
Robotica (2008) volume 26, pp. 93–98. © 2007 Cambridge University Press
doi:10.1017/S0263574707003621 Printed in the United Kingdom

Dynamic dexterity of a planar 2-DOF parallel manipulator
in a hybrid machine tool
Jun Wu∗, Jinsong Wang, Tiemin Li, Liping Wang and Liwen Guan
Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University,
Beijing 100084, P. R. China.

(Received in Final Form: May 24, 2007. First published online: July 12, 2007)

SUMMARY
This paper addresses the dynamic dexterity of a planar 2-
degree of freedom (DOF) parallel manipulator with virtual
constraint. Without simplification, the dynamic formulation
is derived by using the virtual work principle. The condition
number of the inertia matrix of the dynamic equation is
presented as a criterion to evaluate the dynamic dexterity
of a manipulator. In order to obtain the best isotropic config-
uration of the dynamic dexterity in the whole workspace, two
global performance indices, which consider the mean value
and standard deviation of the condition number of the inertia
matrix, respectively, are proposed as the objective function.
For a given set of geometrical and inertial parameters, the dy-
namic dexterity of the parallel manipulator is more isotropic
in the center than at the boundaries of the workspace.

KEYWORDS: Dynamic dexterity; Parallel manipulator;
Dynamic formulation; Condition number.

1. Introduction
The development of dynamic models for parallel manipulat-
ors is important in several different ways. First, a dynamic
model can be used for computer simulation of a robotic
system. Second, it can be used for the development of suitable
control strategies. Third, the dynamic analysis reveals all the
joint reaction forces and moments necessary for sizing the
links, bearings, and actuators. Several approaches have been
proposed for dynamic modeling.1–3 For the planar 2-degree
of freedom (DOF) parallel manipulator studied in this paper,
there are a few manipulators with identical structure.4–6 Due
to the virtual constraint architecture, in previous work, the
two links of one kinematic chain was simplified as one link in
dynamic modeling. Then, the Newton–Euler approach was
used to derive the dynamic equation. This method cannot
lead to a compact form of the dynamic equation, which is
necessary for investigating the dynamic dexterity.

It is important to consider the dynamic dexterity for
problems of manipulator design [7]. The dynamic dexterity
is an evaluation of the efficiency and easiness for performing
the required manipulator tasks. Some measures for evalu-
ating dynamic dexterity have been proposed. Dynamic mani-
pulability8–11 can deal with weights of directions using
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maximum required accelerations. However, there are some
disadvantages. For example, the directions are limited
to those coordinate axes in which the acceleration is not
required such that there is no direction, and the evaluation
standard value cannot be maintained at an invariable value
when the weights change according to the progress of
a task. In [12,13], it has been demonstrated that a new
definition of the force manipulability ellipsoid is necessary
for redundant manipulators. Asada14,15 has presented the
manipulator dynamics in the task space by constructing
a generalized inertia ellipsoid (GIE) at each point of the
workspace. The change in shape and orientation of the GIE
from point-to-point in the workspace was related to the
nonlinear forces and coupling in the manipulator dynamics.

The harmonic mean of the square singular values of the
inertia matrix can evaluate the dynamic dexterity.7 When it
becomes difficult to accelerate the end-effector in a direction,
a singular value approaches zero. Then, the measure always
has a small value, since the term of the smallest singular
value becomes dominant. However, when there is a direction
in which the end-effector can be hardly accelerated, it does
not always have bad value if it can be easily accelerated in
other directions. The smallest singular value of inertia matrix
of a manipulator can be used for the evaluation when the
dexterity in the hardest direction is considered.16 However,
the dynamic dexterity is not considered in all directions.

In this paper, utilizing the virtual work principle, the
dynamic model of a planar 2-DOF parallel manipulator
with virtual constraint is derived. Based on the relationship
between the actuated joint forces and the acceleration
of the moving platform, the condition number of inertia
matrix of dynamic equation is proposed for evaluating the
dynamic dexterity of a manipulator. Furthermore, two global
conditioning indices are developed. As a result, the dynamic
dexterity of the planar parallel manipulator is more isotropic
in the center than at the boundaries of the workspace.

2. Structure Description and Kinematic Analysis

2.1. Structure description of the hybrid machine tool
The hybrid machine tool with five DOFs is designed to
machine huge blades and guide vanes of hydraulic turbine
generator sets. Since the machine tool is very large, the
stiffness will be low if the conventional serial structure
is employed. Thus, a parallel manipulator is adopted. By
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Fig. 1. Prototype of the hybrid machine tool.

Fig. 2. The kinematic model.

combining the parallel manipulator with a feed worktable
and a 2-DOF rotating head, the machine tool is created, as
shown in Fig. 1. In this paper, we mainly study the dynamic
dexterity of the parallel manipulator.

2.2. Structure description of the parallel manipulator
As shown in Fig. 2, the parallel manipulator is composed of a
gantry frame, a moving platform, two active sliders, and two
kinematic chains. Each chain consists of a parallelogram. The
parallel manipulator is virtually constraint, since one of the
four links can be removed without affecting the kinematics
of the manipulator. In order to improve the loading and
accelerating capability of servomotors, counterweights P1

and P2 (see Fig. 2) are connected to sliders E1D1 and E2D2,
respectively. Sliders E1D1 and E2D2 drive the two kinematic
chains when they slide along the vertical guide ways; and the
sliders are driven by the servomotors via leads screw. Thus,
the moving platform possesses a 2-DOF translational moving
capability in a plane.

2.3. Inverse kinematics
In the practical application, the planar parallel manipulator is
a subpart of a hybrid machine tool. Thus, the base coordinate
system O–XY shown in Fig. 2 is identical with the real
machine coordinate system of the hybrid machine tool such

that the kinematic model can be applied directly into the
control system. A moving coordinate system O ′–x ′y ′, which
is parallel to O–XY is fixed at the center of the moving
platform. Let the position vector of the origin O ′ be rO ′ =
[x y ]T in the base coordinate system; and the position vectors
of point Ai and Bi (i = 1, 2) can be expressed as

rAi = [xAi yAi]T = r ′
O + r ′

Ai, i = 1, 2 (1)

rBi = [xBi yBi]T = r ′
O + r ′

Bi, i = 1, 2 (2)

where r ′
Ai and r ′

Bi are the position vectors of points Ai

and Bi in the coordinate system O ′–x ′y ′, and r ′
A1 =

[−r − h]T, r ′
A2 = [r − h]T, r ′

B1 = [−rh]T, r ′
B2 = [r h]T and

h and r are the half of the height and width of the moving
platform, respectively.

According to Fig. 2, the following equations can be
obtained.

sin βi = xAi − xDi

l
, cos βi = yDi − yAi

l
, i = 1, 2 (3)

where l is the length of the link, βi is the angle between link
AiDi and the vertical axis parallel to the Y -axis, 0 ≤ β1 ≤ π

and −π ≤ β2 ≤ 0.
From Eq. (3), the inverse kinematic solutions of the

manipulator can be written as

q1 = yD1 = y − h ±
√

l2 − (x − r + R)2 (4a)

q2 = yD2 = y − h ±
√

l2 − (x + r − R)2. (4b)

It can be concluded that the singularity occurs when one of
the four links is in a horizontal position and/or one link of the
kinematic chain is parallel to one link of the other chain. In
the practical application, the singularity should be avoided.
To avoid the singularity, it is obvious that 0 < |βi | < π

2 . Thus,
for the configuration shown in Fig. 2, the “±” of Eq. (4)
should be ‘+’.

2.4. Jacobian matrix
Taking the time derivative of Eq. (3) leads to

β̇i = ẋ/(l cos βi) (5)

q̇i = ẏ − tan βi · ẋ = J i[ẋ ẏ]T (6)

where J i = [− tan βi 1].
Equation (6) can be rewritten as

q̇ = J ṗ (7)

where q̇ = [q̇1 q̇2]T , ṗ = [ẋ ẏ]T is the velocity of the moving
platform, J is the Jacobian matrix, and J = [ JT

1 JT
2 ]T .

2.5. Partial velocity matrix and partial angular
velocity matrix
In order to obtain a more compact form of the dynamic
model, the virtual work principle is employed to derive the
dynamic model. Thus, the partial velocity and partial angular
velocity matrices, which are used in dynamic modeling,
should be determined first. To find the partial velocity matrix,
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a pivotal point should be selected to have the simplest form
of velocity such that the determination of partial velocity
matrix can be most efficient. For example, the point Di is
selected as the pivotal point of slider EiDi and link AiDi ,
and Ei is the pivotal point of link BiEi . The mass centers
of the counterweight and the moving platform are regarded
as their pivotal points. Then, the partial velocity matrix of
each pivotal point and partial angular velocity matrix of each
moving part can be computed, respectively.

Since the slider has only the translational capability, the
partial angular velocity matrix can be expressed as

Gi1 = 0. (8)

According to Eq. (6), the partial velocity matrix of point Di

is given by

H i1 = [0 1]T J i . (9)

Based on Eq. (5), the partial angular velocity matrix of link
AiDi and partial velocity matrix of point Di can be written
as

Gi2 =
[

1

cos βi · l 0
]

(10)

H i2 = H i1. (11)

Due to the parallelogram of each kinematic chain, the motion
of link BiEi is the same as that of link AiDi . Thus, the partial
velocity matrix of point Ei and the partial angular velocity
matrix of link BiEi are the same as those of point Di and
link AiDi . So that

Gi3 = Gi2, H i3 = H i2. (12)

Since the counterweight is connected to the slider, the
velocity of the counterweight is negative of that of the slider.
Then, based on Eq. (6), the partial angular velocity matrix and
partial velocity matrix of the mass center of the counterweight
can be expressed, respectively, as

Gi4 = 0, H i4 = [ 0 −1 ]T J i . (13)

Considering that the moving platform cannot rotate, the
partial angular velocity matrix of the moving platform and
partial velocity matrix of point O ′ are given by

GN = 0 (14)

HN =
[

1 0
0 1

]
. (15)

3. Dynamic Modeling Based on Virtual Work Principle

3.1. Acceleration analysis
Taking the time derivative of Eqs. (5) and (6) leads to

β̈i = ẍ

l cos βi

+ ẋ2 sin βi

l2 cos3 βi

(16)

q̈i = ÿ − sin βi

cos βi

ẍ − ẋ2 sin2 βi

l cos3 βi

− β̇2
i l cos βi. (17)

Thus, the accelerations of point Ei and Di are determined by

aEi = aDi = [0 1]Tq̈i . (18)

3.2. Inertial forces and moments of moving parts
Utilizing the Newton–Euler formulation, the inertial force
and moment of each moving part about its pivotal point can
be determined. Here, we denote that mi1, mi2, mi3, mi4 and
mN are the masses of the slider, links AiDi and BiEi , the
counterweight and the moving platform, respectively, g is
the gravitational acceleration vector and g = [0 −9.8]T.

The inertial force and moment of the slider about point Ei

can be expressed as

Fi1 =−mi1(aEi − g)= −mi1

[
0

ÿ − tan βiẍ

]
+F̃i1 (19)

Mi1 = 0. (20)

where

F̃i1 = mi1

⎡
⎣ 0

ẋ2 sin2 βi

l cos3 βi

+ β̇2
i l cos βi

⎤
⎦ + mi1 g.

The inertial force and moment of link AiDi about point Di

can be expressed as

Fi2=

−mi2

(
aDi + si2β̈i E

[
sinβi

− cosβi

]
− si2β̇

2
i

[
sinβi

−cosβi

]
− g

)

= −mi2

[
si2ẍ/ l

ÿ − tan βiẍ + si2/l · tan βiẍ

]
+ F̃i2 (21)

Mi2 = −β̈iIi2 + mi2si2[sinβi−cosβi]E(aDi − g)

= mi2si2 sin2 βi − Ii2

l cos βi

ẍ − mi2si2 sin βiÿ + M̃i2 (22)

where

E =
[

0 −1
1 0

]
,

F̃i2 = mi2

[
0

ẋ2 sin2 βi/(l cos3 βi) + β̇2
i l cos βi

]
+ mi2 g

+ mi2si2β̇
2
i

[
sinβi

−cosβi

]
− mi2si2

ẋ2 sin βi

l2 cos3 βi

[
sinβi

−cosβi

]

M̃i2 = mi2si2l sin2 βi − Ii2 sin2 βi

l2 cos3 βi

ẋ2

+ mi2si2β
2
i l cos βi − 9.8 · mi2si2,

aDi is the acceleration of point Di , si2 is the distance between
the mass center of link AiDi and point Di , and Ii2 is the
moment of inertia of link AiDi about point Di .

Since the motion of link BiEi is the same as that of link
AiDi , the inertial force and moment of link BiEi are the
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same as those of link AiDi . Thus, we have

Fi3 = Fi2 (23)

Mi3 = Mi2 (24)

The inertial force and moment of the counterweight about its
mass center can be written as

Fi4 = −mi4 (aP i − g) = mi4

[
0

ÿ − tan β i ẍ

]
+ F̃i4 (25)

Mi4 = 0 (26)

where

F̃i4 = mi4

⎡
⎣ 0

−β̇2
i l cos βi − ẋ2 sin2 βi

(l cos3 βi) tan ẍ

⎤
⎦ +mi4g,

aP i is the acceleration of the counterweight, and it is the
negative of aEi .

The inertial force and moment of the moving platform
about point O ′ can be expressed as

FN = −mN (a − g) (27)

MN = 0 (28)

where a is the acceleration of origin O ′ and a = [ẍ ÿ]T.

3.3. Dynamic model
Based on the virtual work principle, the dynamic formulation
of the parallel manipulator can be expressed as

JTτ +
2∑

i=1

4∑
j=1

[
HT

ij GT
ij

] [
Fij

Mij

]
+ [

HT
N GT

N

] [
FN

MN

]
= 0

(29)

where τ = [F1 F2]T, and F1, F2 are the driving forces that
act on sliders E1D1 and E2D2, respectively. Equation (29)
can be rewritten as

τ = J−T M (a) a + N (30)

where

M (a) = −
2∑

i=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−mi1

[
tan2 βi − tan βi

− tan βi 1

]

−2mi2

[
tan2 βi (1 − si2/l) − tan βi

tan βisi2/l − tan βi 1

]

+2

⎡
⎣ 0 0

mi2si2l sin βi − Ii2

l cos2 βi

−mi2si2

cos βi

⎤
⎦

+mi4

[− tan2 βi tan βi

tan βi −1

]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ mN

[
1 0
0 1

]

N = −
2∑

i=1

⎛
⎜⎜⎜⎝

[
0 − tan βi

0 1

]
F̃i1 + 2

[
0 − tan βi

0 1

]
F̃i2

+2

[
1/(l cos βi)

0

]
M̃i2 +

[
0 tan βi

0 −1

]
F̃i4

⎞
⎟⎟⎟⎠,

− mN g

and N consists of the centrifugal, coriolis, and gravitational
forces.

4. Dynamic Dexterity Evaluation
Conventionally, the generalized inertia ellipsoid has been
proposed for evaluating the dynamic performance of a
manipulator. As addressed in [8], the dynamic performance
of a high-speed manipulator can be represented by the degree
of arbitrariness of changing the acceleration on the actuated
joint force. Thus, rewriting Eq. (30) in a unified form by
neglecting N , leads to

τ ≈ J−TM(a)a (31)

where J−TM(a) is the inertia matrix.
Based on the generalized inertia ellipsoid, it can be

concluded that the moving platform can be easily accelerated
in the direction of major axis of this ellipsoid. In the direction
of minor axis, it can be hardly accelerated. If the lengths of
the principal axes are the same, the accelerating performance
is isotropic. Namely, the dynamic dexterity is best. The
difference between the lengths of major and minor axes
stands for the anisotropy of the accelerating performance.

In the dynamic optimum design, if the issue that the
accelerating/decelerating capabilities along all directions
should be more isotropic is considered, the condition number
of the inertia matrix of the dynamic equation, i.e., κD, is
proposed to quantify the dynamic dexterity of manipulators.
κD is defined as

1 ≤ κD = σ2

σ1
≤ ∞ (32)

where σ1 and σ2 are the minimum and maximum singular
values of the inertia matrix with a given posture.

The dynamic condition number κD can evaluate the
dynamic dexterity when the difference between the easiest
direction and the hardest direction is the main issue.
Furthermore, considering that κD varies in different con-
figurations of the manipulator, one of the two global indices,
similar to that introduced in,17,18 is proposed as

η̄D =
∫
Wt

κDdW t∫
Wt

dWt
(33)

where Wt is the task workspace of a manipulator in which
the dynamic dexterity is evaluated. The geometrical meaning
of η̄D can be interpreted as the mean value of κD in Wt . Due
to its incapability of reflecting the fluctuation of κD, another
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conditioning index is introduced

η̃D =
√∫

Wt
(κD − η̄D)2 dW t∫

Wt
dWt

(34)

where η̃D is the standard deviation of κD with respect to
its mean value η̄D in Wt . It is certain that η̃D should be
minimized for achieving a better dynamic dexterity.

In dynamic design, the design parameters (kinematic
parameters, mass distribution, etc.) are optimized by
minimizing the objective function η̄D or η̃D such that the
dynamic dexterity is more isotropic.

5. Numerical Simulation
As an example to investigate the dynamic dexterity,
the geometrical and inertial parameters of the parallel
manipulator are given in Table I.

The task workspace of the manipulator is a rectangle with
width 3 m and height 1.8 m. The distance between the lower
boundary of the task workspace and the Y -axis is 1 m. Let
the moving platform move from the point with the coordinate
(−1.5 m, 2 m) to another point with the coordinate (1.5 m,
2 m). The driving forces are shown in Fig. 3. It can be seen
that driving forces F1 and F2 acting on sliders E1D1 and
E2D2 are symmetrical with the Y -axis when the moving
platform moves along a symmetrical trajectory about the
Y -axis.

Figure 4 shows the generalized inertia ellipsoid. The
moving platform can possess a maximum (minimum)

Table I. The geometrical and inertial parameters.

Parameter Value Parameter Value

m11 2836 kg m24 9672 kg
m21 2836 kg mN 5000 kg
m12 2168 kg r 0.55 m
m22 2168 kg R 2.342 m
m13 2168 kg l 3.55 m
m23 2168 kg I12 9107.4 kg · m2

m14 9672 kg I22 9107.4 kg · m2

Fig. 3. The driving forces.

Fig. 4. Disrtibution of generalized inertia ellipsoid.

Fig. 5. Condition number of the inertia matrix.

acceleration in the direction of the major (minor) axis of
the ellipsoid. The larger is the area of ellipsoid, the larger
is the output acceleration. From Fig. 4, it can be seen
that the distribution of the generalized inertia ellipsoid are
symmetrical with respect to the Y -axis. This means that
the accelerating capability is symmetrical about the Y -axis.
Moreover, the accelerating capability of the point in the Y -
axis is maximum along the Y -axis direction and minimum
along the X-axis direction.

Figure 5 is the condition number of the inertia matrix in
the dynamic equation of the 2-DOF parallel manipulator in
the workspace. It can be seen that the condition number
of the inertia matrix is also symmetrical about the Y -axis;
and the dynamic dexterity is more isotropic in the center
than at the boundaries of the workspace. In the Y -axis, κD is
smallest and the dynamic dexterity is most isotropic.

Furthermore, in order to investigate the validity of the
proposed performance indices κD and η̄D for evaluating
the dynamic dexterity, the virtual constrained link E1B1

is disassembled. The dynamic dexterity of the manipulator
without link E1B1 is shown in Fig. 6. It can be seen that the
condition number of the inertia matrix of the manipulator
without link E1B1 is not symmetrical about the Y -axis any
more. The isotropy of dynamic dexterity of the manipulator
without link E1B1 is worse than that of the manipulator
discussed in this paper.
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Fig. 6. Condition number of the inertia matrix with link E1B1
omitted.

6. Conclusions
This paper derives the dynamic formulation of a planar
2-DOF parallel manipulator and investigates the dynamic
dexterity. The conclusions are drawn as follows:

(i) Without simplification, the dynamic equation of the
parallel manipulator with virtual constraint is obtained by
using the virtual work principle.

(ii) The condition number of the inertia matrix of dynamic
equation is presented as a criterion to evaluate the dynamic
dexterity of a manipulator. In order to obtain the maximum
isotropy of dynamic dexterity in the workspace, η̄D and
η̃D are proposed in terms of the mean value and standard
deviation of κD .

(iii) The accelerating capability of the parallel manipulator
is symmetrical with respect to the Y -axis, and the accelerating
capability of the point in the Y -axis is maximum along the
Y -axis direction and minimum along the X-axis direction.
The dynamic condition number of the inertia matrix is also
symmetrical about the Y -axis; and the dynamic dexterity is
more isotropic in the center than at the boundaries of the
workspace.
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