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Abstract
Efficient and high-precision identification of dynamic parameters is the basis of model-based robot control. Firstly,
this paper designed the structure and control system of the developed lower extremity exoskeleton robot. The dynam-
ics modeling of the exoskeleton robot is performed. The minimum parameter set of the identified parameters is
determined. The dynamic model is linearized based on the parallel axis theory. Based on the beetle antennae search
algorithm (BAS) and particle swarm optimization (PSO), the beetle swarm optimization algorithm (BSO) was
designed and applied to the identification of dynamic parameters. The update rule of each particle originates from
BAS, and there is an individual’s judgment on the environment space in each iteration. This method does not rely
on the historical best solution in the PSO and the current global optimal solution of the individual particle, thereby
reducing the number of iterations and improving the search speed and accuracy. Four groups of test functions with
different characteristics were used to verify the performance of the proposed algorithm. Experimental results show
that the BSO algorithm has a good balance between exploration and exploitation capabilities to promote the beetle to
move to the global optimum. Besides, the test was carried out on the exoskeleton dynamics model. This method can
obtain independent dynamic parameters and achieve ideal identification accuracy. The prediction result of torque
based on the identification method is in good agreement with the ideal torque of the robot control.

1. Introduction
The exoskeleton robot can fully adapt to the physiological structure of the human body by being worn
on the outside of the human body, moving in coordination with the human to achieve various purposes,
such as exercise assistance, ability improvement, and medical rehabilitation [1–4]. With the development
of lower limbs exoskeleton robots, the demand for high-precision dynamic models of the exoskeleton
is increasing. Therefore, it is necessary to identify the dynamic parameters when the robot is working
[5, 6].

The main task of dynamic parameters identification is to obtain a parameter set that integrates
various impact factors through experimental means so that the torque calculated by the parameter
set is consistent with the actual torque required by the robot. The dynamic parameter identification
mainly includes dynamic modeling, linearization, identification trajectory optimization, identification
algorithm construction, parameter acquisition and processing, and experimental verification [7]. The
design of the identification algorithm is the most critical. There are many mature research identification
algorithms, such as genetic algorithm identification [8], maximum likelihood estimation identification
[9], least square method identification [10, 11]. Due to the dynamic coupling of different joints,
the identification parameters are not independent. When performing parameter identification, the
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mutually independent parameters must be obtained firstly. The independence among the identification
parameters is determined by the minimum parameter set. M. Gautier has proposed methods with
deriving the minimum parameter set of tandem robots [12, 13]. To make identification parameter in a
good ‘incentive’ state, it is necessary to select the reasonable identification trajectory. Chen proposed
a dynamic parameter identification method to analyze the human-machine coupling relationship
[14]. Kyung-Jo Park [15] and Azeddien Kinsheel [10] applied this method to optimize the trajectory
coefficients for different identification objects and further improved the identification results. Swevers
uses the maximum likelihood estimation method to calculate the value of the identification parameter
[9]. The least square method is a traditional parameter identification method. Zhang Tie used Newton
Euler’s method to establish the SCARA robot dynamics model and used the least square method to
identify high-precision robot dynamics parameters [16]. The least square method has high identification
accuracy, but it cannot meet the real-time requirements when the amount of calculation is large [17].
Ding Li identified the dynamic parameters of industrial robots with an identification algorithm based on
the combination of the weighted least squares method and artificial bee colony algorithm and verified
the accuracy of the algorithm in torque identification through experiments [18]. BLEEX exoskeleton
used the least square method for parameter identification. This algorithm could obtain the inertia
parameter, the joint friction parameter, damping parameter, and stiffness parameter [19]. However, the
parameter identification method is very cumbersome, which makes the process time-consuming. The
dynamic model of the lower extremity exoskeleton was established based on Lagrange method, and the
unknown parameters in the dynamic model are identified by the least square method to obtain a more
accurate system dynamics model [20]. Compared with the traditional form, the recursive form has
higher computational efficiency. Deep learning has powerful capabilities for data analysis and mining
and is now gradually being used to solve robot-related problems. Bargsten used the dynamic parameters
as the training weights of the back-propagation neural network and obtained the optimal dynamic
parameter values through the feedback adjustment of the network training [21]. Liu established the
relationship between robot joint motion and torque through long short-term memory technology and
achieved good results in predicting the torque of robot joint motion [22]. The long short-term memory
technology was combined with an optimized recurrent neural network which is proposed to compensate
for the dynamic model of the proposed 6-DoF collaborative robot based on the consideration of gravity,
coriolis force, inertial force, and friction force [23]. The algorithm based on long short-term memory
algorithm and recurrent neural network model has a good prediction on the actual torque. And the root-
mean-square (RMS) error between predicted and actual torques is reduced by 61.8–78.9% compared
to the traditional dynamic model. Chen deduced the dynamics equation of the robot servo motor and
used a neural network for dynamic compensation [24]. However, the deep learning network requires a
large amount of data, and the recognition accuracy largely depends on the quality of the data [25].

The optimization algorithm based on swarm intelligence is also the main research object currently
used to identify parameters [26, 27]. Chang modeled legged robots by intelligent decoupling modeling
method. This method groups the DoF according to the number of links and treats each link as a tandem
manipulator structure, which greatly reduces the number of identified dynamic parameters at the same
time [27]. The representative one is the PSO algorithm proposed by Kennedy and Eberhart [28]. The
research results show that the standard PSO algorithm can effectively identify the parameters of the
Bouc-Wen model under high-noise conditions [29]. The modified PSO algorithm was proposed by some
researchers to implement some meaningful novelties. Wang Yueling used an improved particle swarm
genetic algorithm to identify the dynamics of flexible joint robots. The algorithm adopts a dynamic
adaptive adjustment strategy, which effectively improves the convergence speed of the particle swarm
algorithm [30]. Sheng Wentao proposed a parameter identification method that combines recursive least
squares and PSO. Compared with the identification algorithm for BLEEX, the method has higher accu-
racy and lower complexity [31]. Most dynamic parameter identification methods adopt the identification
strategy for the combined parameter’s value [32–34]. Qin proposed a novel sequential identification
procedure to identify the dynamic parameters of robotic manipulators. The method improved the iden-
tification precision compared to conventional methods [32]. The methods are only suitable for robot
control with the constant load. When the load changes, the robot system must re-identify the parameter
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Figure 1. Overall structure diagram (1) back support; (2) driving source of hip joint; (3) hip joint
component; (4) brace of thigh; (5) driving source of knee joint;(6) brace of calf; (7) ankle joint compo-
nent; (8) flexible belt of waist; (9) waist component; (10) thigh component; (11) flexible belt of thigh;
(12) knee joint component; (13) calf component; (14) flexible belt of calf; (15) pedal.

set and adjust the robot control model, which is time-consuming and labor-intensive. Therefore, this
study combines group optimization algorithm with beetle foraging mechanism, and a novel BSO
algorithm was designed and applied to the dynamic parameter identification. The structure of the paper
is shown below. Section 2 describes the proposed exoskeleton robot. Section 3 describes the specific
content of dynamic parameter identification. Section 4 describes the test results of the proposed BSO
algorithm for multi-modal function and the actual exoskeleton robot model. Section 5 is the discussion.

2. Exoskeleton robot system
2.1. The proposed exoskeleton robot
The developed lower-limb exoskeleton is shown in Fig. 1. The exoskeleton robot designed in this paper
mainly considers the motion in the sagittal plane. For each leg, it has one active DoF for the hip joint
and knee joint, respectively, and one passive DoF for the ankle joint. The thigh rod and calf rod are
adjustable, from 402 to 505 mm and 397 to 506 mm, respectively. The motion range of the hip joint is
2.17◦–50.18◦. The motion range of the knee joint is 6.85◦–95.53◦.

The identification object in this paper is a 6-DOF exoskeleton robot. The D-H method was used to
establish a joint coordinate system for the robot. The coordinate system of each joint is shown in Fig. 2,
and the D-H parameters of each joint are shown in Table I. ai represents the length of connecting rod.
di represents the distance between adjacent coordinate systems. αi represents the angle between the
connecting rod and the x-axis.
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Table I. D-H parameters.

i ai (mm) di (mm) αi (rad)
1 0 0 αhip

2 a1 0 αknee

3 a2 0 αankle

Figure 2. Lower limb exoskeleton model.

2.2. Exoskeleton robot control system
The exoskeleton robot control system is composed of a host computer controller, joint drive control unit,
and power supply. Each joint drive control unit is connected through the bus and communicates with the
controller, as shown in Fig 3. Each joint drive control unit includes a servo motor, a harmonic reducer,
an encoder, a drive board, and a control board. The motion and current information collected by the
sensors were feedback to the controller. For safety reasons, an emergency stop button is added between
the power supply and the controller to perform emergency stop operations when the exoskeleton robot
behaves abnormally.

2.3. Dynamic modeling
For a multi-joint tandem robot, the joints are numbered from 1 to n in turn. The joint torque of the i-th
joint iτ can be modeled by Newton’s Euler method.

iτ = M(θ )θ ′ ′ + C(θ , θ ′)θ ′ + G(θ ) + iτf (1)

where θ , θ ′, and θ ′ ′ represent the joint angle, angular velocity, and angular acceleration, respectively.
M(θ ) is inertia matrix. C(θ , θ ′) is Coriolis force and Centrifugal force matrix, G(θ ) is gravity vector. iτf

is the friction torque. Joint friction is a complex nonlinear factor, but for most robot systems, a simplified
linear model can be used to describe it.

iτf = ifcsgn(θ ′) + ifvθ
′ (2)
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Figure 3. Control system.

where the friction parameter ipf is included in the term iτf , and ipf = (ifc, ifv)T . ifc and ifv are coulomb and
viscous friction coefficients, respectively. sgn () represents symbolic function.

3. Dynamic parameter identification
There are many factors that affect robot dynamics, but many related parameters are not provided by the
manufacturer. And it must be considered in the control system. Therefore, it is necessary to identify
the dynamic parameters of the robot and obtain a set of comprehensive parameter values that include
various influencing factors.

Each joint of the exoskeleton robot has 10 inertial parameters, and the parameters of the i-th joint are
represented by a vector as:

iP = (iIXX , iIXY , iIXZ , iIYY , iIYZ , iIZZ , iHX , iHY , iHZ , im)T (3)

where iP is the parameter to be identified for dynamic parameter identification. iIXX∼iIZZ are the six
parameters of the inertia matrix. iHX , iHY , and iHZ are the three components of iH, and iH = im × irc =
im(ircX , ircY , ircZ), irc is the centroid vector, im is weight parameter, and is included in G(θ ).

3.1. Model linearization
The dynamic model obtained by the Newton-Euler method is not linear. The joint drive torque expression
contains imir2

c , that is iHirc, which is caused by irci × ifci. The parallel axis theorem is applied to convert
the inertia matrix iI from the relative centroid description to the relative coordinate origin description,
which can eliminate the nonlinear term and obtain a linear model.

The parallel axis theorem is:
oiIi = ciIi + mi(

irT
ci · irci · I − irT

ci · irci) (4)

where oiIi is the inertia matrix described by relative centroid. ciI is the inertia matrix described by relative
ordinate origin.
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Then, the dynamic equation is converted to
iτi = oiIi

iω′
i + iωi × (oiIi

iωi) + mi
irci × iv′

i + i+1
i Ri+1τi+1 + ipi+1

i+1
iR

i+1fi+1 (5)
The iHirc term is not included in the dynamic equation anymore. And the Eq. (1) could convert to

the linear form for the identified parameter.
iτ = ic1

iIXX + ic2
iIXY + · · · + ic10

im + · · · + nc1
nIXX + nc2

nIXY + · · · + nc10
nm

= iciner
T · ipiner+icf

T · npf + i+1ciner
T · i+1piner + · · · + nciner

T · npiner + ncf
T · npf

i+1piner ∼ npiner (6)
where iciner

T is the coefficient vector of the inertial parameter of the i-th joint, iciner
T = (ic1, ic2, · · ·, ic10)T .

Each component in the vector iciner
T is the function of joint angle θ , angular velocity θ ′, and angular

acceleration θ ′ ′. icf is the coefficient vector of the friction parameter of the i-th joint, icf = (sgn(θ ′), θ ′)T .
In the process of dynamic parameter identification, these items could be calculated by collecting the
joint motion parameters.

3.2. Parameter independence analysis
According to Eq. (6), due to the coupling of serial robot system dynamics, the identified parameters
may not be independent. The torque iτ is not only affected by ipiner but also by the inertial parameters of
i+1piner ∼ npiner.The mutual independence of parameters is the prerequisite for obtaining higher identifi-
cation accuracy. Therefore, a set of mutually independent parameters, namely the minimum parameter
set, must be found. According to the minimum parameter set theory [12], the minimum parameter set
corresponding to the 10 inertial parameters of any joint is

iPm = (iIXX−iIYY , iIXY , iIXZ , iIYZ , iIZZ , iHX , iHY)T (7)
where the three parameters iIYY , iHZ , and im are unidentifiable torque parameters for iτ . It must be iden-
tified by the torque i−1τof the i-1th joint. However, the parameters (iIYY , iHZ , im)T and the parameters in
the minimum parameter set i−1Pm do not satisfy mutual independence. M. Gautier uses the method of
symbol derivation to give a general recursive formula for (iIYY , iHZ , im)T and i−1Pm:

i−1Im
XX = i−1IXX + i−1Im

YY + 2di
iHm

Z + 2di
2imm (8)

i−1Im
XY = i−1IXY + ai sin αi(

iHm
Z + di

imm) (9)

i−1Im
XZ = i−1IXZ + ai cos αi(

iHm
Z + di

imm) (10)

i−1Im
YY = i−1IYY + cos2αi(

iIm
YY + 2di

iHm
Z + 2di

2 imm) + a2
i
imm (11)

i−1Im
YZ = i−1IYZ + cos αi sin αi(

iIm
YY + 2di

iHm
Z + 2di

2imm) (12)

i−1Im
ZZ = i−1IZZ + sin2

αi(
iIm

YY + 2di
iHm

Z + 2di
2imm) + a2

i
imm (13)

i−1Hm
Z = i−1HZ + cos αi(

iHm
Z + di

imm) (14)

i−1Hm
X = i−1HX + ai

imm (15)

i−1Hm
Y = i−1HY − sin αi(

iHm
Z + di

imm) (16)

i−1mm = i−1m + imm (17)

After combination, the parameters (iIm
XX−iIm

YY , iIm
XY , iIm

XZ , iIm
YZ , iIm

ZZ , iHm
X , iHm

Y) were mutual
independent. The superscript m on the right represents the parameter in the smallest parameter set.
ai, di, and αi represent the D-H parameter of the i-th joint.
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Figure 4. Simplified model of beetle.

3.3. Dynamic parameter identification algorithm
3.3.1. Particle swarm optimization algorithm.
The PSO algorithm finds the optimal solution through the movement of the particle swarm. Each particle
has two properties, velocity, and position, and the optimal solution can be searched separately. The
individual particle will share information with the others to find the globally optimal solution.

In the D-dimensional space, the position and velocity of particles at the t-th iteration are xt
k =

(xt
k1, xt

k2, · · ·, xt
kd, · · ·, xt

kD) and vt
k = (vt

k1, vt
k2, · · ·, vt

kd, · · ·, vt
kD). The optimal position of individuals and

groups are Pt
k = (Pt

k1, Pt
k2, · · ·, Pt

kd, · · ·, Pt
kD) and Pt

G = (Pt
G1, Pt

G2, · · ·, Pt
Gd, · · ·, Pt

GD). Update of the d-th
dimension position and velocity of the k-th particle are

xt+1
kd = xt

kd + vt+1
kd (18)

vt+1
kd =ωvt

kd + c1rand(Pt
kd − xt

kd) + c2rand(Pt
gd − xt

kd) (19)

where ω is inertia weight, c1 is individual learning factor, c2 is global learning factor, rand () is random
number between (0,1).

This paper adopts the strategy of decreasing inertia weight, and the formula is as follows:

ω=ωmax − ωmax −ωmin

M
t (20)

where ωmax and ωmin represent the maximum and minimum value of ω. M is the maximum number of
iterations.

The PSO algorithm has the advantages of fast convergence speed and simple calculation, but it is easy
to fall into the optimal local solution. BAS was proposed in 2017 [35–38]. The algorithm is designed to
imitate the beetle relying on the strength of the food smell to forage. The simplified model of the beetle
is shown in Fig. 4.

In the D-dimensional space, the center position of the beetle at the t-th iteration is xt = (x1, x2, · · ·, xD).
The left whisker and right whisker of beetle are defined as xt

l and xt
r, and⎧⎨

⎩
xt

l = x + lt
→
d

xt
r = x − lt

→
d

(21)

where lt is the distance from the center of the beetle to the whisker at the t-th iteration, and the
expression is:

lt = ηll
t−1 + l0 (22)
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→
d is a random unit vector, and the expression is:

→
d = rand(D, 1)

‖rand(D, 1)‖ (23)

where ηl is the attenuation coefficient of the search distance. l0 is a constant. rand(D, 1) is D-dimensional
vector composed of random numbers between -1 and 1.

The position of the beetle will be updated by comparing the scent of the left and right whisker.

xt+1 = xt − δt
→
d ∗sgn(f (xt

l) − f (xt
r)) (24)

where f (xt
l) and f (xt

r) are the fitness function value of the left whisker and right whisker, respectively.
sgn() is symbolic function. δt is step size of the t-th iteration.

δt = e1 ∗ δt−1 + e0 (25)
where e1 is attenuation coefficient of step size, e0 is adjustment parameters of step size.

lt = δt

e2

(26)

where e2 is the relationship parameter between the step length and the distance from the centroid of
longhorn beetle to the whisker.

The biggest advantage of the BAS algorithm is simplicity and high efficiency. However, the algorithm
ignores the information sharing between individuals, and the identification results for high-dimensional
complex optimization problems are not ideal.

3.3.2. Dynamic parameter identification based on BSO algorithm
There is a population of N beetles represented as X=(X1, X2, . . ., XN ), the maximum number of
iterations is M, the initial iteration step length of beetle is δ0, the initial distance between the centroid
of beetle and the whisker is l0, the inertia weight is ω, the learning factors is c1, c2, the initial position is
x0

k = (x0
k1, x0

k2, · · ·, x0
kd, · · ·, x0

kD), initial velocity is v0
k = (v0

k1, v0
k2, · · ·, v0

kd, · · ·, v0
kD), D is the dimension of

the vector.
By calculating the value of fitness function f (xt

k) of each beetle, the current optimal posi-
tion of the individual Pt

k = (Pt
k1, Pt

k2, · · ·, Pt
kd, · · ·, Pt

kD) and the optimal position of the group
Pt

G = (Pt
G1, Pt

G2, · · ·, Pt
Gd, · · ·, Pt

GD) are obtained.
The position coordinates of the left and right whiskers of beetle are xt

kl and xt
kr. By calculating the

values of fitness function and f (xt
kr) of the two whiskers of each beetle, the speed of the BAS is updated.

The update rule is Eq. (27). {
xt

kl = xt
k + vt

kl
t

xt
kr = xt

k − vt
kl

t
(27)

ψ t+1
k = −δtvt

k ∗ sgn(f (xt
kl) − f (xt

kr)) (28)

After updating the position separately according to the methods of PSO and BAS, the new position
is weighted to allow for the variations of the parameter set. The direction of whisker and step length of
BAS and the speed of PSO are used to derive the updated position of the beetle. The update rule is:

xt+1
i = xt

i + λvt+1
k + (1 − λ)vt+1

kd (29)
where λ represents the weight of the PSO algorithm.

In this study, the flow chart of BSO algorithm is shown in Table II.

4. Results and discussion
4.1. Experimental parameter settings
The number of particle swarms N is 20, the maximum number of iterations M is 1000, inertia weight
w is 0.8, individual learning factor c1 is 1.4, global learning factor c2 is 1.4. The initial step length is 1,
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Table II. The pseudocode of the BSO algorithm.

Procedure:
Initialize the swarm Xi (i=1, 2, . . ., N)
Initialize group velocity vk

Set step size δ, velocity boundary vmax, and vmin, and maximum number of iterations M
Calculate the fitness of each search unit
While(k<M)

Set inertia weight ω using Eq. (20)
Update l using Eq. (26)
for each search unit

Calculate f(xt
l) and f(xt

r) using Eq. (21)
Update the incremental function ψ by the Eq. (28)
Update the speed formula vkd by the Eq. (19)
Update the position of the current search unit by the Eq. (29)

end for
Calculate the fitness of each search unit f (xt

kr)
Record and store the location of each search unit
for each search unit

if f (xt
kr)< f ibest

f ibest =f (xt
kr)

end if
if f (xt

kr)< f Gbest

f Gbest=f (xt
kr)

end if
end for

Update step factor δ by the Eq. (25)
end while
Return local best f ibest , global best f Gbest

Table III. The different modal test functions.

Function D Range f min

f1(x) = x2 + y2 30 [–100, 100] 0
f2(x) = (4 − 2x2 + x

4
3 )x2 + xy + ( − 4 + 4y2)y2 2 [–5, 5] −0.873

f3(x) = (x − 5
4π2 y2 + 5

πy
− 6)2 + 10(1 − 1

8π
) cos y + 10 2 [–5, 5] 0.415

f4(x) = −20e−0.2
√

0.5(x2+y2) − e0.5( cos (2πx)+cos (2πy)) + 20 30 [–32. 32] 0

the initial distance from the centroid of beetle to the whisker is 0.1, the attenuation coefficient e1 of the
step length is 0.95, and the step length adjustment parameter e0 is 0.005. The relationship parameter e2

between the distance from the center of mass of the beetle to the whisker is 10. In the iterative process,
the condition for the iteration termination is that the error of parameter identification is less than 0.1.

4.2. Comparative analysis of different identification algorithms in four modal test functions
In order to verify the performance of the BSO algorithm, the test function f i(x) with an optimal solution
was selected to perform function optimization and convergence test. To avoid a one-sided conclusion,
the different functions were used to test the performance of the proposed method. The test functions are
given in Table III.

https://doi.org/10.1017/S0263574721001922 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001922


Robotica 2725

Figure 5. Behavior of BSO algorithm on the test functions. From left to right: optimal trace of each test
function, the contour map of the search path, and the convergence curves.

This paper selects uni-modal function, multi-modal function, and fixed-dimensional multi-modal
function to observe the optimization behavior of the BSO algorithm, respectively. The Fig. 5 shows
the contour map of the optimal trajectory, search path, and convergence curve of each test function.
The optimal trajectory gives the optimal route of the beetles. Since the initial position of the beetle
is randomly generated, the optimal trajectory may be different when copying the result. The contour
map of the search path can more intuitively display the trajectory of the beetle and connect the same z
value on the x and y planes, making it easier to observe the movement of the beetle. The convergence
curve shows the function value of the best solution obtained so far. The beetles gradually move to the
optimal point and eventually gather near the global optimal point. The BSO algorithm firstly initializes
a set of random solutions. The search unit updates its location based on its own search mechanism and
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Table IV. Comparison of optimization results of three algorithms for different test functions.

f 1(x) f 2(x) f 3(x) f 4(x)

Iteration Time Iteration Time Iteration Time Iteration Time
Algorithm number (s) number (s) number (s) number (s)
PSO 99 1.8937 38 1.2494 42 2.3765 52 2.8655
BAS 748 8.0804 678 7.5934 603 7.3584 688 9.3564
BSO 39 1.6264 15 1.1100 18 1.9211 27 1.0358

Figure 6. Human wearing exoskeleton in ADAMS.

the best solution currently available at each iteration. The BSO algorithm with the information sharing
mechanism can avoid local optima more intelligently. The combination of these two algorithms can
accelerate the iteration speed of the population and reduce the probability of the population falling into
local optimum, making it more stable in dealing with high-dimensional problems.

It can be seen from Table IV that when processing the test function, the processing speed of BSO is
equivalent to that of PSO, but it is significantly better than the BSA algorithm. In addition, compared
with the other two algorithms, the performance of the BSO algorithm is more stable. In the optimization
process, the information sharing search mechanism is added, so that the algorithm has better global
optimization performance, speeds up the convergence speed of the algorithm, and effectively avoids the
phenomenon of local optimization.

4.2. BSO for dynamic parameters identification
In order to verify the superiority of the BSO algorithm proposed in this research in the identification of
dynamic parameters, the traditional one-time identification method is selected for comparative analysis.
The one-time identification method is widely applied in robotic field [14, 15, 31]. In the process of
parameter identification, all joints are moved together, and then, the currents and rotation angles of
all joints are collected and brought into the overall identification model, and all the parameters to be
identified are calculated at one time.

Simulation adopts the method by combining ADAMS with Mathematica. The dynamics simulation
of the robot is carried out in ADAMS, the human-machine model is shown in Fig. 6. The 3D model of the
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Table V. The real value and the identified value of the identifi-
cation parameters obtained by BSO algorithm.

Parameters Xrea Xide e
1IZZ(kg·m2) 3.825 4.128 7.92
2IXX(kg·m2) 0.123 0.063 48.78
2IXY(kg·m2) 0 6.32×10–7 –
2IXZ(kg·m2) −0.125 –0.047 62.4
2IYY(kg·m2) 4.148 4.273 −3.01
2IYZ(kg·m2) 0 3.81×10–8 –
2IZZ(kg·m2) 4.26 4.296 0.84
2HX 8.333 8.655 3.86
2HY 0 –1.43×10–8 –
2HZ 0.372 0.335 9.94
3IXX(kg·m2) 5.853 5.922 1.18
3IXY(kg·m2) −0.151 –0.149 1.32
3IXZ(kg·m2) −0.08 –0.037 53.75
3IYY(kg·m2) 0.548 0.512 6.57
3IYZ(kg·m2) 0.007 0.028 –
3IZZ(kg·m2) 6.175 6.647 7.64
3HX −1.532 –1.587 3.59
3HY 10.636 11.079 4.16
3HZ 0 3.12×10–6 –
3m 48.537 50.705 4.47

human wearable exoskeleton is imported into Adams. The material properties, constraints, and angular
displacement driving functions of the exoskeleton and human model are given, respectively. The lower
extremity exoskeleton model is shown in Fig. 6. The human body model was established by Solidworks.
According to China’s national adult human body size standard GB10000-88, the height of the established
human body model is 1750 mm, and the quality is 75 kg. During a gait cycle, the maximum force on
the thighs and calf is 950 and 560 N, respectively. Through the dynamic analysis of the lower extremity
exoskeleton system, the driver of the hip joint and knee joint adopted the servo motor with a rated power
of 400 W. The length of the ball screw is 4 mm, and the rated thrust is 2000 N. The maximum linear
speedup is 100 mm/s. The torque and joint motion parameters obtained from the simulation are output
to simulate the sampling values of the parameters in the actual identification experiment. The sample
value is substituted into the identification algorithm constructed in Mathematica, and the value of the
identification parameter can be solved.

The traditional common parameter identification method is one-time identification method. We use
the one-time identification method as the reference object. The real value Xrea, identification value Xide

and error e of each joint inertia parameter and friction parameter measured by the proposed dynamic
parameter identification method and traditional one-time identification method were shown in Tables V
and VI, respectively.

The error e is defined as

e = |Xrea − Xide|
Xrea

(30)

Since the first joint (hip joint) of the object identified in this paper is parallel to the direction of
gravity, there is only one identified parameter for the first joint. Through the comparison of Tables V
and VI, the method proposed in this paper can identify the independent values of all the parameters
of the second and the third joints. However, the traditional one-time identification method can only
identify the minimum parameter set, that is, the combined value of the parameters. This is because the
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Table VI. The real value and the identified value of the
identification parameters obtained by the traditional one-time
identification method.

Parameters Xrea Xide e
1I ′

ZZ 26.486 19.35 26.94
2I ′

XX −22.27 −24.22 8.76
2I ′

XY 0 −0.108 –
2I ′

XZ 0.007 −1.58 –
2I ′

YZ 0.008 −1.76 –
2I ′

ZZ 22.63 24.73 9.28
2H′

X 34.78 36.47 4.86
2H′

Y 0 0.389 –
3I ′

XX 5.443 5.611 3.09
3I ′

XY −0.165 −0.176 6.67
3I ′

XZ −0.008 −0.026 –
3I ′

YZ 0.00693 0.295 –
3I ′

ZZ 6.158 6.319 2.61
3H′

X −1.511 −1.767 16.94
3H′

Y 11.447 12.358 7.96

combined value is susceptible to load changes, and it needs to be re-identified when the load changes. The
accuracy of the corresponding parameters identified by the BSO method is higher than that of the one-
time identification, especially for the parameters of the first joint. The traditional method is to identify
all joints together, and the parameter identification value of the i+1∼nth joint needs to be substituted
into the parameter identification equation of the i-th joint, and the error accumulation is large, especially
when the number of joints is large.

The goal of parameter identification is to accurately predict the torque required for the robot to
perform target motion through the parameter identification value. Therefore, the verification of the iden-
tification results must be achieved through the accuracy of the torque prediction. According to the human
body motion trajectory obtained from the gait experiment, this paper takes the verification trajectory as:

θhip(t) = 118.7 sin (0.092t + 0.016) + 3.085 sin (0.025t + 1.632) + 111.8 sin (0.0938t + 3.02) (31)

θknee(t) = −5089e−
(

p−76.25
13.44

)2

+ 5677e−
(

p−75.76
12.88

)2

+ 5.3288e−
(

p−19.74
23.41

)2

(32)

Under this trajectory, when the simulation time is 4.8 s, the angular acceleration of the robot reaches
5.2 rad/s2. When the robot moves along the verification trajectory Eqs. (31) and (32), the predicted
torque value τP can be calculated from the parameter identification value xide (Table V) through Eq. (6).
Given the verification trajectory for each joint in ADAMS, the real torque value τR could be obtained.
The verification criterion takes the RMS value of τP and τR.

iεRMS =
√√√√ 1

N

N∑
i=1

(τ (i)
P − τ

(i)
R )

2 (33)

where τ (i)
P and τ (i)

R represent the i-th sampling value of predicted torque value and real torque value,
respectively. The values of RMS for the three joints are 1εRMS = 23.85, 2εRMS = 20.39 and,3εRMS =
9.26, respectively. They account for 7.42%, 6.5%, and 4.91% of the absolute mean of their joint torques,
respectively.
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Figure 7. Experimental results of joint torque.

It can be seen from Fig. 7 that the τP and τR of each joint are very close, and the RMS value of iεRMS
(i=1, 2, 3) is smaller than the amplitude of the noise. This indicates that although the identification
accuracy of some dynamic parameters is not high, it has little effect on the prediction torque, and the
prediction accuracy of torque mainly depends on those parameters with a great contribution. The error
of torque is less than the added noise, which indicates that the parameter identification method proposed
in this paper can suppress the noise interference to a certain range.

5. Discussion and conclusion
This paper proposed a dynamic parameter identification algorithm based on the optimization of the
long-horned beetle herd, which can identify the independent values of all parameters and overcome
the shortcomings of traditional identification methods that the identification results are affected by load
changes. The proposed identification method greatly reduces the amount of identification calculation,
and the identification accuracy of each time is independent of each other, and there is no error accumu-
lation phenomenon. The experimental results show that the 10 dynamic identification parameters can be
accurately predicted. The identification method can accurately predict the driving torque of the robot.
The RMS values are all smaller than the added noise level, which shows that although the identification
accuracy of some dynamic parameters is not high, it has little effect on the predicted torque. The accu-
racy of torque prediction mainly depends on the parameters that contribute a lot. The error of the torque
is smaller than the added noise, which shows that the parameter identification method proposed in this
paper has a certain inhibitory effect on noise interference. In future work, we will consider real-time
issues to speed up the response speed of the control system.
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