
Robotica (2009) volume 27, pp. 853–859. © Cambridge University Press 2009
doi:10.1017/S0263574708005250

Improved particle fusing geometric relation between
particles in FastSLAM
Inkyu Kim∗, Nosan Kwak, Heoncheol Lee and Beomhee Lee
School of Electrical Engineering and Computer Science, Seoul National University, Korea.

(Received in Final Form: November 28, 2008. First published online: January 6, 2009)

SUMMARY

FastSLAM is a framework for simultaneous localization and
mapping using a Rao-Blackwellized particle filter (RBPF).
But, FastSLAM is known to degenerate over time due
to the loss of particle diversity, mainly caused by the
particle depletion problem in resampling phase. In this
work, improved particle filter using geometric relation
between particles is proposed to restrain particle depletion
and to reduce estimation errors and error variances. It
uses a KD tree (k-dimensional tree) to derive geometric
relation among particles and filters particles with importance
weight conditions for resampling. Compared to the original
particle filter used in FastSLAM, this technique showed
less estimation error with lower error standard deviation in
computer simulations.

KEYWORDS: Particle filter; FastSLAM; Geometric
relation.

1. Introduction

The simultaneous localization and mapping (SLAM) is a
fundamental problem of robots to perform autonomous
tasks, such as exploration and navigation in unknown
environments. The two key computational solutions to
the SLAM problem use the extended Kalman filter
(EKF-SLAM) and the Rao-Blackwellized particle filter
(FastSLAM). EKF-SLAM has served as the main approach
to solve the SLAM problem for the last 15 years.
However, EKF-SLAM is known to have two major well-
known shortcomings: quadratic computational complexity
and sensitivity to failures in data association.1 Recently, the
FastSLAM algorithm has been proposed as an alternative
solution to the SLAM problem.2 It uses the particle filter
instead of the Kalman filter to approximate the ideal
recursive Bayesian filter. FastSLAM is an instance of the
Rao-Blackwellized particle filter (RBPF),3 which factors
the full SLAM posteriors into the product of two terms:
a robot path posterior and landmark posteriors conditioned
on the robot path estimate.4 FastSLAM has two significant
advantages over EKF-SLAM. First, by factoring the full
SLAM posteriors, FastSLAM has linear time-complexity.
Second, unlike EKF-SLAM, FastSLAM allows each particle
to perform its own data association, which implements

* Corresponding author. E-mail: gimming9@snu.ac.kr

multi-hypothesis data association.5 The ability to pursue
multiple data associations simultaneously makes FastSLAM
significantly more robust to data association problems than
algorithms based on incremental maximum likelihood data
association, such as EKF-SLAM.1

However, FastSLAM has some drawbacks. In the
literatures,6,7 FastSLAM has been noted to degenerate over
time. This degeneracy happens when a particle set estimating
the pose of the robot loses its diversity. In general, more
diversity in a particle set results in better loop-closing
performance. There are two main reasons for losing particle
diversity in FastSLAM. First, sample impoverishment,
caused by mismatch between target distribution and proposal
distribution, produces improbable particles. Especially, if
the robot’s motion is very noisy while the robot’s sensor
is very accurate, this mismatch frequently occurs. Second,
during the resampling process in FastSLAM, the improbable
particles are thrown away, and only particles with high
weights survive. Particle with important information may get
low weight and dumped out. Lost information stored within
the dumped particle cannot be recovered and the particle
depletion problem happens.

The sample impoverishment problem and the particle
depletion problem happen in all particle filters. The reason
for the two problems is in sampling and resampling phases.
On the view of sampling, the loss of particle diversity is due to
poor samples generated in the sampling process. The choice
of proposal distribution is the most critical design issue in
particle filters to solve the sampling problem.8 In this aspect,
many schemes using mixture proposal distribution have been
studied.9,10 Another critical issue is the number of particles
estimating the pose of the robot. If there were enough number
of particles to represent the posterior distribution, sample
impoverishment would not happen. There is, however, a
trade-off between the number of particles and computational
cost. Gordon et al. proposed a simple implement strategy
so-called prior boosting or prior editing.11 There is, however,
no specific scheme to boost the number of particles. We
proposed an adaptive prior boosting technique to control
the number of particles using a neural network training
method.12 Boosting the number of particles showed improved
performance, but also increased the computational cost.

Many algorithms8,13,14 have been proposed to suppress
particle depletion, but they are not good enough to fully
prevent particle depletion. On the view of computational
improvement, Grisetti et al.15 proposed computation

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250


854 Improved particle filter using geometric relation between particles in FastSLAM

reduction by re-using proposal distribution for each particle.
A different approach was proposed by Lee and Lee16 using
landmark geometric constraints. In their work, a landmark
group is formed based on the geometric relationship between
landmarks and particles, sharing observation data using the
landmark group.

Many approaches to improve FastSLAM have been
researched, but no method used the particle geometry
information. In this paper, a novel resampling technique
using geometric relation between particles is proposed
to solve the particle depletion problem. Geometrically
related particles satisfying the conditions are selected in
the resampling process in FastSLAM to reduce sudden
estimation failure which causes the situations of good
particles being thrown away. This paper is organized
as follows: In Section 2, the FastSLAM algorithm and
its particle depletion problem are briefly described. An
improved particle filter using particles’ geometric relation is
proposed in Section 3, and its simulation results are discussed
in Section 4. Finally, the conclusion is presented in Section 5.

2. Particle Depletion Problem in FastSLAM

2.1. FastSLAM algorithm
The FastSLAM’s key mathematical insight pertains to the
fact that the full SLAM posterior can be factored as follows
when the correspondences, c1:t = c1, . . . , ct are known1:

p(x1:t , M|z1:t , u1:t , c1:t )

= p(x1:t |z1:t , u1:t , c1:t )

×
Nf∏

n=1

p(mn|x1:t , z1:t , u1:t , c1:t ) (1)

where x1:t is the robot path from the start up to time
t, M is the map, and z1:t and u1:t are the measurements
and controls up to time t, respectively. FastSLAM uses a
particle filter to compute the posterior over robot paths,
denoted by p(x1:t |z1:t , u1:t , c1:t ). For each feature in the
map, FastSLAM uses a separate estimator over its location
p(mn|x1:t , z1:t , c1:t ), one for each n= 1, . . . , Nf where Nf

is the number of features. The feature estimators are
conditioned on the robot path, which means there are
separate copies of each feature estimator, one for each
particle. More precisely, feature locations are estimated using
EKFs. Due to the factorization, FastSLAM can maintain a
separate EKF for each feature, which makes the update more
efficient than that in EKF-SLAM. By keeping the feature
estimates independently, FastSLAM avoids the quadratic
cost of computing a joint map covariance matrix. However,
the dependency on the robot path is the key weakness of
FastSLAM, which means the implicit dimension of the state-
space increases with time.
A particle at time t, Y

[k]
t in FastSLAM is denoted by

Y [k]
t = 〈

x[k]
t , μ

[k]
1,t , �

[k]
1,t , . . . , μ

[k]
Nf ,t , �

[k]
Nf ,t

〉
, (2)

where [k] indicates the index of the particle, and x
[k]
t is the

pose estimate of the robot at time t. Only the most recent

Fig. 1. The FastSLAM algorithm. (a) Sample particles using
control input and current measurement, (b) measurement update,
(c) importance weight, and (d) resampling.

pose x
[k]
t is used in FastSLAM, so a particle keeps only the

most recent pose. μ
[k]
n,t , �

[k]
n,t are mean and covariance of the

Gaussian, representing the nth feature location relative to
the kth particle, respectively. Altogether, these elements form
the kth particle Y

[k]
t , and there are total Np particles and Nf

feature estimates in a particle set.
The simple graphical procedure of the FastSLAM 2.0

algorithm is illustrated in Fig. 1. In Fig. 1(a), each particle
samples a robot pose using the proposal distribution which
takes the measurement zt into account. All of the sampled
poses constitute a temporary particle set. Then, each particle
updates the posterior over the feature estimates based on the
measurement zt and the sampled pose as shown in Fig. 1(b).
The next step is to compute the importance weight of kth
particle using the following weighting function:

w[k]
t = target distribution

proposal distribution
.

Since it is usually impossible to sample from the true
posterior (target distribution), it is common to sample from
an easy-to-implement distribution, the so-called proposal
distribution. The particles receive higher weights where the
target distribution is larger than the proposal distribution, and
the particles are given lower weights where target distribution
is smaller than the proposal distribution. The last process is
resampling, which draws Np particles from the temporary
particle set. As shown in Fig. 1(d), the temporary particle with
high importance weight is replicated three times whereas
the one with low importance weight is thrown away by the
resampling process. This means the robot path and feature
estimates of the rejected particles are lost.

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250


Improved particle filter using geometric relation between particles in FastSLAM 855

2.2. Particle depletion problem
The particle filter suffers from the so called particle depletion
problem, that is, the number of distinct particles is getting
smaller as time passes.6,17 At first, all of the particles
are distinct, which means that they have different feature
estimates about a landmark. As time passes, however, only
particles with high weights survive in resampling step, and
particles with low weights disappear together with their
feature estimates.

The problem happens when a particle receives a low weight
though it is very close to the real pose of the robot. This is
so-called sudden estimation failure situation. So resampling
only with weights might cause the particle depletion. Thus,
a novel technique is proposed to resample with geometric
relation between particles, together with weights.

3. Improved Particle Filter using Particle

Geometry Information

3.1. The KD tree
Particles are sampled using control input and current
measurement from previous particles and each particle has
its own estimation of the real robot pose. As particles are
predicted from the different particles of previous time step,
particles are independent of one another. These independent
particles form a geometric relation: how far particles are
located, how particle are distributed, what direction particles
are heading, etc. Among many geometric relations, particle
distribution is considered as the geometric relation between
particles in this paper.

If most of the highly weighted particles are gathered in a
certain region, the real robot will be located in that region
with a high probability. This is similar to the concept of
the Particle Swarm Optimization (PSO). This concept was
originated from the swarm behavior of insects like ants. In
PSO, particles find the global best estimation by sharing
information with the nearest particle. Then each particle
adjusts its position according to the global best. This is like a
swarm of ants looking for the food source. As the food source
may exist near where many ants with food are gathered, ants
without food adjust their goal toward the point where the ants
with food came from. Using the concept of PSO in particle
filter, particle receives confidence over its estimation if other
particles with high weights are adjacent. Therefore, highly
weighted adjacent particles, so called neighboring particles,
should receive a credit as they estimate the real robot pose
more precisely.

In order to search a group of highly weighted particles,
neighboring particles from a reference particle should be
selected. In an intuitive view, neighboring particles are
located close to the reference particle. There are two
problems when choosing neighboring particles with respect
to the Euclidean distance. It is hard to define threshold
to be chosen and the computation increases as Euclidean
distance from the reference particle to every particle must
be calculated. So a KD tree (k-dimensional tree)18,19 is
constructed using particle poses as the tool to select
neighboring particles. The KD tree is a space-partitioning
data structure for organizing points in a k-dimensional space.

Table I. Algorithm for building KD tree.

Algorithm BUILDKDTREE(P, depth)
Input: A set of points P and the current depth
Output: The root of a KD tree storing P.

1: if P contains only one point
2: then return a leaf storing this point
3: else if depth is even
4: then Split P into two subsets with a vertical line

l through the median x-coordinate of the points in P.
Let P1 be the set of points to the left of l or on l,
and let P2 be the set of points to the right of l.

5: else Split P into two subsets with a horizontal line
l through the median y-coordinate of the points in
P. Let P1 be the set of points below l or on l,
and let P2 be the set of points above l.

6: vleft ←BUILDKDTREE(P1, depth + 1)
7: vright ←BUILDKDTREE(P2, depth + 1)
8: Create a node v storing l, make vleft the left child of v,

and make vright the right child of v.
9: return v

A KD tree is built according to the following algorithm on
Table I.

The KD tree can search a node with single query covering
rectangular range with O(

√
n) time, while searching

neighboring particles using Euclidean distance requires
O(n2) time. So the KD tree is a useful structure for range
searching which makes the KD tree suitable for the structure
to search neighboring particles. Figure 2 shows an example
of building the KD tree. In Fig. 2, neighboring particles are
easily selected by searching a subtree. For example, P1, P2,
and P3 are in the subtree l4, meaning those three points are
neighboring particles. To find the neighboring particles of
P1, they can easily be achieved by selecting a subtree where
P1 belongs then picking up the particles belonging to the
subtree. There is no need to search all the particles whether
they are neighboring particles or not.

3.2. Resampling with the KD tree structure
In FastSLAM, usual resampling technique is residual
stratified resampling (RSR) technique which uses weight
strata to decide how many copies of each particle should be
made. The RSR technique shows quite nice performance,
except for a sudden estimation failure which causes the
loss of particle diversity. This sudden estimation failure
happens when particle receives high weights which are
not correctly pointing the real robot pose. Highly weighted
particles with wrong estimation survive and samples for the
next FastSLAM step are predicted based on those corrupted
particles. If most of the particles are sampled based on those
corrupted particles, particles may not be diversely distributed
to let at least some particles to estimate the real robot pose
correctly, resulting in the loss of particle diversity. This error
accumulates as time passes and the error diverges.

In order to restrain losing diversity, keeping particles
sufficiently near the real pose of the robot is very critical issue
in FastSLAM. The proposed approach, geometric relation
resampling (GRR) takes account of not only particle weights
but also geometric relation between particles for resampling.

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250


856 Improved particle filter using geometric relation between particles in FastSLAM

Fig. 2. A KD -tree: (a) the way the plane is subdivided; (b) the
corresponding tree. The region (l4) contains three points, P1, P2,
and P3 in subtree of node l4. Particles with geometric relation can
be obtained by searching a node and its subtree.

Using the GRR algorithm, the problem of sudden estimation
failure can be reduced and diverging particles from the real
pose can be suppressed.

The GRR algorithm selects particles for resampling
according to the conditions of particle geometry and particle
weights. First condition is the geometric distribution. As
mentioned, neighboring particles should be selected first, in
order to check whether a group of neighboring particles has
relatively high weights or not. A group of particles is selected
by using a KD tree then searching particles belonging to a
subtree. It is important to decide from which depth of subtree
particle should be drawn. If particles are drawn from the
subtree of depth 0, every particle is selected and grouping
the neighboring particles would be meaningless. In the RSR
simulations, average ratio of particle rejection during the
resampling step was 23.94%. It means if the number of
particles is fixed, approximately one out of five particles
was rejected and one out of five was copied twice. If those
multi-copied particles are all neighboring particles, the group
would have a higher possibility of correctly estimating the
real robot pose than other groups. So in our algorithm, 20% of
total particles are selected as one group. For example, if there
are 50 particles, subtree of depth 2 is examined as a group,
then particles selected for one group are 8–16 (16–32%).

After extracting the neighboring particles, the second
condition, particle weights, should be analyzed. As men-

tioned above, every particle in a group should exceed certain
weight to receive extra credit. The weight threshold is set to
be the average of weights as only particles above average
weight survives in the resampling step. Then the weight
distribution should be analyzed. To certify the particle weight
distribution to give an extra credit, there should be a tool to
evaluate the particle weight distribution. So the estimation
error potential, the possibility of estimation error depending
on the real pose of the robot, is defined as follows:

Estimation error potential (EEP)
= p1 · d1,err · N1 + p2 · d2,err · N2 + · · · + pn · dn,err · Nn,

= w1 · d1,err · N1 + w2 · d2,err · N2 + · · · + wn · dn,err · Nn

(3)

where pn stands for probability of a particle n to be selected,
which also can be represented as particle n’s weight wn. dn,err

stands for the estimation error, distance between the real pose
of the robot and the particle n. Nn is the number of particle
copies proportion to wn.

A simplified example is shown in Fig. 3. Cases 1 and 2
in Fig. 3, which have same geometric particle distribution,
are compared to evaluate which weight distribution is more
robust depending on the real robot pose. In Fig. 3, case 1
with difference real robot position (a), (b), and (c), the EEP
is 4, 10, and 16, respectively. And for case 2, no matter
where the real robot is, the EEP is 9. Here we can check
out whether the weighting function of importance weighting
step in FastSLAM worked well or not. The best case is case 1
with real robot position of (a). P1 is located closer to the real
robot pose and P1 receives higher weight, meaning that the
weighting function works well. But in case 1 in Fig. 3(b) and
(c), the weighting function fails to correctly give weights and
as a result biased weight distribution increases the EEP. In
case of evenly distributed weight, (a), (b), and (c) of case 2,
the EEP is stable which means the estimation error is robust
to the weight function failure. Though particle distributions
of cases 1 and 2 are the same, biased weights may cause the
mean and the variance of the EEP to grow. That is, resampling
with a group of evenly weighted particles can reduce both
the mean and the variance of the EEP. The evenness of
weights in a group of neighboring particle is decided when
the maximum weight difference is less than 30%, for the
average of weight standard deviation over weight mean ratio
in the RSR simulation was 28.41%.

During the resampling phase, a group of particles is
selected from the KD tree and particles’ weights and weight
distribution are verified whether a group estimates the real
robot pose well or not. If particles satisfy the conditions, they
are resampled additionally. By resampling with weights and
geometric relationship, the GRR algorithm can reduce the
estimate error and error variance and increase the FastSLAM
consistency.

4. Simulation Results

4.1. Simulation setup
Simulations were performed on a 25 m × 37 m simulated
indoor environment with 50 artificial features, shown in
Fig. 4.

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250


Improved particle filter using geometric relation between particles in FastSLAM 857

Fig. 3. Two examples of the particles with different weights, each
with three possible real robot poses. Each case of the real robot
poses, estimation error potential changes. In case 1 in (a), (b), and
(c), estimation error potentials are fluctuant depending on the real
pose of the robot. In case 2 in (a), (b), and (c), estimation error
potentials are balanced, which means robustness to the weighting
function failure.

Table II. Error probability results of two cases 1 and 2 in Fig. 3.

Error probability

(a) (b) (c) Mean of EPP Variance of EPP

Case 1 4 10 16 10 36
Case 2 9 9 9 9 0

The robot path was given to tour around the indoor
environment while obtaining the measurement data from the
features. The FastSLAM algorithm estimates the position of
robot as well as the position of the features simultaneously.
During a simulation run, the estimation error of features
decreases when robot closes the inner loop near point
B and the outer loop near point C, as robot senses the
feature observed before. The robot runs one lap around the
environment in one simulation, and in total 50 simulations
were run. Separate simulations were performed to evaluate
the performance of RSR and GRR algorithm. Average pose
and feature error were calculated with a 3.0-GHz PC with
1-GB RAM. Simulations were performed using FastSLAM
2.0 with known data association.

4.2. Simulation results
On average, 6.2 out of 50 particles were selected from the
KD tree and resampled using the GRR algorithm. A single
time step example of particle distribution is shown in Fig. 5.
Particles are diagonally distributed from the real robot pose,
and it’s not clear which particles are correctly estimating the
real robot pose by only looking at the particles’ weights as
they do not differ much no matter where the particles are
located. But since particles selected by the GRR algorithm
are the nearest particles to the real robot pose, resampling this
group of particles would help improving the performance.
Throughout the simulation, the average distance between the
real pose of the robot and particles was 0.0331 while that from
the KD tree was 0.0109. This result shows that neighboring
particles selected by GRR algorithm successfully keep track
of the real pose of the robot.

In Fig. 6, the comparison of the RMS errors of pose
and error variance of the RSR and the GRR are shown.
In the result of the RSR, which is the original FastSLAM
resampling technique, sudden estimation failure occurs
frequently. As mentioned before, sudden estimation failure
happens when inappropriate particles are resampled and the
particles lose diversity. For example, the RMS pose error
was 0.6742 m when sudden estimation failure happened,
while the average RMS pose error was 0.3454 m. As this
estimation failure happens frequently, the error variance
becomes large as shown in Fig. 6 with the range on the
graph. Even though the original FastSLAM shows quiet nice
performance, these failures cause the problem of consistency;
the algorithm cannot always be trusted. Compared to the
RSR, the GRR performed 32.7% less pose error during the
process, along with 39.1% less error standard deviation. This
result shows that GRR alleviates estimation failure problem,
and the performance became more consistent with lower
error variance. The improvement over feature estimation
error can also be observed in Fig. 7. GRR showed 35.3%
less feature error and 53.5% less error standard deviation
than RSR.

As the GRR algorithm needs time for building a KD
tree and selecting particles satisfying the conditions, the
computation time increases. However, as a KD tree is a
simple and fast structure, so average run-time increased
only by 4.2%. The performance results are summarized in
Table III.

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250


858 Improved particle filter using geometric relation between particles in FastSLAM

Fig. 4. Simulation environment: 25 m × 37 m indoor map with 50 features. The robot runs one lap around the environment in one simulation
and 50 simulations were run using RSR and GRR algorithm separately.

Fig. 5. Example of particle distribution at a single time step. Dots
with circles are particles selected from the KD tree satisfying
condition of the GRR. Selected particles are estimating the real
robot pose more correctly than other particles.

Fig. 6. Comparisons of RMS pose error and error standard deviation
between RSR and GRR.

Fig. 7. Comparisons of RMS feature error and error standard
deviation between RSR and GRR.

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250


Improved particle filter using geometric relation between particles in FastSLAM 859

Table III. Performance results of RSR and GRR.

GRR RSR Remarks

Avg. RMS pose error 0.2326 m 0.3454 m −32.7%
Avg. RMS pose error 0.1010 m 0.1658 m −39.1%

standard deviation
Avg. RMS feature error 0.2175 m 0.3361 m −35.3%
Avg. RMS feature error 0.0927 m 0.1998 m −53.5%

standard deviation
Avg. run-time 174.49 s 167.51 s +4.2%

5. Conclusions

The FastSLAM has been shown to inconsistent due to the
sudden estimation failure by losing particle diversity. Particle
depletion problem, one of the major reasons of the loss
of particle diversity, happens in resampling by throwing
away particles, resulting in the lack of the number of
particles estimating the pose of the robot and the environment
correctly. Resampling only according to the weights of
particle causes errors and estimation error variances to grow
when the weight function fails. Thus, in this work, GRR
technique was proposed to reduce the estimation error and the
error standard deviation to reduce estimation failure problem
and increase performance consistency. The GRR technique
uses the KD tree to build up the tree containing particle
geometric relation. The KD tree is used in the resampling
process to restrain particles to go awry from the real pose
of the robot, which reduces chance of estimation failure.
The GRR technique efficiently constrained estimation error
variances as well as estimation error, compared to the
previous FastSLAM using the RSR technique.

As a future work, implementation of the GRR technique
will be conducted on a real mobile robot. In addition, research
on use of particle vector information, along with other
geometric tools like density tree will be studied.

Acknowledgments

This work was supported in part by MIC & IITA through
IT Leading R&D Support Project, the Seoul R&BD
Program (10689M92991), the MOCIE Industrial Technology
Development Program, the ASRI, and the BK21 Information
Technology at Seoul National University.

References
1. S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics (MIT

Press, Cambridge, MA, 2005).
2. M. Montemerlo, FastSLAM: A Factored Solution to the

Simultaneous Localization and Mapping Problem With
Unknown Data Association Ph.D. Thesis (Carnegie Mellon
University, Pittsburgh, PA, 2003).

3. A. Doucet, N. de Freitas, K. Murphy and S. Russell,
“Rao-Blackwellized Particle Filtering for Dynamic Bayesian
Networks,” Proceedings of the 2000 Conference on Uncertainty
in Artificial Intelligence (Stanford University, Stanford, CA,
2000).

4. K. Murphy, “Bayesian Map Learning in Dynamic Environ-
ments,” Proceedings of the Advances in Neural Information
Processing Systems (MIT Press, Cambridge, MA, 1999).

5. M. Montemerlo and S. Thrun, “Simultaneous Localization and
Mapping with Unknown Data Association using FastSLAM,”
Proceedings of the IEEE International Conference on Robotics
and Automation (Taipei, 2003) pp. 1985–1991.

6. T. Bailey, J. Nieto and E. Nebot, “Consistency of the FastSLAM
Algorithm,” Proceedings of the IEEE International Conference
on Robotics and Automation (Orlando, FL, 2006) pp. 424–429.

7. M. Bolic, P. M. Djuric and S. Hong, “Resampling algorithms
for particle filters: A computational complexity perspective,”
Eurasip J. Appl. Signal Process 15, 2267–2277 (2004).

8. R. Merwe, A. Doucet, N. de Freitas and E. Wan, “The Unscented
Particle Filter,” Technical Report CUED/F INFENG/TR, 380
(Cambridge University Engineering Department, 2000).

9. P. Elinas, R. Sim and J. J. Little, “SLAM: Stereo Vision SLAM
Using the Rao-Blackwellised Particle Filter and a Novel Mixture
Proposal Distribution,” Proceedings of the IEEE International
Conference on Robotics and Automation (Orlando, FL, 2006)
pp. 1564–1570.

10. S. Thrun, D. Fox and W. Burgard, “Monte Carlo Localization
with Mixture Proposal Distribution,” Proceedings of the
American Association for Artificial Intelligence (MIT Press,
Cambridge, MA, 2000) pp. 859–865.

11. N. J. Gordon, D. J. Salmond and A. F. M. Smith,
“Novel Approach to Nonlinear/Non-Gaussian Bayesian State
Estimation,” Radar and Signal Processing, IEE Proceedings F
vol. 140(2) (1993), pp. 107–113.

12. N. Kwak, I. K. Kim, H. C. Lee and B. H. Lee, “Adaptive
Prior Boosting Technique for the Efficeint Sample Size
in FastSLAM,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (San Diego, CA,
2007) pp. 630–635.

13. A. Doucet and N. J. Gordon, “Simulation-based optimal filter
for maneuvering target tracking,” SPIE Proc. 3809, 241–255
(1999).

14. J. S. Liu, R. Chen and T. Logvinenko, “A Theoretical Framework
for Sequential Importance Sampling with Resampling,”
Proceedings of the Sequential Monte Carlo Methods in Practice
(Springer, New York, NY, 2001) pp. 225–246.

15. G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard and D. Nardi,
“Fast and Accurate SLAM with Rao-Blackwellized Particle
Filters,” Rob. Autonom. Syst. 55, 30–38 (2007).

16. S. Lee and S. Lee, “Recursive Particle Filter with Geometric
Constraints for SLAM,” Proceedings of the IEEE International
Conference on Multisensor Fusion and Integration for
Intelligent Systems (Heidelberg, 2006) pp. 395–401.

17. N. Kwak, G. W. Kim and B. H. Lee, “A new compensation
technique based on analysis of resampling process in
FastSLAM,” Robotica vol. 26(2) (2008) pp. 205–217.

18. M. de Berg, M. van Krevel and M. Overmars, Computational
Geometry: Algorithms and Applications (Springer, New York,
NY, 1997).

19. S. Omohundro, “Bumptrees for Efficient Function, Constraint,
and Classification Learning,” Proceedings of the Advances in
Neural Information Processing Systems vol. 3 (Denver, CO,
1990) pp. 693–699.

https://doi.org/10.1017/S0263574708005250 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708005250

