ uγ0 ,0(x, t) = ū(x) for γ0 = γ∗,

where γ∗ ∈ (0, 1) is the only solution to (2.5), see Remark 2.1;

(iv) the quality of the theoretical estimate given in (2.6).

Let us then go through the points listed above.

(i) The analytical expression of the exact solution to problem (1.1) is not known.

However, in Proposition 2.3 some theoretical estimates have been given and they

may be used to estimate the goodness of our numerical scheme. In Figure 5, we
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Figure 5. Unfair mutation with γ0 = 0.1 and x̄ = 0.2: solution value at point x = 0 as function of

time. The red line is the theoretical asymptotic lower bound x̄ and the black one is the theoretical

upper bound x̄/(1−γ0) given in Proposition 2.3. The green and the blue lines are the values obtained

by the Adaptive grid and the Uniform grid respectively. The two schemes have been applied with

Δxbig = 0.07. We then get with the adaptive grid a solution that meets the theoretical bounds.

show a test case for which the Adaptive approach gives a numerical solution that

meets the theoretical bound (2.8), while for the same Δxbig , the uniform approach

gives an asymptotic value that overcome the upper bound value x̄/(1 − γ0).

(ii) It has been shown in Section 2.1 that the analytical arguments do not allow to

explicitly compute the asymptotic equilibrium ū(γ0, 0), nor to see if it depends

continuously by γ0. Through some numerical simulations, we can compute a good

approximation of this asymptotic value and we can observe that for every m0 ∈
(0, s /f0), the numerical asymptotic equilibrium ū(γ0, 0) is a continuous function with

respect γ0 and we observe that , increasing γ0 from 0 to 1, the asymptotic equilibrium

value ū(γ0, 0) spans the segment line between x̄ and 1, see Figure 6 (a)–(b).

(iii) Proposition 2.2(ii) does not apply if γ0 = γ∗. In Figure 7, we then plot the solution

uγ∗ ,0(x, t) fixing s = 1, m0 = 0.4, s /f0 = 0.8 (with this choice of parameters γ∗ = 0.79).

We then may say that also for the particular value γ∗ the solution uγ∗ ,0(x, t) converges

to ū(γ∗, 0) ∈ [x̄, 1) as t → ∞.

(iv) Here, we would analyse the asymptotic rate by which the solution uγ,0(x, t) converges

to ū(γ0, 0). On one hand, we compute the solution uγ0 ,0 numerically by scheme (3.10)

varying the problem parameters, and we estimate the asymptotic rate as the time

Tnum(γ0, m0, s /f0) such that, for ε small

∂tuγ0 ,0(0, Tnum) � ε. (3.13)

On the other hand, we compute the two parameter α and β in formula (2.7) and we
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Figure 6. Coexistence region C0 (unfair mutation). Plot of the numerical asymptotic equilibrium

γ0 �→ ū(γ0, 0), varying m0 ∈ (0.05, s /f0) for (a) s /f0 = 0.4 and (b) s /f0 = 0.8 respectively. We can

observe that the asymptotic value is a continuous function with respect to γ0, for any value of m0.
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Figure 7. Coexistence region C0 (unfair mutation). Plot of the numerical solution uγ0 ,0(x, t), varying

the time t. In Figure (a) γ0 = 0.7, while in Figure (b) γ0 = 0.79 solves (2.5). It is then possible to see

that the behaviour of the solution for that particular value is the same of solution obtained with

others γ0 values.

assume the theoretical asymptotic rate as the time Tteo(γ0, m0, s /f0) such that

c(δ)

(1 − γ0)α
e−β Tteo � ε for δ = 1 and c(δ) = 2m0f0, (3.14)

as it has been expressed in formula (2.6) and Remark 2.2.

In Figure 8, we fix s /f0 = 0.8 and we compare the two surfaces Tnum and Tteo as

functions of γ0 and m0. We overlap to the surfaces the set of values {(m0, γmax), m0 < s /f0}
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Figure 8. Coexistence region C0 (unfair mutation). In both figures, the value of s /f0 has been

fixed at 0.08. The numerical asymptotic rate Tnum defined in (3.13) (Figure (a)), and the theoretical

asymptotic rate Tteo defined in (3.14) (Figure (b)) are plotted on the plane (m0, γ0). In this latter plot,

we have fixed the surface range of values to [0,maxγ0 Tnum(γ0, ·, ·)]. The points (x) are the couples

(m0, γmax) such that Tnum(γmax, m0, s /f0) = maxγ0 Tnum(γ0, m0, s /f0), while the points (o) are the values

(m0, γ
∗), where γ∗ is the solution to (2.5).

and {(m0, γ
∗), m0 < s /f0}, where γmax are the maximum points γ0 of the function

Tnum(γ0, m0, ·).

3.3 Point-type quasispecies with back and forth mutations ((m0, m1) ∈ C1)

Here, we shall solve numerically problem (1.1) considering various value of m0, m1 ∈ (0, 1]

and γ0, γ1 ∈ (0, 1]. By applying the numerical scheme described above, we get

ũ(xn+1
j , tn+1) = (1 − αnj )ũ(x

n
j , t

n) + αnj ũ(x
n
j−1, t

n)

+Δt
m0f0

γ0

(
ũ(xnj + γ0(1 − xnj ), t

n) − ũ(xnj , t
n)

)

+Δt
m1f1

γ1

[
ũ(xnj − γ1x

n
j , t

n) − ũ(xnj , t
n)

]
,

(3.15)

with αnj defined by (3.4).

First we fix s = 1, s /f0 = 0.3, and plot the asymptotic value ūγ0 ,γ1
in the plane

(γ0, γ1) ∈ (0, 1)2, assuming that the couple (m0, m1) takes values into the following set

S = {(0.1, 0.1), (0.1, 0.9), (0.9, 0.1), (0.9, 0.9)}.

All the graphs in Figure 9 show that the asymptotic value at x = 0 is a continuous

function with respect the couple (γ0, γ1).
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Figure 9. Coexistence region C1 (mutation allowed in both directions). Plot of the asymptotic

value ū(γ0, γ1) in the plane (γ0, γ1) for s /f0 = 0.3 fixed and, from top-left to bottom-right, (m0, m1) =

(0.1, 0.1), (m0, m1) = (0.1, 0.9), (m0, m1) = (0.9, 0.1) and (m0, m1) = (0.9, 0.9). These numerical tests

show that the asymptotic equilibrium ū(γ0, γ1) is a continuous function with respect γ0 and γ1.

3.4 Density dependent fitness: the prisoner’s dilemma

In this section, we investigate numerically a case example of density-dependent model. As

noticed before, Propositions 2.1 and 2.2 do not apply to this case. On the contrary, the

extension of the numerical scheme proposed in the previous section to the case of non-

constant fitness, can handle also this more general situation without further difficulties.

We focus on prisoner’s dilemma, because of the huge interest it receives in the evolu-

tionary dynamics community. In particular we take the following payoff matrix

A =

(
2 4

1 3

)
.

Here, we have used the convention to label 0 defectors and 1 cooperators, so that the

related replicator equation (2.3) has a stable equilibrium at x = 0. The replicator-mutator
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model reads {
∂tv =

(
(1 − 2m0 − 2m1)x

2 − (1 + m1)x + 2m0

)
∂xv,

v(x, 0) = x,
(3.16)

and its solution can be computed explicitly. Also here the set of the parameters (m0, m1)

can be split according to the position of the asymptotic equilibrium.

E: the extinction region is {0} × [0, 1]. Here x̄ = 0.

F: the fixation region is [1/4, 1] × {0}. Here x̄ = 1.

C1: the global coexistence region is the internal region (0, 1]2. Here there is a globally

stable equilibrium at x̄ ∈ (0, 1).

C0: the local coexistence region is = (0, 1/4) × {0}. Here x = 1 is an unstable equilibrium,

and there is a stable equilibrium at x̄ ∈ (0, 1), whose basin of attraction is [0, 1).

On the other hand, the point-process mutation equation reads⎧⎪⎪⎨
⎪⎪⎩

∂tuγ0 ,γ1
=−x(1−x)∂xuγ0 ,γ1

− m1(1+2x)xJ(uγ0 ,γ1
,−γ1x)

+m0(2+2x)(1−x) J(uγ0 ,γ1
, γ0(1−x)),

uγ0 ,γ1
(x, 0) =x.

(3.17)

Remark 2.3 fits with this case, so that we can foresee that

(1) if m0 + m1 < 1/2, then uγ0 ,γ1
� v pointwise, for any value of the γ′

is,

(2) if m0 + m1 > 1/2, then uγ0 ,γ1
� v pointwise, for any value of the γ′

is,

(3) if m0 + m1 = 1/2, then replicator-mutator and point-mutation models coincide,

actually uγ0 ,γ1
= v for any value of the γ′

is.

This means that the time concentration of mutations favours the low-fitness type, as in

the quasispecies framework, only below a critical value of the global mutation probability.

Numerical simulations comply with this relations.

Figure 10 illustrates the short-time behaviour of the point-process mutation model,

for different values of the mutation parameters (m0, m1). In each box, the solutions

corresponding to various values of the parameters γ0, γ1 are plotted. Boxes (a) and (b)

refer to fair mutation, so (m0, m1) is in the extinction region E. Boxes (c) and (d) refer to

unfair mutation: in (c) (m0, m1) is in the coexistence region C0, while in (d) (m0, m1) is in

the fixation region F . Boxes (e) and (f) refer to back and forth mutations, so (m0, m1) is in

the coexistence range C1. In the left side (Figures a, c, e) m0 +m1 < 1/2: all the solutions

stay above the replicator-mutator, and they increase with the γi’s (as for the quasispecies).

In the right side (Figures b, d, f) m0 + m1 > 1/2 and the order is reversed.

Figure 11 reports the numerical simulations of long-time asymptotics, that cannot be

predicted by theoretical tools, so far. There are many similarities with the quasispecies

case, for instance there is a constant asymptotic equilibrium, which is global if (m0, m1) ∈
E ∪ F ∪ C1, while in C0 there still is an instable equilibrium at x = 1. When (m0, m1)

is in the extinction region E, the point-process model gives extinction for all values of

γ0, γ1 (see Figures (a) and (b)). Also the fixation range is confirmed, as showed in (d). A
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Figure 10. Prisoner’s dilemma: short-time behaviour. Plot of the solution uγ0 ,γ1 (x, T ) for a fixed

short time T and several values of γ0, γ1, varying the value of m0, m1. For m0 +m1 < 1/2, the graph

of uγ0 ,γ1 stays above the replicator-mutator’s one and increases with γ0, γ1 (Figures (a), (c), (e)). The

situation is reversed for m0 + m1 > 1/2 (see Figures (b), (d), (f)).
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Figure 11. Prisoner’s dilemma: long-time behaviour. Plot of the asymptotic solution ūγ0 ,γ1 (x) for
several values of γ0, γ1, varying the value of m0, m1 as in Figure 10. In any case the asymptotic
equilibrium is constant w.r.t. x, and the extinction/fixation/coexistence ranges are preserved. In the
coexistence region, the asymptotic equilibrium depends by γ0, γ1. For m0 + m1 < 1/2, it stays above
the replicator-mutator’s one and increases with γ0, γ1 (Figures (c), (e)). The picture is reversed for
m0 + m1 > 1/2 (Figure (d)).
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Figure 12. Prisoner’s dilemma. Plot of the asymptotic equilibrium ū in the plane (γ0, γ1). In Figure

(a) we set (m0, m1) = (0.1, 0.1) such that m0 +m1 < 1/2, and in Figure (b) we set (m0, m1) = (0.9, 0.9)

such that m0+m1 > 1/2. As noticed before, the order is reversed. Besides, the asymptotic equilibrium

seems to be a continuous function of γ0, γ1.

new feature shows up in the coexistence range C1 ∪ C0. Actually for m0 + m1 < 1/2, the

asymptotic equilibrium stays above the replicator-mutator’s one and increases with γ0, γ1

(Figures (c), (e)). The opposite happens when m0 + m1 > 1/2: Figure 11 (d) reveals that

the time concentration of mutations can also favourite the high-fitness specie, since the

equilibrium stays below the replicator-mutator’s one and decreases with γ0, γ1.

Figure 12 plots the equilibrium ū in the plane (γ0, γ1), for (m0, m1) fixed in the coexistence

range. Seemingly ū depends continuously by γ0, γ1. In (a) m0 +m1 < 1/2: the picture is the

same as for the quasispecies, i.e. ū is monotone increasing, separately on γ0 and γ1 with

lim
(γ0 ,γ1)→(0,0)

ū(γ0, γ1) = x̄, lim
(γ0 ,γ1)→(1,1)

ū(γ0, γ1) = ū(1, 1) =
2m0

2m0 + 3m1
> x̄.

On the contrary, in (b) m0 + m1 > 1/2, then ū is monotone decreasing and

lim
(γ0 ,γ1)→(0,0)

ū(γ0, γ1) = x̄, lim
(γ0 ,γ1)→(1,1)

ū(γ0, γ1) = ū(1, 1) =
2m0

2m0 + 3m1
< x̄.

4 Conclusions

We have analysed an integro-differential model for the evolution of populations with point-

type mutations proposed in [1]. Some extensions of the analytical qualitative properties

established before has been presented. It was already known that the modified quasispecies

model always favours the low-fitness specie, if compared to the standard selection-

mutation model. This is not true, in general, in the density dependent case, where the

high-fitness species can also increase its selection advantage during invasion. If this

happens, and if the gain is large with respect to the total amount of mutations (both fair

and unfair), then the high fitness specie is benefited by the point-type mutations.

https://doi.org/10.1017/S0956792515000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000352


110 A. L. Amadori et al.

Next, a numerical scheme has been proposed, and it has been shown that it can

efficiently handle the blow-up of the spatial derivative of the solution, even for large times.

Thanks to our numerical scheme, we investigated some questions that were left open by

a purely analytical approach. In particular, we found that the asymptotic equilibrium

of the solutions depends continuously on the parameters. Moreover, we observed that

our scheme works also for density dependent fitness. The relevant example of prisoner’s

dilemma was taken as a case study: it was shown that there is still a constant asymptotic

equilibrium, that depends continuously and monotonically on the parameters. We have

also given an explicit example in which the asymptotic equilibrium presents respectively a

higher or a lower concentration of high-fitness type (w.r.t. the standard replicator-mutator

model), depending on the time intensity of the mutation process.
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