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The incompressible impulsive time scale for inviscid liquid sloshing in open rigid
containers suddenly put into motion is defined as the intermediate time scale in
between the acoustic time scale and the gravitational time scale. Surge and sway
boundary-value problems for incompressible impulsive sloshing in some realistic
container shapes are solved analytically to the leading order in a small-time expansion.
A solution is provided for two types of horizontal cylinders: a triangular cylindrical
wedge and a half-filled circular cylinder. The surface velocity and the hydrodynamic
force with its corresponding virtual fluid mass are calculated. The cases of constant
impulsive velocity and constant impulsive acceleration are linked by transformation
equations. Flows with waterline singularities are discussed, being leading-order outer
flows in terms of matched asymptotic expansions.
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1. Introduction
Sloshing of liquids in open containers is an important topic in industrial fluid

mechanics. A scientific basis for sloshing is presented in the textbooks by Ibrahim
(2005) and Faltinsen & Timokha (2009).

The term sloshing refers to free-surface flows in partially filled containers
undergoing motions by external forcing. The importance of initial conditions tends
to be underrated in the sloshing literature. There is a need for improved understanding
on the initiation of sloshing by putting a container with stagnant fluid impulsively
into motion. In general, impulsive sloshing involves interactions between the elasticity
of the container and the fluid, where the compressibility of the fluid may also be
significant.

This paper is devoted to incompressible impulsive sloshing, which is a well-defined
limit case of impulsive sloshing: a rigid container is suddenly forced into motion
from an undisturbed state of rest where the incompressible and inviscid liquid has an
initial free surface that is horizontal. This abrupt change of motion can either be one
of impulsively imposed velocity or impulsively imposed acceleration in the horizontal
direction. This type of sloshing is important in earthquake engineering, because all
motions start from an undisturbed state at rest. Impulsive forces on dams during
earthquakes have been studied by Westergaard (1933), Chwang & Housner (1978)
and Chwang (1978). Other applications of incompressible impulsive sloshing include
partially filled liquid tanks transported by ships, trains, trucks and missiles. Impulsive
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sloshing forces should always be taken into account in structural design of open
containers in rapidly accelerating systems.

There exist four basic time scales which represent distinct physical processes of
transient sloshing within an open rigid container that is put impulsively into steady
motion. (i) The acoustic time scale Tacoust in the liquid, given by Tacoust = D/c, where
c is the propagation velocity of acoustic waves in the liquid and D is the length scale
of the container. The magnitude of Tacoust is of the order of milliseconds when D is of
the order of 1 m. The acoustic transients will effectively vanish inside a rigid container
after a few milliseconds. (ii) The incompressible impulsive time scale Tincomp takes over
when the acoustic waves in the liquid have disappeared. It is defined indirectly through
the intermediate time after the transient acoustic waves have been blurred. (iii) The
gravitational time scale Tgravity, where g is the gravitational acceleration, is given by
Tgravity =√D/g, and is of the order of 0.3 s if D is of the order of 1 m. (iv) Turbulence
constitutes a fourth time scale. It is the slowest time scale, provided that the Reynolds
number UD/ν is large. Here U is the impulsive velocity of the container and ν is the
kinematic viscosity of the liquid. The mechanical energy that is initially given to the
fluid will finally decay by small-scale turbulence.

So far, our discussion of the different time scales is limited by the tacit assumption
that the characteristic Froude number F = U/

√
gD is of the order of one or smaller.

When F� 1, an explicit impulsive time scale Tincomp = D/U will appear. In this case
gravity will never dominate, but it will cause a certain modification of the first stage of
sloshing. This first stage ends when the fluid comes to a halt after it hits the end wall
of the container. This type of large-Froude-number impulsive sloshing is obviously
important in connection with open containers in a low-gravity environment such as in
spaceships.

Sloshing can only take place when inertia dominates over viscous forces. This
requires that the Reynolds number of the bulk flow is large. Sloshing in rigid
containers put into horizontal motion will always have an impulsive stage of
incompressible flow, which prevails for all Froude numbers of the free-surface flow
in the container.

A classical hydrodynamic problem that is closely related to impulsive sloshing, is
the impulsive wavemaker problem. The impulsive wavemaker is a piston (a vertical
wall) that is suddenly pushed into a fluid layer at rest (Peregrine 1972). The work by
Chwang (1983) fails to take the analysis further, since the nonlinear analysis appears
to be incorrect. As noted by Roberts (1988), the classical wavemaker problem is
transformed into an impulsive sloshing problem if there are two walls instead of one.
A nonlinear analysis of the impulsive wavemaker cannot be done properly before the
singularity of the leading-order problem is resolved by matched asymptotic expansion.
This has been done for the wavemaker in constant impulsive acceleration (King &
Needham 1994) and later for impulsive velocity (Needham, Billingham & King 2007).
The logarithmic waterline singularity occurs at a point where the Dirichlet-type free-
surface condition and the Neumann-type wall condition are confluent.

Dam-breaking flows lead to similar singularities where the Dirichlet condition of
the dam face meets the Neumann condition at the bottom. Again this conflict can be
resolved satisfactorily by employing matched asymptotic expansions, see Korobkin &
Yilmaz (2009).

We are aware of only two previously published papers on incompressible impulsive
sloshing. Chwang & Wang (1984) considered a rectangular container and an upright
vertical cylinder. Roberts (1988) provided an alternative method for solving the
rectangular container problem. The rectangle problem is two dimensional, with
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logarithmic singularities at the waterlines, where the walls meet the free surface.
The circular cylinder problem is three dimensional, with antisymmetric waterline
singularities along the cylinder wall. The flow inside the geometries considered in
these two papers does not discriminate between the two relevant modes of translational
motion: surge and sway. In the present work, we will consider two cylindrical
geometries where the modes of surge and sway generate different types of flow;
those resulting from sway are two-dimensional flows, while those due to surge are
three-dimensional flows.

The purpose of the present work is to provide an overview of impulsive sloshing, by
generalizing the known solutions and to add some new analytical outer solutions to the
existing literature. Thereby we address some important and very challenging problems
to be treated by matched asymptotic expansions. Greater care should be taken in
developing analytical formulae for sloshing forces, because some of the conventional
initial conditions may be physically inconsistent.

2. General mathematical problem in three dimensions
We consider three-dimensional containers with a free surface of liquid at rest for

time t < 0. The fluid has constant density ρ. The initial free surface is horizontal and
the x, y plane is located at the initial free surface. Thus, the undisturbed free surface
is defined as z= 0. Although the containers that we study are three dimensional, some
of the considered flows will be two dimensional. In the present paper we consider
only translational impulsive modes of motion. These are the horizontal modes of
surge and sway. The third translational mode of vertical impulsive heave is completely
disregarded in the present work, since it has no effect on the leading-order linearized
flow following immediately after the impulsive start.

The present fluid model is inviscid and incompressible, with the flow starting
impulsively from rest. Based on Kelvin’s circulation theorem it follows that the flow
obeys Laplace’s equation

∇2Φ = 0, (2.1)

where Φ(x, y, z, t) is the velocity potential. We will examine impulsive translational
motion of a rigid three-dimensional container. We will consider the two horizontal
translational modes of sway motion in the x direction and surge motion in the y
direction. An arbitrary initial material point (X0,Y0,Z0) at the rigid container will
experience a forced motion (X(t),Y(t),Z0) prescribed as

(X(t),Y(t))= (X0,Y0)+ H(t)((X1,Y1)t + (X2,Y2)t
2 + · · · ) (2.2)

where H(t) is the Heaviside unit step function. We will work with two basic cases.
First the case of initial impulsive velocity

(X1,Y1)= (U,V) (2.3)

without subsequent acceleration (X2 = Y2 = 0). The second case is that of initial
impulsive acceleration

(2X2, 2Y2) (2.4)

with zero initial velocity (X1 = Y1 = 0).
The general solution for a flow field started by impulsive motion of a rigid container

can be expressed by the small-time expansion

Φ(x, y, z, t)= H(t)(φ0(x, y, z)+ tφ1(x, y, z)+ t2φ2(x, y, z)+ · · · ). (2.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.305


282 P. A. Tyvand and T. Miloh

In our sloshing analysis we will consider constant impulsive velocity started from rest,
working with the initial potential φ(x, y, z) = φ0(x, y, z) (dropping the subscript). We
will first give transformations linking the case of constant impulsive acceleration to the
case of constant impulsive velocity.

The surface elevation η(x, y, t) is expressed by a similar small-time expansion

η(x, y, t)= H(t)(tη1(x, y)+ t2η2(x, y)+ · · · ), (2.6)

where there is no zeroth-order term because the free surface is initially horizontal:

η(x, y, 0)= 0. (2.7)

Since there is no tangential force on the free surface during the infinitesimal time of
the impulsive start, the horizontal velocity at the free surface remains zero. Therefore,
the initial free-surface condition is the equipotential condition

Φ(x, y, 0, 0)= 0. (2.8)

The exact nonlinear free-surface conditions, ignoring surface tension effects, are
given by

∂η

∂t
+∇Φ ·∇η = ∂Φ

∂z
, z= η(x, y, t), (2.9)

∂Φ

∂t
+ |∇Φ|

2

2
+ gη = 0, z= η(x, y, t), (2.10)

and the fluid pressure is determined by Bernoulli’s equation

p

ρ
+ ∂Φ
∂t
+ |∇Φ|

2

2
+ gz= 0. (2.11)

The net pressure force on the container walls due to the impulsive flow is given by

F(t)= F−1δ(t)+ H(t)(F0 + tF1 + · · · ), (2.12)

where δ(t) denotes the Dirac delta function and the subscript −1 refers to the
instantaneous singular force impulse resulting from the sudden motion of the container.

3. Impulsive velocity and impulsive acceleration
Our investigation is primarily concerned with the case of constant impulsive velocity.

Within the present paper we will study only the leading-order outer flow in terms of a
small-time matched asymptotic expansion.

First we consider the case of initial impulsive velocity (X1,Y1) = (U,V) without
subsequent acceleration (2X2 = 2Y2 = 0). The resulting leading-order flow is forced by
the kinematic wall condition

n ·∇φ0 = n · (X1i+ Y1j), (3.1)

where n is the normal vector to the container walls, directed into the fluid. The unit
vectors in the x and y directions are denoted by i and j, respectively. This initial flow
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satisfies the free-surface condition

φ0(x, y, 0)= 0, (3.2)

η1 = ∂φ0

∂z

∣∣∣∣
z=0

, (3.3)

with the associated pressure impulse

p−1 =−ρφ0. (3.4)

Integration of this pressure impulse p−1 over the container walls will produce the
leading-order force F−1 for the case of an initial impulsive velocity.

Next, we turn to the case of an initial impulsive acceleration (2X2, 2Y2) with
zero initial velocity (X1 = Y1 = 0). The resulting leading-order flow is given by the
kinematic wall condition

n ·∇φ1 = 2n · (X2i+ Y2 j), (3.5)

with the initial conditions at the free surface

φ1(x, y, 0)= 0, (3.6)

2η2 = ∂φ1

∂z

∣∣∣∣
z=0

. (3.7)

The associated zeroth-order pressure is

p0 =−ρφ1. (3.8)

Below we will only discuss the first problem of constant impulsive velocity, since
the solution for the second case of constant impulsive acceleration can be readily
obtained from a set of transformation equations. Let us demonstrate this assertion
for the case of forced sway motions of the container in the x direction. The
set of variables (φ0, η1, p−1,F−1) for impulsive sway velocity X1, is related to the
corresponding set of variables (φ1, η2, p0,F0) for the impulsive sway acceleration 2X2,
by the following transformation equations

φ1

2X2
= φ0

X1
, (3.9)

η2

X2
= η1

X1
, (3.10)

p0

2X2
= p−1

X1
,

F0

2X2
= F−1

X1
. (3.11)

A similar set of transformations link the solutions for impulsive surge velocity Y1 and
impulsive surge acceleration 2Y2 in the y direction,

φ1

2Y2
= φ0

Y1
, (3.12)

η2

Y2
= η1

Y1
, (3.13)

p0

2Y2
= p−1

Y1
,

F0

2Y2
= F−1

Y1
. (3.14)

It is emphasized that these transformations are only valid for the leading-order outer
solution. The initial flow potential, the resulting leading-order elevation and the net
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force can then be determined for the case of constant impulsive acceleration, assuming
that the solution for constant impulsive velocity is known.

4. Local investigation of waterline singularities
When we combine the wall forcing condition (3.1) with the initial conditions

(3.2)–(3.3) at the surface, we find an initial condition preferably written as

nzη1 = n · (X1i+ Y1j), z= 0, t = 0, (4.1)

which holds along the waterline where the container wall and the initial free surface
meet. It prescribes the value of the surface velocity η1 at the waterline expressed by
the impulsive container velocity (X1,Y1) and the vertical component nz of the normal
vector n.

We will now perform a local investigation of the leading-order outer flow near the
waterline at z = 0 where the undisturbed free surface meets the container wall. We
assume a constant impulsive velocity, but again the results can be transformed to
the case of constant impulsive acceleration. The following investigation is meant to
improve our qualitative understanding of the different waterline singularities. It is not
a fully precise analysis, since it does not account for the fact that the outer flow
problem is elliptic, which means that the local flow near the waterline is not governed
exclusively by the local boundary geometry and associated boundary conditions.

Let us assume that the right-hand side of (4.1) is positive. Mass conservation
near the wall then implies a locally positive surface velocity η1 > 0. There are three
different local situations at the waterline, for which we give a simple preliminary
analysis based on (4.1).

(i) A sloping wall where nz > 0, which is consistent with the requirement η1 > 0. The
outer flow is regular, and there is no need for an inner solution.

(ii) A vertical wall where nz = 0, which makes η1 singular at the waterline z = 0, as
shown by Peregrine (1972) for a piston wavemaker at constant depth. An inner
solution is needed to resolve the flow field singularity, but the leading-order force
is predicted by the outer solution alone.

(iii) An overhanging wall where nz < 0, which predicts a negative surface velocity η1

according to (4.1). This result is not significant since it refers to the downward
component of the forced wall motion and not to the free-surface velocity.

Tyvand & Storhaug (2000) gave a formula for the local surface velocity generated
by a two-dimensional impulsive boundary source of strength q (volume flux per
length) that is located at a distance ξ from the waterline, at a slope of angle α

η1 = q

αξ

(
x

ξ

)π/(2α)−1
(

1+
(

x

ξ

)π/α)−1

, z= 0, t = 0. (4.2)

In order to study the local behaviour near the waterline x = 0, let us first assume that
the source position ξ has a given finite value, and let x→ 0. We can then take the
limit x/ξ � 1 of (4.2), which gives η1 proportional to xπ/(2α)−1. Again we have the
three cases described previously.

(i) A sloping wall where nz > 0 and 0 < α < π/2. The surface velocity varies as a
positive power of x. The free-surface flow (4.2) has no singularity, and indicates
that the fluid is stagnant at the waterline x= 0.

(ii) A vertical wall where nz = 0 and α = π/2. The surface elevation is independent of
x for small x.
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(iii) An overhanging wall where nz < 0 and π/2 < α < π. The surface velocity varies
as a negative power of x. There is a waterline singularity at x= 0, which becomes
increasingly severe the greater the angle α.

Our arguments do not explain, however, the free-surface behaviour when the wall
performs a locally uniform impulsive motion. In this case we would need to integrate
(4.2) with respect to ξ up to ξ = 0. This means that the assumption x/ξ � 1 of the
previous discussion cannot be maintained, which may in fact modify the behaviour in
all three cases (i)–(iii) as follows.

(i) For a sloping wall where nz > 0 and 0 < α < π/2, the fluid set into motion by a
piston in impulsive motion of uniform translation is not necessarily stagnant at the
waterline. Below we will show such an example: a wedge container put into sway
motion that generates finite velocity at the waterline.

(ii) For a vertical wall where nz = 0 and α = π/2, the surface velocity near the
waterline is no longer independent of x when we have finite source contributions
in the limit ξ → 0. Peregrine (1972) demonstrated the existence of a logarithmic
singularity for the surface velocity due to a uniform impulsive wavemaker. The
geometry is also different for the piston wavemaker, since the latter works at a
constant water depth H. It is important to note that the depth H for the piston
wavemaker in the vertical direction determines the horizontal length scale for the
impulsive free-surface flow. It can also be shown that an impulsive pitch rotation
of the piston wavemaker will give a finite surface velocity at the waterline.

(iii) For an overhanging wall, where nz < 0 and π/2 < α < π, the surface velocity
is singular in x with the local dependence xπ/(2α)−1 near the waterline. This
singularity becomes more severe with increasing α, but remains mild for slightly
overhanging walls. Actually Needham, Chamberlain & Billingham (2008) have
shown that the resulting free surface flow will be regular over the interval
0.5 < α/π < 0.570, where the overhanging wall has a finite extent as the face
of the wavemaker is operating at constant depth.

Our mathematical formulation is an outer problem in the matched asymptotics sense,
and the solutions (including the waterline singularities) may provide consistent outer
solutions. No work has been reported on the matched asymptotics of incompressible
impulsive sloshing, as the two published papers (Chwang & Wang 1984; Roberts
1988) are only concerned with the outer solutions.

In comparison, matched asymptotic expansions have been developed for some
related two-dimensional piston-type wavemaker problems. First for the case of
constant impulsive acceleration (King & Needham 1994), later for constant impulsive
velocity (Needham et al. 2007) and finally for the case of a sloping-face wavemaker
(Needham et al. 2008). Waterline singularities of a logarithmic nature are also known
to appear in the typical three-dimensional nonlinear diffraction of water waves around
vertical cylinders standing in water of finite depth (Miloh 1980).

5. A wedge container
The first problem that we solve is that of a rigid wedge composed of two sloping

walls at angles ±π/4, combined with two vertical end-walls at y = 0 and y = L.
The two slopes of the wedge are defined by z = −x and z = x − 2H. The depth of
the wedge is H, which implies that its width in the x direction is 2H when filled
with fluid at rest. The undisturbed free surface (z = 0) encompasses the rectangle
0 6 x 6 2H, 0 6 y 6 L. The fluid mass within the wedge container is m = ρH2L. See
the perspective sketch in figure 1.
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y

z

U

x

FIGURE 1. Perspective sketch of a wedge container with undisturbed fluid. The container
can be put into impulsive sway motion with velocity U in the x direction. It can be put into
impulsive surge motion with velocity V in the y direction.

5.1. The two-dimensional sway problem for the wedge
We consider the impulsive sway motion with velocity U in the cross-wise x direction,
which produces a two-dimensional flow in the x, z plane, with normal velocity ∓U/

√
2

on the two slopes. The resulting velocity potential is

φ(x, z)= U
(

1− x

H

)
z, (5.1)

with the associated stream function

ψ(x, z)= U
x2 − z2

2H
− Ux. (5.2)

The leading-order surface velocity is

η1 = ∂φ

∂z

∣∣∣∣
z=0

= U
(

1− x

H

)
. (5.3)

This leading order is exceptionally simple, as the free surface evolves with a uniform
slope. Two streamline patterns for the initial sway flow are given in figure 2. The first
streamline pattern has a coordinate system that is at rest with the undisturbed fluid. It
is characterized by vertical particle motion at the free surface. The second streamline
pattern takes the container in its motion as a reference system, and the streamlines are
tangential to the container walls.

The streamlines in the system that follow the container in its motion, could be taken
as the redefined container walls. These streamlines form a family of hyperbolas, and
their common asymptotes represent the contour of the wedge container.

The total net impulsive sway force on the two slopes is thus given by

F−1x =− 1
3ρH2LU =− 1

3 mU. (5.4)

This formula demonstrates that the virtual mass of a wedge container in impulsive
sway is one third of the enclosed fluid mass. Physically, this means that an open
wedge container in sway motion that is suddenly brought to a halt can effectively only
stop one third of the fluid mass instantaneously. Owing to inertia, the remaining two
thirds of the fluid mass will continue its sway motion relative to the container, thereby
delaying and distributing over time its total impact force on the container.
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(a)
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–0.6

–0.8
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0
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0 2.0

(b)

0.5 1.0 1.50 2.0
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–0.8

0

–1.0

FIGURE 2. Streamline patterns for the two-dimensional impulsive sway flow in the wedge
container. (a) The coordinate system is at rest with respect to the undisturbed fluid. (b) The
coordinate system follows the container in its impulsive motion.

5.2. The three-dimensional surge problem for the wedge
An impulsive motion of the wedge container with velocity V in the lengthwise y
direction will generate a three-dimensional flow. We will derive the velocity potential
for this case in terms of a Fourier series. The normal velocity on the wall y = 0,
in combination with the impermeability condition along both slopes as well as the
equipotential free-surface condition, gives the following Fourier expansion in the fluid
domain;

∂φ

∂y

∣∣∣∣
y=0,L

= V =−16
π2

V
∞∑

m=1

sin
((

m− 1
2

)
πx

H

)
2m− 1

∞∑
n=1

sin
((

n− 1
2

)
πz

H

)
2n− 1

, (5.5)

where the slope boundary conditions of zero normal velocity are taken into account.
The leading-order solution for the surface velocity is

η1 =
∂φ

∂z

∣∣∣∣
z=0
= 8V

π2

∞∑
m=1

sin
((

m− 1
2

)
πx

H

)
2m− 1

×
∞∑

n=1

cosh

π(y− L)

H

√(
m− 1

2

)2
+
(

n− 1
2

)2
− cosh

πy

H

√(
m− 1

2

)2
+
(

n− 1
2

)2


√(
m− 1

2

)2
+
(

n− 1
2

)2
sinh

πL

H

√(
m− 1

2

)2
+
(

n− 1
2

)2
 . (5.6)
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0.5

1.0

0

1

2

2.0
1.5

1.0
0.5

0

FIGURE 3. Surface velocity distribution η1(x, y) for the three-dimensional impulsive surge
flow in a wedge container with aspect ratio L/H = 2. The figure covers the full domain
0< x/H < 2 in the x direction and almost half the domain 0.001< y/H < 1 in the y direction.

Figure 3 shows the surface velocity distribution η1(x, y)/V over the free surface
for the case L/H = 2. We show only half the fluid domain, because the flow is
antisymmetric around y = L/2. Owing to the waterline singularity, the convergence
and accuracy of the truncated Fourier series solution is relatively slow close to the
end-wall waterline y= 0.

The net impulsive force exerted on the two end walls is proportional to the area
integral of the potential

F−1y = 2ρ
∫

A
φ(x, 0, z) dA= 2ρ

∫ 0

−H

(∫ 2H+z

−z
φ(x, 0, z) dx

)
dz

= 64ρVH3

π5

∞∑
m=1

∞∑
n=1

2n− 1− (2m− 1) (−1)m+n

(m− n)(m+ n− 1)(2n− 1) (2m− 1)2

×
tanh

πL

2H

√(
m− 1

2

)2

+
(

n− 1
2

)2


√(
m− 1

2

)2

+
(

n− 1
2

)2
. (5.7)

In order to evaluate this force correctly, one should note that for m = n = l the
argument in the double summation is finite and equals

23/2 tanh
(
πL

23/2H
(2l− 1)

)
(2l− 1)5

. (5.8)

The dimensionless force impulse F−1y/(ρH3V) is defined with respect to the
momentum of a fluid cube with side length H put into motion with velocity V . The
limit for this dimensionless force impulse as L/H→∞ is F−1y/(ρH3V)→−0.3833,
which can be found by numerical evaluation of (5.7). This result can be interpreted
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FIGURE 4. (Colour online) Two versions of the dimensionless virtual mass for surge motion
of the wedge container, displayed as functions of the aspect ratio L/H. The solid curve
represents F−1y/(ρH3V). The dashed curve represents F−1y/(ρH2LV).

as a local momentum thickness of 0.1917H close to each end-wall for an extremely
long container. Only the fluid inside the two momentum layers will effectively follow
the container in its impulsive motion. This is in contrast to the fluid outside the
layers, which by inertia will continue its motion unaffected by the abrupt motion
of the container end-walls. The trivial limit for this dimensionless force impulse
F−1y/(ρH3V) as L/H→ 0 is zero, since the fluid mass vanishes.

A complimentary way of displaying the dimensionless force impulse is as
F−1y/(mV) = F−1y/(ρH2LV). This formulation represents the ratio between the virtual
mass for impulsive surge motion and the fluid mass inside the wedge. In figure 4
we show the two dimensionless versions of the impulsive force, F−1y/(ρH3V) and
F−1y/(ρH2LV), as functions of L/H, according to (5.7). An obvious but trivial limit
for the second version of the dimensionless force impulse is F−1y/(ρH2LV)→ 0 as
L/H→∞. A notable special case occurs when L/H = 0.9578, in which we have

|F−1y|
mV

= |F−1x|
mU

= 1
3

(5.9)

implying that the virtual mass is a scalar that equals m/3. When L/H > 0.9578, the
surge virtual mass is smaller than the sway virtual mass, and when L/H < 0.9578, the
situation is reversed.

The dimensionless force impulse has an interesting limit F−1y/(ρH2LV)→−0.666
as L/H→ 0. This result implies that the ratio between the virtual and the fluid masses
for the surge motion of a short wedge is twice as large as the value 1/3 that is
obtained for the sway motion. The reason for this difference is that the fluid flow is
more restricted in surge than in sway: it is easier to force a fluid with a free surface
to follow the motion of a vertical boundary than that of a sloping one. Furthermore,
fluid motion in surge has the extra constraint that the free-surface flow vanishes at
the lateral waterlines, implying that the resulting three-dimensional free-surface flow
must be concentrated around the middle where the water depth of the wedge is
maximal.
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x

z

U

FIGURE 5. Perspective sketch of a horizontal cylinder with a circular cross-section, half-
filled with fluid. The container can be put into impulsive sway motion with velocity U in the x
direction. It can be put into impulsive surge motion with velocity V in the y direction.

6. The half-filled horizontal circular cylinder
The impulsive flow inside a rigid half-filled horizontal cylinder will now be solved.

See the perspective sketch in figure 5. The y-axis is directed along the centre of
the cylinder and its vertical end-walls are located at y = 0,L. The undisturbed free
surface (z = 0) covers the rectangle −R 6 x 6 R, 0 6 y 6 L. The circular cross-section
of the cylinder is given by x2 + z2 = R2, where R is the radius of the cylinder. We
introduce polar coordinates (r, θ) in the x, z plane, defined by (x, z) = r(cos θ, sin θ).
The initially filled lower half of the cylinder covers π< θ < 2π and 0 6 r < R.

6.1. The two-dimensional sway problem for the horizontal cylinder
We first consider an impulsive sway motion with velocity U in the cross-wise x
direction. The normal velocity along the bottom is represented by the boundary
condition

∂φ

∂r
= U cos θ, r = R (π< θ < 2π). (6.1)

The initial free-surface condition φ = 0 at z = 0 is conveniently satisfied by applying
an antisymmetric image condition along the upper (dry) part of the cylinder contour

∂φ

∂r
=−U cos θ, r = R(0< θ < π). (6.2)

The solution to this two-dimensional problem in terms of the potential and stream
function is

φ(r, θ)+ iψ(r, θ)= 4iUR

π

∞∑
n=1

(r/R)2n e2inθ

4n2 − 1
. (6.3)

The resulting free-surface velocity is

η1 = ∂φ

∂z

∣∣∣∣
z=0

= 1
r

∂φ

∂θ

∣∣∣∣
θ=0

=−8U

π

∞∑
n=1

n

4n2 − 1

( x

R

)2n−1
, (6.4)
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FIGURE 6. Streamline patterns for the two-dimensional impulsive sway flow in the half-filled
horizontal cylinder. (a) The coordinate system is at rest with respect to the undisturbed fluid.
(b) The coordinate system follows the container in its impulsive motion.

valid for −R< x < R. We note the presence of a logarithmic singularity in the surface
velocity that arises at the waterlines x = ±R. Two streamline patterns for the initial
sway flow are given by (6.3) and displayed in figure 6. The first has a coordinate
system that is at rest with the undisturbed fluid. It is characterized by vertical particle
motion at the free surface. The second streamline pattern takes the container in its
motion as a reference system, and the streamlines are tangential to the container walls.
It is interesting to compare the streamline patterns in figure 6 with those for the wedge
container, given in figure 2. For the circular cylinder, the flow is more concentrated
near the waterlines. This is because the sway flow inside the cylinder is singular at the
waterlines, in contrast to the wedge container.

The streamlines in the reference system that follow the container in its motion
may be redefined to form modified container cross-sections. All of these redefined
containers have approximate circle sections. All of them cover less than half a circle,
which means that they have finite slopes at the waterlines, which implies non-singular
flows. The half-circle cross-section is the only exception, as its vertical tangent at the
waterline leads to a logarithmic singularity there.

In figure 7 we compare the two-dimensional surface velocity distribution (6.4) for
a cylinder in sway motion with the sway (5.3) and surge (5.6) surface velocities for
a wedge of length L = 2H. Little difference is observed between these three solutions
near the middle of the free surface. However, close to the walls of the container the
presence of flow singularities is very important.
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FIGURE 7. Comparison of three free-surface velocity distributions. Dotted curve: η1(x)/U
for the two-dimensional sway motion of the wedge. Dashed curve: central surface velocity
η1(H, y)/V for the surge motion of a wedge with length L= 2H. Solid curve: η1(x− R)/U for
the two-dimensional sway motion of the half-filled circular cylinder.

The net impulsive sway force acting on the half cylinder is given by

F−1x =−2ρLR
∫ 0

−π/2
φ(R, θ) cos θ dθ

=−16
π
ρLR2U

∞∑
n=1

n

(4n2 − 1)2
=− 4
π2

mU, (6.5)

where we have introduced the fluid mass m = ρπR2L/2. This formula shows that the
ratio between the virtual mass and the fluid mass for a half-filled horizontal cylinder
put impulsively into sway is 4/π2 = 0.4053.

6.2. The three-dimensional surge problem for the horizontal cylinder
We now turn our attention to the more complicated case of impulsive surge motion
with velocity V in the y direction, along the axis of the half-filled horizontal cylinder.
The horizontal surge motion requires a uniform normal velocity V over the wet part of
the vertical end-walls x = 0,L. Expressed in cylindrical coordinates (r, θ, y) this gives
the normal flow condition

∂φ

∂y
(r, θ, 0)= ∂φ

∂y
(r, θ,L)= V, r < R, π< θ < 2π. (6.6)

In order to satisfy the equipotential condition at z = 0 (θ = 0,π), we will apply an
image condition along the dry portions of the end-walls. Extension of this condition to
the dry part of the cylinder yields the general boundary condition for the impermeable
walls as

∂φ

∂r
(R, θ, y)= 0, 0< y< L, 0< θ < 2π. (6.7)

Using the method of successive images, let us express the velocity potential in
Cartesian coordinates as

φ(x, y, z)=− V

2π

∞∑
m=−∞

(−1)m(G(x, y− mL, z)+ H(x, y− mL, z)). (6.8)
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Equation (6.8) is basically a Green function solution, where G accounts for the
boundary conditions at the end-walls and free surface, and H provides the necessary
adjustment required to satisfy the impermeable cylinder wall condition (6.7). Here
G(x, y − mL, z) summed over all integer values of m represents an infinite row of
uniform distributions of sources/sinks over the wet areas Sw of the end walls. It can be
expressed in a Fourier–Bessel form as

G(x, y− mL, z)=
∫

Sw

dξ dζ√
(x− ξ)2+ (y− mL)2+ (z− ζ )2

−
∫

Sw

dξ dζ√
(x− ξ)2+ (y− mL)2+ (z+ ζ )2

= 2
π

∫
Sw

(∫ ∞
0

(
K0(k

√
(x− ξ)2+ (z− ζ )2)

−K0

(
k
√
(x− ξ)2+ (z+ ζ )2

))
cos(k(y− mL)) dk

)
dξ dζ, (6.9)

see Miloh, Tyvand & Zilman (2002). The modified Bessel function of the second kind
is denoted by Kn, and Jn denotes the Bessel function of the first kind (order n). Next
we use the following addition theorem (Abramowitz & Stegun 1965, p. 363)

K0(k
√
(x− ξ)2+ (z− ζ )2)− K0(k

√
(x− ξ)2+ (z+ ζ )2)

= 4
∞∑

n=1

sin(nθ) sin(nα)

{
Jn(kλ)Kn(kr), r > λ,
Jn(kr)Kn(kλ), r < λ.

(6.10)

Here we have introduced the polar coordinates (λ, α) for the source position
(ξ, ζ ) = λ(cosα, sinα). Substituting (6.10) into (6.9) and integrating over Sw(0 < λ <
R,π< α < 2π) yields

G(x, y− mL, z)=−16
π

∞∑
n=0

sin((2n+ 1)θ)
2n+ 1

×
∫ ∞

0
F(k, n, r,R) cos(k(y− mL)) dk, (6.11)

where (x, y)= r(cos θ, sin θ), and the function F(k, n, r,R) is defined by

F(k, n,R, r)= Kn(kr)
∫ r

0
λJn(kλ) dλ+ Jn(kr)

∫ R

r
λKn(kλ) dλ. (6.12)

It can be easily verified from (6.9) that G is indeed harmonic, satisfying ∂G/∂y=−2π
on y = 0,L and that G(x, y − mL, 0) = 0 on the initial free surface. In order to
satisfy the cylinder wall condition ∂G/∂r(R, θ, y)= 0, the regular harmonic function H
introduced in (6.8) is expressed by virtue of (6.11) as

H(x, y− mL, z)=−16
π

∞∑
n=0

sin((2n+ 1)θ)
2n+ 1

×
∫ ∞

0
A(k, n,R)I2n+1(kr) cos(k(y− mL)) dk, (6.13)
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where In denotes the modified Bessel function of the first kind and A(k,m,R) is to
be determined. The regular function (6.13) satisfies the free-surface boundary condition
H(x, y − mL, 0) = 0 (for θ = π, 2π). When summing over all m, it is clear that
∂H/∂y = 0 on y = 0,L. The unknown factor A(k, n,R) can then be determined by
imposing the requirement of zero normal derivative at r = R, which by virtue of (6.8)
gives

∂H

∂r
=−∂G

∂r
for r = R. (6.14)

Differentiating and inserting the above expressions for G and H gives

A(k, n,R)= K′2n+1(kR)

I′2n+1(kR)

∫ R

0
λJ2n+1(kλ) dλ, (6.15)

where the prime denotes the derivative with respect to the argument. Thus, the final
solution for the velocity potential induced by surge motion of a half-filled horizontal
cylinder can be expressed as

φ(x, y, z)=− V

2π

∞∑
m=−∞

(−1)m
∫

Sw

(
1√

(x− ξ)2+ (y− mL)2+ (z− ζ )2

− 1√
(x− ξ)2+ (y− mL)2+ (z+ ζ )2

)
dξ dζ

+ 8V

π2

∞∑
n=0

∞∑
m=0

εm
sin((2n+ 1)θ)

2n+ 1

×
∫ ∞

0
A(k, n,R)I2n+1(kr) cos(ky) cos(kmL) dk (6.16)

where ε0 = 1 and εn = 2 for n 6= 0.
It is cumbersome numerically to integrate up the full solution (6.16) for a cylinder

of finite length L. Here we will therefore consider only the limit L/R→∞ and
calculate the force F−1y acting on one end-wall y = 0. For a very long but finite
cylinder, there will be an equal impulsive force on the other end-wall y = L, so that
the total force will be 2F−1y. The impulsive hydrodynamic force on the single end-wall
y= 0 of a half-filled semi-infinite horizontal cylinder is thus

F−1y = ρ
∫ π

0

∫ R

0
rφ(r, 0, θ) dr dθ = (C1 + C2)ρVR3. (6.17)

The coefficient C1 represents the contribution from the source distribution plus its
image (the Green function) and the correction C2 takes care of the adjustment to
the boundary condition at the end wall y = 0. We choose to evaluate C1 directly in
Cartesian coordinates as

C1 = 1
2π

∫ 1

−1

∫ 1

−1

∫ 0

−
√

1−x2

∫ 0

−
√

1−ξ2

×
(

dx dξ dz dζ√
(x− ξ)2+ (z+ ζ )2

− dx dξ dz dζ√
(x− ξ)2+ (z− ζ )2

)
. (6.18)

The integrations with respect to z and ζ are performed analytically by Mathematica
and the resulting double integral is evaluated numerically to yield C1 =−0.48444.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

30
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.305


Incompressible impulsive sloshing 295

Inserting the contribution m= 0 from the general solution (6.16), we find after some
algebra the following expression for C2

C2 = 16
π2

∞∑
n=0

(2n+ 1)−2

∫ ∞
0

K′2n+1(k)

I′2n+1(k)
P2n+1(k)Q2n+1(k)k

−4 dk, (6.19)

where

P2n+1(k)=
∫ k

0
tJ2n+1(t) dt, (6.20)

Q2n+1(k)=
∫ k

0
tI2n+1(t) dt. (6.21)

The infinite series (6.19) for C2 converges quickly, and we choose to truncate
it after three terms. Numerical integration of these terms gives C2 = −(0.1401 +
0.0028 + 0.00038) ≈ −0.1433. Summing up C1 and C2, we find that the impulsive
hydrodynamic force acting on the end-wall y= 0 of a semi-infinite cylinder is

F−1y =−0.6277ρVR3. (6.22)

We now take the limit L→∞ in the general solution (6.16) and examine the
surface velocity η1 in the vicinity of the waterline along the x-axis. The free-surface
velocity near the waterline y= 0 is given by

η1(x̃, ỹ)= ∂φ

∂z

∣∣∣∣
z=0

= V

π
(E1(x̃, ỹ)+ E2(x̃, ỹ)), (6.23)

where we introduce the dimensionless coordinates

(x̃, ỹ)=
( x

R
,

y

R

)
. (6.24)

The first contribution to the surface velocity that includes a singularity can be
written as

E1(x̃, ỹ)=
∫ 1

0

λ

x̃

∫ π/2
−π/2

∂

∂θ

(
1

(λ2 − 2x̃λ sin θ + x̃2 + ỹ2)
1/2

)
dθ dλ. (6.25)

On the other hand, the second contribution is a regular function for all x̃ and ỹ

E2(x̃, ỹ)= 8
π

∫ ∞
0

K′2m+1(k)

I′2m+1(k)
P2n+1(k)

I2n+1(kx̃)

x̃
cos(kỹ)k−2 dk. (6.26)

Performing the above integrations, we finally find the leading-order contribution for
the surface velocity η1 near the waterline y= 0

η1(x̃, ỹ)= V

π

log

(√
(1− x̃)2+ỹ2 + 1− x̃

)(√
(1+ x̃)2+ỹ2 + 1+ x̃

)
ỹ2

− 4√
(1− x̃)2+ỹ2 +

√
(1+ x̃)2+ỹ2

 (6.27)
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again yielding a logarithmic-type singularity along the entire waterline y= 0, which is
a local representation of the outer solution in the matched-asymptotics sense.

7. On vertical cylinders
Two problems of incompressible impulsive sloshing in vertical containers have

previously been solved: vertical cylinders with circular and rectangular cross-section,
respectively. To date only the leading outer solutions have been considered.

In both of these cases, there is no difference between the motions induced by sway
and surge. For a circular cylinder, the impulsive hydrodynamic force will always point
in the direction opposite to the direction of motion. This means that the virtual mass
will be a scalar. For a rectangular cylinder the virtual mass will be a tensor, unless the
cross-section is a square.

7.1. The rectangular container
The impulsive flow in an upright rectangular container was first investigated by
Chwang & Wang (1984) and independently by Roberts (1988). Both sway and surge
will generate the same type of two-dimensional flow. The fluid in the container fills a
height H over the base, and the widths in the x and y directions are denoted by Lx

and Ly, respectively. The initial surface velocity due to the impulsive velocity U of the
container in the x direction is

η1 = 2U
∞∑

m=1

cosh(km(Lx − x))− cosh(kmx)

kmH sinh(kmLx)
, (7.1)

where km = (m − 1/2)π/H. It exhibits a logarithmic singularity of opposite sign for
x = 0 and x = Lx. A similar solution was derived by Chwang & Wang (1984) for a
container in constant impulsive acceleration.

In general, we have two components for the impulsive velocity U and V in the
x and y directions, respectively. The surface velocity due to container motion in
the y direction is found from (7.1) by the substitution (x,Lx,U)→ (y,Ly,V). The
hydrodynamic force can be expressed using the virtual mass tensor mij as follows

F−1i =−mijVj, (i, j= 1, 2), (7.2)

where (V1,V2) = (U,V), and the subscripts 1 and 2 represent the x and y directions.
The principal components of the virtual mass tensor are given by the impulsive force
components

F−1x

mU
=−m11

m
=−4

H

Lx

∞∑
m=1

tanh(kmLx/2)

(kmH)3
, (7.3)

and a similar expression for F−1y/(mV) can be found by replacing (Lx,m11) with
(Ly,m22). Here m= ρLxLyH is the fluid mass inside the rectangular container.

7.2. The hollow vertical circular cylinder
We present here a new solution for an annular circular cylinder with its inner and outer
walls moving arbitrarily in sway/surge. The radius of the outer cylinder is R2, and it
is given an impulsive velocity U in the x direction. The radius of the inner cylinder is
R1, and it is given an impulsive velocity V at an angle α to the x-axis. The undisturbed
fluid depth is H.
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The boundary conditions for the initial impulsive flow are

φ(r, θ, 0)= 0,
∂φ

∂z
(r, θ,−H)= 0, (7.4)

∂φ

∂r
(R1, θ, z)= V cos(θ − α), ∂φ

∂r
(R2, θ, z)= U cos θ, (7.5)

where r = √x2 + y2 and θ = arctan(y/x). The complete solution for the velocity
potential is

φ(r, θ, z)= 2
H

∞∑
m=1

V cos(θ − α)Wm(r,R2)− U cos θWm(r,R1)

k3
mW ′m(R1,R2)

(−1)m+1 cos(kmz),

(7.6)

where km = (m− 1/2)π/H and we introduce the Wronskian

Wm(r, s)= I1(kmr)K′1(kms)− K1(kmr)I′1(kms), (7.7)

in which I1 and K1 are the modified Bessel functions of order one and the prime
denotes derivative with respect to the argument. We also introduce the notation

W ′m(r, s)= I′1(kmr)K′1(kms)− K′1(kmr)I′1(kms). (7.8)

The leading-order surface velocity due to an impulsive velocity U of the cylindrical
container in the x direction is

η1 = ∂φ

∂z

∣∣∣∣
z=−H

=− 2
H

∞∑
m=1

V cos(θ − α)W(r,R2)− U cos θW(r,R1)

kmW ′(R1,R2)
, (7.9)

implying again a logarithmic-type singularity along the inner and outer waterline
contours. The case R1 = 0 represents the interior flow inside a cylinder (Chwang &
Wang 1984), whereas the case R2 = 0 corresponds to an exterior flow outside a solid
cylinder (Wang & Chwang 1989). In the case of infinitely large radii (R1,R2) but with
finite gap Lx = R2−R1 (with α = 0 and U = V) it reduces to (7.1), namely the solution
for the rectangular container (Chwang & Wang 1984; Roberts 1988).

The impulsive force components F−1x and F−1y for the general annular geometry are
finite and can be expressed as

F−1x = 2πρ
H

∞∑
m=1

1
k3

mW ′m(R1,R2)
(V cosα[R2Wm(R2,R2)− R1Wm(R1,R2)]

−U[R1Wn(R1,R1)− R2Wm(R2,R1)]), (7.10)

F−1y = 2πρ
H

∞∑
m=1

V sinα
k3

mW ′m(R1,R2)
[R2Wm(R2,R2)− R1Wm(R1,R2)] . (7.11)

These formulae can be made more explicit by recalling that sW ′m(s, s) = −1/km,
enabling comparison with the known special cases mentioned above.

8. Wavemakers related to impulsive sloshing
A very long cylindrical container in surge motion is essentially a combination of

two opposite impulsive wavemakers. This viewpoint was first proposed by Roberts
(1988). Based on the wavemaker theory of Peregrine (1972), Roberts constructed
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an elegant solution for impulsive sloshing in a rectangular container of finite width.
From Peregrine (1972), we know that the force impulse F−1y on a semi-infinite two-
dimensional rectangular piston wavemaker with depth H and cross-sectional area A is

F−1y

(ρAH)V
=−16
π3

∞∑
n=1

(2n− 1)−3 =−0.542755, (8.1)

where the minus sign means that the pressure impulse force on the piston is acting
opposite to its motion. The mass factor (ρAH) scales the impulsive force by taking the
depth as the horizontal length scale for the resulting flow. This formula can be directly
compared with our result for the force impulse F−1y on a triangular piston wavemaker
with depth H and width 2H (derived in § 5.2).

F−1y

ρH3V
= F−1y

(ρAH)V
=−0.191662, (8.2)

where we introduce the piston area A= H2 for the triangular wavemaker piston. These
two formulae give the momentum thicknesses in units of H. These are the horizontal
thicknesses of local fluid cushions close to the wavemaker that effectively follow its
impulsive motion. Another way of expressing this idea is to introduce virtual fluid
masses: for the square piston wavemaker the virtual mass is 0.542755ρH3, whereas
the isosceles triangle piston with the same area has a virtual mass 0.191662ρH3. The
ratio between these virtual masses is roughly 3 : 1. This large ratio is related to the
fact that the triangle piston pushes a free-surface width that is twice as large as that
pushed by the square piston of the same area and depth. At the free surface, the
piston cannot exert any pressure. The greater the surface area, the more freedom there
is for the fluid particles to escape from the forced horizontal piston motion. By thus
diverting the forcing of the piston, the surface particles prevent the piston forcing from
penetrating deeply into the fluid. This explains why the greater surface area of the
triangular piston is linked to a reduced virtual mass, compared with the square piston
wavemaker.

Above we have found the force impulse (6.22) for a semicircular wavemaker piston.
It can be rewritten as

F−1y

(ρAR)V
=−0.3996, (8.3)

where we have introduced the wavemaker piston area A = πR2/2, with the radius
R representing the maximal fluid depth (called H in the two previous cases). The
value of the force impulse on a semi-circular wavemaker piston (8.3) thus fits in
nicely between the analytical results for the triangular piston (8.1) and the rectangular
piston (8.2).

The explicit solution for the leading-order surface velocity induced by a planar
piston-type wavemaker can be directly obtained from the rectangular container
expression (7.1). Under a large-spacing approximation kmLy→∞, valid in the vicinity
of the wall y= 0, it yields

η1(y)= 2V

H

∞∑
m=1

e−kmy

km
= 2U

π

∞∑
m=0

e−(2m+1)πy/(2H)

2m+ 1
. (8.4)
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FIGURE 8. The free-surface velocity distributions for two impulsive wavemakers, as
functions of the dimensionless lengthwise coordinate x/H. Solid curve: η1(H, y)/V along
the central line of a triangular wavemaker (semi-infinite wedge container). Dashed curve:
η1(y)/V for the rectangular wavemaker (Peregrine 1972).

The summation in (8.4) is singular at the waterline x = 0. Following Prudnikov,
Brychkov & Marichev (1990, p. 740), the infinite sum in (8.4) reduces to

η1(y)=−2V

π
log tanh

πy

4H
. (8.5)

This formula explicitly reveals the logarithmic singularity at the waterline x = 0. It
was first derived by Peregrine (1972), and was confirmed by Joo, Schultz & Messiter
(1990). In figure 8 we display (8.5) together with the central surface velocity η1(H, y)
that the triangle piston wavemaker generates along the top mid-line of the wedge
container. Near the piston wall, these two pistons have similar spatial variations in the
surface velocity, where the triangle gives roughly a 20 % reduction of the amplitude
compared with the square piston. Another important difference is that the surface
velocity for the triangle piston has a much stronger decay with increasing y, compared
with the square piston. This stronger spatial decay of the triangle piston shows that
its forcing reaches less deeply into the fluid and explains the strong reduction in the
virtual mass.

From the preceding analysis one may also construct the flow solution for a
wavemaker cross-section shaped as a half circle. It has a similar logarithmic singularity
in the flow velocity at the waterline, where the moving piston meets the free surface.

9. Discussion and concluding remarks
In this paper we have elucidated a distinctive class of problems relevant for sloshing

in open rigid containers and coined it as incompressible impulsive sloshing. This
is an essentially inertial flow in a container that suddenly changes its motion or is
put into motion. Impulsive sloshing has not received much attention in comparison
with the field of sloshing as a whole. Considerations of impulsive sloshing should
be incorporated in the structural design of partly filled fluid tanks within seaborne or
airborne vehicles and missiles.

The impulsive start of sloshing is vital for improving the understanding of
initial conditions, since it is far from obvious how to bring a stagnant fluid
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into an irrotational sloshing flow by moving the container walls. All initiation of
incompressible free-surface flow by forced motion of a rigid container will be
impulsive, no matter how smoothly it is started. This will result in forces that may
be significantly different from those predicted by a traditional time-harmonic analysis.
Moreover, the early impulsive flow will leave lasting signatures on the surface waves
within a finite container.

To understand sloshing in a given container, one needs to know its free modes
of oscillations with angular frequency ω. The linearized free-surface condition for
time-periodic flow is ∂Φ/∂z = KΦ (at z = 0). Here Φ is the spatial potential (with
the harmonic time dependence separated out) and K = ω2/g. An impulsive start will
give Φ|z=0 = 0 for t = 0+, which leads to ∂η/∂t = 0 at t = 0+, if the flow is time
periodic. This means that the undeflected state at rest is the only possible time-periodic
flow with impulsive initial conditions. This trivial state has zero amplitude in the
wall motion. Since no time-periodic flow can be generated by a forced motion of the
walls, one has to exert work on the fluid surface itself. Unless the free modes of
oscillation are triggered by some instability or resonance, they can only be started as
a Cauchy–Poisson problem of one of the two types: (i) an appropriate free-surface
deflection released from rest; (ii) a pressure impulse acting on the horizontal fluid
surface, scaled to put the fluid into the appropriate initial velocity.

There is no natural method to trigger free harmonic oscillations by forced motion of
solid boundaries that intersect with the free surface. Transient waves do not vanish in
finite containers, as long as the flow is inviscid. The choice of initial conditions for
harmonically forced sloshing is therefore important, in contrast to harmonic radiation
of water waves in an infinite domain. Much work remains to be done on initial value
problems for sloshing, and the relevance of singularities and inner expansions will
continue to pose great analytical challenges. The present paper serves to address these
questions, and also to present outer solutions for impulsive sloshing for some basic yet
practically relevant container geometries.

We emphasize the lack of theory predicting a continuous evolution from an
impulsive start to a harmonic flow inside open containers. The same dilemma also
exists for the wavemaker: there is no natural way of starting a wavemaker motion in a
fluid strip initially at rest Peregrine (1972), in order to establish a later time-harmonic
flow driven by an oscillating wavemaker (Havelock 1929). This predicament has been
investigated by Joo et al. (1990), who found that the surface slope at the waterline will
have a discontinuous time dependence.

Some work has been published on the corresponding initial-value problem for
wavemakers, see Roberts (1987), Joo et al. (1990) and Miles (1991). Roberts (1987)
was able to show that the waterline singularity on the wavemaker for small time
(physically generating a thin upward jet) can be removed if instead of an impulsive
power-law generation one allows the flow to build up over an infinite amount of
time, namely by exponential excitation. However, in order to address the initial
value problem of an exponentially moving plate, one has to consider in a systematic
manner gravity effects and therefore also include a Froude-number dependence in
the linearized formulation. Nevertheless, the wave slope along the waterline remains
infinite. Joo et al. (1990) introduced a small-time expansion using a Fourier integral
method and included capillary effects in order to remove the waterline singularity.
Miles (1991) also included capillary effects and found a similarity solution for the
linearized initial-value problem for a piston wavemaker.

For the hydrostatic shallow-water limit of a rectangular piston wavemaker, we can
give an elementary comparison between impulsive and harmonic sloshing. We compare
the force amplitude F0 in a periodic wave with the steady force of an impulsive start,
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both with the same acceleration amplitude a0. The oscillatory force F0,osc serves to
accelerate the fluid mass within a quarter wavelength λ/4. The acceleration averaged
over a quarter wavelength is ā= (2/π)a0. This implies that F0,osc = ρAāλ/4= ρAa0/k,
a result that also follows directly from pressure integration. The early impulsive wall
motion generates a force F0,imp which is generally smaller, because it sets only a
fraction of the fluid into motion, as expressed by the virtual mass 0.542755ρAH. This
gives the ratio F0,imp/F0,osc = 0.542755kH = 3.41023H/λ, where λ is the wavelength of
the harmonic wave generated by an oscillating wavemaker.

The requirement H/λ� 1 for shallow-water theory implies that F0,imp/F0,harm is of
an order smaller than one. However, one cannot conclude that the transient force after
an impulsive start always remains smaller than the corresponding time-harmonic force.
Joo et al. (1990) studied this transient start-up of an oscillating wavemaker, but they
did not compute the force on the wavemaker.

In the present work we have only considered the leading-order flow of
incompressible impulsive sloshing. We have studied impulsive sloshing when the
container is suddenly put into a constant velocity. We have given transformations
linking the case of impulsively forced velocity to impulsively forced acceleration. We
have calculated the impulsive force from the fluid on the container. The associated
initial free-surface flow will typically exhibits a logarithmic (integrable) singularity
along the waterline contour.

When the rigid container walls put into motion are vertical, a free-surface
singularity appears, defining our solution as the outer solution in the context of
a matched asymptotic expansion. The challenge of developing valid inner solutions
for incompressible impulsive sloshing and performing the proper matching procedure
between the inner and outer solutions remains unresolved. A related matched
asymptotics of the dam-break problem has been investigated by Korobkin & Yilmaz
(2009).

If the Froude number of the impulsive flow in the container is smaller than one
(subcritical flow), we can identify three distinct time scales for the bulk flow inside
a rigid container put impulsively into motion: (i) the acoustic time scale; (ii) the
incompressible impulsive time scale, which is the subject of this work; (iii) the
gravitational time scale.

An example where the same three time scales can be identified is tsunami
generation by sudden bottom disturbances, where the Froude number (based on the
local depth) is always very small. The impulsive time scale is defined implicitly by
filling the gap between the acoustic and the gravitational time scales. The fact that
the impulsive time scale does not have a general explicit definition is probably the
reason why the importance of incompressible impulsive free-surface flow tends to be
underrated, both in connection with sloshing and the generation of tsunamis (Ward
2001).
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