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THE DIOPHANTINE PROBLEM FOR ADDITION AND DIVISIBILITY
OVER SUBRINGS OF THE RATIONALS

LEONIDAS CERDA-ROMEROAND CARLOSMARTINEZ-RANERO

Abstract. It is shown that the positive existential theory of the structure (Z[S−1]; =, 0, 1,+, |), where
S is a nonempty finite set of prime numbers, is undecidable. This result should be put in contrast with the
fact that the positive existential theory of (Z; =, 0, 1,+, |) is decidable.

§1. Introduction. Hilbert’s Tenth Problem (referred to as “H10” in the sequel)
asks for the following: Given a polynomial equation (in several variables) and
with coefficients in Z, find a process according to which it can be determined in
a finite number of steps whether the equation is solvable in Z. Nowadays, one
would ask whether the positive existential theory of the structure (Z; =, 0, 1,+, ·)
is or not decidable. Building on works by M. Davis, H. Putnam and J. Robinson,
Y.Matiyasevich gave in 1970 a negative answer to H10 (see [2]). Using J. Robinson’s
work [12] and Matiyasevich’s result for H10 over Z, one can show that, if S is a
finite set of primes, then the Hilbert’s Tenth problem over Z[S−1] has a negative
answer (see [13, p. 240] or [11, p. 982]). It is not known whether the analogue of
H10 for the field Q of rational numbers is decidable or not.
In the late seventies, L. Lipshitz [5], and in parallel A. P. Bel’tyukov [1], showed
that the positive existential theory of the structure (Z; =, 0, 1,+, |) is decidable
(where a | b is interpreted as “a divides b”). Namely, there is an algorithm for
deciding whether or not an arbitrary sentence of the form

∃x1 · · · ∃xn
k∧
i=1

fi(x1, . . . , xn) | gi(x1, . . . , xn),

where the fi and gi are linear polynomials with integer coefficients, is true
over Z. Note that the full theory is undecidable, essentially by techniques due to
J. Robinson [12].
On the other hand, it is well known that the positive existential theory of the struc-
ture (Q; 0, 1,+, |) is decidable. It is worthmentioning that the structure (Q; 0, 1,+, |)
is bi-interpretable with the structure (Q; 0, 1,+, �=) (see [7, Theorem 3.1.9]). In view
of the results above, the following question arises naturally.
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THE DIOPHANTINE PROBLEM FOR ADDITION ANDDIVISIBILITY 1141

Question 1.1. For which subrings A ⊆ Q is the positive existential theory of the
structure (A; =, 0, 1,+, |) decidable?
It is well-known that the subrings of Q are of the form Z[S−1], where S is a
set of prime numbers. Let S denote a set of prime numbers and let Z denote the
structure (Z[S−1]; =, 0, 1,+, |). Note that analogues of Lipshitz’s result on addition
and divisibility have been obtained for several rings of functions (for example for
polynomial rings over a decidable field—see [9], and for some richer structures—see
[14]), so one may ask the analogue of Question 1.1 for all those rings.
Our main result is the following:

Theorem 1.2. If S is a nonempty finite set of prime numbers, then multiplication
is positive existentially definable in Z . In particular, the positive existential theory of
the structure Z is undecidable.
At first sight, it is slightly surprising that inverting a single prime makes a differ-
ence about the decidability of the structure. Nevertheless, inverting just one prime
makes the group of units infinite. Moreover, our result can be contrasted with the
following result of J. Denef (see [3]) where he shows that the positive existential
theory of the structure (Z; 0, 1,+, |p) is undecidable, where the symbol “|p” has the
following meaning for a fixed integer p > 1:

x |p y if and only if there exist z, i ∈ Z such that y = xzpi .

Observe that the predicate |p is, in disguise, the divisibility in Z[ 1p ] restricted to Z.
The main difficulties in adapting the arguments of J. Denef to our case come
from the fact that our structure is not discrete. Nevertheless, we follow the classical
strategywhich consists of gradually defining themultiplication: firstwe square units,
then wemultiply a unit by an arbitrary element of the ring, and finally we define the
squaring function. Multiplication is definable from the squaring function thanks to
the identity (x + y)2 = x2 + 2xy + y2.
We finish the introduction with a few questions that naturally arise from
Theorem 1.2.
B. Poonen showed [11] that there exist sets S of primes of natural density 1 such
that Z has a diophantine model in Z[S−1] over the language of rings. This leads to
the following question.

Question 1.3. Is there a set S consisting of infinitely many primes such that
multiplication is positive existentially definable in the structure Z?
In [4], L. Lipshitz shows that if O is the ring of integers of a number field K ,
then multiplication can be recovered in a positive existential way from addition and
divisibility if and only if K is not an imaginary quadratic extension of Q. So more
generally, we may ask:

Question 1.4. For which rings of algebraic S-integers is multiplication positive
existentially definable from addition and divisibility?

§2. Undecidability of the structure Z . We recall that Z is by definition the struc-
ture (Z[S−1]; =, 0, 1,+, |). In this section we prove Theorem 1.2 following the
strategy described above. Before proceeding any further we need to introduce some
notation.
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Let S = {p1, . . . , pM} be a finite (nonempty) set of prime numbers. Consider the
first order language with equality L = {0, 1,+, |}, where the symbols 0, 1, + and |
are interpreted as usual.

Notation 2.1. (1) as(x, y) stands for the formula x|y ∧ y|x (namely, x and y
are associate).

(2) x ± y | w ± z stands for
x + y | w + z ∧ x − y | w − z.

(3) If � = (�1, . . . , �M ) is a vector of natural numbers, then p� will denote the
product

M∏
i=1

p
�i
i .

(4) We may write v ≡ w (mod l) instead of l | v − w in some formulas.
Definition 2.2. Let ordp x be the p-adic order of x ∈ Q. We define a norm
function N : Z[S−1] −→ Z by

x 	−→ x
∏
p
− ordpi x
i

if x �= 0, and N(0) = 0.
We observe that the function N satisfies the following conditions:

• N(xy) = N(x)N(y).
• N(x) = 0 if only if x = 0.
• x | y if only if N(x) |Z N(y), where |Z means “divisibility in Z”, namely, there
exists k ∈ Z such that N(y) = kN(x).

• The norm of a unit is ±1.
From nowon, whenever it is clear from the context, we use the “|” symbol to indicate
divisibility both in Z[S−1] and in Z.
We first show that the relation “different from 0” is positive existentially defin-
able in Z . In order to do this we need the following result of F. Pappalardi (see
Theorem 3.1 [8]): Let p1, . . . , pM be as above. For all the primes q different from
any of p1, . . . , pM , we consider the quotient map � : Z → Z/qZ = Fq , since all the
p′i s map into units (by the universal property of localizations) the map � can be
extended to a map � : Z[S−1]→ Fq . Let Γ denote the unit group of Z[S−1] and let
Γq = �(Γ), which can be interpreted as the reduction of Γ modulo q. We denote by
NΓ(x) the number of primes q ≤ x such that q is not equal to any of the p1, . . . , pM
and F×

q = Γq .

Theorem 2.3 (Pappalardi). There exist constants cΓ and �Γ, depending only on Γ,
such that

NΓ(x) ≤ �Γ xlog x + cΓ
x

(log logx)M log x
.

Moreover, �Γ < 1 and it is explicitly computed in [8].

Lemma 2.4. There exists a prime q not in S, and an integer b ∈ {1, . . . , q − 1},
such that qx + b is never a unit as x varies in Z[S−1].
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Proof. We recall that the Prime Number Theorem tells us that

�(x) ∼ x

log x
,

where � is the prime-counting function. From Theorem 2.3 and the Prime Number
Theorem, we can find a prime number q /∈ S so that Γq �= F×

q since

NΓ(x) ≤
(
�Γ + cΓ

1
(log log x)M

)
x

log x
and �Γ < 1.

Choose b to be the residuemodulo q of an element ofF×
q \Γq . It is straightforward

to check that q and b are as required. �
Lemma 2.5. The relation “ �=” is positive existentially definable in the structure Z .
Proof. Let q and b be integers given by Lemma 2.4. The formula

� �=(y) : ∃A,B, x(y | A ∧ qx + b | B ∧A+ B = 1)
defines the relation “y �= 0” in Z .
First note that the formula � �=(y) translates to “There exist r, s, x ∈ Z[S−1] such
that ry + s(qx + b) = 1” in Z .
If y = 0, then the formula is false, since by Lemma 2.4, qx + b is never a unit
in Z[S−1].
Assume y �= 0. Since q and b are relatively prime, by Dirichlet’s theorem, there
exists x such that qx + b is a prime number, and furthermore coprime with N(y).
By Bézout’s identity, there are integers r′ and s such that

r′N(y) + s(qx + b) = 1.

Since y = N(y)u, where u is a unit, we have

r′

u
y + s(qx + b) = 1. �

Remark 2.6. Lemma 2.5 allows us to write in our formulas expressions of the
form x �= y.
Lemma 2.7. Let x, y, z, and t be arbitrary elements of Z[S−1]. If for all i such
that 1 ≤ i ≤ M , we have ordpi x �= ordpi y, ordpi z �= ordpi t and, furthermore
as(x ± y, z ± t) holds in Z , then either xt = yz or xz = yt.
Proof. Let u1 and u2 be units such that

x + y = u1(z + t) and x − y = u2(z − t). (1)

Observe that since ordpi x �= ordpi y, we have
ordpi (x + y) = min{ordpi x,ordpi y} = ordpi (x − y)

and since ordpi z �= ordpi t, we have
ordpi (z + t) = min{ordpi z,ordpi t} = ordpi (z − t)

for all 1 ≤ i ≤M . Thus, for each 1 ≤ i ≤M , we have{
ordpi u1 + min{ordpi z,ordpi t} = min{ordpi x,ordpi y}
ordpi u2 + min{ordpi z,ordpi t} = min{ordpi x,ordpi y}
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so that ordpi u1 = ordpi u2 (note that the hypothesis of the Lemma implies that all
the terms in these equalities are actual integers). This implies that either u1 = u2 or
u1 = −u2. We proceed by cases.
If u1 = u2, then from Equation (1), we have x + y = u1z + u1t and x − y =
u1z − u1t. By adding and subtracting these equations, we obtain x = u1z and
y = u1t, hence xt = yz.
If u1 = −u2, then from Equation (1), we have x + y = u1z + u1t and x − y =

−u1z + u1t. By adding and subtracting these equations again, we obtain x = u1t
and y = u1z, hence xz = yt. �
The next Lemma is a first step to define the squaring function among units
of Z[S−1].
Lemma 2.8. Let x, y be units in Z[S−1] with x �= ±1 and y �= 1. If for all i such
that 1 ≤ i ≤M , we have ordpi x �= ordpi y, then y = x2 if and only if as(x±1, y±x)
holds in Z .
Proof. If y = x2 then trivially as(x ± 1, y ± x) holds in Z (since x is a unit).
Suppose that as(x ± 1, y ± x) is true in Z[S−1]. By Lemma 2.7, either y = x2 or
xy = x. Since x is a unit and y �= 1, we conclude that y = x2. �
Proposition 2.9. The set

SQu = {(x, y) : x, y are units in Z[S−1] and y = x2}
is positive existentially definable in the structure Z .
Proof. Write I = {0, 1, 2, 3}M . The formula

Squ(x, y) : x | 1 ∧ y | 1 ∧
∧
�∈I

as(p�x ± 1, p2�y ± p�x),

where � = (�1, . . . , �M ), defines the set SQu.
Assume that Squ(x, y) holds. In particular, the formula

as(p�x ± 1, p2�y ± p�x)
holds for � being such that

�i ∈ {0, 1, 2, 3} \
{
− ordpi x,−

1
2
ordpi y,ordpi x − ordpi y

}
for each i . We have

• ordpi p�x = �i + ordpi x �= 0,
• ordpi p2�y = 2�i + ordpi y �= 0 and
• ordpi p�x − ordpi p2�y = �i + ordpi x − 2�i − ordpi y �= 0,
so that p�x and p2�y satisfy the hypothesis of Lemma 2.8. We conclude that
y = x2. �
Remark 2.10. Proposition 2.9 allows us to write in our formulas expressions of
the form x2, x4, . . . whenever x is a unit.

The next Lemma is the first step to show that multiplication between units and
arbitrary elements is definable. Write �(x, y, z) for the formula

as(y ± 1, z ± x) ∧ as(y ± x, z ± x2).

https://doi.org/10.1017/jsl.2016.64 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2016.64


THE DIOPHANTINE PROBLEM FOR ADDITION ANDDIVISIBILITY 1145

Lemma 2.11. Let x be a unit in Z[S−1] with x �= ±1. If for all i such that
1 ≤ i ≤M , we have ordpi y �= 0, ordpi z �= ordpi x, ordpi y �= ordpi x and ordpi z �=
ordpi x

2, then z = xy if and only if Z satisfies �(x, y, z).
Proof. Assume that the formula �(x, y, z) holds in Z . By Lemma 2.7, since

as(y ± 1, z ± x) holds, we have that either z = xy or x = yz. Again by Lemma
2.7, since as(y ± x, z ± x2) holds, we have that either z = xy or x3 = yz. So the
only case in which we may have z �= xy is when x = yz and x3 = yz, which would
imply that x = ±1. �
Proposition 2.12. The set

P = {(x, y, z) : x is a unit and z = xy}
is positive existentially definable in the structure Z .
Proof. Write I = {0, 1, 2, 3}M . The formula

Pro(x, y, z) : x | 1 ∧
∧

(�,�)∈I×I
�(p�x, p�y, p�+� z)

defines the set P. Note that if z = xy, then Pro(x, y, x) is trivially satisfied for
(x, y, z) ∈ P, since p�x is a unit. We now prove the converse. We choose �i such that

�i ∈ {0, 1, 2, 3} \ {− ordpi y,ordpi x − ordpi z}.
Once �i has been chosen, we choose �i such that

�i ∈ {0, 1, 2, 3} \ {− ordpi x, �i + ordpi y − ordpi x, �i + ordpi z − 2 ordpi x}.
From �i �= − ordpi x we have p�x �= ±1. In addition for each i , we have
• ordpi p�y = �i + ordpi y �= 0,
• ordpi p�+� z − ordpi p�x = �i + ordpi z − ordpi x �= 0,
• ordpi p�y − ordpi p�x = �i + ordpi y − �i − ordpi x �= 0 and
• ordpi p�+� z − ordpi p2�x2 = �i + ordpi z − �i − 2 ordpi x �= 0,
so thatp�x, p�y andp�+� z satisfy the hypothesis of Lemma 2.11. Since we assumed
that Pro(x, y, z) holds, in particular �(p�x, p�y, p�+� z) holds, so we can conclude
that z = xy. �
Remark 2.13. Proposition 2.12 allows us to write in our formulas polynomial
expressions with coefficients in Z whenever the variable is a unit. For example,
we can write the term a0 + a1x + a2x2 + a3x3 as follows:

Pro(x, x, y) ∧ Pro(x, y, z) ∧w = a0 + a1x + a2y + a3z,
In particular, we can write expressions of the form (x + 1)n and (x + 1)n whenever
x is a unit.

Lemma 2.14. Given x1, . . . , xn �= 0 in S−1Z, there exists a unit u �= 1 such that
each xi divides u − 1.
Proof. Choose any prime q in S and consider

u = q lcm{ϕ(|N (xi)|) : i=1,...,n},

where “lcm” stands for “least common multiple”. Since N(xi ) divides

qϕ(|N (xi)|) − 1
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in Z (by Euler’s theorem—note that N(xi ) is prime with q by definition of the
norm), also it divides u − 1, hence

xi = N(xi )
∏
p
ordpj xi
j

divides u − 1 in Z[S−1]. �
The formulas in the next Lemma are inspired by the ones in Lemma 3 of [10]. The
adjustment that is needed is due to the fact that we are dealing with a nondiscrete
structure.
In the following formulas, we will write u instead of (u1, u2, u3, u4). Let I :=

{0, 1}M . The following formula we will allow define the quadratic function in the
structure Z .

ϕ(x, y) : ∃u(
4∧
i=1

ui | 1 ∧
3∧
i=1

ui �= 1 ∧ ϕ0(x, y, u)),

where ϕ0(x, y, u) is the conjunction of the following formulas:

ϕ1(x, u1) :
∧
�∈I
p�x ± 1 | u1 − 1,

ϕ2(y, u1) :
∧
�∈I
p�y ± 1 | u1 − 1,

ϕ3(u1) : p1 . . . pM + 1 | u1 − 1,
ϕ4(u1, u2) : (u1 − 1)8M | u2 − 1,
ϕ5(u2, u3) : u2 − 1 | u3 − 1,

ϕ6(x, u2, u3, u4) :
u3 − 1
u2 − 1u4 ≡ x (mod u2 − 1),

ϕ7(y, u2, u3, u4) :
(
u3 − 1
u2 − 1u4

)2
≡ y (mod u2 − 1).

Remark 2.15. It is worth mentioning that in the formulasϕ6 andϕ7 we are using
(abusing of) the congruence notation in order to make the forthcoming arguments
more transparent.
However, for sake of completness we spell out, in gory details, the formula ϕ6.
First note that u3−1u2−1 = z is equivalent to

∃z′(u3 − 1 = z′ − z ∧ Pro(u2, z, z′)).
Hence, ϕ6(x, u2, u3, u4) can be written as:

∃z′, z′′(u2 − 1|z′′ − x ∧ Pro(u4, z, z′′) ∧ u3 − 1 = z′ − z ∧ Pro(u2, z, z′)).
Lemma 2.16. Let x and y in Z[S−1]. If ϕ(x, y) holds in Z , then y = x2.
Proof. Let �, � ∈ I be such that, for each 1 ≤ j ≤M , we have

ordpj p
�x �= 0 and ordpj p

�y �= 0.
Write a = N(x) and b = N(y), and for each i , αi = ordpi x and 	i = ordpi y,
so that

x = a
∏
pαii and y = b

∏
p	ii .
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Since ϕ1(x, u1) holds, we have that N(
∏
p�ii x ± 1) divides N(u1 − 1), hence

if x �= 0, then each αi is nonzero and
|N(u1 − 1)| ≥

∣∣∣N (
1± x

∏
p�ii

)∣∣∣
=

∣∣∣N (
1± a

∏
pαi+�ii

)∣∣∣
=

∣∣∣∣∣∣a
∏

αi+�i≥0
pαi+�ii ±

∏
αi+�i<0

p−αi−�ii

∣∣∣∣∣∣ .
Analogously, since ϕ2(y, u1) holds, if y �= 0, then each 	i is nonzero and we have∣∣∣∣∣∣b

∏
	i+�i≥0

p	i+�ii ±
∏
	i+�i<0

p−	i−�ii

∣∣∣∣∣∣ ≤ |N(u1 − 1)|.

Therefore, for each i such that 1 ≤ i ≤M , we have

|N(u1 − 1)| ≥

⎧⎪⎨
⎪⎩
max{|a|, |b|, p|αi |+�ii , p

|	i |+�i
i } if x �= 0 and y �= 0,

max{|b|, p|	i |+�i } if x = 0 and y �= 0,
max{|a|, p|αi |+�i } if x �= 0 and y = 0.

(2)

We prove that in all cases, we have

|N(y − x2)| < |N(u2 − 1)|. (3)

Indeed, if x and y are nonzero, then we have

|N(y − x2)| =
∣∣∣N (

b
∏
p	ii − a2

∏
p2αii

)∣∣∣
=

∣∣∣N (
b
∏
p	i−2αii − a2

)∣∣∣
=

∣∣∣∣∣∣N
⎛
⎝b ∏

	i−2αi≥0
p	i−2αii − a2

∏
	i−2αi<0

p2αi−	ii

⎞
⎠
∣∣∣∣∣∣

≤
∣∣∣∣∣∣b

∏
	i−2αi≥0

p	i−2αii − a2
∏

	i−2αi<0
p2αi−	ii

∣∣∣∣∣∣
≤ 2a2|b|

M∏
i=1

p
2|αi |+|	i |
i

< |N(u1 − 1)|8M
≤ |N(u2 − 1)|,

where the strict inequality is justified by Equation (2) and the fact that

|N(u1 − 1)| ≥ 3
(since ϕ3(u1) holds), and the last inequality by the fact that ϕ4(u1, u2) holds.
Similarly, if x = 0 and y �= 0, we have

|N(y)| = |b| < |N(u1 − 1)|8M ≤ |N(u2 − 1)|,
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and if x �= 0 and y = 0, then
|N(x2)| = a2 < |N(u1 − 1)|8M ≤ |N(u2 − 1)|.

On the other hand, since ϕ6(x, u2, u3, u4) and ϕ7(y, u2, u3, u4) hold, u2− 1 divides
y − x2. Hence, if y − x2 �= 0, then

|N(y − x2)| ≥ |N(u2 − 1)|,
which contradicts the strict inequality (3). �
Lemma 2.17. The set

SQ = {(x, y) : x, y are in Z[S−1] and y = x2}
is positive existentially definable in the structure Z .
Proof. We claim that the formula

Sq(x, y) : (x = 0 ∧ y = 0) ∨
∨
�∈I
(x = ±p−� ∧ y = p−2�) ∨ ϕ(x, y),

defines the set SQ. Indeed, if the formula holds, then it is immediate from
Lemma 2.16 that y = x2.
Suppose that (x, y) ∈ SQ. If x = 0 or x = ±p−� for some � ∈ I , then Sq(x, y)
is trivially satisfied. Hence we can suppose x �= 0 and x �= ±p−� for every � ∈ I .
For each � ∈ I , since x �= ±p−�, we have p�x±1 �= 0.We prove that p�y±1 �= 0
for every �. If p�y = ±1, then p�x2 = ±1, hence �i + 2ordpi x = 0, so that �i is
even, namely �i = 0 (since �i ∈ {0, 1}). So we have x = ±1, which contradicts our
hypothesis on x.
From Lemma 2.14, there is a unit u1 distinct from 1 such that the formulas
ϕ1(x, u1), ϕ2(y, u1) and ϕ3(u1) are satisfied. Because u1 − 1 is not zero we deduce,
fromLemma 2.14 again, that there is a unit u2 different from 1 such that the formula
ϕ4(u1, u2) is satisfied. If we put

u3 = u
|N (x)|
2 ,

then u3 is different from 1 (recall that x �= 0), so that the formula ϕ5(u2, u3) is also
satisfied.
Since

u3 − 1
u2 − 1 = u

|N (x)|−1
2 + · · ·+ 1

and the right-hand side of this equality has |N(x)| summands, we deduce that
u3 − 1
u2 − 1 ≡ |N(x)| (mod u2 − 1).

If we choose

u4 =
x

N(x)
,

then the formulas ϕ6(x, u2, u3, u4) and ϕ7(y, u2, u3, u4) are satisfied. Thus, the
formula ϕ(x, y) is satisfied. �
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