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In this paper, we present a high-precision Mars entry integrated navigation algorithm
under large uncertainties via a desensitised extended Kalman filter (DEKF). Firstly, a new
six degree-of-freedom Mars entry dynamics model is derived based on the angular velocity
outputs of a gyro, which is free of modelling errors in the aerodynamic and control torques.
Secondly, both the accelerometer outputs and radio measurements between orbiters and
entry vehicle are used as the observations embedded in a navigation filter to perform state
estimation and suppress the measurement noise. Finally, a desensitised extended Kalman
filter, exhibiting the desirable property of efficiently reducing the sensitivity of state variables
with respect to model and parameter uncertainties, is adopted in order to overcome the
adverse effects of initial state errors and uncertainties during Mars atmospheric entry and
further improve entry navigation accuracy. The numerical simulation results show that the
DEKF-based integrated navigation algorithm developed in this paper can achieve a better
navigation performance with higher accuracy when compared with the standard extended
Kalman filter (EKF)-based integrated navigation algorithm in the presence of larger state
errors and parameter uncertainties.
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1. INTRODUCTION. One of the significant engineering challenges for pre-
cisely landing a vehicle on the surface of Mars involves the entry, descent and landing
(EDL) phase of the mission. Traditional Mars entry vehicles, such as the Viking and
Mars exploration rovers, adopted the inertial measurement unit (IMU)-based dead
reckoning navigation mode and the unguided ballistic trajectory entry without
aerodynamic lift control, which leads to a larger landing error ellipse in the order of
several hundred kilometres (Braun, 2007; Lu et al., 2012; Brand et al., 2004). Future
Mars missions, such as a manned Mars landing and Mars base programme, need to
achieve a pinpoint landing on Mars to within tens of metres to 100 m of a pre-selected
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target site. Therefore, high-precision entry navigation and active aerodynamic lift
control are required (Martin-Mur et al., 2012; Li and Zhang, 2009; Chu, 2006).
The main difficulty in achieving high-precision Mars entry navigation comes from

the following two aspects. Firstly, the entry dynamics models and relevant parameters
usually include larger uncertainties and errors, which greatly degrades the
performance of a navigation filter. The most significant sources leading to a larger
Mars entry dispersion include the uncertainties in the atmospheric density and
aerodynamic coefficients, the accumulated state estimation errors at the atmospheric
entry point, and the random winds and gusts (Wolf et al., 2005; Lévesque, 2006).
Secondly, the available navigation sensors are extremely limited in the Mars
atmospheric entry phase due to the existence of a heat shield against an extremely
adverse thermal environment. The IMU is almost the only sensor that has been
available for Mars entry navigation for many years (Li and Peng, 2011; Williams
et al., 2012).
There have been several new Mars entry navigation concepts and algorithms

published in the last decade. To reduce the adverse effects of uncertainties in the
Martian atmospheric density, the adaptive sigma point Kalman filter bank, a hierar-
chical mixture of experts’ architecture and multiple model adaptive estimation were
adopted to achieve spacecraft precision entry navigation in the presence of a highly
dynamic environment with noises and unknown forces (Heyne and Bishop, 2006; Ely
et al., 2001; Zanetti and Bishop, 2007). One common character of the research works
mentioned above is that only IMU (accelerometer and gyro) data is considered
as external measurements and processed by the navigation filter. However, the inertial
constant biases and drifts cannot be completely removed and are incorporated into
navigation observations instead, which thus degrades the performance of the
navigation filter. The performance of dead-reckoning navigation alone usually
degrades with time due to the inertial constant biases and drifts. One feasible solution
is utilizing external measurements, such as computer vision and Light Direction and
Ranging (LIDAR), to correct these inertial biases and drifts, and then improve the
landing navigation accuracy (Li et al., 2007; Li et al., 2010). However, most external
measurements are not available during the Mars atmospheric entry phase due to the
existence of a heat shield. Recent research shows that the ionizing plasma around the
entry body has little effect on ultra-high frequency (UHF) band (300*3000Mhz)
radio communication, which can be utilized in real-time to significantly improve the
on board state knowledge during the Mars atmospheric entry phase (Williams et al.,
2012; Burkhart et al., 2005). Li and Peng (2011) have preliminarily discussed the issue
of Mars entry navigation using IMU and orbiting/surface radio beacons (Li and Peng,
2011). Lévesque and Lafontaine (2007) studied the navigation performance and
observability of four measurement scenarios based on radio ranging during Mars
entry (Lévesque and Lafontaine, 2007). However, neither Li nor Lévesque discussed
the issue of high-precision Mars entry navigation under large uncertainties. The
navigation measurements were processed using an unscented Kalman filter and an
extended Kalman filter respectively, which lack robust adaptive capability and cannot
achieve a higher navigation accuracy in the presence of larger state errors
and parameter uncertainties (Li and Peng, 2011; Lévesque and Lafontaine, 2007).
Desensitised optimal control (DOC) methodology, originally proposed by Seywald

and Kumar (1996), is an efficient approach to overcome the unfavourable effect of
model and parameter uncertainties. The basic concept is to embed the sensitivity
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penalty into the performance index by weighting approach and then gain the
sensitivity reduction at the cost of sacrificing a small part of the original performance.
Karlgaard and Shen extended the main characteristic of the DOC approach to the
robust filter design problem such that the performance sensitivity of the filters
with respect to the model parameter uncertainties can be reduced (Karlgaard and
Shen, 2011; Karlgaard and Shen, 2013). Desensitised state estimates were obtained
by minimizing a cost function consisting of the posterior covariance matrix trace
penalized by a weighted norm of the state estimate error sensitivities. They continued
to apply the DOC methodology to desensitised unscented Kalman filtering (DUKF),
in which the cost function of the standard unscented Kalman filter (UKF) is
augmented to include a penalty on the sensitivities of the posterior state estimates with
respect to the uncertain parameters (Shen and Karlgaard, 2012).
The purpose of this paper is to develop a high-precision integrated navigation

algorithm under large uncertainties for Mars atmospheric entry based on a
desensitised extended Kalman filter. In order to completely and accurately describe
the state variables of an entry vehicle, a new six degree-of-freedom (6-DOF) Mars
entry dynamics model is derived based on the angular velocity outputs of a gyro, in
which the attitude dynamics are replaced by the outputs of a gyro free of modelling
errors. Both the accelerometer outputs and radio measurement information between
the entry vehicle and the orbiting beacons are utilized as the observations embedded
into a navigation filter to perform state estimation and suppress the measurement
noise. At the same time, a desensitised extended Kalman filter, exhibiting the desirable
characteristics of efficiently reducing the sensitivity with respect to model and
parameter uncertainties, is adopted to overcome the adverse impacts of initial state
errors and parameter uncertainties during Mars atmospheric entry and further
improve the entry navigation accuracy.
The rest of this paper is organized as follows. Section 2 defines a new 6-DOF Mars

entry dynamics model. Section 3 introduces the navigation measurement models used
in the subsequent section of the integrated navigation algorithm. The desensitised
extended Kalman filter and integrated navigation algorithm are developed at length in
Section 4. In Section 5, parameter settings for numerical simulation are defined and
simulation results are discussed in detail. Finally, the conclusions and suggestions
regarding future research are summarized in Section 6.

2. MARS ENTRY DYNAMIC EQUATIONS. System dynamic equa-
tions are necessary to predict the state variables of a Mars entry vehicle, therefore the
applicability of an integrated navigation filter heavily depends on the availability of
sufficiently accurate dynamic equations of Mars entry. The traditional 3-DOF
dynamic model only represents the Mars atmospheric entry translational dynamics,
excluding the attitude dynamics and kinematics (Vinh et al., 1980; Lockwood et al.,
2001). As only aerodynamic lift is used to reduce the downrange footprint dispersion
during Mars entry, the bank angle of entry vehicles is considered as the only control
variable. Therefore, the attitude angle should be included into Mars entry dynamic
equations to completely and accurately describe the state variables of entry vehicles.
However, the aerodynamic torque is very difficult to precisely model due to the
uncertainties in vehicle aerodynamics and inertia matrices. In this paper, only
the attitude kinematics equation is embedded into the system dynamics model, the
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angular velocity information is directly obtained from a gyro free of modelling errors.
Therefore, the attitude dynamics are no longer needed. Then, the 6-DOF Mars entry
dynamic equations can be represented in the Mars centred inertial coordinate system
as follows:

ṙ = v

v̇ = TI
VaV + TI

GgG
ė = Kω̃B

(1)

where r=[rx,ry,rz]
T is the position vector from the centre of Mars to the vehicle’s

centre of mass, v=[vx,vy,vz]
T is the velocity vector of the entry vehicle, e=[φ,ϑ,φ]T is

the tri-axial attitude angle. TV
I is the coordinate transformation matrix from the

velocity coordinate system to the Mars centred inertial coordinate system, TG
I is

the coordinate transformation matrix from the geographic coordinate system to the
Mars centred inertial coordinate system. The definition of coordinate transformation
matrices TV

I and TV
I can be found in Li and Peng (2011), and is thus not repeated here.

aV is the aerodynamic acceleration and can be easily constructed according to
Equation (5). gG is the Mars gravity acceleration and is defined in Equation (2), where
μM=GMMars is the Mars gravitational constant. Coefficient matrix K is the function
of attitude angle φ,ϑ and defined in Equation (3). ω̃B is the angular velocity outputs
from a gyro defined in Equation (4), ωB=[ω1,ω2,ω3]

T is the real triaxial angle velocity
described in the body-fixed coordinate system, bω is the angular rate bias, and ξω is the
white Gaussian angular rate output noise.

gM = 0, 0,− μM
r| |2

[ ]T
(2)

K = 1
cos ϑ

cos ϑ sin ϑ sin φ sin ϑ cos φ
0 cos ϑ cos φ − cos ϑ sin φ
0 sin φ cos φ





 (3)

ω̃B = ωB + bω + ξω (4)

aV = [−D −L sin σ L cos σ ]T (5)
where L and D are the aerodynamic lift and drag accelerations, defined by

L = 1
2
ρv2

CLS
m

(6)

D = 1
2
ρv2

CDS
m

(7)

where ρ is the reference Mars atmospheric density defined in Equation (8), CL and CD

are the aerodynamic lift and drag coefficients respectively, S represents the vehicle
reference surface area, and m is the mass of the entry vehicle.
The high-precision engineering-level Mars atmosphere model Mars-GRAM is

adopted in this paper (Martin et al., 2013; Tolson and Prince, 2011). According to the
Mars-GRAM model, the reference Mars atmospheric density is defined as follows:

ρ = ρ0 exp(−β(h)) (8)
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where ρ0=559·351005946503/c1c2, c1=188·95110711075, c2=1·4×10−13h3−8·85×
10−9h2−1·245×10−3h+205·3645, β(h)=−0·000105 h.
As the true Mars atmospheric density varies with the different seasons

and atmospheric temperature, the value obtained from Equation (8) is only an
approximation of the true density. When we perform high-fidelity navigation analysis
of Mars entry, the deviation in the atmospheric density must be taken into account.
The true Mars atmospheric density can be formulated as follows:

ρ∗ = ρ · (1+ Δ) (9)
where Δ denotes the percentage of deviation in Mars atmospheric density.
It should be noted that the aerodynamics lift acceleration L and drag acceleration

D in Equations (5), (6) and (7) are closely related to the reference atmospheric density
ρ, therefore, the dynamics equations in Equation (1) will inevitably introduce model
and parameter uncertainties in the case that there are large uncertainties on the
reference Martian atmospheric density.

3. NAVIGATION MEASUREMENT MODELS
3.1. Accelerometer measurement models. An accelerometer is designed to

measure the linear acceleration along three orthogonal axes. The acceleration
measured by an accelerometer is represented as follows:

ãB = aB + ba + ξa (10)
where ãB is the linear accelerometer output along body axes, aB is the true linear
acceleration, ba is the acceleration bias, ξa is the white Gaussian acceleration output
noise.
Then, accelerometer measurement model is defined as follows:

y1 = ãB = TB
Va

∗
V + ba + ξa (11)

where

a∗V = [−D∗ −L∗ sin σ L∗ cos σ ]T (12)

L∗ = 1
2
ρ∗v2

CLS
m

(13)

D∗ = 1
2
ρ∗v2

CDS
m

(14)

Since the accelerometer is utilized to measure the real aerodynamic acceleration
exerted on the entry vehicle, it must be stressed that the Mars atmospheric density
involved in Equations (13) and (14) should be true atmospheric density ρ*, not
reference atmospheric density ρ. At the same time, the basis and noise terms in
Equation (11) are considered as measurement noises and included into the subsequent
navigation filter.

3.2. Radio measurement models. The navigation system for Mars entry
incorporates an assumed conglomeration of orbiters previously launched into
Mars orbit. The orbiter usually includes two on board navigation sensors: two-way
range radio and two-way Doppler radio. The two-way range radio will take range
measurements from the entry vehicle to each of the orbiting radio beacons, provided
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that they are within line-of-sight. The two-way Doppler will take velocity
measurements with the orbiting beacons (Boehmer, 1998).
As the whole process of Mars entry only lasts a relatively short time, the influence

of perturbation on the orbit of the orbiter can be neglected here. Thus, the position
and velocity of the orbiter can be obtained in the Mars centred inertial coordinate
system according to the simple two-body gravity theory

dro
dt

= vo (15)

dvo
dt

= − μM
ro| |3 ro (16)

The distance between the entry vehicle and an orbiter can be reconstructed as
follows:

R̃i = Ri + ζRi (17)

Ri =
�����������������
(r− ri)T (r− ri)

√
(18)

where r is the position vector of entry vehicle, ri is the position vector of the ith orbiting
radio beacon. ζR is the range measurement noise. Both vectors mentioned above are
defined in the Mars centred inertial coordinate system.
The Doppler measurement, or the rate of change of range measurement, from the

entry vehicle to an orbiter is designated as

Ṽ i = Vi + ζVi (19)

Vi = (r− ri)T (v− vi)
Ri

(20)

where v is the velocity vector of entry vehicle, vi is the velocity vector of the i
th orbiting

radio beacon. ζV is the velocity measurement noise. Both vectors mentioned above
are also defined in the Mars centred inertial coordinate system.
Then, the radio measurement model can be constructed as follows:

y2 = R̃
Ṽ

[ ]
= R

V

[ ]
+ ζR

ζV

[ ]
(21)

where R=[R1, . . .,Rm]
T, V=[V1, . . .,Vm]

T, ζR=[ζR1, . . ., ζRm]
T, ζV=[ζV1, . . ., ζVm]

T,
and subscript m denotes the number of radio orbiting used in the navigation scheme.

4. DESENSITISED EXTENDED KALMAN FILTER DESIGN. To
estimate the state variables of entry vehicles and suppress navigation measurement
noises, an integrated navigation filter is designed by use of a desensitised extended
Kalman filter (DEKF). Moreover, DEKF is adopted to efficiently reduce the
sensitivity of state variables with respect to model and parameter uncertainties.
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4.1. System equations. If we select X(t) = [rT , vT , eT ]T9×1 as the state variables,
then the Mars entry dynamic equations Equation (1) can be rewritten as follows:

Ẋ(t) =
v

TI
Va

∗
V + TI

GgG
Kω̃B







9×1

= f(X(t), t) + w (22)

Similarly, navigation observation equations defined in Equations (11) and (21) can
also be written as follows:

Y(t) = y1
y2

[ ]
=

ãB
R̃
Ṽ







2m×1

= h(X(t), t) + υ (23)

where m stands for the number of radio beacons used in the integrated navigation.
The system equations utilized in the subsequent navigation filter can thus be defined

as follows:

Ẋk = f(Xk−1) + Γwk−1 (24)
y(tk) = h(Xk) + υk (25)

where Γ is the model noise input matrix. wk and υk represent the system process noise
and measurement noise respectively, they are assumed to be independent of each
other, white and with normal probability distributions

p(w) � N(0,Q) (26)
p(υ) � N(0,R) (27)

Cov(wk, υj) = E(wkυ
T
j ) = 0 (28)

Defining state transfer matrix Φk+1/k

Φk/k−1 = I+ Fk/k−1 · Δt (29)
Φ̇(t, τ) = F(t)Φ(t, τ) (30)

Φ(t, t) = I (31)
where F is the Jacobian matrix of partial derivatives of f with respect to state variable
X, that is

Fk/k−1 = ∂f(X, k)
∂X

∣∣∣∣
X=Xk−1

=

03×3 I3×3 03×3

03×3 03×3
∂(TI

Va
∗
V + TI

GgG)
∂e

03×3 03×3
∂(Kω̃B)

∂e







9×9

(32)

Defining sensitivity matrix Hk

Hk = ∂h(X)
∂X

∣∣∣∣
X=X̂k/k−1

=

03×3
∂ãB
∂vT

03×3

∂R̃
∂rT

03×3 03×3

∂Ṽ
∂rT

∂Ṽ
∂vT

03×3







9×9

(33)
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4.2. Desensitised extended Kalman filter. The standard extended Kalman
filter can be considered as a specified form of desensitised extended Kalman filter
in a certain sense, so the formulation of DEKF is almost exactly the same as for
a standard EKF except for the definition of the gain matrix.
Initialization: for k = 0, set

X̂0 = E[X0] (34)

P0 = E (X0 − E[X0])(X0 − E[X0])T
[ ] (35)

DEKF time update equations:

X̂
˙
k/k−1 = f(k, X̂k−1) (36)

Pk/k−1 = Φk/k−1Pk−1Φ
T
k/k−1 +Qk−1 (37)

DEKF measurement update equations:

X̂k/k = X̂k/k−1 + Kk y(tk) − h(X̂k/k−1)
[ ] (38)

Pk = (I− KkHk)Pk/k−1(I− KkHk)T + KkRkKT
k (39)

where X̂k/k−1 is one step predicted value of the state at k moment, X̂k/k is the state
estimation at k moment, yk is the observed quantity, Kk is the filtering gain, Pk/k is
the error variance matrix, Φk/k−1 is the state transition matrix. Qk is the process
noise variance matrix, defined in Equation (40), and Rk is measurement noise variance
matrix.

Qk = Q(t)T (40)

The key of the DEKF is to derive the desensitised optimal gain matrix Kk according
to the DOC theory. Firstly, the predicted sensitivity of state variables with respect to

uncertainties σ̂k/k−1 = ∂X̂k/k−1

∂ρ
in differential form can be derived by taking partial

derivatives of the state prediction equation in Equation (36) (Karlgaard and Shen,
2011):

σ̇̂k/k−1 = ∂X̂
˙
k/k−1

∂ρ
= ∂f(k, X̂k−1)

∂ρ

= Fk/k−1
∂X̂k/k−1

∂ρ
+ ∂Fk/k−1

∂ρ
X̂k/k−1

= Fk/k−1σ̂k/k−1 + ∂f(X(tk), tk)
∂ρ

(41)

Then, the predicted sensitivity is computed by numerical integration of the equation.
In the same way, the corrected sensitivity at the measurement update can be
obtained by taking partial derivatives of the corrections equation in Equation (38)
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(Karlgaard and Shen, 2011):

σ̂k/k = ∂X̂k/k

∂ρ
= ∂X̂k/k−1

∂ρ
+ ∂Kk

∂ρ
y(tk) − h(X̂k/k−1)
[ ]+ Kk

∂ y(tk) − h(X̂k/k−1)
[ ]

∂ρ

= σ̂k/k−1 + Kk
∂y(tk)
∂ρ

− Kk
∂h(X̂k/k−1)

∂ρ

= σ̂k/k−1 − Kk
∂h(X̂k/k−1)

∂ρ

= σ̂k/k−1 − KkBk

(42)

where Bk = Hkσ̂k/k−1 + ∂h(X(tk), tk)/∂ρ . It should be pointed out that the true
measurement sensitivity is (∂yk/∂ρ)=0 in this formulation. At the same time, the value
of (∂Kk/∂ρ) is assumed to be zero here. As any non-zero value of (∂Kk/∂ρ) implies that
the solution for the optimal gain is a function of the residual [y(tk) − h(X̂k/k−1)], which
obviously violates the previous assumption of the linear update equation given
in Equation (39) (Karlgaard and Shen, 2011; Shen and Karlgaard, 2012). This
assumption implies that the desensitisation method only penalizes an approximate
sensitivity rather than the true sensitivity.
To determine the desensitised optimal gain Kk, the traditional cost function of the

Kalman filter is augmented with a penalty function consisting of a weighted norm of
the posterior sensitivity, given by

J = trace(P̂k) + σ̂Tk/kχσ̂k/k (43)
where χ is a symmetric positive semi-definite weighting matrix for the sensitivity.
Substituting Equations (39) and (42) into Equation (43) and taking the derivative with
respect to Kk term by term yields

∂J
∂Kk

= ∂trace(P̂k)
∂Kk

+ ∂(σ̂Tk/kχσ̂k/k)
∂Kk

= 2SkKT
k − 2HkPk/k−1 + 2(BkBT

kK
T
k χ − Bkσ̂

T
k/k−1χ)

(44)

In order to minimize J, setting (∂J/∂Kk)=0, then the desensitised optimal gain
matrix can be solved as follows

Kk = (Pk/k−1HT
k + χσ̂k/k−1B

T
k ) · (Sk + χBkB

T
k )−1 (45)

where Sk=HkPk/k−1Hk
T+Rk.

As expected, the standard EKF gain matrix can be recovered by setting χ =0.

5. NUMERICAL SIMULATION AND ANALYSIS . To confirm the
validity of the Mars entry integrated navigation algorithm developed in this paper,
numerical simulation in a MATLAB/Simulink environment has been carried out.
Conventional 3-DOF Mars entry dynamic equations and simple rigid-body attitude
dynamics are combined to produce the nominal state variables (Vinh et al., 1980; Ely
et al., 2001). The entry vehicle model is selected to be similar to the MSL lander and
the relative physical parameters are given in Table 1. The initial state parameters of
the Mars entry vehicle is provided by the deep space network (DSN), and the initial
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state variables are described in Table 2 according to the MSL simulation data in
Martin et al. (2013), Tolson et al. (2011), Chen et al. (2010) and Schoenenberger
et al. (2013). We assumed that three orbiting beacons are available during the Mars
atmospheric entry phase, the initial state variables and the errors of orbiting
beacons are given in Table 3. The accelerometer bias ba and gyro bias bω applying
for the simulation are assumed to be [3×10−3, 3×10−3, 3×10−3] m/s2 and [5×10−6,
5×10−6, 5×10−6] rad/s respectively, the covariance matrix of white Gaussian noise
ξa and ξω are set to [5×10−8, 5×10−8, 5×10−8] m2/s4 and [9×10−8, 9×10−8,
9×10−8] (rad/s)2 respectively. Radio range and velocity measurement noise variance
in navigation measurement model are assumed to be 100 m2 and 0·1 m2/s2

respectively. Initial state error covariance matrix P0, system process noise
variance matrix Q and penalty matrix P0, are respectively assumed to be as follows:

P0 =
1013I3×3

108I3×3

I3×3







9×9

, Q =
106I3×3

104I3×3

10−5I3×3







9×9

,

Rk =
10−4I3×3

102I3×3

10−1I3×3







9×9

, χ=10−7I9×9.

As the whole Mars entry process only lasts a short time (about 4 minutes in the MSL
mission) (Martin et al., 2013), the influence of perturbation on the orbit is neglected
in our simulation, the position and velocity of each orbiter are obtained by a simple

Table 1. Physical parameters of entry vehicle.

Parameters Values

Entry mass, m 2920 kg
Ballistic coefficient, m/CDS 115 kg/m2

Lift-drag ratio, L/D 0·24

Table 2. Initial state variables of entry vehicle.

State variables Initial values

r0 [3522, 1, −1] (km)
v0 [−1233·5, 2037·9, 5397·7] (m/s)
e0 [0, −0·47, 1·21] (rad)

Table 3. Initial state and errors of orbiting beacons.

Beacon No.

Position (km) Velocity (m/s)

Initial values Initial errors Initial values Initial errors

Orbiter 1 [780·44, 13276·13, 1267·20] [0·1, 0·1, 0·1] [−317·7, −50, 1697·2] [0·1, 0·1, 0·1]
Orbiter 2 [3927·85, −230·90, 374·91] [0·1, 0·1, 0·1] [93·6, 3120·8, −584·1] [0·1, 0·1, 0·1]
Orbiter 3 [3492·70, 3659·20, 215·11] [0·1, 0·1, 0·1] [−605·1, 97, 3232·8] [0·1, 0·1, 0·1]
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two-body model. The planned entry time span is assumed to be 250 seconds and the
simulation sample step is set to 0·5 second. A four-order Runge-Kutta algorithm is
selected as the numerical solver of the integral entry dynamic equations. Other relative
parameters used in the simulation are set as follows: Mars gravitational constant
μM=4·282829×104 km3/km3s2, Mars rotating angular rate ωM=7·0882×10−5rad/s.
It is believed that there is a maximum of ±15% deviation in the nominal values

from the Mars-GRAM model defined in Equation (8) when compared with the real
Mars atmosphere density, and the deviation roughly follows a normal distribution
around the nominal values (Chen et al., 2010; Schoenenberger et al., 2013; Chen et al.,
2013). In order to simulate and analyse the effect of the uncertain disturbance in Mars
atmospheric density, a random deviation, obeying the normal distribution with the
standard deviation of 15%, is intentionally included in our simulation.
The performance of both DEKF-based integrated navigation and standard EKF-

based integrated navigation were tested for comparison in our simulations. The
differences between the referenced state variables of the entry vehicle and estimated
state variables, that is navigation errors, are plotted in Figures 1–6. Triaxial position
estimation errors and velocity estimation errors from standard EKF-based integrated
navigation are shown in Figures 1 and 2 respectively, and triaxial position estimation
errors and velocity estimation errors from DEKF-based integrated navigation are
also plotted in Figures 3 and 4 respectively. It can be seen from Figures 1 to 4 that both
the position estimation errors and velocity estimation errors from DEKF-based
integrated navigation can clearly be reduced to a smaller magnitude when compared
with those of EKF-based integrated navigation, which indicates the performance of
DEKF is superior to that of EKF in the presence of larger model and parameter
uncertainties. It should be noted from Figures 1 to 4 that x-axial navigation errors are
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Figure 1. Triaxial position estimation errors: standard EKF based integrated navigation.
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significantly smaller than those from the other two axes, which could be interpreted as
meaning that the state variables along the x-axial direction have a better observability
in our navigation geometric configuration.
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Figure 3. Triaxial position estimation errors: DEKF-based integrated navigation.
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Figure 2. Triaxial velocity estimation errors: standard EKF-based integrated navigation.
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In order to further analyse the navigation performance under larger model and
parameter uncertainties, total position estimation errors and velocity estimation errors
from both DEKF and standard EKF-based integrated navigations are plotted in
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Figure 5. Total position estimation errors: DEKF and standard EKF-based integrated navigation.
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Figure 4. Triaxial velocity estimation errors: DEKF-based integrated navigation.
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Figures 5 and 6 for comparison. The sub-figures in Figures 5 and 6 depict the partially
amplified figures of the total position estimation error and total velocity estimation
error form DEKF-based integrated navigation between 200 to 250 seconds
respectively. It can be seen form the Figures 5 and 6 that the estimation errors of
DEKF-based integrated navigation are fairly small with position errors less than
100 m and velocity errors less than 6·5 m/s, which can meet the navigation need of
future pinpoint Mars landing missions. However, if a standard EKF filtering is
adopted instead of DEKF, the performance of the integrated navigation algorithm
degrades and can only achieve 800 m position error and 60 m/s velocity error with
the same simulation condition. It is interesting to note that the performance of
DEKF-based integrated navigation is superior to the results reported in Chen (2013),
and slightly inferior to the results depicted in Li and Peng (2011) even if a larger
uncertain disturbance in Mars atmospheric density is included in our simulation.
Based on the simulation results and analysis mentioned above, it can be safely
concluded that DEKF-based integrated navigation can efficiently reduce the
sensitivity of state variable with respect to uncertainties in the dynamics system and
significantly improve the accuracy of state estimation in the presence of a larger
uncertainty disturbance.
As the DEKF adopts an almost identical iterative formula as standard EKF,

it is expected that the corresponding computing time and burden should not be
significantly increased compared with EKF. In our simulation, the DEKF-based
integrated navigation algorithm takes 43 milliseconds, while the standard EKF-based
integrated navigation algorithm takes 40 milliseconds. Both simulations were run
on a laptop PC of Intel Core (TM) i7-3610QM CPU @ 2.3 GHz. It is thus clear that
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Figure 6. Total velocity estimation errors: DEKF and standard EKF-based integrated navigation.
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the computing time of the DEKF algorithm is slightly increased when compared
to that of standard EKF algorithm.

6. CONCLUSIONS. Pinpoint landing capability is the cornerstone for future
Mars sample return and Mars base missions. High-precision entry navigation is
considered as one of the key technologies required to achieve pinpoint landing. This
paper addresses the development of an innovative high-precision Mars entry
integrated navigation algorithm based on a desensitizing extended Kalman filter.
The accelerometer outputs and the radio measurements from the entry vehicle to the
orbiting beacons are adopted as the observations embedded into the navigation filter
to simultaneously perform state estimation and suppress the navigation measurement
noise. A desensitizing extended Kalman filter is adopted to effectively reduce the
adverse impacts of the uncertainty disturbance during Mars atmospheric entry and
then further improve the entry navigation accuracy. Numerical simulations show that
the DEKF-based integrated navigation algorithm developed in this paper can achieve
100 m position error and 6·5 m/s velocity error in the presence of larger uncertainties,
which can meet the navigation requirement of future pinpoint Mars landing missions.
In our current work, an approximation (∂Kk/∂ρ) is assumed to derive the

desensitised optimal gain matrix, which inevitably leads to an approximate sensitivity
rather than the true sensitivity. How to determinate the true sensitivity without this
approximation is still an open problem. At the same time, preliminary simulation
analysis shows that the relative geometry between the entry vehicle and orbiting
radio beacons has a significant impact on the integrated navigation accuracy. These
two issues lie beyond the scope of the present paper, though, and will be left for
future work.
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