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Abstract

Background. The prediction of alcohol consumption in youths and particularly biomarkers of
resilience, is critical for early intervention to reduce the risk of subsequent harmful alcohol
use.
Methods. At baseline, the longitudinal relaxation rate (R1), indexing grey matter myelination
(i.e. myeloarchitecture), was assessed in 86 adolescents/young adults (mean age = 21.76, range:
15.75–26.67 years). The Alcohol Use Disorder Identification Test (AUDIT) was assessed at
baseline, 1- and 2-year follow-ups (12- and 24-months post-baseline). We used a whole
brain data-driven approach controlled for age, gender, impulsivity and other substance and
behavioural addiction measures, such as problematic cannabis use, drug use-related problems,
internet gaming, pornography use, binge eating, and levels of externalization, to predict the
change in AUDIT scores from R1.
Results. Greater baseline bilateral anterior insular and subcallosal cingulate R1 (cluster-
corrected family-wise error p < 0.05) predict a lower risk for harmful alcohol use (measured
as a reduction in AUDIT scores) at 2-year follow-up. Control analyses show that other grey
matter measures (local volume or fractional anisotropy) did not reveal such an association.
An atlas-based machine learning approach further confirms the findings.
Conclusions. The insula is critically involved in predictive coding of autonomic function rele-
vant to subjective alcohol cue/craving states and risky decision-making processes. The subcal-
losal cingulate is an essential node underlying emotion regulation and involved in negative
emotionality addiction theories. Our findings highlight insular and cingulate myeloarchitec-
ture as a potential protective biomarker that predicts resilience to alcohol misuse in youths,
providing novel identifiers for early intervention.

Introduction

Alcohol misuse is a major international public health issue with high morbidity and mortality
and marked costs. Alcohol use is particularly common in youths, about 26.5% of 15–19-year
olds are current drinkers (World Health Organization, 2018), an age range that coincides with
high neurodevelopmental vulnerability. Globally, 3 million people per year die due to excessive
alcohol consumption (5.3% of all deaths per year), with an even higher rate of 13.5% in young
adults, aged between 20 and 39 years (World Health Organization, 2018). While alcohol usage
usually starts at an early age, before the age of 15, the earlier the age of alcohol use onset, the
greater the risk of subsequent alcohol use disorders (Behrendt, Wittchen, Höfler, Lieb, &
Beesdo, 2009; World Health Organization, 2018). Thus, the identification of biomarkers, a
measured variable that relates to the disease (Ballman, 2015), which identifies youths at risk
for problematic alcohol use is critical for the development of early intervention programmes.

Functional and structural imaging studies have focused on such predictive biomarkers in
youths. For instance, Dager et al. (2014) identified college students (18–21 years old) transi-
tioning from moderate to heavy drinking over the course of 1 year and students with stable
drinking behaviour via online monthly substance use surveys that assessed the number of
drinking days, binge drinking and typical and maximum number of drinks in the previous
months. Comparing these student groups on their baseline neural activity to pictures of alco-
holic v. non-alcoholic beverages revealed higher activity in transitioners in insular, ventro-
medial prefrontal cortex, anterior cingulate cortex (ACC), orbitofrontal cortex and caudate
(Dager et al., 2014). Similarly, a large multicentre study in 14-year olds assessed alcohol
usage via the Alcohol Use Disorder Identification Test (AUDIT; Saunders, Aasland, Babor,
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De la Fuente, & Grant, 1993) to identify youths with low/medium
levels of pre-existing alcohol problems. Applying structural equa-
tion modelling to this cohort, an early onset of alcohol consump-
tion was predicted by greater neural activity during the
anticipation of large when compared to that of small rewards in
the striatum, prefrontal areas, insula and amygdala (Nees et al.,
2012). In the same cohort, machine learning was applied to pre-
dict future binge drinking from structural abnormalities measured
by grey matter volume (GMV) and from neural activity during
stop signal trials of failed motor inhibition (v. implicit baseline).
This investigation revealed early abnormalities predicting future
binge drinking behaviour in the GMV and brain activity in para-
hippocampal and postcentral gyri (Whelan et al., 2014).

While measures of neural activity and GMV are informaptive of
pre-existing abnormalities, measures of myeloarchitecture (micro-
architecture of myelinated axons in grey matter) may be particularly
relevant to behavioural outcomes (see Edwards, Kirilina,
Mohammadi, & Weiskopf, 2018). The quantification of myeloarchi-
tecture can include approaches such as T1-weighted and
T2-weighted image intensity ratios, magnetization transfer (MT)
mapping, and longitudinal relaxation time (T1) mapping, which
has been identified as the best approach to map in vivo myelin dis-
tribution in the cortical and subcortical grey matter (Haast, Ivanov,
Formisano, & Uludag, 2016). Longitudinal relaxation rate (R1 = 1/
T1) is sensitive to age-related effects with increasing frontal and par-
ietal and decreasing optic radiation and corpus callosal indices with
age (Callaghan et al., 2014) and might therefore be a useful measure
for structural integrity in adolescence. R1 has also been found sensi-
tive to pathological abnormalities, disorders such as major depression
have been associated with a wide-spread reduction in left dorsolateral
prefrontal R1, a measure also associated with a greater number of
depressive episodes (Sacchet & Gotlib, 2017). Additionally, R1 quan-
tification has also been linked to cognitive function: Musicians with
greater capacity to recognize and label pitch chroma without refer-
ences have greater auditory R1 (Kim & Knoesche, 2016) and inferior
parietal R1 has been associated with greater empathic traits (Allen
et al., 2017). Moreover, we recently showed that R1 in the ventral
putamen is negatively correlated with a form of impulsivity charac-
terized by premature or early responding (Nord et al., 2019). More
recently, a reduced growth of grey matter myelination, measured
by MT imaging, in lateral and medial prefrontal regions was asso-
ciated with impulsivity in an adolescent healthy population
(Ziegler et al., 2019). Importantly, increased impulsivity levels are a
common feature in substance abuse (Rømer Thomsen et al., 2018)
and therefore hint towards a role for R1 in predicting future sub-
stance use. Additional support for the hypothesis that R1 plays a
role in alcohol addiction stems from related structural measures of
brain integrity. For example, GMV, as estimated by
Jacobian-modulated grey matter probabilities, has been found to
relate to craving and were reduced in alcohol dependence
(Senatorov et al., 2015). Since the GMV could be affected by local
myelin density of a grey matter voxel (which increases
T1-weighted image intensity, thus reduces grey matter probability),
this finding provides evidence for structural abnormalities where
assessing R1 would further clarify whether myelination density in
grey matter is the underlying source of structural abnormalities.

However, to the best of our knowledge, R1 has not yet been
utilized in terms of addiction. Here we, therefore, assess the role
of structural imaging measures using a data-driven, exploratory,
approach in predicting subsequent resilience to alcohol mis/use
in youths. We assess R1 of grey matter at baseline and measures
of substance and behavioural addiction at baseline, 1- and 2-year

follow-up in youths (Rømer Thomsen et al., 2013). To show the
unique sensitivity of R1, we additionally test associations between
other structural measures (local volume and fractional anisotropy)
of grey matter and behavioural measure changes. Although most
research has focused on risk factors for the development of prob-
lem behaviours (Hawkins, Catalano, & Miller, 1992; Hodder et al.,
2018; Scheier, Botvin, & Baker, 1997), not all adolescents who use
substances develop problematic behaviours. As our sample largely
decreased their use of alcohol over time, we thus address a critical
question of resilience or protective factors.

Methods and materials

Participants

Participants were selected from a representative national survey
(YouthMap2014 by Statistics Denmark, n = 3064) based on their
level of externalizing problems (EP) assessed using YouthMap12
(Pedersen, Rømer Thomsen, Pedersen, & Hesse, 2017). See online
Supplementary materials for details. Participants were instructed
to abstain from substances at least 24 h prior to participation.
The study was approved by the local ethics committee and con-
sent was obtained from the participant or their parents if the par-
ticipant was under 18.

In total, 103 participants were invited to CFIN/MINDLab
facilities at Aarhus University, Denmark to complete computer-
ized questionnaires, behavioural tests and MRI scanning at base-
line, and questionnaires 3 times over 2 years (91.3% participated
at 1-year follow-up; 83.5% participated at 2-year follow-up). The
follow-up sessions were spaced by 12 and 24 months, respectively.

For the 86 subject who participated in all sessions, baseline
neuroimaging data and behavioural measures up to the second
follow-up were analysed in the current study. The age of the ana-
lysed subjects at baseline ranged between 15.8 and 26.7 years
(M = 21.8, S.D. = 2.8) with 32.6% female.

Self-report measures of addictive behaviours

Problematic alcohol use was measured using the AUDIT
(Saunders et al., 1993), a 10-item questionnaire validated as a
screening instrument for hazardous and harmful alcohol use
with good sensitivity and specificity. To enable statistical correc-
tions for other substance and behavioural addiction measures,
the following instruments were used at baseline: Cannabis Use
Disorder Identification Test-Revised (CUDIT-R; Adamson &
Sellman, 2003), Drug Use Disorder Identification Test (DUDIT;
Berman, Bergman, Palmstierna, and Schlyter, 2005), Internet
Gaming Disorder Scale Short Format (IGD; Pontes & Griffiths,
2015), Pornography Craving Questionnaire, (PCQ; Kraus &
Rosenberg, 2014) and Binge Eating Scale (BES; Gormally, Black,
Daston, and Rardin, 1982). See online Supplementary Methods
for details. Correlations between self-reported addictive beha-
viours are shown in online Supplementary Table S1. The change
in AUDIT score did not correlate with changes in other substance
or behavioural addiction measures. Impulsivity traits were mea-
sured using the UPPS-P Impulsive Behaviour Scale (Cyders
et al., 2007; Lynam, Smith, Whiteside, & Cyders, 2006).

Imaging acquisition

At baseline, MP2RAGE (Marques et al., 2010) images were
acquired using Siemens Skyra 3-Tesla MR system with following
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parameter: TE (echo time) = 2.98 ms, TI1 (first inversion time) =
700ms, TI2 (second inversion time) = 2500ms, FA1 (first flip
angle) = 4°, FA2 (second flip angle) = 5°, TR (time of repetition)
= 5000ms, voxel size = 1 × 1 × 1mm3. The MP2RAGE sequence
acquires two inversion images with different flip angles and inver-
sion times (unlike the conventional MPRAGE sequence) and
derives a T1 image and a uniform tissue-contrast image
(Marques et al., 2010). While the MP2RAGE sequence was initially
motivated to estimate unbiased tissue-contrast, it provides a good
estimation of T1, which is mainly influenced by the myelin concen-
tration (Rooney et al., 2007; Stüber et al., 2014). Note that here ‘T1
images’ are in a physical scale of time (i.e. sec) as they are the esti-
mation of longitudinal relaxation time (T1) whereas ‘T1-weighted
images’ are in an arbitrary scale as at they are relative MR signal
at the time when the contrast between grey and white matter in
the longitudinal magnetization is optimized. We note that no add-
itional imaging data were acquired at follow-up sessions.

Image processing

Uniform-contrast (i.e. T1-weighted-like) images were segmented
and spatially normalized using unified segmentation (Ashburner
& Friston, 2005) in SPM12 (7219; https://www.fil.ion.ucl.ac.uk/
spm/). To confine the analysis to grey matter, the longitudinal
relaxation rate (R1 = 1/T1; positively correlates with myelin con-
tent) images were masked by grey matter masks in native space,
then non-linearly transformed into the Montreal Neurological
Institute (MNI) template space using the deformation field from
the unified segmentation, resampled at 1.5 mm isotropic reso-
lution. Spatial smoothing with a 3-D isotropic Gaussian kernel
with the full-width at half-maximum (FWHM) of 6 mm was
applied.

General linear model for neuro-behaviour association

We tested the behavioural and demographic parameters for nor-
mality (Shapiro–Wilkes test), skewness and outliers prior to using
the general linear model (GLM). We used parametric tests as R1
residuals were consistent with Gaussian distribution (Lilliefors
test, p > 0.15, FDR-corrected). There was no multicollinearity
detected among all regressors in the GLM (online Supplementary
Table S3).

To assess the relationship between imaging measures collected
at baseline and cross-sectional behavioural parameters, we first
tested whether R1 was significantly associated with cross-sectional
baseline scores covarying for age and sex (similar to GLM 4
below). There were no significant correlations with R1 and any
baseline measures of substance (including AUDIT) or behavioural
addiction (uncorrected p > 0.07).

Then we tested the association between R1 and longitudinal
changes in AUDIT using the following GLM:

R1 = b0 + b1DAUDITk−0 + 1, (1)

where ΔAUDITk−0 is a difference between the k-th (either the first
or second) follow-up measurement and the baseline (the zeroth)
measurement of AUDIT, and ε is a zero-mean unit-variance
Gaussian error. The significance of the association between R1
and ΔAUDITk−0 was tested using T-contrasts
[T = b̂.c′/

����������������
ŝ2c′(M′M)−1c

√
where the contrast vector c is (0 1)

or (0–1), ŝ2 is a sample variance, and M is a design matrix].

Since sex and age covary with R1 (Edwards et al., 2018;
Keuken et al., 2017; Kim & Knoesche, 2016), we tested these
effects for significance using F-contrasts (H0:β1 = 0 v. HA:β1≠ 0):

R1 = b0 + b1age+ b2DAUDITk−0 + 1, (2)

and

R1 = b0 + b1sex+ b2DAUDITk−0 + 1, (3)

Thus, we tested whether the inclusion of a particular covariate
would significantly change the ratio of explained variance. As
we found significant effects of age and sex on R1 (online
Supplementary Fig. S1), we covaried them both as:

R1 = b0 + b1age+ b2sex+ b3DAUDITk−0 + 1. (4)

To assess for specificity for alcohol consumption among other
impulsive behaviours (UPPS, other addictive measures) and con-
trol for other variables [BDI (Beck Depression Inventory)]
(Sacchet & Gotlib, 2017), we compared the GLM (4) with an
extended model as follows:

Rb1age+ b2sex+ b3DAUDITk−0 + b4X + 1. (5)

where X is either BDI, EP, Urgency, Premeditation, Perseveration,
Sensation, ΔCUDITk−0 + ΔDUDITk−0 + ΔIGDk−0 + ΔPCQk−0 +
ΔBESk−0. Δxk−0 is a difference between the k-th (either the first
or second) follow-up measurement and the baseline (the zeroth)
measurement of the variable x. An F-contrast comparing two
models (H0:β4 = 0 v. HA:β4≠ 0) tests whether the additional
term X explains residuals of a reduced model significantly or not.

Finally, we also compared GLM (4) with models with all UPPS
or all addiction variables:

R1 =b0 + b1age+ b2sex+ b3DAUDITk−0 + b4Urgency

+ b4Premeditation+ b4Perseveration+ b4Sensation+ 1,

(6)

and

R1 =b0 + b1age+ b2sex+ b3DAUDITk−0 + b4DCUDITk−0

+ b4DDUDITk−0 + b4DIGDk−0

+ b4DPCQk−0 + b4DBESk−0 + 1.

(7)

Family-wise error rate (FWER) was controlled below 0.05 at
the cluster level using Random Field Theory (Worsley, Evans,
Marrett, & Neelin, 1992) implemented in SPM12. Cluster forming
threshold was 0.005 and extent threshold was determined based
on the data as the smallest volume of a cluster with the corrected
p value <0.05, which was 490 voxels (1654 mm3). Search space
was restrained to grey matter to match processed images.

Anatomical annotation of found clusters was based on
Harvard-Oxford Atlas and Talairach Daemon Atlas included in
FSL (https://fsl.fmrib.ox.ac.uk). To further determine insular sub-
regions, we also used a probabilistic atlas of the human insular
cortex (Faillenot, Heckemann, Frot, & Hammers, 2017) available
at http://brain-development.org/.

2034 Kathrin Weidacker et al.

https://doi.org/10.1017/S0033291720003852 Published online by Cambridge University Press

https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://www.fil.ion.ucl.ac.uk/spm/
https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk
http://brain-development.org/
http://brain-development.org/
https://doi.org/10.1017/S0033291720003852


Relevant vector regression

We further investigated information values of R1 patterns of the
regions identified from the significant linear relationships from
the GLM analyses to further explore the non-linear relationship
between neural and behavioural measures by using a machine
learning technique called Relevant Vector Regression (RVR;
Tipping, 2001). RVR decodes (or predicts) an unknown continu-
ous target value from learnt non-linear mapping between multi-
variate measures and the target value (i.e. kernel) utilizing
sparse Bayesian learning framework achieving comparable gener-
alizability more efficiently than support vector machine (SVM).
We used an RVR implemented in Pattern Recognition for
Neuroimaging Toolbox available via http://www.mlnl.cs.ucl.ac.
uk/pronto/ (Schrouff et al., 2013).

To avoid circular fallacy (Kriegeskorte, Simmons, Bellgowan, &
Baker, 2009), regions of interests were picked from an independ-
ent anatomical atlas (‘Hammersmith n30r95’): ‘insular anterior
short gyrus’ and ‘insular anterior inferior cortex’ for insular mod-
els and ‘subgenual frontal cortex’ and ‘subcallosal area’ for a sub-
callosal cortical model. Similar atlas-based approaches were used
in previous prediction studies on alcohol consumption (Seo et al.,
2015,2019). For comparison, a whole-brain model was also
constructed.

For each given region, demeaned R1 patterns of individuals
were entered as multivariate inputs covaried for age and sex.
Leave-one-out cross-validation (LOOCV) was performed to com-
pute the model’s prediction accuracy and examined using root
mean squared error (RMSE) and prediction R2. Significance was
tested from 1000 permutations (random assignment of AUDIT
changes), in which AUDIT changes were randomly permuted
and LOOCV performed in each iteration.

Control analysis

In addition to R1, we also investigated local GMV (Ashburner &
Friston, 2000), and fractional anisotropy (FA) based on
diffusion-weighted images (Basser, Mattiello, & LeBihan,
1994). Details are explained in online Supplementary materials.
In short, we did not find significant associations with the longi-
tudinal changes of AUDIT in the baseline GMV and FA
(cluster-p > 0.85); thus, we focused on the R1 findings in the fol-
lowing sections.

Results

Longitudinal changes in addictive behaviours

The demographic variables, UPPS scores, and addictive beha-
viours at baseline and their longitudinal changes are shown
in Table 1. CUDIT, DUDIT, and IGD significantly decreased
after 1 year (i.e. changes between the first follow-up and baseline
(1–0)). After 2 years (i.e. changes between the second follow-up
and baseline (2–0)), AUDIT and IGD significantly decreased
whereas BES significantly increased.

Changes in AUDIT were negatively correlated with the
baseline measure [r(AUDIT0, ΔAUDIT1–0) = −0.39, p = 0.0002;
r (AUDIT0, ΔADUIT2–0) =−0.60, p = 10−9]. Taken together
with the general decrease in AUDIT (online Supplementary
Table S1), individuals who reported higher AUDIT baseline
later reported decreased AUDIT in the follow-up measures
(online Supplementary Fig. S2).

Correlations between grey matter myelination and
AUDIT changes

We tested for correlations between baseline grey matter R1 (longi-
tudinal relaxation rate) and AUDIT changes after 1 (ΔAUDIT1–0)
and 2 years (ΔAUDIT2–0) and found significant correlations only
with ΔAUDIT2–0 but not ΔAUDIT1–0 (cluster-p > 0.05). Thus,
here we only report GLM results for the AUDIT changes after
2 years.

First in GLM (1), we found a negative correlation of the 2-year
AUDIT change (ΔAUDIT2–0) and R1 in bilateral insula (cluster-
p < 0.001) and the ACC/subcallosal cortex (SCA; cluster-p = 0.045;
Fig. 1a–e and Table 2).

As age and sex significantly increased explained variance
(GLM 2, 3; cluster-p < 0.044), we controlled for age and sex
(GLM 4): AUDIT change remained negatively associated with
R1 in bilateral insula and SCA (cluster-p < 0.034; Fig. 1f–i and
Table 2) but not the ACC cluster. The insular clusters extended
towards temporal lobe [Brodmann area (BA) 38] and inferior
frontal cortex (BA 13/47) and were localized in anterior short
gyrus and anterior inferior cortex within the bilateral insulae
(Faillenot et al., 2017).

We further tested for significance of covariates (GLM 5).
Except for the effect of Urgency on R1 in the cerebellum
(cluster-p = 0.001), all other covariates were not significantly cor-
related (cluster-p > 0.05), thus not significantly increasing
explained variance of models. The covariates also did not improve
model fit when tested collectively (cluster-p > 0.05; GLM 6, 7), as
such, we did not find significant effects of other addiction mea-
sures (e.g. CUDIT, DUDIT) on R1.

Prediction of AUDIT changes based on baseline R1

We then performed a machine-learning-based prediction of
AUDIT changes after 2 years from baseline R1 patterns using
relevance vector regression (RVR; Fig. 2). Even from the ROIs
based on an independent anatomical atlas, the right insula
revealed significant information in the R1 patterns for predicting
AUDIT changes with Pearson correlation (r⩾ 0.2303; p⩽ 0.035),
and root-mean-squared error (RMSE⩽ 3.59; p⩽ 0.027). However,
the fit (R2) was not significantly better than random permutation
(R2 < 0.054; p⩾ 0.299) suggesting a large unexplained variance in
the R1 patterns. The whole-brain model also significantly pre-
dicted AUDIT changes, but with a lower performance level
than the insular and subcallosal cortex (Table 3).

Discussion

Using a data-driven approach, we show that greater R1, indexing
grey matter myelination (Haast et al., 2016), in bilateral AIns and
SCA predicts greater resilience to problematic alcohol use in
youths from ages 15 to 26, a critical neurodevelopmental period.
R1 was measured at baseline and alcohol misuse was measured
using the AUDIT at baseline and 1- and 2-years follow-ups.
These findings were specific to alcohol misuse controlled for
age, gender, and impulsivity with no other structural relationships
observed to other drug or behavioural addiction measures. We
further corroborate these findings using machine learning,
emphasizing the capacity to predict changes in alcohol resilience.
Our hypothesis-free approach converges with a critical role for the
AIns and SCA in disorders of addiction. Most strikingly, a recent
longitudinal study also found an association of reduced growth of
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grey matter myelin in bilateral AIns with impulsivity in the ado-
lescent population using a different technique (Ziegler et al.,
2019). Previous functional research showed that the AIns is impli-
cated in substance cue reactivity and craving in addiction

disorders (Garavan, 2010; Naqvi & Bechara, 2010) and plays a
role in predictive coding of autonomic function involving the
comparison of actual and expected bodily/autonomic signals
highly relevant to the subjective experience of cues and craving

Table 1. Descriptive statistics of demographic, impulsivity, and addictive behavioural variables and one-sample t test statistics for longitudinal changes of addictive
behaviours

Variables Min Max Mean Std. T-stat. p val.

Age 15.75 26.67 21.76 2.76

EP 1 4 2.36 1.20

Urgency 26 72 43.92 10.81

Premeditation 13 42 22.70 6.06

Perseveration 10 29 17.41 4.46

Sensation 19 46 32.53 6.39

AUDIT(0) 0 29 8.76 5.95

AUDIT(1) 0 28 8.43 5.60

AUDIT(1–0) −13 9 −0.33 3.39 −0.98 0.38

AUDIT(2) 0 23 7.62 4.76

AUDIT(2–0) −14 10 −1.14 3.63 −2.93 0.004

CUDIT(0) 0 25 2.80 5.27

CUDIT(1) 0 22 1.73 4.46

CUDIT(1–0) −18 7 −1.07 3.38 −1.96 0.05

CUDIT(2) 0 25 2.36 5.53

CUDIT(2–0) −16 11 −0.44 3.46 −2.98 0.004

DUDIT(0) 0 23 1.48 4.04

DUDIT(1) 0 17 0.84 3.33

DUDIT(1–0) −23 6 −0.64 3.00 0.98 0.33

DUDIT(2) 0 22 0.84 3.42

DUDIT(2–0) −23 4 −0.64 2.91 −1.87 0.06

IGD9(0) 0 45 9.98 9.16

IGD9(1) 0 33 7.59 8.06

IGD9(1–0) −36 18 −2.38 7.42 −2.91 0.005

IGD9(2) 0 33 7.76 8.45

IGD9(2–0) −34 15 −2.22 7.01 −1.18 0.24

PCQ(0) 0 53 17.28 15.11

PCQ(1) 0 78 18.63 17.50 −2.04 0.05

PCQ(1–0) −50 44 1.35 12.75

PCQ(2) 0 75 18.97 18.14 −2.94 0.004

PCQ(2–0) −45 42 1.69 13.89

BES(0) 0 20 7.34 4.75

BES(1) 0 28 6.55 5.47

BES(1–0) −10 11 −0.79 3.91 1.13 0.26

BES(2) 8 25 12.34 3.52

BES(2–0) −8 14 5.00 3.90 11.90 <10−18

AUDIT, Alcohol Use Disorder Identification Test; CUDIT, Cannabis Use Disorder Identification Test-Revised; DUDIT, Drug Use Disorder Identification Test; IGD, Internet Gaming Disorder Scale
Short Format; PCQ, Pornography Craving Questionnaire; BES, Binge Eating Scale.
Note: Change from baseline is indicated by Δ. Urgency (combining positive and negative), premeditation, perseveration, and sensation (seeking) refer to the respective UPPS-P subscales. p
values are uncorrected.
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Fig. 1. Grey matter myeloarchitecture and prediction of problem alcohol behaviours. (a) T-statistic maps thresholded at the cluster-level p value of 0.05 testing the
association between R1 and 2-year follow-up AUDIT changes without covariates. (b–e) Scatter plots and linear fits at peak voxels to illustrate the fitting. ( f )
T-statistic maps thresholded at the cluster-level p value of 0.05 testing the association between R1 and 2-year follow-up AUDIT changes with covariates of age
and sex. (g–i) Scatter plots and linear fits at peak voxels. Surface visualization of results in volumetric space were done using FreeSurfer (https://surfer.nmr.
mgh.harvard.edu/).

Table 2. Association between AUDIT changes and R1

Cluster location BA Max Z Cluster-level p Extent (voxel)

Peak MNI-coordinate

Adjusted R2X (mm) Y (mm) Z (mm)

(a) Effect of AUDIT change without covariates (GLM 1)

Left insula 13/38/28 4.25 <0.001 2158 −28 6 −20 0.194

Right insula 13/22/47/13 4.23 <0.001 966 26 24 −13 0.193

Subcallosal cortex 25/34 3.92 <0.001 1113 4 16 −6 0.168

Anterior cingulate cortex 32/10/24 4.04 0.045 466 4 42 −2 0.177

(b) Effect of AUDIT change with age and sex covaried (GLM 4)

Left insula 13/38 4.15 <0.001 1714 −42 4 −14 0.195

Right insula 13/47/45/13 4.20 0.020 539 26 23 −13 0.220

Subcallosal cortex 25/24 3.67 0.034 491 4 16 −6 0.179

AUDIT, Alcohol Use Disorder Identification Test; GLM, General Linear Model; BA, Broadman area.
Note: Cluster location was identified based on Harvard-Oxford Subcortical Atlas and Talairach Daemon Atlas in FSL (https://fsl.fmrib.ox.ac.uk/). Numerals of GLMs refer to in-text formulas.
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(Droutman, Read, & Bechara, 2015; Terasawa, Shibata,
Moriguchi, & Umeda, 2013). Research on predictive markers in
youth found greater neural activity to alcohol cues in the insula
(Dager et al., 2014), similarly, greater reward-related activity in
the insular cortex predicted early onset of alcohol consumption
in 14-year olds (Nees et al., 2012). The AIns is also implicated
in risk representation (Preuschoff, Bossaerts, & Quartz, 2006)
and decision-making involving risk-taking (Xue, Lu, Levin, &

Bechara, 2010), processes highly relevant to alcohol misuse
(Preuschoff, Quartz, & Bossaerts, 2008; Rogers et al., 1999). For
example, the continued use of substances despite the likelihood
of adverse effects involves the evaluation of risk (Rogers et al.,
1999) and risk-taking behaviour predicts drinking problems in
undergraduates (Fernie, Cole, Goudie, & Field, 2010). The AIns
signals risk prediction and risk prediction error (Preuschoff
et al., 2008), and suboptimal computation of risk has been

Fig. 2. R1 and prediction of problem alcohol behaviours using machine learning. (a–c) Scatter plot of prediction of AUDIT changes and actual AUDIT changes by
relevant vector regression models based on R1 patterns in one of the anatomical regions of interest (a: left insula, b: right insula, c: subcallosal cortex).
Performance measures [Pearson correlation coefficient, root-mean-squared error (RMSE), and R2] are noted. (d–f) Significance of performance measures.
Smoothed null distributions from random permutations of actual AUDIT changes are shown in blue and models’ performances in red for each model.
Non-parametric p values are noted. (g–i) Weights of each model are visualized on cortical surfaces, which are normalized by the maximum absolute weight
and thresholded at 10% (anatomical regions of interest are outlined in white).

Table 3. Prediction of AUDIT changes based on baseline R1

Regions r p value (r) RMSE p value (RMSE) R2 p value (R2)

Left insula 0.306 0.014 3.506 0.008 0.093 0.127

Right insula 0.464 0.001 3.244 0.001 0.216 0.077

Subcallosal cortex 0.363 0.005 3.371 0.004 0.132 0.207

All clusters 0.402 0.002 3.361 0.001 0.162 0.033

Whole-brain 0.279 0.010 3.482 0.012 0.078 0.060

AUDIT, Alcohol Use Disorder Identification Test; RVR, Relevant Vector Regression.
Note. p values were computed from 1000 permutations.
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shown in substance abusers (Gowin, Mackey, & Paulus, 2013). In
addition to the insula, the SCA expressed a negative relationship
to alcohol intake over time, the SCA is a critical node underlying
emotional regulation (Mayberg et al., 1999; Phan, Wager, Taylor,
& Liberzon, 2002) and its significance in predicting AUDIT
change highlights its role in negative emotionality theories in
addiction (Kwako, Momenan, Litten, Koob, & Goldman, 2016).
The dorsal cingulate, a region implicated in substance cue reactiv-
ity and craving, also showed a relationship with resilience but was
no longer significant after covarying for age and gender, high-
lighting the importance of demographic variables for prospective
alcohol usage.

Of note, the current sample expressed a general reduction from
baseline scores on addiction questionnaires over the 2-year
period, which converges with earlier reports on age-related reduc-
tions in impulsive and addictive behaviours across maturity stages
(Bachman, Wadsworth, O’Malley, Johnston, & Schulenberg,
2013). While the available data are not sufficient to assess changes
in impulsivity levels longitudinally, early research indicates that
an important impulsivity trait for the initiation of substance
use, sensation seeking, peaks during late adolescence and declines
thereafter (Zuckerman, 1994). Similarly, alcohol and drug use
peaks between 20 and 24 years (World Health Organization,
2018) and declines thereafter (Arnett, 2000; Chassin, Flora, &
King, 2004; Chen & Kandel, 1995) with problem drinking usually
maturing out before the age of 28 (Bennett, McCrady, Johnson, &
Pandina, 1999). Given that maturity as well as changes in impul-
sive behaviours, such as alcohol consumption, evolve gradually
(Arnett, 2000; Chassin et al., 2004; Chen & Kandel, 1995), this
might explain the lack of significant correlations between R1
and 1-year AUDIT change. At the 1-year follow-up, the margin-
ally negative change in AUDIT scores did not significantly relate
to impulsivity, whereas strong negative correlations were present
at the 2-year follow-up. Similarly, the change in AUDIT scores
between baseline and 1-year follow-up was not significant. We,
therefore, conclude that a 1-year follow-up was not sufficient
for expressing a significant change in drinking behaviour, which
restricted the range of AUDIT change scores at 1-year post-
baseline and therefore reduced the chance to detect significant
correlations with R1.

Other structural changes than grey matter myelination

To investigate whether the current findings are specific to R1 in
the grey matter or reflect general predictive abilities of measures
of structural integrity, we assessed GMV and FA in addition to
baseline R1. However, no significant relationship between the
AUDIT or other addiction measures and other structural mea-
sures emerged. GMV and FA capture different properties of
grey matter: GMV is an aggregative measure reflecting various
morphological characteristics including mesoscopic geometry
(Mechelli, Price, Friston, & Ashburner, 2005). Cortical FA likely
reflects the complexity of (unmyelinated) dendrites, which are
abundant in the cortex, rather than myelinated axons, which
are fewer in the cortex as supported by animal models (Huang,
Yamamoto, Hossain, Younes, & Mori, 2008). In contrast, R1 is
sensitive to myelination density in grey matter irrespective of
orientation. Thus, R1 provides unique quantification of local con-
nectivity of microcircuits in grey matter, which is not captured by
GMV and FA. Our findings therefore highlight not only which
brain areas are predictive of subsequent changes in alcohol con-
sumption, but additionally the utility of R1 in detecting important

biomarkers above more commonly used structural measures such
as GMV and FA.

Anterior insula and alcohol misuse

Our main finding relates to the predictive properties of insular R1
for subsequent alcohol usage. The AIns is critical for various
addictions and addiction-related processes, e.g. human insular
stroke lesions decrease nicotine dependence and craving symp-
toms (Naqvi, Rudrauf, Damasio, & Bechara, 2007). In response
to alcohol cues, alcohol-dependent patients express higher insular
activity (Dager et al., 2014; Myrick et al., 2004) and young adults
in the SCA (Tapert, Brown, Baratta, & Brown, 2004). Across a
range of drug and alcohol cues, some meta-analyses implicate
greater cue reactivity in the AIns (Engelmann et al., 2012;
Schacht, Anton, & Myrick, 2013; But see Chase, Eickhoff, Laird,
& Hogarth, 2011). Enhanced left insular alcohol cue reactivity
was also predictive for transitioning from moderate to heavy alco-
hol consumption in college students (Dager et al., 2014).

In addition to functional abnormalities in this brain area,
structural insular abnormalities have also been reported with
problematic alcohol misuse. White matter integrity, as indicated
by FA, in the right insula correlates positively with craving in ado-
lescents seeking treatment for substance abuse (Chung & Clark,
2014). Lower AIns GMV has also been reported in alcohol-
dependent patients relative to controls (Senatorov et al., 2015).
With alcohol abstinence, both insular and cingulate increase
their GMV within a 3-month period compared to non-abstinence
(Demirakca et al., 2011). The AIns is also implicated across a
range of substance use disorders in cross-sectional studies.
Lower GMV in the right insula has been reported in heroin
and cocaine (Gardini & Venneri, 2012), methamphetamine
(Schwartz et al., 2010) and nicotine dependence (Stoeckel, Chai,
Zhang, Whitfield-Gabrieli, & Evins, 2016). GMV in both the
AIns and SCA correlate with years of cocaine use (Connolly,
Bell, Foxe, & Garavan, 2013). Here, no cross-sectional relation-
ships between structural measures and baseline addiction mea-
sures were found, potentially due to the healthy sample and to
excluding participants with addiction disorders at baseline, but
this also suggests that our findings were unrelated to the effects
of alcohol misuse itself.

Insular findings were localized to the ventral part of the AIns, a
region specifically implicated in substance cue reactivity and crav-
ing (Butti, Santos, Uppal, & Hof, 2013; Franklin et al., 2007;
Venniro et al., 2017). Relapse to methamphetamine in rodents
is associated with selective activation of a glutamatergic pathway
relaying information from the ventral AIns to the central amyg-
dala and chemogenetic inhibition of this projection decreased
relapse (Venniro et al., 2017). Furthermore, human AIns post-
mortem studies indicate a 60% reduction in Von Economo
neurons (VENs) in those with alcohol use disorders and corre-
sponding volumetric reductions (Senatorov et al., 2015). VENs
are also common in the ACC (Butti et al., 2013), which showed
a significant relationship between R1 and change in alcohol con-
sumption, but was no longer significant when controlling for age
and gender.

Limitations

A relative wide age range (15.8–26.7 years) was employed and as
such participants were likely in different maturity stages. We
accounted for this by using age as a covariate, but the term
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adolescents/young adults should be seen in relation to the studied
age range. Further, R1 was only assessed at baseline. Although we
did not find cross-sectional relationships between R1 and the
degree of problem alcohol use, whether R1 changes with alcohol
consumption is undetermined. We anticipated a greater number
of subjects would increase problem drinking given the stratifica-
tion by EP. As common for prospective studies (e.g. IMAGEN;
Schumann et al., 2010), participants with pre-existing substance
abuse problems were excluded to enable prediction of future alco-
hol misuse and resilience to it, independently of pre-existing
conditions that might have had neural consequences. This
might have reduced the range of AUDIT scores at baseline and
precluded the ability to investigate whether increased myelination
acts as resilience factor in those with a history of substance abuse.
Non-significant correlations between GMV, FA and AUDIT
scores might relate to the age range and the low alcohol usage
in this sample; Structural abnormalities due to excessive alcohol
consumption, such as reduced GMV in the insula and reduced
global cortical thickness (Momenan et al., 2012) have not yet
taken place in this population.

For technical considerations, R1 is not only sensitive to myelin
but also iron content. An ex vivo study showed enhanced contri-
bution of myelin over iron (Stüber et al., 2014), but the interpret-
ation of in vivo R1 should be still cautious. There are other MR
images that have been used to characterize myeloarchitecture as
well. A ratio of T1-weighted signal over T2-weighted signal (i.e.
T1w/T2w) has been widely used for its availability (Glasser &
Van Essen, 2011). MT imaging is a semi-quantitative (as the
MT ratio is dependent on a flip angle) technique based on cross-
relaxation between protons in macromolecules such as lipids
in myelin (Helms, Dathe, Kallenberg, & Dechent, 2008).
Quantitative magnetization susceptibility mapping (QSM) also
has demonstrated its high agreement to known cytoarchitecture
(Deistung et al., 2013) for its sensitivity to iron (Langkammer
et al., 2012). In addition, T2* mapping also showed a good agree-
ment with known myelo-/cytoarchitecture of the human cerebral
cortex for its sensitivity to both myelin and iron (Govindarajan
et al., 2015). In fact, a comparison among R1, R2* ( = 1/T2*),
and QSM at a high resolution (0.65-mm isotropic) revealed that
both R1 and R2* are suitable for myelo-/cytoarchitecture parcel-
lation but QSM showed more complex behaviours (Marques,
Khabipova, & Gruetter, 2017). For their different sensitivity and
selectivity to different macromolecules, use of multiple quantita-
tive mapping [R1, effective proton density (PD*), MT, R2*] has
been proposed to acquire comprehensive quantitative imaging
that can better differentiate myelin and iron (Weiskopf et al.,
2013).

Conclusions

In sum, we show using a data-driven approach that R1, indexing
cortical myelination, can predict future resilience to problematic
alcohol behaviours in youths in key regions underlying disorders
of addiction. Our findings have high clinical relevance for prob-
lematic alcohol use since the early age of alcohol use predicts sub-
sequent misuse (World Health Organization, 2018). The current
sample largely decreased their alcohol usage over time and as
such, we were able to identify that increased myelination in the
AIns predicts this decline in alcohol usage. Theories of alcohol
addiction commonly do not account for neural factors predating
alcohol usage, despite their ability to shed light on the neural
underpinning determining the trajectories from habitual to

problematic alcohol usage independent of pre-existing alcohol-
related neural alterations. AIns myelination may represent a
specific biomarker of potential alcohol resilience for early identi-
fication and intervention studies. It can be assumed that targeting
the at-risk youths with intervention programmes at an early age
might prevent future worsening of the condition and associated
health problems. However, the majority of currently available
treatment options are medication-based (e.g. Witkiewitz, Litten,
and Leggio, 2019), while early prevention programmes targeting
at-risk youth might benefit from applying non-pharmacological,
psychological treatments aimed at motivation and self-control
which have been shown to be similarly effective (Imel,
Wampold, Miller, & Fleming, 2008). Further large-scale studies
to assess the utility of R1 as a biomarker in both youths and adults
or as a predictor of treatment outcome and potential means of
modifying grey matter myeloarchitecture as a potential treatment
target are indicated.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720003852
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