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We study the stochastic effect of resource exploration in dynamic Cournot models of exhaust-

ible resources, such as oil. We firstly treat the case of a monopolist who may undertake costly

exploration to replenish his diminishing reserves. We then consider a stochastic game between

such an exhaustible producer and a ‘green’ producer that has access to an inexhaustible

but relatively expensive source, such as solar power. The effort control variable is taken to

be either continuous or discrete (switching control). In both settings, we assume that new

discoveries occur according to a jump process with intensity given by the exploration effort.

This leads to a study of systems of non-linear first-order delay ordinary differential equations

(ODEs). We derive asymptotic expansions for the case of a small-exploration success rate and

present some numerical investigations.
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1 Introduction

We initiate a study of the effect of exploration in dynamic Cournot games. In the model

studied in [13], players competed in a dynamic non-co-operative game as their reserves of

an exhaustible resource depleted, but there was no possibility of exploration and discovery

of new reserves. Here, we incorporate controllable exploration with costs associated with

discovery efforts. For an introduction to games and oligopolies, we refer to [11, 23]; for

an entry into differential games, we recommend [3, 7, 10]; and for stochastic control

problems, see [6]. However, the combination of dynamic games and control of jump

processes is novel here to our knowledge, and we attempt, as best as we can, to give a

self-contained exposition.

The full two or N-player non-zero sum differential game analysed in [13] is characterised

by systems of nonlinear HJB partial differential equations which are extremely difficult

to resolve numerically. Here, we concentrate mainly on reduced versions of the full

exploration game which allows us to deal with ordinary differential equations (ODEs) or

variational inequalities. Firstly, we study the full monopoly problem and then the game

between a producer of energy from an inexhaustible (or renewable) but costly resource,
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such as solar power, and a producer of energy from a cheap but ultimately exhaustible

resource, such as oil, whose reserves may be temporarily replenished by costly exploration.

Our goal is to understand the effect of the possibility of finding new reserves on extraction

strategies and market prices.

We work throughout in a Cournot framework in which producers choose quantities of

energy to produce and receive profit based on a single market price determined through

aggregate supply. For simplicity of exposition and specific calculations and numerics,

we consider a linear inverse-demand curve. In contrast to the Cournot game where the

strategic variable is quantity, one may also consider a Bertrand version where producers

set prices and supply as much as demanded by the market. Such a dynamic price-setting

stochastic Bertrand model, more suitable for describing consumer goods markets, is

studied in [16]; see also [23] for a textbook treatment of various oligopoly models.

In the simplest static (or one-period) Cournot problem, given the aggregate production

quantity Q ∈ [0, 1], the market price is given by the (inverse-demand) function P (Q) =

1 − Q. When there is one player with marginal cost of production s1 ∈ [0, 1), he chooses

his optimal quantity q1 � 0 to maximise his monopoly profit function

Π1 = q1(1 − q1) − s1q1.

The optimal quantity and profit are given by

q∗
1 =

1

2
(1 − s1), Π∗

1 =
1

4
(1 − s1)

2.

When there are two players with costs (s1, s2) ∈ [0, 1]2 and non-negative production

quantities (q1, q2), the aggregate quantity is Q = q1 + q2 and each player’s profit function

is

Πi = qi(1 − qi − qj) − siqi, i = 1, 2; j � i.

In a Nash equilibrium (q∗
1 , q

∗
2) ∈ [0, 1]2 for the duopoly, each player maximises profit as a

best response to the other player’s equilibrium strategy:

Π∗
i = max

qi�0
qi(1 − qi − q∗

j ) − siqi, i = 1, 2; j � i.

For costs s1, s2 <
1
2
, it is easy to see that both players have positive equilibrium productions

q∗
i =

1

3
(1 − 2si + sj), Π∗

i =
1

9
(1 − 2si + sj)

2, i = 1, 2; j � i.

However, if player j’s cost is too high relative to player i’s, specifically sj >
1
2
(1 + si), then

he is blockaded from production, meaning his equilibrium quantity is zero. In this case,

player i has a monopoly and the Nash equilibrium is given by

q∗
i =

1

2
(1 − si), q∗

j = 0, Π∗
i =

1

4
(1 − s1)

2, Π∗
j = 0.

A full characterisation of the static N-player game for a wide class of general inverse-

demand functions is given in [13, Section 2], and for Bertrand games in [16, Section 2]; a
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comparison between Cournot and Bertrand in terms of the number of blockaded players

is in [17]. Here, to highlight the essential effects of exploration in a transparent way, we

stay with the linear inverse-demand function and the one- or two-firm cases.

In the single-agent case, the literature on joint exploration and production decisions

was started in the late 1970s. Let us especially highlight the seminal paper of Pindyck [20]

that considered a deterministic model of exploring for a non-renewable resource (that is,

one which is gone when used up, but of which new discoveries can occur). He assumed

exploration to be incremental and represented as a deterministic reserve addition. Pindyck

showed that the resulting resource shadow price, corresponding to the marginal value

of additional reserves, will firstly decrease and then increase as reserves run low. This

generalised the original result of Hotelling [14] for exhaustible resources without discovery

that resource price grows at the inter-temporal discount rate. A series of works extended

Pindyck’s model for the case of stochastic discoveries. If exploration is punctuated by

large discoveries, it is best represented as a point process [1, 8, 15, 22]. This is the point

of view we take in this paper. In particular, the model of [1, 8] essentially matches our

monopoly setup with continuous effort in Section 2.3, except that we interpret value of

production q as revenue P (q) · q, whereas the existing works simply interpret it as utility

of consumption u(q).

Finally, if the total size of reserves is unknown, its dynamics can be described via

a stochastic differential equation with controlled volatility and drift [21]. If the global

resource is finite, like in the case of hydrocarbons, over the long term total possible

discoveries are bounded and exploration becomes harder as time goes on, see [20]. In

this paper, again as in [8], we make the simpler assumption that exploration can go on

forever, which is akin to unbounded technological R&D and knowledge accumulation.

This implies that the controlled reserves process (X∗
t ) in our model is recurrent on (a subset

of) �+ and moreover that zero is recurrent for (X∗
t ) (i.e. the resource is intermittently

exhausted and then re-discovered again).

On a broader scale, there is enormous economics literature (we refer, for example,

to the textbooks [4, 7]) on management of exhaustible and non-renewable resources

that is partitioned according to main applications (mineral and hydrocarbon deposits on

local and global scales, search for alternative ‘green’ technologies, R&D innovation, etc.),

key sources of uncertainty (fluctuating reserve levels, random demand shocks, timing of

innovations, etc.) and their probabilistic representation (unknown parameters, single event

innovation, repeated discoveries, etc).

In Section 2, we start with a single player, or monopolist. A key issue is the start-up

cost of exploration which, in this case, we look at in two ways: on/off or switching control

(Section 2.1), and continuous exploration effort (Section 2.3). In Section 3, we consider a

two-player game with continuous exploration control. As is widely appreciated, non-zero-

sum stochastic games are much more involved due to the strong coupling induced by the

best-response requirements of Nash equilibrium, and we are able to make some progress

analytically (Section 3.2) and numerically (Section 3.3). In Section 3.4, we describe how

Hotelling’s classical rule for depletion of exhaustible resources is modified in the context

of a Cournot game with exploration. Throughout, we maintain discrete fixed discovery

sizes to focus on the essential effect of exploration. The numerical implementations can

easily be extended to random jump sizes.
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2 Monopoly exploration and production model

Consider a firm in charge of an exhaustible resource, such as oil, precious metal or

coal. The main operations of the firm are summarised by two activities: production and

exploration. Production of the resource generates revenue but lowers remaining stocks.

Conversely, exploration will likely lead to discoveries and so boost reserves, but is costly.

That is, we assume that exploration is uncertain, so that replenishment of the resource

occurs stochastically. For example, in practical hydrocarbon exploration efforts, firms will

spend significant exploration funds but actual new discoveries occur infrequently and

unpredictably.

Let Xt denote the firm’s reserves at date t. We assume that (Xt) decreases at a (controlled)

production rate qt � 0, and increases through jumps thanks to discrete new discoveries.

Exploration successes are represented by a counting process (Nt) whose jumps mark the

discovery times. Each discovery increases reserves by a fixed amount δ > 0, and so we

have the dynamics:

dXt = −qt 1{Xt>0} dt + δ dNt.

To make discoveries, exploration effort is needed, with its level indicated by at � 0. The

intensity of the point process (Nt) is λat, and its costs are captured via C(at) for some

positive non-decreasing convex function C(·).
Below, we will consider two main cases:

(1) Discrete effort levels. For simplicity, we focus on binary effort at ∈ {0, 1}. Thus, either

no exploration is undertaken, or a fixed effort (normalised to be 1) is applied. We also

assume that to start or stop exploration, a fixed cost K > 0 must be paid each time.

(2) Continuous effort level, at ∈ �+. In that case, we assume that C(a) is strictly convex

for a large enough, which guarantees that optimal effort levels are finite.

At each date t, the firm sets the quantity qt, that is the rate of production (or extraction)

of the resource, and the market price is a decreasing function of the supply. To simplify,

we assume a linear price (or inverse-demand) function P = P (q) = 1 − q. The revenue

is simply price times quantity q · P (q). Future revenue/costs are discounted in time by a

constant discount factor r > 0 and the objective (specified precisely in equations (2.1) and

(2.17)) is to maximise total expected discounted net revenues over the infinite horizon.

We also assume for simplicity that the cost of extraction is zero; in Section 3 where an

oil producer competes with an energy producer with a clean inexhaustible but expensive

technology (for instance solar power), the latter will have a nonzero production cost.

The controlled dynamics of the reserves can be described in terms of a piecewise

deterministic process (PDP). Indeed, between discoveries, no new information is coming

in and reserves decrease continuously according to the production schedule. At discovery

dates, reserves increase via an instantaneous jump; the intensity of discoveries is a

function of current reserves through the optimal exploration control. Accordingly, the

corresponding theory of PDPs [6] can be brought to bear in the single-agent case, and

we refer to [5, 9, 18, 22] for the abstract theory, in particular proofs of the existence and

smoothness of solutions to the resulting first-order integro-differential Bellman equation

and its correspondence with the solution of the stochastic control problem.
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2.1 Switching exploration control

In the discrete exploration control case, at ∈ {0, 1}, the firm sequentially alternates

between expending discovery effort to replenish supplies and doing nothing. Exploration

effort costs C ≡ C(1) dollars per unit time, while a switch to start or stop exploring

consumes 0 � K < C/r dollars.

A natural admissibility condition is that (at) has (�-a.s.) a finite number of switches

on any finite horizon. This requirement makes sure that there is no chattering (infinitely

fast switching between exploration regimes). With positive switching cost K > 0, any

inadmissible strategy will have infinite costs and hence be clearly sub-optimal. The

admissibility condition on (qt) is that the corresponding reserves process remains non-

negative, which is simply that qt = 0 when all reserves are exhausted.

Given strategies (qt, at), and denoting ∆at = at − at−, the total expected revenue for the

firm is then

�

⎡
⎣∫ ∞

0

e−rt{(1 − qt)qt − C(at)} dt −
∑

{t:∆at�0}

e−rtK

⎤
⎦ . (2.1)

To study the stochastic control problem of maximising equation (2.1), we adopt the

usual dynamic programming approach of analysing the corresponding value functions

assuming that both (qt) and (at) are Markov feedback controls: qt = q(Xt) and at = a(Xt).

Let (Xt) be the reserves process starting at X0 = x. Since a ∈ {0, 1}, we can write

dXt = −q(Xt)1{Xt>0} dt + a(Xt)δ dNt, (2.2)

where now (Nt) is a standard Poisson process with intensity λ > 0. The state variables in

the problem are the initial reserves x and the initial exploration mode a0. Due to switching

costs, the current mode has an effect on the subsequent strategy. When all resources are

exhausted, the firm optimises between either (i) expending effort and waiting for a new

discovery, while producing zero, or (ii) quitting and receiving a zero terminal payoff.

For future reference, we recall that the production model without exploration can be

solved explicitly. Denote by

w0(x) = sup
q

∫ ∞

0

e−rt(1 − qt)qt1{Xt>0} dt with X0 = x, (2.3)

the corresponding value function, where now λ = 0. Then, w0(x) solves the Hamilton–

Jacobi ODE

1

4
(1 − w′

0(x))2 − rw0(x) = 0, (2.4)

with initial condition w0(0) = 0.

The following recipe provides a closed-form expression for w0.

Lemma 2.1 The solution to the ODE

(α − v′)2 = κv on {x > 0}, v(0) = v0,
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where α, κ > 0 and v0 � 0, is

v(x) =
α2

κ
(1 + W(θ(x)))2 ,

where

θ(x) = βeβe−κx/(2α), β = −1 +

√
κv0

α
,

and W is the Lambert-W function defined as the inverse function of xex, restricted to the

range [−1,∞) and the domain [−e−1,∞).

Proof This follows easily from the substitutions v = α2

κ
(1 + u)2, y = e−κx/(2α) and that

W′(y) = W(y)/ (y (1 + W(y))). �

Applying Lemma 2.1 to equation (2.4) implies that

w0(x) =
1

4r
[1 + W(−e−2rx−1)]2. (2.5)

2.1.1 Quasi-variational inequality

Denote by v(x) (resp. w(x)) the value function of the producer, conditional on starting

in the exploration (resp. no exploration) mode and initial resource of size x. Applying

standard dynamic programming arguments [19], it follows that the pair (v, w) satisfy

a first-order coupled system of variational inequalities when x > 0, which is given in

equation (2.9) below.

When x = 0, and the exploration regime is 1, the agent cannot produce but continues

to explore. Alternatively, he has the option to quit permanently. Let τ be the next time

of exploration success. Then, an argument based on Bellman principle gives v(0) =

max(0,�[−
∫ τ

0 e−rtC dt + e−rτv(δ)]) and, using the exponential inter-arrival times for (Nt),

τ ∼ Exp(λ), we obtain that

v(0) = max

(
0,

−C + λv(δ)

λ + r

)
. (2.6)

When x = 0 and the exploration regime is 0, the player can either permanently quit or

begin exploring after paying K . Hence,

w(0) = max(0, v(0) − K). (2.7)

We summarise in the following proposition, where we employ the following convenient

notation for the non-local (or delay) term coming from the jump process:

∆v(x) := v(x + δ) − v(x). (2.8)
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Proposition 2.1 The pair (v, w) is the smallest solution of

max

(
1

4
(1 − v′(x))2 − C + λ∆v(x) − rv(x), w(x) − K − v(x)

)
= 0, (2.9)

max

(
1

4
(1 − w′(x))2 − rw(x), v(x) − K − w(x)

)
= 0,

subject to boundary conditions (2.6) and (2.7). In particular, the optimal policy is given in

feedback form as q∗
v = 1−v′(x)

2
and q∗

w = 1−w′(x)
2

. Moreover, v(·), w(·) ∈ C1(�+) \ D, where

D = {x ∈ �+ : w(x) − K − v(x) = (1 − v′(x))2/4 − C + λ∆v(x) − rv(x)

or v(x) − K − w(x) = (1 − w′(x))2/4 − rw(x)} ∪ {0}. (2.10)

2.1.2 Analysis of switching regions

The key to analysis of equation (2.9) is the study of the corresponding switching regions,

which keep track of the maximisers in each max-term. When reserves are low (x small), the

marginal cost of additional reserves is high and therefore exploration is valuable. When

reserves are large, the threat of exhaustion is weak and the value of exploration is small.

Finally, when reserves are very low and exploration is expensive, it may be cheaper to quit

permanently rather than to expend efforts on exploration. Therefore, we conjecture that

there exist three thresholds 0 � xQ � xon � xsat (‘Q’ for quit, ‘on’ for start exploration,

‘sat for saturation), such that

v(x) − K = w(x), for x ∈ [xQ, xon], w(x) > v(x) − K, for x ∈ [0, xQ) ∪ (xon,∞),

w(x) − K = v(x), for x ∈ [xsat,∞), v(x) > w(x) − K, for x < xsat.

We do not attempt a proof about the shape of the switching regions. However, standard

theory implies that the variational inequality in equation (2.9) has a unique viscosity

solution. Therefore, identifying one plausible solution structure, borne out by numerical

computations in Section 2.2, goes a long way to giving a practical solution.

We refer to [0, xsat) as the continuation region for v (exploring), and [0, xQ) ∪ (xon,∞)

as the continuation region for w (no exploration). As we discuss below, usually (that is

for moderate values of K and C), xQ = 0 and there is only one continuation region for w.

The lower switching boundary xon determines the maximum level of reserves at which

it is optimal to re-start exploration. Two cases can occur. Firstly, we (usually) have

w(0) = v(0) − K . For z � 0 such that v(z) � K , denote by

w(x; z) =
1

4r
[1 + W(beb−2r(x−z))]2, b = −1 +

√
4r(v(z) − K), x � z,

the unique solution to w′(x; z) = 1 − 2
√
rw(x; z) (where ′ = d

dx
), with w(z; z) = v(z) − K ,

see Lemma 2.1.

Proposition 2.2 Suppose v(0) � K . Then, xon > 0 and the switching region must contain an

interval around zero. Moreover, w′(xon) = v′(xon) match and there is a smooth fit at xon.
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Proof Since w′(0; 0) = 1 − 2
√
r(v(0) − K) < 1, and w(x; z) is continuous in both of its

arguments, we see that w(ε + ε′; ε) < v(ε) − K for ε and ε′ small enough. However, by

equation (2.9), we must have w(x) � v(x) −K for all x; therefore, it must be the case that

w(x) = v(x) − K for x small enough. Therefore, xon > 0.

As shown above, v′(0) = 1 > w′(0; 0) and as x increases from zero, eventually a level

xon is reached where

w′(xon; xon) = 1 − 2
√
r(v(xon) − K) = v′(xon). (2.11)

With this xon, we then have w(x) = w(x; xon) for x > xon and w(x) = v(x)−K for x � xon.

Since w(0) = v(0) −K > 0 = w0(0) and v′(x) > w′(x; x) on [0, xon), the full interval [0, xon)

must be a switching region for w, so that xQ = 0 in this case. In equation (2.11), we obtain

that the derivatives w′(xon) = v′(xon) match and therefore give rise to a smooth fit at xon.

�

In the second case, if w(0) = 0, then for x very small it is not optimal to switch from w

to v since the fixed outlay K outweighs the gains of making discoveries before exhaustion.

As a result, there is an additional interval [0, xQ], where w(x) > v(x) − K .

Proposition 2.3 If v(0) < K , then

w(x) =

⎧⎪⎨
⎪⎩

w0(x), for x < xQ,

v(x) − K, xQ � x < xon,

w(x; xon), x � xon,

where xQ > 0 is found by solving v(xQ) − K = w0(xQ).

In other words, starting exploration is only optimal on (xQ, xon].

Proof We still have that v′(0) = 1 > w′(0), so that the gap between v and w will be

initially increasing. By equation (2.9), for x small enough, w solves the ODE defining

equation (2.5) and since w0(0) = 0 we have that w(x) = w0(x) in the neighbourhood of

zero. Then, xQ > 0 is determined from v(xQ) − K = w0(xQ). �

Note that possibly xon = xQ, in which case w(x) = w0(x) for all x and starting

exploration is never optimal. This will occur if K is too large relative to the benefit of

exploration. In such a case, the producer explores for a while, until Xt � xsat at which

time exploration is permanently shutdown and all remaining reserves are exhausted.

Since (Xt) increases through jumps only, exploration is always terminated at jump-time,

whenever (Xt) enters the region [xsat,∞). In contrast, exploration starting date can be

anticipated, since the hitting time of [0, xon] is predictable. These different behaviours at

the switching boundary are the reason for the following result.

Proposition 2.4 There is no smooth fit at xsat, so that v′(xsat−) < v′(xsat+) = w′(xsat).
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Proof It is clear that v′(xsat−) � v′(xsat+); if this were not the case, then it would be

sub-optimal to stop exploration at level xsat since waiting infinitesimally would reduce the

gap between w and v.

Towards a contradiction, suppose that v′(xsat) = w′(xsat). Then, v is differentiable

everywhere. In fact, based on the ansatz of the shape of the switching regions and the

delay ODE satisfied by v(x) on (0, xsat), the derivative U(x) := v′(x) is itself continuously

differentiable on x > 0 and satisfies

−U ′(x)(1 − U(x))/2 + λ(U(x + δ) − U(x)) − rU(x) = 0, U(0) = 1. (2.12)

Making use of the fact that U(x) = w′(x) for x � xsat and that w is concave (i.e.

w′(x + δ) − w′(x) < 0), we find that

U ′(xsat) =
−2rU(xsat) + 2λ(U(xsat + δ) − U(xsat)))

1 − U(xsat)
<

−2rw′(xsat)

1 − w′(xsat)
= w′′(xsat).

By continuity of U ′ and w′′, it follows that U ′ < w′′ in a neighbourhood of xsat. Let

x′ = sup{x < xsat : U(x) = w′(x)}; by above x′ < xsat. If x′ > 0, then

U ′(x′) =
−2rU(x′) + 2λ(U(x′ + δ) − U(x′)))

1 − U(x′)

�
−2rw′(x′) + 2λ(w′(x′ + δ) − w′(x′))

1 − w′(x′)
< w′′(x′)

since w′(x) > 0 for all x. This is a contradiction; thus x′ = 0 and U(x) < w′(x) for

all x < xsat (the above analysis also implies that U is convex). In other words, v is

always more concave than w. However, this contradicts the result U(xon) = w′(xon) shown

above. �

2.1.3 Optimal strategy and controlled reserves process

To summarise, when v(0) > K we look for critical thresholds xsat > xon such that⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

4
(1 − v′(x))2 − C + λ[v(x + δ) − v(x)] − rv(x) = 0, x � xsat,

1

4
(1 − w′(x))2 − rw(x) = 0, x � xon,

v(x) = w(x) − K, x > xsat,

and w(xon) = v(xon) − K.

(2.13)

The optimal exploration strategy is to start exploring whenever the supply drops below

xon and to stop whenever it increases beyond xsat. The gap [xsat, xon] is due to the discrete

switching costs which create a hysteresis band: for x ∈ [xsat, xon], it is optimal to maintain

the current exploration strategy. In total, there are four free variables in equation (2.13):

the location of xon and xsat, the level v(0) and the level w(xsat). The four constraints are:

w(xon) = v(xon) − K , w(xsat) = v(xsat) + K , w′(xon) = v′(xon) and v′(0) = 1. It appears

difficult to state any closed-form algebraic equation linking the free variables above with
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these constraints. We will see that this structure of solution is borne out by numerical

computations in Section 2.2.

Remark 1 If there is smooth fit at xon, our analysis shows that v′(x) � w′(x) for all

x � xon, and hence there is at most one crossing point between v(x) + K and w(x) on

[xon,∞). This confirms our ansatz about the shape of the exploration regions.

The structure of equation (2.13) implies that the optimal controlled reserves process

(X∗
t ) undergoes a cyclic behaviour. Suppose that X∗

0 = 0 (and v(0) > K); then exploration

is started, and once X∗
t > 0 production begins as well. After a few more discoveries (it is

possible that intermittently X∗
t = 0 again and production is temporarily halted), we will

have X∗
t > xsat and exploration is shut down. Existing reserves are then exhausted until

X∗
t = xon when exploration is re-started. Eventually, a long interval between discoveries

will again lead to X∗
t = 0. In our model, the potential future discoveries are unlimited

and, therefore, this cycle perpetuates itself. Moreover, due to the Markov controls, each

cycle is independent of the others and (X∗
t ) forms a renewal process with renewal times

corresponding to X∗
t = 0 and a∗

t = 1 (exhaustion with exploration). Note that the optimal

reserves process is bounded, X∗
t ∈ [0, xsat + δ], and the second w-continuation region

[0, xQ) is never reached by (X∗
t ).

2.2 Numerical solution and illustrations

To solve the system (2.9) requires dealing with a first-order non-linear delay ODE coupled

with a first-order nonlinear ODE via two free boundaries. Fixing ∆x = δ/N and upper

threshold M̄δ, we discretise (2.9) via a uniform grid approximation on [0, M̄δ] with step

size ∆x. The corresponding derivatives are replaced with finite-difference operators, taking

vn 
 v(∆xn), wn 
 w(∆xn). For instance, the first half of equation (2.9) for 1 � n � (M̄−1)N

becomes

max(Fn, Gn) = 0, where (2.14)⎧⎨
⎩Fn :=

1

4
(1 − vn − vn−1

∆x
)2 − C + λ[vn+N − vn] − rvn,

Gn := wn − K − vn.

(2.15)

At the boundaries, we directly apply v0 = −c+λvN
λ+r

and for n > (M̄ − δ)N, vn = wn − K

which implicitly assumes that xsat < M̄ − δ. Note that to avoid oscillations in computing

v′(x) (needed to find q∗
v ), we apply one-sided finite-difference approximation in equation

(2.15).

Repeating the same for the second half of equation (2.9), we obtain a system of

2(M̄N + 1) (quadratic) equations in the 2(M̄N + 1) unknowns v0, . . . vM̄N, w0, . . . , wM̄N .

This system can now be solved using standard methods to obtain the unique solution

(vn, wn)
M̄
n=0. Finally, one may recover the free boundaries xon 
 m∆x and xsat 
 m̄∆x by

finding the indices m = max{n : wn = vn − K} and m̄ = min{n : Gn = 0}.
The max-operator in max(Fn, Gn) is highly non-linear; in particular, at the optimum,

where by complementarity at least one of the terms is zero, we obtain a singularity.
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Figure 1. (Colour online) Solution of the single-agent problem: v(x) (dash line) and w(x) (solid

line). The parameters are δ = 1, λ = 1, r = 0.1,C = 0.25, K = 0.2. The vertical lines indicate the

switching thresholds xon = 0.17 and xsat = 2.82.

This presents a difficulty in applying Jacobian-based methods on the large vector equa-

tion (2.14). To regularise the problem, we apply the Fischer–Burmeister (FB) function

FFB(f, g) :=
√
f2 + g2 + f + g that satisfies

max(f, g) = 0 ⇐⇒ FFB(f, g) = 0,

and is smooth outside the origin (0, 0). After experimenting with solving equation (2.14)

for typical parameter ranges, we find that this approach is stable and exhibits fast

(super-linear) convergence in ∆x.

To illustrate our results, we consider the monopoly switching exploration control with

parameters δ = 1, λ = 1, r = 0.1,C = 0.25, K = 0.2. We solve the system (2.14) using

∆x = 0.02 and M̄ = 6 which leads to a 602-dim. system of quadratic equations, with the

solution plotted in Figure 1. Note that the far-field limit in this case is (4r)−1 = 2.5. We

also find that xQ = 0, xon = 0.17, xsat = 2.82.

Figure 2 illustrates a counterintuitive phenomenon that occurs due to lack of smooth

fit at xsat. Recall that q∗
v (x) = 1

2
(1 − v′(x)) and we expect production to fall as reserves

decrease. However, Figure 2 shows that due to the upward jump in v′ at xsat, for some

x < xsat, x → q∗
v (x) is decreasing. This occurs because the marginal value of reserves is

higher in the w-regime than in the v-regime. As (Xt) moves to the left and further away

from xsat, the likelihood of imminently discontinuing exploration decreases, so that the

marginal value of reserves v′(Xt) shrinks and production is ramped up.

As an illustration of the comparative statistics, we show in Figure 3 the effect of

switching costs K and exploration cost C on the optimal thresholds xon and xsat. We
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Figure 2. (Colour online) Optimal production rates: q∗
v (x) (dash line) and q∗

w(x) (solid line). Note

the discontinuity of q∗
v (x) at xsat = 2.82 and the fact that q∗

v (x) is decreasing around x = 2.
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Figure 3. (Colour online) Switching thresholds xon and xsat as a function of switching costs K

(left panel) and exploration costs C (right panel). Other parameters are as in Figure 1.

expect that as K increases, the hysteresis interval [xon, xsat] becomes wider, since the

firm would want to minimise switching frequency. Similarly, if the exploration costs C
decrease, exploration is more profitable and the saturation level xsat rises. The lower

threshold xon also rises, since it is not necessary to slow the production rate q∗
t as much

before exploration resumes. Note that for C > 0.35, xon = 0 which means that once

exploration is stopped, it is never optimal to re-start it since v(0) < K .
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Finally, we note that the numerical scheme (2.15) can also be interpreted as a Markov

chain approximation approach. Namely, let us approximate (Xt) with a controlled discrete-

time Markov chain (X(S )
t ) living on S = {0,∆x, . . .}. Over one time-step ∆t, (X(S )

t ) may

move one step to the left (with probability proportional to the production rate q) or jump

N = δ/∆x steps to the right (with probability λ∆t). Then, an argument based on Bellman

principle implies that the resulting value function v(S ) in the exploration regime satisfies

v(S )(x) = max

(
w(S )(x) − K, sup

q�0
�

[
e−r∆tv(S )(X(S )

∆t ) + {q(1 − q) − C}∆t
])

,

with w(S ) the analogue of w. Assuming that v(S )(x) > w(S )(x) − K , and after re-arranging

this leads to

1 − e−r∆t

∆t
v(S )(x) = sup

q
q(1 − q) + e−r∆tq

v(S )(x − ∆x) − v(S )(x)

∆x
+ e−r∆tλ∆v(S )(x) − C,

and similarly for w(S ), which essentially becomes equation (2.15) for small-enough ∆t.

2.3 Continuous exploration control

In the model complementary to equation (2.1), the exploration control a is continuous,

at ∈ �+. Such a model has been studied in detail in [8, 22]. Relative to the analysis

of the previous section, this model is both more difficult (since we now have a two-

dimensional continuous control to deal with) and simpler (since there are no longer any

free boundaries).

We continue to interpret at as the effort level; higher effort increases the arrival rate of

new discoveries. The point process of discoveries (Nt) is such that

N̄t � Nt −
∫ t

0

asλ ds (2.16)

is a martingale. Higher effort also leads to higher costs C(at).

Assumption 1 The cost function C is increasing, differentiable and strictly convex with

C(0) = 0, and lim
a→∞

C′(a) = +∞.

One economic interpretation of the varying exploration effort in such models is through

the spatial distribution of resources in the ground, first described by [1]. Suppose that the

non-renewable resource deposits are spatially distributed according to a Poisson random

measure ν with constant rate λ. Recall that this means that any region of area |A| contains

deposits in the amount ν(A) ∼ Poisson(λ|A|), and that deposits in non-overlapping areas

are independent. Exploration now corresponds to sweeping through areas searching for

deposits, mimicking actual exploration of, e.g., hydrocarbons in different geographical

regions. Then, exploration effort is the speed of the sweep. Indeed, if the speed is constant

at a units of area per unit of time, then new deposits are discovered at rate aλ. If the
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speed is varying over time, the resulting discovery process (Nt) marking discover times

has precisely the same distribution as in equation (2.16). The convex costs of exploration

then refer to the fact that sweeping areas at higher speeds leads to dis-economy of scale

due to scarce exploration resources (e.g. drilling equipment, qualified workforce, etc.).

The overall objective is now written as

v(x) := sup
q,a

�

[∫ ∞

0

e−rt{qt(1 − qt) − C(at)} dt | X0 = x

]
, (2.17)

and the corresponding Hamilton–Jacobi–Bellman equation for the value function v(x) is

sup
0�q�1

{q(1 − q) − qv′} + sup
a�0

{aλ∆v(x) − C(a)} − rv = 0. (2.18)

The assumptions on C(·) ensure that there is a unique maximiser a∗ to the second

supremum, which is characterised by the first-order condition

a∗(x) = (C′)−1(λ∆v(x)). (2.19)

At x = 0, production must be suspended but exploration continues. Since the controls

are Markov, until the next discovery time σ1 the exploration level is constant. It follows

that the boundary condition at x = 0 is given by (cf. [22])

v(0) = sup
a�0

�

[
e−rτv(δ) −

∫ τ

0

e−rtC(a) dt

]
= sup

a�0

λav(δ) − C(a)

λa + r
. (2.20)

We remark that if C′(0) > 0 and r or C(·) are too large, it is possible that the optimiser

is a∗(0) = 0 in which case it is optimal to not explore at x = 0 and v(0) = 0. Recall that

a∗(x) is decreasing, so that if a∗(0) = 0, then a∗(x) = 0 for all x and the model reduces to

the classical case with no exploration: v(x) = w0(x) given in (2.5).

Since equation (2.18) no longer has any free boundaries and the two controls q and

a are separable, this problem is more analytically tractable than the switching version in

Section 2.1. We will use equation (2.17) as the prototype for the game model in Section 3.

Since the solution of equation (2.18) will be seen as a special case of the more general

model in Section 3, we keep the discussion of equation (2.18) brief and only make a few

remarks here about the resulting exploration control a∗.

Because v(x) is concave (this is easily verified by showing that the marginal value of

additional inventory is decreasing), we have from equation (2.19) that a∗(x) is decreasing

in x. Moreover, the uniform bound v(x) � (4r)−1 implies a∗(x) � ā := (C′)−1(λ(4r)−1).

At the same time, if C′(0) = 0, then a∗(x) > 0 for all x. Indeed, in this case, for ε > 0

small enough, the cost of exploration C(ε) is negligible compared to the expected gain


 εr−1∆v(x).

Remark 2 We observe that if a∗ > 0 for all x, then (X∗
t ) is an irreducible Markov chain

on �+ and therefore is recurrent on its full state space. It follows that supt X
∗
t = +∞ and

reserves will become arbitrarily large infinitely often. Such behaviour would appear to

be unrealistic for describing non-renewable resources, and suggests that we should take
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C′(0) > 0. If C′(0) > 0, then there exists a saturation level xsat such that a∗(x) = 0 for

x > xsat, and (X∗
t ) would be positive recurrent on [0, xsat + δ) only.

3 Duopoly with a green producer

We now return to a competitive situation and analyse the dynamic Nash equilibrium

when the firm with a depleting non-renewable resource is competing against a second

producer. The other producer has inexhaustible reserves, but higher cost of production.

This corresponds to sustainable production from ‘green’ sources (e.g. solar energy, wind

power). Thus, producer 1 faces exhaustion and therefore needs exploration; producer 2

always has infinite resources, but also positive fixed production costs c > 0. The two

producers compete against each other through the Cournot game equilibrium. This setup

corresponds to the ‘axis-game’ in [13, Section 5.1], but with potential for discovery by

player 1. A related problem in the context of mean-field games with convex costs of

extraction, but without exploration, is analysed in [12].

The remaining reserves (Xt) of Player 1 follow, similar to (2.2):

dXt = −q1(Xt) 1{Xt>0} dt + δ dNt, (3.1)

where q1 is his rate of production, and (Nt) is a controlled point process with intensity λat.

Here, Player 1 has exhaustible oil resources which he extracts at zero cost, and which is

subject to random discoveries. Player 1 stimulates discoveries via a continuous exploration

effort at ∈ �+ that is subject to cost C(at), where C satisfies Assumption 1. When he runs

out, he cannot produce until there is a discovery, and so we constrain q1(0) = 0. Player 2

produces from an inexhaustible resource (e.g. solar) which is expensive: his marginal cost

of production is c > 0. His rate of production is q2(Xt).

The value functions for each player are, respectively (where g stands for ‘green’):

v(x) = sup
q1 ,a

�

[∫ ∞

0

e−rt
[
q1(Xt)

(
1 − q1(Xt) − q2(Xt)

)
− C(at)

]
dt | X0 = x

]
,

g(x) = sup
q2�0

�

[∫ ∞

0

e−rtq2(Xt)
(
(1 − q1(Xt) − q2(Xt)) − c

)
1{Xt>0} dt

+

∫ ∞

0

e−rt 1

4
(1 − c)21{Xt=0} dt | X0 = x

]
.

The second term in the definition of g expresses that player 2 has a monopoly while

player 1 is out of reserves. We also stress that q2 must be non-negative: for large enough

c and x, we will see that player 2 is blockaded in that his cost of production is so high

and his competitor’s reserves of the cheaper resource are so plentiful that his equilibrium

strategy is not to produce anything until player 1 has run down his reserves some more.

In this situation, player 1 has a temporary monopoly while player 2 sits it out.

The ODEs for v and g are

sup
q1 ,a

{(1 − q1 − q∗
2)q1 − q1v

′(x) − C(a) + aλ∆v(x)} − rv(x) = 0,

sup
q2�0

{(1 − q∗
1 − q2 − c)q2} − q∗

1g
′(x) + a∗(x)λ∆g(x) − rg(x) = 0,
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where ∆v(x) is the non-local or jump term given in equation (2.8), and similarly ∆g(x),

and a∗(x) = argsupa�0{−C(a) + aλ∆v(x)} is the optimal exploration effort.

Motivated by the discussion of Remark 2 in Section 2.3, we take power costs

C(a) =
1

β
aβ + κa, β > 1, κ � 0. (3.2)

Note that C′(0) = κ, so κ > 0 corresponds to the existence of a finite saturation point

xsat. The optimal effort is given by

a∗(x) =
[
(λ∆v(x) − κ)+

]γ−1
,

where z+ = max(z, 0) and

γ =
β

β − 1
. (3.3)

If at reserve level x > 0, player 2 is not blockaded, the feedback production strategies

are given by

q∗
1(x) =

1

3
(1 − 2v′(x) + c) q∗

2(x) =
1

3
(1 + v′(x) − 2c), x > 0, (3.4)

and the ODEs become

1

9
(1 − 2v′ + c)2 +

1

γ

[
(λ∆v(x) − κ)+

]γ − rv = 0,

1

9
(1 + v′ − 2c)2 − 1

3
(1 − 2v′ + c)g′ +

1

γ

[
(λ∆v(x) − κ)+

]γ−1
∆g(x) − rg = 0. (3.5)

If player 2 is blockaded at some x > 0, we have q∗
2 = 0 and q∗

1 = 1
2
(1 − v′) and so

1

4
(1 − v′)2 +

1

γ

[
(λ∆v(x) − κ)+

]γ − rv = 0, (3.6)

−1

2
(1 − v′)g′ +

1

γ

[
(λ∆v(x) − κ)+

]γ−1
∆g(x) − rg = 0.

When c = 1, player 2 is never in the game, and the above model reduces to the monopoly

setting of Section 2.3.

Using the same argument as for equation (2.20), the boundary conditions are

v(0) = sup
a

aλv(δ) − C(a)

λa + r
, g(0) =

(1 − c)2/4 + λa∗(0)g(δ)

λa∗(0) + r
.

The far-field limits are

x → ∞ : v → 1

9r
(1 + c)2, g → 1

9r
(1 − 2c)2,

if c < 1/2 and v → (4r)−1, g → 0 if c > 1/2. Observe that while as before v(x) is increasing,

g(x) is decreasing since more reserves lower the game value for the green producer.
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We observe that the above systems yield an independent equation for v similar to

equation (2.18), and then a first-order linear delay-ODE for g in terms of v. However, the

equilibrium production and exploration strategies depend only on v, and so we will not

deal with the g equation.

3.1 Case of no exploration

We firstly consider the case of no exploration possibility, namely λ = 0. This resembles

the axis game considered in [13], however there it was assumed player 1 becomes an

inexhaustible ‘green” producer upon his reserves being exhausted, whereas here he simply

quits altogether. We denote player 1’s value function by v0, and the two firms’ equilibrium

strategies by (q(0)∗
1 , q

(0)∗
2 ).

Proposition 3.1 For c � 1
2
, there is no blockading and the no-exploration value function

v0(x), solution of equation (3.5) with λ = 0 and boundary condition v0(0) = 0, is given by

v0(x) =
(1 + c)2

9r
(1 + W(θ(x)))2 , (3.7)

where

θ(x) = − exp (−krx − 1) ∈ [−e−1, 0), k :=
9

4(1 + c)
. (3.8)

The equilibrium production rates are given by

q
(0)∗
1 (x) =

(1 + c)

3
(1 + W(θ(x))) , (3.9)

q
(0)∗
2 (x) =

1

3

(
1 − 2c − 1

2
(1 + c)W(θ(x))

)
. (3.10)

Proof The solution to the ODE follows easily from Lemma 2.1. It remains to check there

is no blockading. The formulas (3.9) and (3.10) are obtained by substituting for v′
0 into

equation (3.4) using

v′
0 =

1

2

(
1 + c − 3

√
rv0

)
= −1

2
(1 + c)W(θ(x)).

Since q
(0)∗
2 = 1

3
(1 − 2c + v′

0), the duopoly production rate becomes negative only if

v′
0 < 2c − 1 < 0. But it is easy to see that v0 is increasing, strictly concave with

v′
0(0) = 1

2
(1 + c) and v′

0(∞) = 0. Therefore, q(0)∗
2 > 0 for all x � 0. �

For c > 1
2
, blockading does occur for large enough x.

Proposition 3.2 When c > 1
2
, player 2 is blockaded for x � xb, where

xb =
4

9r

(
(1 + c) log

(
1 + c

2(2c − 1)

)
− 3(1 − c)

)
. (3.11)
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For x ∈ [0, xb], the value function v0(x) is given by equation (3.7) and the equilibrium

strategies (q(0)∗
1 , q

(0)∗
2 ) by equations (3.9) and (3.10), and for x � xb by

v0(x) =
1

4r
(1 + W(θ(x − xb)))

2 , θ(x) = (1 − 2c)e1−2c−2rx, (3.12)

q
(0)∗
1 (x) =

1

2
(1 + W(θ(x − xb))) ,

q
(0)∗
2 (x) = 0.

Proof Using the no-blockade solution (3.7) in the formula q
(0)∗
2 = 1

3
(1 − 2c + v′

0) shows

that q
(0)∗
2 = 0 at x = xb defined by equation (3.11), and q

(0)∗
2 < 0 for x > xb. So, for

x � xb, player 1 has a monopoly: q
(0)∗
2 = 0 and q

(0)∗
1 = 1

2
(1 − v′

0). It follows from these

that at xb, v
′
0(xb) = 2c − 1 and q

(0)∗
1 (xb) = 1 − c, so v0(xb) = 1

r
(1 − c)2. Solving (3.6) with

λ = 0 on {x > xb} and this boundary condition gives equation (3.12). �

3.2 Small discovery rate expansion

We consider now the situation when λ is small, that is low success probability of discovery,

and derive a correction to the no exploration case of Section 3.1 in the limit λ ↓ 0. Recall

from equation (3.2) that C′(0) = κ. For analytical tractability in this section, we take

κ = 0. We return to the more realistic κ > 0 in the numerical computations in Section 3.3.

We construct an expansion

v = v0 + λγv1 + · · · , (3.13)

where γ was defined in (3.3). Then, v0(x) is the value function with no discovery given in

Propositions 3.1 and 3.2.

Proposition 3.3 If there is no blockading at x, we have

v1(x) = |W(θ(x))| (1 + c)2

9r2γ
(1 + W(θ(δ)))2 + k|W(θ(x))|

∫ x

0

F(η)

|W(θ(η))|(1 + W(θ(η)))
dη,

F(η) =
1

γ

(
(1 + c)2

9r

(
[1 + W(µθ(η))]2 − [1 + W(θ(η))]2

))γ

, (3.14)

where µ := e−δ/(kr), γ is given by equation (3.3), and k, θ(x) are defined in equation (3.8).

Proof Inserting equation (3.13) into equation (3.5) and collecting terms in λγ gives that

the correction term v1(x) solves

q(x)v′
1 + rv1 = F(x), (3.15)

where

F(x) =
1

γ
(∆v0(x))γ , q(x) =

4

3
q

(0)∗
1 (v′

0(x)) = k−1 (1 + W(θ(x))) .

The boundary condition is v1(0) = v0(δ)γ

γr
, which follows from substituting a∗(0) = (λv0(δ))γ−1
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into equation (2.20) and matching terms in λγ . To solve equation (3.15), let

Q(x) =

∫ x

0

du

q(u)
= k

∫ x

0

du

(1 + W(θ(u)))
.

Making the change of variable z = W(θ(u)) and using that W′(y) = W(y)/ (y (1 + W(y))),

gives Q(x) = − 1
r
log |W(θ(x))|. Then, the transformation v1(x) = e−rξu(ξ), where ξ = Q(x),

leads to u′ = erξF(Q−1(ξ)), with initial condition u(0) = (rγ)−1v0(δ)γ . Solving and restoring

the transformation yields

v1(x) =
e−rQ(x)

γr
v0(δ)γ + e−rQ(x)

∫ x

0

erQ(η)F(η)
dη

q(η)
, (3.16)

which leads to the formulas (3.14). �

The expression in Proposition 3.3 can be used to find small λ approximations to the

optimal production rates q∗
1 and q∗

2 , and the blockade point xb. For example, when there

is no blockading,

q∗
1 =

1

3
(1 + c − 2v′) ≈ q

(0)∗
1 − 2

3
λγv′

1,

where the first term is simply the no-exploration production rate given in equation (3.9),

and the second term can be written in terms of v0 and v1 using the ODE (3.15). Similarly,

expanding the blockading point

xb(γ) = xb +
λγ

γ
x1 + · · · ,

where xb is the no-exploration blockade point given in equation (3.11), leads to

x1 = − v′
1(xb)

v′′
0 (xb)

.

Finally, the exploration effort may be expanded to yield a∗(x) 
 λγ−1(∆v0(x))γ−1 + o(λγ).

Figure 4 compares the asymptotic correction terms derived above to the ‘exact’ values

(see Section 3.3 for how these are iteratively approximated) and shows that they are quite

accurate even for moderate λ = 0.5.

Remark 3 A similar analysis shows that the monopoly value function v defined in equation

(2.17) of Section 2.3 can be approximated by v(x) = w0(x) + λγv1(x) + · · · , where w0 is the

no-exploration monopoly value function given in (2.5), and

v1(x) = |W(θ(x))|
(

(w0(δ))γ

γr
+

∫ x

0

2F(η) dη

|W(θ(η))|(1 + W(θ(η)))

)
.

Here, F and θ are F(η) = 1
γ(4r)γ

(
[1 + W(e−2rδθ(η))]2 − [1 + W(θ(η))]2

)γ
and θ(x) =

−e−2rx−1. The optimal monopoly production rate is approximated by q∗(x) = 1+W(θ(x))
2

+

λγq1(x) + · · · , where

q1(x) = −1

2
v′
1(x) =

rv1(x) − F(x)

1 + W(θ(x))
.
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Figure 4. (Colour online) Optimal production and exploration controls of the exhaustible player.

We take δ = 1, r = 0.1, λ = 0.5, C(a) = a2/2 and c = 0.4. The dashed lines show the approximate

solutions obtained from first-order asymptotic expansion with respect to λ. Note that q(0)∗
1 − 2

3
λγv′

1

is essentially identical to q∗
1 for x > 1.

For the monopoly problem, a singular perturbation analysis in the regime of small

discovery size at high-frequency is given in [15].

3.3 Computational analysis

Consider again the ODEs in equations (3.5) and (3.6). These may be combined in the

form

(q∗
1)

2 − rv +
1

γ
((λ∆v − κ)+)γ = 0, q∗

1(x) = max

(
1

3
(1 − 2v′(x) + c),

1

2
(1 − v′(x))

)
.

Observe that numerically solving for v(x) is challenging due to the implicit boundary

condition and the presence of a ‘forward’ delay term on the semi-infinite domain �+. We

resolve this difficulty by using an iterative scheme.

Let v0(x) = v0(x) be the no-exploration value function given in Proposition 3.2, and for

n � 1, define inductively

(qn1(x))2 − rvn +
1

γ
((λ(vn−1(x + δ) − vn(x)) − κ)+)γ = 0,

qn1(x) = max

(
1

3
(1 − 2(vn)′(x) + c),

1

2
(1 − (vn)′(x))

)
, (3.17)

with boundary condition

vn(0) = sup
a�0

λavn−1(δ) − C(a)

λa + r
. (3.18)
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Figure 5. (Colour online) Left panel: optimal production rate q∗
1(x) (increasing) and optimal

exploration level a∗(x) (decreasing) of the exhaustible producer. Right panel: production rate q∗
2(x)

of the green producer. The parameters are δ = 1, λ = 1, r = 0.1, C(a) = 0.1a + a2/2 and three

different levels of c. Note the blockading region for c = 0.6 and x > 3.4.

Observe that equation (3.17) is a standard first-order nonlinear ordinary differential

equation with ‘source’ term vn−1(· + δ) and can be solved using standard tools, such

as Runge–Kutta methods. Using L̃ to denote the differential-difference operator on the

right-hand-side of equation (3.17), we have vn = L̃(vn−1). We now expect that vn(x) → v(x),

so that v is a fixed point of L̃. In fact, based on control arguments, this convergence

is expected to be exponential in n uniformly in x. A justification is given below for the

monopoly case.

Figure 5 illustrates the numerical solution for three different values of the green

production costs c. We observe that while q∗
1(x) is monotone decreasing in c, the effect on

a∗(x) is ambiguous. Further discussion is given in Section 3.3.2.

3.3.1 Convergence of numerical method for monopoly problem

In this subsection, v refers to the value function of the monopoly problem defined in

equation (2.17) with the solution given in equation (2.18). The inductive approximation is

defined by

1

4
(1 − (vn)′(x))2 − rvn(x) +

1

γ

{
(λ(vn−1(x + δ) − vn(x)) − κ)+

}γ
= 0,

with boundary condition (3.18).

Let us recall the following characterisation for equation (3.17) in the monopoly setup

of Section 2.3:
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Lemma 3.1 Let σn be the nth discovery epoch with σ0 = 0 and w0(x) be given by equation

(2.5). Let

Vn(x) := sup
q1 ,a

�

[∫ σn

0

e−rt[(1 − q1(Xt))q1(Xt) − C(at)] dt + e−rσnw0(Xσn) | X0 = x

]
. (3.19)

Then, we have vn(x) = Vn(x) for all n � 0 and there exists p < 1 such that

sup
x�0

|vn(x) − v(x)| � pn.

Sketch of Proof Usual dynamic programming arguments and the nature of Markov

feedback controls imply that

Vn(x) = sup
q1 ,a

�

[∫ σ1

0

e−rt[(1 − q1(Xt))q1(Xt) − C(at)] + e−rσ1Vn−1(Xσ1− + δ) | X0 = x

]
,

where σ1 is the first arrival time of (Nt). The form of the infinitesimal generator of the

resulting (X∗
t ) implies that Vn satisfies equation (3.17). Similar to equation (2.20), the

boundary conditions at x = 0 for equation (3.19) must be

Vn(0) = sup
a�0

�

[∫ σ1

0

−e−rtC(a) dt + e−rσ1Vn−1(δ)

]
,

leading to equation (3.18). It immediately follows that Vn(x) is monotone increasing

in x and bounded by (4r)−1. Moreover, as before, the respective exploration controls

must be bounded a(n)∗(x) � ā. Hence, �[σn] � n(λā)−1 and therefore σn → ∞ uniformly.

Consequently, the sequence Vn converges to

lim
n→∞

Vn(x) = sup
q1 ,a

�

[∫ ∞

0

e−rt[(1 − q1(Xt))q1(Xt) − C(at)] dt | X0 = x

]
= v(x),

and the error can be controlled exponentially via

sup
x�0

|Vn(x) − v(x)| � �

[∫ ∞

σn

e−rsq1(Xs)(1 − q1(Xs)) ds | X0 = x

]

� �

[
e−rσn

r
v(Xσn)

]
�

(
λā

r + λā

)n
1

4r2
.

Finally, the first term in the sequence Vn is the no-exploration solution V 0(x) ≡ w0(x) =

v0(x) and by induction we therefore obtain that Vn = vn∀n. �

As a corollary, we obtain that v is the smallest fixed point of the functional operator L̃.

A similar result in a related model was given in [9, Theorem 2] and the spirit goes back

to [6].

In the game setting, we analogously expect that vn is a game value corresponding

to Nash equilibrium on the restricted horizon [0, σn]. The full treatment of such a

construction, including proof of the convergence to a Nash equilibrium on the infinite
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Figure 6. (Colour online) Convergence of vn as n → ∞ for the axis game. We take δ = 1, λ = 0.1,

r = 0.1, C(a) = 0.1a + a2/2 and c = 0.6.

horizon is beyond the scope of this paper (note that in the general game setting, the

saturation and blockading regions [xsat,∞) and [xb,∞) will be also indexed by n). An

example of such a computation is shown in Figure 6 where we see that the convergence

is indeed very rapid (in particular, the difference ‖v10(x) − v25(x)‖∞ is negligible).

3.3.2 Blockading and saturation levels

It is of great interest to understand how the presence of the green producer alters the

behaviour of the exhaustible player. As expected, increased competition will reduce the

value of the reserves and increase their marginal value, hence reducing production rates.

Thus, v and q1 are increasing in c (recall that c = 1 corresponds to the monopoly and

c = 0 means the exhaustible producer is permanently undercut by the equally cheap

sustainable source).

However, the impact on the exploration rate a∗ is ambiguous, since while v is decreased,

v′ is generally increased. Numerical evidence (cf. Figure 5) shows that (i) for small values

of c, increased competition reduces the exploration effort for all x; (ii) moderate values

of c increase exploration efforts for moderate x and lower them for x close to zero;

(iii) for c close to 1, exploration effort is again reduced everywhere. Thus, the impact

of competition has a humped shape in terms of c. The above behaviour is driven by

the different market leaders in different scenarios. For small c, the green producer is

the effective leader in the market, causing significant losses for the exhaustible producer

who gives up and reduces efforts. For large c, the exhaustible producer is the effective
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Figure 7. (Colour online) Left panel: xsat and xb as a function of green producer production costs

c. Recall that for c < 0.5, xb = +∞. Right panel: xsat and xb as a function of start-up exploration

costs κ. We take δ = 1, λ = 1, r = 0.1 and C(a) = κa + a2/2 with default values of c = 0.6, κ = 0.1.

leader and the green producer only has a small marginal negative impact. However, for

moderate c, the exhaustible (resp. green) producer is the leader for large (resp. small)

reserves levels. Thus, when x is close to zero, the exhaustible producer is discouraged and

lowers exploration; however, when x is moderate, he is encouraged to put in extra effort

to stay in front of the green producer (formally the marginal value of reserves is so high

as to justify higher exploration).

Strikingly, this behaviour is also true of the saturation level xsat. This effect is illustrated

in the left panel of Figure 7 where we see that c → xsat(c) is maximised around c = 0.55.

Note that for c > 0.6, xsat > xb, and so, compared to the monopoly case c = 1, the

exhaustible producer will start exploration earlier to stave off competition even before

the green producer enters the market. The curious shape of xsat(c) exhibits a ‘cusp-like’

behaviour around its maximum, though numerical experiments suggest that xsat(c) is in

fact not quite so sharp upon zooming in.

In the right panel of Figure 7, we show the impact of the start-up exploration costs

κ on xsat and xb. As expected, higher exploration costs discourage exploration, i.e. lower

xsat. For κ large enough, λ∆v(0) < κ and a∗(x) ≡ 0, so no exploration ever takes place.

Conversely, higher exploration costs benefit the green producer who can enter the game

earlier, so that xb is increasing (moderately) in κ. For κ large, xb 
 4.52 is given from

equation (3.11).

Figure 8 shows a sample path for the evolution of the game solution over time.

The system state is described by (X∗
t ) in the top-left panel which drives the feedback

controls q∗
1(X

∗
t ), a

∗(X∗
t ) and q∗

2(X
∗
t ) in the other panels. In the given example, c = 0.65

and blockading occurs for X∗
t � xb 
 1.65. Moreover, the saturation point is xsat = 5.02.

The recurrent behaviour of (X∗
t ) is clearly visible, as the resource is repeatedly exhausted

until a new discovery replenishes reserves and allows to re-start production. A string of

discoveries leads to blockading of the green producer, see e.g., t ∈ [42, 47]. Higher reserves

lower exploration rates and increase production. The bottom-right panel in Figure 8 shows

the trajectory of the market price P (t) = 1 − q∗
1(Xt) − q∗

2(Xt), where we observe first-order
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Figure 8. (Colour online) Trajectory of the game solution over time. Top left panel: reserves (X∗
t )

of the exhaustible player; top right panel: exploration rate a∗(X∗
t ). Bottom left panel: production

rate q∗
1(X

∗
t ) of the exhaustible player (solid blue) and q∗

2(X
∗
t ) of the green player (dashed green); note

intermittent blockading when X∗
t � xb 
 1.65. Bottom right panel: market price P (�q) = 1 − q1 − q2.

We take δ = 1, λ = 1, r = 0.1, C(a) = 0.1a + a2/2 and c = 0.65.

discontinuities as (X∗
t ) crosses downwards the blockading point xb around t = 13 and

t = 47.

3.4 Marginal value of reserves dynamics

To highlight another key difference with the monopoly model, we now investigate the

behaviour of marginal value of reserves v′ along trajectories of (X∗
t ). In the monopoly

setting, the marginal value of additional reserves v′ has a natural interpretation as the

scarcity value of the resource. We recall the stochastic Hotelling theorem of [8] which

studies the evolution of this value over time. Let

Dv′(x) := lim
h→0

�
[
v′(X∗

h ) | X∗
0 = x

]
− v′(x)

h
, (3.20)

be the time derivative of the shadow cost along trajectories of optimally managed reserves

paths. [8, Theorem 4] shows that for the model of Section 2.3,

Dv′(x) = rv′(x) ∀x ∈ �+,

in other words the expected growth rate of prices is equal to the discount rate r.

In the game setting, we have the following.
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Proposition 3.4 Let D be as in equation (3.20). Then,

Dv′(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rv′(x) + q∗
1(x)

∂

∂x
q∗

2(x), if x < xb ∧ xsat,

3

4
rv′(x), xsat < x < xb,

rv′(x), x > xb.

(3.21)

Proof Let S be the infinitesimal generator of the Markov process (X∗
t ). Then, for any

function f ∈ Dom(S),

Sf(x) = λa∗(x)∆f(x) − q∗
1(x)f′(x). (3.22)

Conversely, general theory gives the analytic characterisation S ≡ D as the time derivative

along (X∗
t ) in equation (3.20). Arguments similar to those in [8, Lemma 7] imply that v′ is

continuous and bounded. It follows that q∗
1 is continuous and differentiable on �+ except

at zero and xb. Similarly, a∗ is bounded, continuous and differentiable everywhere except

possibly at xsat. The implicit function theorem then implies that v′′ exists a.e., and v′ is in

the domain of the operator S.

Now starting with

rv(x) = q∗
1(x)(1 − q∗

1(x) − q∗
2(x)) − q∗

1(x)v′(x) − C(a∗(x)) + λa∗(x)∆v(x),

and differentiating we find

rv′(x) = −q∗
1(x)v′′(x) + λa∗(x)∆v′(x) − ∂

∂x
q∗

2(x) · q∗
1(x)

+
∂

∂x
q∗

1(x)
[
1 − 2q∗

1(x) − q∗
2(s) − v′(x)

]
+

∂

∂x
a∗(x)

[
−C′(a∗(x)) + λ∆v(x)

]
. (3.23)

The terms in equation (3.23) are zero either by optimality (first-order condition) of q∗
1 and

a∗ or because q∗
1(x) and/or a∗(x) are constant in the neighbourhood of x. Simplifying, we

end up with

rv′(x) = −q∗
1(x)(v′′(x) +

∂

∂x
q∗

2(x)) + λa∗(x)∆v′(x). (3.24)

Comparing (3.22) and (3.24), we find

Sv′(x) = rv′(x) + q∗
1(x)

∂

∂x
q∗

2(x).

If player 2 is blockaded at x, q∗
2(x) = 0, and we recover the classical Hotelling result

of [8]. Otherwise, since q∗
2 = 1

3
(1 + v′ − 2c)+, we have ∂

∂x
q∗

2(x) = v′′(x)/3 for x < xb. If

xsat < x < xb, then a∗(x) = 0 while q∗
2(x) > 0. In that case, Sv′(x) = −q∗

1(x)v′′(x), while

rv′(x) = − 4
3
q∗

1(x)v′′(x), and we conclude Sv′(x) = 3
4
rv′(x). �
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We conclude that in the presence of competition, shadow prices grow slower than at

discount rate r. In particular, above the saturation level xsat, marginal value of reserves

grows at rate 3r/4. Below xsat, the competition effect depends on the product q∗
1(x)v′′(x).

We note that v′′ < 0 while q∗
1(0) = 0, so the overall shape of x → q∗

1(x)v′′(x) is humped,

being zero at x = 0, small at x large and negative in the middle. The slowdown in the

growth rate at x = xsat is clearly visible in the bottom-right panel of Figure 8.

The classical Hotelling rule is also modified when competition from a green producer

enters in the manner of mean-field games. We refer to [12] for the calculation in that

context.

4 Conclusion

We have studied the impact of exploration and discovery in models of exhaustible

resources in Cournot (quantity-setting) markets. In the single-player setting with binary

exploration control, we identified the critical reserves’ levels xQ, xon and xsat which

summarise the exploration strategy. The discrete nature of the control leads to non-

trivial phenomena, including discontinuity in q∗
v at xsat and non-monotone x → q∗

v (x).

In the competition between a producer of energy from cheap non-renewable source,

such as oil, and a green producer from an expensive but inexhaustible source, such

as solar, our analysis shows the complex interaction between competition and strategic

exploration. In particular, competition may induce earlier/higher exploration efforts;

conversely exploration increases blockading effects. Moreover, Hotelling’s classical result

for exhaustible resources is quite different in the context of oligopolistic competition as

shown in Proposition 3.4.

Tackling a genuine multi-dimensional problem in the competition between two non-

renewable producers both of whom may explore remains a problem we are investigating.

This involves a system of non-linear PDEs with non-local terms, and so is challenging

numerically. The insight from the reduced game problem presented here may be of some

help in constructing appropriate initial guesses for a numerical scheme.
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Appendix: Proof of Proposition 2.1

We first prove that the value functions are uniformly Lipschitz.

Fix x and y > x. Let (q, a) be an ε-optimal admissible strategy starting in the exploration

regime and initial inventory y. Denote by q′
t := qt1Xx

t >0, a
′
t ≡ at the (admissible) strategy

for initial inventory x. We use (Xy
t ) (resp. (Xx

t )) to denote the coupled inventory processes

of these two strategies with identical exploration times. Let σ0 = 0, and define for k � 1,

νk = inf{t > σk−1 : Xx
t (q

′) = 0} and σk = inf{t > νk : Xy
t = X

y
t− + δ}. By construction,

q′
s = qs for s < ν1 and X

y

ν1 = (y − x). For notational convenience, we denote for any
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strategy (q, a)

Ht1 ,t2 (q, a) :=

∫ t2

t1

e−r(t−t1){(1 − qt)qt − Cat} dt −
∑

t1�t�t2:∆at�0

e−r(t−t1)K.

We now obtain

v(y) − v(x) � v(y) − H0,∞(q′, a)

� ε + �[H0,ν1 (q, a) + e−rν1Hν1 ,σ1 (q, a) + e−rσ1Hσ1 ,∞(q, a)]

− �[H0,ν1 (q, a) + e−rν1Hν1 ,σ1 (0, a) + e−rσ1Hσ1 ,∞(q′, a)]

� ε + �[e−rν1

(y − x − X
y

σ1−) + e−rσ1

(Hσ1 ,∞(q, a) − Hσ1 ,∞(q′, a))],

where the last line uses the fact that the price per unit is at most $1, and therefore total

revenue on [ν1, σ1) from (qt) is at most (Xy

ν1 − X
y

σ1−) = y − x − X
y

σ1−. Since X
y

σ1 − Xx
σ1 =

X
y

σ1− � y − x, we may repeat the argument and by induction on k find

v(y) − �[H0,∞(q′, a)] − ε � �[(y − x − X
y

σ1−) + e−rσ1

(Hσ1 ,∞(q, a) − Hσ1 ,∞(q′, a))]

� �[(y − x − X
y

σ1−) + e−r(ν2−σ1)(Xy

σ1− − X
y

σ2−) + e−rσ2

(Hσ2 ,∞(q, a) − Hσ2 ,∞(q′, a))]

. . . � �[y − x + e−rσk

(Hσk,∞(q, a) − Hσk,∞(q′, a))].

Now νk � σk , the kth arrival time of the Poisson process (Nt), and therefore νk → ∞ as

k → ∞. Since �[H0,∞(q, a)] � supx v(x) = (4r)−1 and using the dominated convergence

theorem, we conclude that v(y) − v(x) � ε+(y −x) and the Lipschitz constant of v is � 1.

We now prove a verification argument with respect to the QVI (2.9). Let (q, a) be a

fixed admissible strategy and let (v̌, w̌) be a smooth solution of equation (2.9). Denote

by s1 the first jump time of a, i.e. the first time that the exploration regime is changed.

Applying Îto’s formula to the a.e. differentiable function e−rtv̌(x), we have

e−rs1 v̌(Xs1 ) = v̌(x) +

∫ s1

0

{−qtv̌
′(Xt) + λ(v̌(Xt + δ) − v̌(Xt)) − rv̌(Xt)} dt

+

∫ s1

0

(v̌(Xt + δ) − v̌(Xt)) (dNt − λdt). (A1)

Taking expectations, using the facts that the stochastic integral of the bounded process

v̌(Xt + δ) − v̌(Xt) with respect to the martingale Nt − λt is a true martingale, v̌(Xs1 ) �
w̌(Xs1 ) − K and that v̌ satisfies equation (2.9), we obtain

v̌(x) � �
[∫ s1

0

e−rt{(1 − qt)qt − C} dt − e−rs1K | X0 = x
]

+ �[e−rs1w̌(Xs1 ) | X0 = x].

(A2)

Repeating the same argument for e−rtw̌(Xt) on the interval [s1, s2], we end up with

e−rs1w̌(Xs1 ) � �

[∫ s2

s1
e−rt(1 − qt)qt dt + e−rs2 (v̌(Xs2 ) − K) | Xs1

]
, (A3)
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which by induction and the dominated convergence theorem (note that e−rsk → 0 by

admissibility of a) implies

v̌(x) � �

[∫ ∞

0

e−rt{(1 − qt)qt − Cat} dt −
∑

t:∆at�0

e−rtK | X0 = x

]
.

Since (q, a) was arbitrary, v̌(x) � v(x); conversely, the production strategy q∗ and explora-

tion strategy a∗ �
∑

k 1[s∗,2k ,s∗,2k+1), with s∗,2k+1 = inf{t > s∗,2k : v̌(Xt) = w̌(Xt) − K} achieve

equality throughout equations (A2) and (A3). The above also shows that v̌ and w̌ satisfy

the dynamic programming equations

v̌ = L(w̌, 1), and w̌ = L(v̌, 0), (A4)

with

L(f, a)(x) := sup
q,τ

�

[∫ τ

0

e−rt{(1 − qt)qt − C1{a=1}} dt + e−rτ(f(Xτ) − K) | X0 = x

]
,

where the supremum is over all stopping times τ adapted to the filtration of (Xt).

Inequalities (A2) and –(A3) and arguments similar to those in [2] for a related piecewise-

deterministic switching problem imply that the value functions (v, w) are the smallest fixed

points of L (in the sense of equation (A4)) that are bigger than w0. We conclude that

(v, w) correspond to the smallest solution of equation (2.9) which completes the proof.
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