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The possibility of subcritical behaviour in the geostrophic turbulence regime of rapidly
rotating thermally driven convection is explored. In this regime a non-local inverse
energy transfer may compete with the more traditional and local direct cascade. We
show that, even for control parameters for which no inverse cascade has previously
been observed, a subcritical transition towards a large-scale vortex state can occur
when the system is initialized with a vortex dipole of finite amplitude. This new
example of bistability in a turbulent flow, which may not be specific to rotating
convection, opens up new avenues for studying energy transfer in strongly anisotropic
three-dimensional flows such as atmospheric or oceanic circulations.
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1. Introduction

Turbulence in geophysical and astrophysical systems is a problem of major
importance. Three-dimensional (3D) flows favour a forward cascade, i.e., energy
flows from large to small scales, as described by the well-known Kolmogorov theory.
In contrast, two-dimensional (2D) flows exhibit an inverse energy transfer, from small
to large scales, that manifests itself in the appearance of large-scale structures in
the flow (Kraichnan 1967; Boffetta & Ecke 2012). However, many systems arising
in geophysical and astrophysical fluid dynamics fail to be fully 3D because of the
presence of strong restraints, although they are far from being 2D either. These
restraints may arise from geometrical confinement (Smith, Chasnov & Waleffe 1996;
Celani, Musacchio & Vincenzi 2010; Benavides & Alexakis 2017; Xia & Francois
2017), rapid rotation (Smith & Waleffe 1999; Pouquet & Marino 2013; Campagne
et al. 2014), strong stratification (Bartello 1995; Smith & Waleffe 2002; Oks et al.
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2017) or the presence of strong magnetic fields (Alexakis 2011; Favier et al. 2011).
The detailed nature of the energy cascade in constrained 3D flows and its applications
to geophysical fluid dynamics remain an open problem (Alexakis & Biferale 2018).

Recent numerical simulations of rapidly rotating Rayleigh–Bénard convection,
hereafter RRRBC, have shown that the turbulent state is susceptible to the evolution
of large-scale vortex (LSV) structures despite the presence of 3D fluctuations on
all scales (Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014), in
agreement with the predictions of an asymptotic description of the system valid
in the limit of vanishingly small Rossby numbers (Julien et al. 2012; Rubio et al.
2014). Together these studies reveal the presence of an efficient energy transfer
mechanism that extracts energy from small-scale 3D fluctuations and deposits it in
a box-scale barotropic (i.e. 2D) mode, bypassing the inverse energy cascade familiar
from 2D dynamics. This process operates in parallel with energy transfer to large-scale
2D modes by barotropic–barotropic interactions (Rubio et al. 2014) but dominates
all aspects of the problem. Julien et al. (2012) and Julien, Knobloch & Plumley
(2018) have suggested that the presence of the LSV introduces essential correlations
among the phases of the small-scale 3D fluctuations that facilitate direct energy
extraction from these scales by the large-scale mode, leading to a runaway that is
only arrested by additional processes omitted from the simplest problem formulation.
Such a runaway is characteristic of subcritical dynamics, where it is triggered by
finite-amplitude perturbations. The present paper is therefore devoted to a search for
such subcritical behaviour in RRRBC. We do not address the question of whether
geostrophic turbulence is itself linearly unstable to the generation of an LSV structure,
although our simulations suggest that at large enough rotation rates and large enough
Rayleigh numbers this is in fact the case. We emphasize that phase correlations are
missed in studies that focus on energy spectra alone, and that such correlations are
inevitably absent from flows driven by a prescribed small-scale force such as those
studied by Chertkov et al. (2007) and Bouchet & Simonnet (2009). In these systems
the only possible correlations are between the applied force and the resulting velocity
field. In contrast, in the present 3D system the forcing of the large-scale 2D flow can
itself be dynamically affected through the action of the LSV on the small convective
scales. The LSV observed in RRRBC may thus be a consequence of the proximity of
the flow to 2D turbulence or due to the ability of the LSV to shape the correlations
among the small-scale fluctuations that appear to drive its formation.

In the present work we provide the first evidence for subcritical dynamics in
turbulent RRRBC by demonstrating the coexistence of two numerically stable
turbulent states at identical parameter values, one with an LSV structure and one
without. Such bistability in turbulent flows is rare, although it has also been found in
rapidly rotating turbulence (Alexakis 2015; Yokoyama & Takaoka 2017), thin-layer
turbulence (van Kan & Alexakis 2019), Couette flows (Mujica & Lathrop 2006;
Zimmerman, Triana & Lathrop 2011; Huisman et al. 2014; Xia et al. 2018) and von
Kármán flows (Ravelet et al. 2004).

2. Mathematical formulation

2.1. Model and governing equations
We consider the evolution of a layer of incompressible fluid, bounded above and below
by two impenetrable, fixed-temperature, stress-free horizontal walls, a distance h apart.
The layer rotates about the z-axis, pointing vertically upwards, with a constant angular
velocity Ω =Ωez, while gravity points downwards: g=−gez. The kinematic viscosity
ν and thermal diffusivity κ are assumed to be constant.
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In the Boussinesq approximation, using the thermal diffusion time h2/κ as a unit
of time and the depth h of the layer as a unit of length, the dimensionless equations
are

1
Pr

(
∂u
∂t
+ u · ∇u

)
=−∇p−

√
Ta ez × u+ Raθ ez +∇

2u, (2.1)

∇ · u= 0, (2.2)
∂θ

∂t
+ u · ∇θ =w+∇2θ, (2.3)

where u ≡ (u, v, w) is the velocity, p is the pressure and θ is the temperature
fluctuation with respect to a linearly decreasing background temperature. The
parameters are the Rayleigh number Ra = αg1Th3/(νκ), the Taylor number
Ta = 4Ω2h4/ν2 and the Prandtl number Pr = ν/κ . These dimensionless quantities
involve α, the coefficient of thermal expansion, and 1T , the imposed temperature
difference between the two horizontal plates. For simplicity, and following earlier
studies of the formation of large-scales structures in this system, we take Pr = 1. In
the two horizontal directions, all variables are assumed to be periodic with the same
spatial period λ in both x and y directions. The boundary conditions at the upper
(z= 1) and lower (z= 0) plates are ∂zu= ∂zv =w= θ = 0.

We solve (2.1)–(2.3) using the same mixed Fourier fourth-order finite-difference
scheme as used in Favier et al. (2014). We confirm the robustness of the present
results by additionally running equivalent simulations using the fully spectral
approach of Guervilly et al. (2014) and the open-source spectral-element code
Nek5000 developed by Fischer, Lottes & Kerkemeier (2008) at the Argonne National
Laboratory.

2.2. Finite-amplitude initial conditions
In order to explore possible subcritical behaviour in turbulent RRRBC, we consider
a particular set of initial conditions. Anticipating that the non-local upscale energy
transfer eventually saturates by creating a barotropic vortex dipole at the box scale
(Julien et al. 2012; Rubio et al. 2014), we consider a depth-invariant initial condition,
given by

u(t= 0)= (A sin(2πy/λ),−A sin(2πx/λ), 0) and θ(t= 0)= 0, (2.4a,b)

and parametrized by the amplitude A. This initial condition corresponds to a
symmetric vortex dipole at the box scale with a cyclone located at the box centre
x= λ/2 and y= λ/2 and an anticyclone located at the corners of the periodic domain.
In addition, we add random perturbations of small amplitude ±2.5 × 10−2 to the
temperature field in order to initiate the Rayleigh–Bénard instability. The total kinetic
energy density of this initial flow is

K0 =
1
V

∫
V

1
2

u · u dV =
1
2

A2, (2.5)

where V is the total volume. Note that K0 is independent of the aspect ratio of the
box. The purely viscous decay of this initial condition is given by

K(t)=K0 exp(−8π2Pr t/λ2). (2.6)
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2.3. Flow decomposition
We define the depth-averaged 2D horizontal flow, subsequently called the 2D mode,
as

〈u〉z(x, y)=
∫ 1

0
u(x, y, z) dz and 〈v〉z(x, y)=

∫ 1

0
v(x, y, z) dz, (2.7a,b)

where u and v are the velocity components in the x and y directions, respectively, and
fast 3D fluctuations, subsequently called the 3D mode, as

u′(x, y, z)= u(x, y, z)− 〈u〉z(x, y), (2.8)
v′(x, y, z)= v(x, y, z)− 〈v〉z(x, y). (2.9)

We can then define the (purely horizontal) kinetic energy density associated with the
slow 2D mode as

K2D =
1

2λ2

∫∫ (
〈u〉2z + 〈v〉

2
z

)
dx dy (2.10)

and the kinetic energy density associated with the fast 3D mode as

K3D =
1

2λ2

∫∫∫ (
u′2 + v′2 +w2

)
dx dy dz. (2.11)

3. Results

In this paper, we fix Ta= 108 which is sufficient to sustain a spontaneous non-local
inverse cascade for 5× 106 .Ra. 2× 107 (Favier et al. 2014; Guervilly et al. 2014).
For Ra< 5× 106 the flow is not turbulent enough, while for Ra> 2× 107 the flow
is insufficiently constrained by rotation and so not anisotropic enough, and only the
traditional forward energy cascade is observed. In between these two limits, the flow
is both turbulent and dynamically constrained by rotation, leading to the spontaneous
emergence of a LSV from purely 3D perturbations driven by the Rayleigh–Bénard
instability. In order to better understand the nature of the transition from a state with
LSV to a state without, we consider here the particular case Ra= 3× 107, for which
no systematic LSV were observed starting from random infinitesimal temperature
perturbations (Favier et al. 2014; Guervilly et al. 2014), and focus on the behaviour
with aspect ratio λ= 4. This aspect ratio is chosen to ensure a clear scale separation
between the convective eddies and the box size (see § 4 for a discussion of the
effects of varying λ). For this set of control parameters, the flow is dominated by
3D small-scale turbulent fluctuations (see figure 2a,c), characterized by the Reynolds
number Re =

√
〈w2〉 ≈ 535 and the micro-Rossby number Roω =

√
〈ω2

z 〉/
√

Ta ≈ 1.4.
Here ωz is the vertical component of the vorticity and the brackets denote spatial
and temporal averaging. Using this simulation as a reference, we ran a number of
additional simulations, continuously varying the amplitude A of the initial vortex
dipole defined in (2.4).

Figure 1(a) shows the temporal evolution of the kinetic energy density K2D of the
2D flow as defined by (2.10). We observe a clear transition as the initial amplitude
A of the vortex dipole increases. For small amplitudes, typically A . 800, the kinetic
energy of the 2D flow decreases until it reaches the equilibrium value corresponding
to the reference case A= 0 (i.e., no initial vortex). Note that this decay closely follows
the purely viscous decay of the initial condition as given by (2.6), shown as dashed

864 R1-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2019.58


Subcritical turbulent condensate in rapidly rotating RBC

0.1 0.2 0.3
Time (diffusive units)

0.4 0.50 0.1 0.2 0.3
Time (diffusive units)

0.4 0.5

1

2

K2D

3(a) (b)
A = 1600
A = 1200

A = 875
A = 1000

A = 750
A = 500
A = 0

(÷ 106)

0

0.25

0.50

K 2
D
/(

K 2
D
 +

 K
3D

)

0.75

1.00

FIGURE 1. (a) Time evolution of the kinetic energy density K2D for different initial vortex
amplitudes A. The grey area corresponds to the transition where K2D ≈ K3D. (b) Time
evolution of the ratio between K2D and the total kinetic energy K2D + K3D for different
amplitudes A.
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FIGURE 2. Visualizations of the quasi-steady states at t = 0.3. (a,b) Vertical vorticity
component. (c,d) Velocity field streamlines coloured with the velocity amplitude. (a,c) No
initial vortex dipole A= 0. (b,d) Initial vortex dipole amplitude A= 1600.

lines in figure 1(a), indicating that there is no significant energy transfer from the
3D fluctuations to the 2D flow. For larger amplitudes however, typically A& 800, we
observe an initial decay of K2D followed by an approximately linear increase until
the energy eventually saturates at very long times. Note that close to the transition
threshold, see case A = 875 for example, it is not yet clear whether the vortex will
grow or decay. In view of figure 1(a), which shows that the large-scale vortex has not
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Case Ta Ra Ro R̃a λ Nx ×Ny ×Nz A Subcriticality

A1 108 3× 107 0.55 139 2 2563
[0 : 1000] Yes

A2 108 3× 107 0.55 139 4 5122
× 256 [0 : 1600] Yes

A3 108 3× 107 0.55 139 6 7682
× 256 800, 1200 Yes

B1 108 4× 107 0.63 186 2 2563
[1000 : 4000] No

B2 108 4× 107 0.63 186 4 5122
× 256 2000 Yes

C1 108 5× 107 0.71 232 2 2563
[1000 : 4000] No

D1 108 4× 106 0.2 18.6 4 2562
× 128 [0 : 1000] No

TABLE 1. Summary of the parameters considered: Ta is the Taylor number, Ra is the
Rayleigh number, Ro=

√
Ra/(PrTa) is the input Rossby number, R̃a=RaTa−2/3 is a scaled

Rayleigh number and λ is the horizontal aspect ratio. The Prandtl number Pr = 1 in all
simulations.

yet reached saturation, additional and longer simulations are required to determine any
residual dependence of the saturated state on A, although we expect that all solutions
involving a growing LSV will eventually saturate at the same amplitude.

These results clearly point towards subcritical behaviour in the transition between a
weak subdominant 2D flow and a strong non-local inverse energy transfer efficiently
feeding energy into the largest available spatial scale of the domain. Note that
while the two states correspond to the same control parameters, the LSV state has
a total kinetic energy density approximately eight times that of the 3D state. The
ratio between K2D and the total kinetic energy K2D + K3D is shown in figure 1(b).
It appears that the finite-amplitude transition occurs once that K2D(t = 0) ≈ K3D,
although it depends very subtly on the initial condition and can occur even after
a long transient, as in the case A = 875. A more accurate estimate of the critical
amplitude A is beyond the scope of this paper, however, since it would require
running many realizations only changing the initial temperature perturbation (see
§ 4 below for a brief discussion concerning the non-deterministic nature of this
transition). Visualizations of the saturated states for the same control parameters, but
two different initial conditions, are shown in figure 2. Without the initial LSV, or
when the amplitude A is too small, the equilibrium state is dominated by a 3D flow
at small scales while the 2D flow remains marginal. These small-scale fluctuations
are fully 3D, as expected from the moderate value of the Rossby number, Ro= 0.55
(see table 1). In contrast, above the critical value of A, the LSV is continuously
amplified while remaining at the box scale.

We now focus on the spectral statistics of the two different states. The kinetic
energy spectra for each component of the flow, as defined by equations (2.7)–(2.9)
(see also Favier et al. (2014) and Guervilly et al. (2014)), are shown in figure 3.
These spectra are averaged over depth and time. With no initial vortex, the 3D flow is
dominant at virtually all scales, except for the smallest available wavenumber where
most of the energy is contained in the 2D mode. This subdominant 2D flow is in
equilibrium, meaning that there is a balance between viscous dissipation and baroclinic
forcing (see below). There is no systematic growth of the 2D mode and no large-scale
condensate is reached. Above the critical initial amplitude, however, the LSV is able
to extract energy efficiently from the small-scale 3D flow, leading to rapid growth of
the 2D mode with horizontal wavenumber kh 6 3, while the 3D flow remains largely
unchanged at all scales.
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FIGURE 3. Kinetic energy spectra averaged over depth (0< z< 1) and time (0.3< t< 0.4)
as a function of the horizontal wavenumber kh ≡

√
k2

x + k2
y . (a) A= 0. (b) A= 1600.

We examine next the energetics of the 2D depth-invariant flow. Starting from (2.1)–
(2.2), the governing equations for the purely horizontal 2D flow 〈u〉z are (see also
Benavides & Alexakis (2017))

∂〈u〉z
∂t
+ 〈u〉z · ∇h〈u〉z =−Pr∇h〈p〉z + Pr∇2

h〈u〉z − 〈u
′
· ∇u′〉z, (3.1)

where ∇h is the horizontal gradient operator. The last term in (3.1) corresponds to
the forcing of the 2D mode by the 3D fluctuations. Taking the scalar product of (3.1)
with 〈u〉z and volume-averaging leads to the energy density equation of the 2D mode

dK2D

dt
=

Pr
λ2

∫∫
〈u〉z ·∇2

h 〈u〉z dx dy︸ ︷︷ ︸
D

+

(
−

1
λ2

∫∫
〈u〉z · 〈u′ · ∇u′〉z dx dy

)
︸ ︷︷ ︸

F

. (3.2)

The first term on the right-hand side corresponds to the viscous dissipation rate of
the 2D flow while the last term represents the 2D energy production from the 3D
fluctuations. Looking at (3.2), it is clear that the 2D flow is in equilibrium only when
the viscous dissipation D is balanced by the 3D forcing F . It follows that growth of
K2D from a given equilibrium state can only be achieved by reducing the dissipation
or increasing the forcing. Figure 4(a) shows that for A= 0, the forcing is not zero but
is exactly balanced by viscous dissipation. The sum D+F oscillates rapidly around
zero, a fact consistent with the quasi-constant value of K2D observed for this case in
figure 1(a). For A=1600, however, both dissipation and forcing increase in magnitude,
and the sum is on average positive at least initially, corresponding to the growth of
the 2D kinetic energy observed in figure 1(a). Note that the dissipation increases
slowly with time while the baroclinic forcing term, while strongly fluctuating, remains
quasi-constant (although it does grow very slightly). This increase in the dissipation
is only observed for the 2D barotropic component; the dissipation associated with the
3D fluctuations remains largely unchanged (not shown). This is consistent with the
condensation mechanism observed in purely 2D turbulence (Smith & Yakhot 1994;
Chertkov et al. 2007; Gallet & Young 2014) whenever no large-scale damping term
is introduced to balance the inverse energy flux, and is a consequence of the slow
growth of the dominant energy-containing scale.
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FIGURE 4. Time evolution of the forcing and dissipation terms for the 2D mode, as
defined by (3.2). The instantaneous value is plotted as a thin transparent line while the
thick opaque line corresponds to the time average over a window spanning 0.01 vertical
viscous time. (a) A = 0. (b) A = 1600. The horizontal dotted lines correspond to the
time-averaged values in the reference case A= 0.
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FIGURE 5. (a) Amplitude of the 2D flow, vertical average of the 3D fluctuation amplitude,
amplitude of the fluctuating forcing and its rate of working for A = 0 and A = 1600 at
t= 0.3. (b) Power spectrum of the forcing 〈u′ · ∇u′〉z at the same time.

At this stage, it is clear that the presence of an initially imposed vortex dipole
somehow modifies the small-scale convective flow, enhancing energy transfer into the
2D mode. One possible explanation for this behaviour is that the 2D flow becomes
significantly correlated with the 3D forcing, a correlation that can be quantified by
looking at the angle γ defined by cos γ = 〈u〉z · 〈u′ · ∇u′〉z/(|〈u〉z| |〈u′ · ∇u′〉z|).
However, our computations failed to reveal any significant differences in the
probability density function of cos γ between cases with and without LSV (not
shown), implying that the transfer enhancement cannot be explained by an increase
in the correlation between the 3D forcing and the 2D flow. Figure 5 provides a
clue. The figure reveals a clear imprint of the large-scale 2D structure 〈u〉z in the
vertically-averaged 3D fluctuations 〈|u′|〉z and in the forcing term 〈u′ · ∇u′〉z: the
fluctuations are locally suppressed, likely by the strong, relatively ordered large-scale
shear or vorticity associated with the vortex structure, implying enhanced correlations
in the phases of the small-scale field. This suppression of the small-scale 3D
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fluctuations is consistent with the observed reduction in the Reynolds number (from
Re ≈ 535 for A = 0 to Re ≈ 512 for A = 1600) and of the Nusselt number (from
Nu ≈ 28.8 for A = 0 to Nu ≈ 27.6), as already noted by Guervilly et al. (2014) for
control parameters for which the LSV emerges spontaneously. It was also observed in
thin-layer turbulence experiments (Xia et al. 2011) although no subcritical behaviour
was reported in this study. This suppression in turn enhances interactions between
two large-kh 3D modes that transfer energy into a small-kh 2D mode, bypassing the
standard inverse cascade and enhancing the power spectrum of the forcing at these
large scales, as shown in figure 5(b). Note that, irrespective of the amplitude A,
the forcing always peaks at kh ≈ 30, which is approximately the Taylor microscale
characteristic of the small-scale vorticity field. The 2D energy is, however, very small
at these scales (figure 3) and when A = 0 this small-scale forcing is in equilibrium
with the dissipation (figure 4a). For A = 1600, however, the suppression of the
small-scale fluctuations leads directly to enhanced forcing of the 2D flow at the box
scale, allowing for a runaway growth. The non-local nature of this upscale energy
transfer has already been discussed in previous studies (Favier et al. 2014; Rubio
et al. 2014), and we expect similar non-local energy fluxes in our subcritical state,
although this remains to be fully explored in future studies.

The resulting positive feedback mechanism differs in an important respect from that
present in 2D turbulence driven by a small-scale prescribed stochastic force: in the
present case the fluctuating force is itself dynamically modified by the LSV, and not
just its rate of working as in Gallet & Young (2014) for example. In addition, the
positive feedback revealed in figure 5 provides an indication that the LSV state will
not in general spontaneously jump back to the lower LSV-free state: as soon as a
transition starts to take place and the LSV is observed to grow, its backreaction on
the 3D fluctuations favours energy transfer into the 2D component, leading to runaway
dynamics which can only be arrested by viscous condensation at the box scale or by
other large-scale effects not included in our simple model.

4. Discussion

We now discuss how the subcritical behaviour identified here depends on the
various control parameters. Thus far we have focused on aspect ratio λ = 4, but
similar simulations were performed with λ = 2 (table 1). We observe very similar
results: the initial LSV is amplified only above a finite critical amplitude. For this
value of the aspect ratio, however, the existence of a non-local inverse energy transfer
is not systematic. When some of the simulations were repeated with different random
initial temperature perturbations, some cases exhibited an inverse cascade while others
did not (figure 6a) in a manner reminiscent of pipe flow (Darbyshire & Mullin 1995).
This is a consequence of the stochastic nature of the forcing term arising from the
3D fluctuations (figure 4), which can drastically affect the properties of the transition
(Fauve et al. 2017). Indeed the transition seems much less robust for λ= 2 than for
λ = 4, an effect we ascribe to an increase in the amplitude of the fluctuations that
arises from the smaller domain size, indicating that a reasonable scale separation
between the initial vortex and the small-scale flow is required for a robust and
reproducible transition. We confirmed this observation with simulations at λ= 6, for
which a case with A = 800 decays while a case with A = 1200 eventually grows
(although with the available computational resources neither of these cases can be
run until saturation owing to the presence of much longer transients, see figure 6b).
This confirms that the observed transition is robust with respect to change in the
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FIGURE 6. Time evolution of the kinetic energy density K2D of the 2D flow for different
initial vortex amplitudes A and aspect ratio λ = 2 (a) and λ = 6 (b). The shaded area
corresponds to the values explored by K3D.

aspect ratio of the vortex, although additional simulations (for example, decoupling
the aspect ratio of the numerical domain and the initial size of the LSV) are required
for a definitive conclusion about its effect on the threshold.

The results discussed above only apply for Ta= 108 and Ra= 3× 107. We chose
Ta = 108 for numerical convenience, as increasing the Taylor number would be
numerically prohibitive for the large-aspect-ratio domains and long-time dynamics
considered here. Interestingly, the range of Rayleigh numbers for which a LSV is
known to spontaneously emerge increases with the Taylor number (Favier et al. 2014;
Guervilly et al. 2014). It is reasonable, therefore, to assume that subcritical transitions
will also be observed at higher Taylor numbers, and might even be more prominent.
However, this hypothesis remains to be confirmed.

We have also explored the effect of varying the Rayleigh number. First, it is known
that a LSV cannot be sustained when the convection is insufficiently turbulent. For
Ta= 108, Ra> 5× 106 is required: when we repeated our simulations for Ra= 4× 106,
varying the amplitude A of the vortex, we found no subcritical behaviour and all
simulations eventually converged towards the same equilibrium dominated by 3D
fluctuations. It appears that the subcritical transition is only present for sufficiently
turbulent flows, well above the threshold of the linear instability. Finally, the same
experiments were repeated for higher Rayleigh numbers (namely Ra = 4 × 107 and
Ra = 5 × 107) with results that are more subtle: for λ = 2, we did not observe any
subcriticality, obtaining a 3D state irrespective of A. Surprisingly, for λ = 4 and
Ra = 4 × 107, we recovered a LSV state that was not present for λ = 2. This fact
provides further evidence that a clear scale separation between the vortex and the
small-scale 3D flow favours a subcritical transition. A detailed study of the scaling
of the critical amplitude Ac with Ta, Ra and λ is, however, beyond the scope of
this paper, although it represents an interesting line of investigation not only from
a fundamental point of view, but also for possible applications to LSV structures in
geophysical and astrophysical flows.

Our choice of initial conditions (2.4) is arbitrary and other options could be
explored. In our moderate Rossby number simulations, symmetry breaking favouring
cyclonic motions has been observed, in contrast with the symmetry between cyclonic
and anticyclonic vortices found in the limit Ro→ 0 (Julien et al. 2012). Our initial
condition is, however, perfectly symmetric, requiring a significant transient phase
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to break up the large but unstable anticyclone, something that could be avoided if
the calculations were to be initialized with a dominant cyclonic structure. In this
respect, the reduced description of Julien et al. (2012) may be useful for exploring
the detailed mechanism behind the subcritical transition discovered in this paper and,
in particular, the presence of hysteresis in Ra, provided, of course, that the reduced
equations exhibit similar behaviour.

We believe that the mechanism responsible for the observed subcritical transition
is not specific to rotating convection and is likely to occur in other systems with
multiple cascade scenarios, including thin-layer and magnetohydrodynamic turbulence.
In particular, we emphasize that rotation is not required to observe LSV in 3D flows.
Small-scale anisotropy, and its possible enhancement by large-scale flows, is the key
and is present in all turbulent systems with multiple cascade scenarios, from thin-layer
to magnetohydrodynamic turbulence. We also emphasize that the transition identified
here separates two fully turbulent states, in contrast to the classical subcritical
transition from laminar to turbulent shear flow in, for example, pipe flow (Darbyshire
& Mullin 1995; Eckhardt et al. 2007). Some concepts developed in this field may
nevertheless prove useful in the present context, such as the search for optimal
perturbations (Kerswell 2018).
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