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New necessary and sufficient conditions are given for the quantization of a class of
periodic second-order non-homogeneous ordinary differential equations in the
complex plane. The problem is studied from the viewpoint of complex oscillation
theory first developed in works by Bank and Laine and Gundersen and Steinbart. We
show that, when a solution is complex non-oscillatory (finite exponent of convergence
of zeros), then the solution, which can be written as special functions, must
degenerate. This gives a necessary and sufficient condition when the Lommel function
has finitely many zeros in every branch, and this is a type of quantization for the
non-homogeneous differential equation. The degenerate solutions are
polynomial/rational-type functions, which are of independent interest. In particular,
this shows that complex non-oscillatory solutions of this class of differential equations
are equivalent to the subnormal solutions considered in a recent paper by Chiang and
Yu. In addition to the asymptotics of special functions, the other main idea that we
apply in our proof is a classical result by Wright that gives precise asymptotic
locations of large zeros of a functional equation.

1. Introduction and the main results

Let A(z) be a transcendental entire function, and let f(z) be an entire function
solution of the differential equation

f ′′ + A(z)f = 0. (1.1)

We use the σ(f) and λ(f) to denote the order and exponent of convergence of
zeros, respectively, of an entire function f(z). A solution is called complex oscilla-
tory if λ(f) = +∞ and is called complex non-oscillatory if λ(f) < +∞. Interested
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readers are referred to [14, 16] for the notation and background relating to Nevan-
linna theory, where this research originates. However, we shall not make use of
Nevanlinna theory in the remainder of this paper. For earlier treatments of the
various complex oscillation problems considered, we refer the intrusted reader to,
for example, [1–4, 8, 9, 13, 15, 23]. We consider the complex oscillation problem of a
class of non-homogeneous differential equations which includes the simple-looking
equation

f ′′ + (e2z − ν2)f = σe(µ+1)z (1.2)

as a special case, where µ, ν, σ ∈ C and σ �= 0. It is well known that all solutions
of the equation are entire [16].

In [10, theorem 1.2], several explicit solutions of (1.2) in terms of the sum of the
Bessel functions of first and second kinds Jν(ζ) and Yν(ζ), and the Lommel function
Sµ,ν(ζ) (see the appendix), are given. In fact, the general solution of (1.2) can be
written as

f(z) = AJν(ez) + BYν(ez) + σSµ,ν(ez), (1.3)

where A, B ∈ C and Sµ,ν(ζ) is a particular integral of the non-homogeneous Bessel
differential equation

ζ2y′′(ζ) + ζy′(ζ) + (ζ2 − ν2)y(ζ) = ζµ+1. (1.4)

The functions Jν(ζ) and Yν(ζ) are two linearly independent solutions of the corre-
sponding homogeneous Bessel differential equation of (1.4).

The Lommel function Sµ,ν(ζ) is a special function that plays important roles in
numerous physical applications (see, for example, [19,20,26]) and was first studied
by Lommel [18] (we refer the interested reader to [10] and the references therein
for further discussion about the background and the applications of the Lommel
function).

The authors’ previous work [10, theorem 1.2] concerns the subnormality of the
solutions of (1.2). We recall that an entire function f(z) is called subnormal if either

lim sup
r→+∞

log log M(r, f)
r

= 0 or lim sup
r→+∞

log T (r, f)
r

= 0 (1.5)

holds, where M(r, f) = max|z|�r |f(z)| denotes the usual maximum modulus of the
entire function f(z) and T (r, f) is the Nevanlinna characteristics of f(z). We have
shown that solutions of (1.2) are subnormal, that is, if (1.5) holds, if and only if
(A, B) = (0, 0) and either µ+ ν = 2p+1 or µ− ν = 2p+1 holds for a non-negative
integer p in (1.3) and the subnormal solutions have the form given by formulae (1.6)
and (1.7). In other words, subnormal solutions and finite order solutions of (1.2)
are equivalent (see corollary 1.5). This provides a new non-homogeneous function-
theoretic quantization-type result for equation (1.2), an explanation of which will
be given in § 8.

Remark 1.1. The authors have also generalized the above results to the much more
general equation (1.8) [10, theorem 1.4], and a number of interesting corollaries.
For example, orders of growth of the entire functions Sµ,ν(ez) and Hν(ez) were
determined and non-homogeneous function-theoretic quantization-type results were
also obtained (see [10, theorem 1.7, § 6] for details).
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For the homogeneous differential equation (1.1), it is known that a solution f(z)
could have λ(f) < +∞ but its growth is not subnormal, that is,

lim sup
r→+∞

log log M(r, f)/r = +∞.

Thus, one may ask what the relationship is between subnormality of solutions and
its exponent of convergence of zeros of (1.2). We show that the finiteness of the two
measures are equivalent.

Our main results are as follows.

Theorem 1.2. Let f(z) be a solution of (1.2). Then λ(f) < +∞ if and only if
A = B = 0 in (1.3) and either µ + ν = 2p + 1 or µ − ν = 2p + 1 for a non-negative
integer p and

Sµ,ν(ζ) = ζµ−1
[ p∑

k=0

(−1)kck

ζ2k

]
, (1.6)

where the coefficients ck, k = 0, 1, . . . , p, are defined by

c0 = 1 and ck =
k∏

m=1

[(µ − 2m + 1)2 − ν2]. (1.7)

The above result is a special case of the following theorem 1.3. We first introduce
a set of more general coefficients. Suppose that n is a positive integer and that A,
B, L, M , N , σ, σi, µj and ν are complex numbers such that L and M are non-zero
and at least one of σj , j ∈ {1, 2, . . . , n}, are non-zero.

Theorem 1.3. Let f(z) be an entire solution to the differential equation

f ′′ + 2Nf ′ + [L2M2e2Mz + (N2 − ν2M2)]f =
n∑

j=1

σjL
µj+1M2e[M(µj+1)−N ]z. (1.8)

Then f(z) is given by

f(z) = e−Nz

[
AJν(LeMz) + BYν(LeMz) +

n∑
j=1

σjSµj ,ν(LeMz)
]
. (1.9)

Moreover, suppose that all the Re(µj) are distinct. Then we have λ(f) < +∞ if
and only if A = B = 0 and, for each non-zero σj, we have either

µj + ν = 2pj + 1 or µj − ν = 2pj + 1, (1.10)

where pj is a non-negative integer and

Sµj ,ν(ζ) = ζµj−1
[ pj∑

k=0

(−1)kck,j

ζ2k

]
, (1.11)

where ck,j, k = 0, 1, . . . , p − 1, j = 1, 2, . . . , n, are defined by

c0,j = 1 and ck,j =
k∏

m=1

[(µj − 2m + 1)2 − ν2]. (1.12)
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As an immediate consequence of theorems 1.2 or 1.3, we obtain the following
result, which gives us information about the number of zeros of the Lommel function
Sµ,ν(ζ) in the sense of Nevanlinna’s value distribution theory.

Corollary 1.4. Suppose that σj are complex constants such that at least one of
σj is non-zero, where j = 1, 2, . . . , n. Suppose, furthermore, that Re(µj) are distinct
and that Sµj ,ν(ζ) are Lommel functions of arbitrary branches given in lemma 3.1.
Then each branch of the function

F (ζ) =
n∑

j=1

σjSµj ,ν(ζ) (1.13)

has finitely many zeros if and only if either µj + ν = 2pj + 1 or µj − ν = 2pj + 1
for non-negative integers pj. In particular, the special case n = 1 implies that each
branch of Sµ,ν(ζ) has finitely many zeros and must satisfy satisfy either µ + ν =
2p + 1 or µ − ν = 2p + 1 for a non-negative integer p.

The Lommel function Sµ,ν(ζ), as in the cases of many classical special functions,
has, in general, infinitely many branches, that is, its covering manifold has infinitely
many sheets. The values of the function in different branches are given by so-called
analytic continuation formulae. Such analytic continuation formulae in their full
generality, first derived by Chiang and Yu [10], are given in lemma 3.1.

Corollary 1.5. Suppose that f(z) is a solution of (1.2). Then we have λ(f) <
+∞ if and only if the solution f(z) is subnormal.

Remark 1.6. We note that, for all values of µj and ν, Jν(LeMz), Yν(LeMz) and
Sµj ,ν(LeMz) are entire functions in the complex z-plane. Hence, they are single-
valued functions and so are independent of the branches of Sµj ,ν(ζ).

The main idea of our argument in the proofs is based on the asymptotic expan-
sions of special functions (Bessel and Lommel functions), the analytic continuation
formulae for Sµ,ν(ζ) (these formulae were first discovered by the present authors,
and they play a very important role in [10] and also in this paper), the asymptotic
locations of the zero of the transcendental equation zez = a given in [29,30] and the
application of Rouché’s theorem on suitably chosen contours in the complex plane.

This paper is organized as follows. We introduce the Lommel transformation in
§ 2, which serves as a crucial step in our proof to transform equation (1.8) into the
equation

ζ2y′′(ζ) + ζy′(ζ) + (ζ2 − ν2)y(ζ) =
n∑

j=1

σjζ
µj+1. (1.14)

Since we need to consider the different branches of the function (2.1) in the proof
of theorem 1.3, so the analytic continuation formulae for Sµ,ν(ζ) come into play
at this stage. We quote these formulae (which were derived in [10]) in § 3 for easy
reference. Besides, we need information about the zeros of the function g(ζ) =
Ĉeiζ + σ̂ζµ−(1/2), where Ĉ �= 0 and µ �= 1

2 . It turns out that Wright has already
investigated the precise locations of zeros of the equation zez = a in [29,30], where
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a �= 0. In fact, this problem is of considerable scientific interest (see, for exam-
ple, [5, 28]). Since we need to modify Wright’s method in the preliminary con-
struction of one of the contours used in the proof of theorem 1.3, we shall give an
outline of Wright’s method in § 4. A detailed study of the zeros of the function
g(ζ) = Ĉeiζ + σ̂ζµ−(1/2) will be given in § 5, followed by a proof of theorem 1.3 in
§ 6. A proof of corollary 1.4 is presented in § 7 and a discussion about the non-
homogeneous function-theoretic quantization-type result will be given in § 8. The
appendix contains all of the necessary information regarding the Bessel functions
and the Lommel functions that are used in this paper.

2. The Lommel transformations

Lommel investigated transformations that involve Bessel equations [17] in 1868.1

Our standard references are [27, § 4.31], [12, p. 13] and [10, § 2]. Lommel considered
the transformation ζ = αxβ and y(ζ) = xγu(x), where x and u(x) are the new
independent and dependent variables, respectively, α, β ∈ C \ {0} and γ ∈ C. We
apply this transformation to equation (1.14) to obtain a second-order differential
equation in u(x) whose general solution is x−γy(αxβ). Following the idea in [10],
we apply a further change of variable by x = ez and f(z) = u(x) to that differential
equation in u(x), replacing α, β and γ by L, M and N , respectively. This process
yields (1.8). As noted in § 1, the general solution of (1.4) is given by a combination of
the Bessel functions of first and second kinds and the Lommel function Sµ,ν(ζ) [12,
§ 7.7.5], hence, the general solution to (1.14) is

y(ζ) = AJν(ζ) + BYν(ζ) +
n∑

j=1

σjSµj ,ν(ζ) (2.1)

= CH(1)
ν (ζ) + DH(2)

ν (ζ) +
n∑

j=1

σjSµj ,ν(ζ), (2.2)

where C = 1
2 (A − iB) and D = 1

2 (A + iB). It is easily seen that A = B = 0 if
and only if C = D = 0. Thus, the general solution f(z) = e−Nzy(LeMz) of (1.8)
assumes the form

f(z) = e−Nz

[
CH(1)

ν (LeMz) + DH(2)
ν (LeMz) +

n∑
j=1

σjSµj ,ν(LeMz)
]
. (2.3)

3. Analytic continuation formulae for the Lommel function

We first note that the Lommel functions Sµ,ν(ζ) have a rather complicated definition
with respect to different subscripts µ and ν (in four different cases) even in the
principal branch. In this section, we shall not repeat the description of its definition
(interested readers are referred to [10, § 3.1] and the references therein). Here we
only record the analytic continuation formulae of Sµ,ν(ζ). Proofs can be found
in [10, §§ 3.2–3.5]. The asymptotic expansion and the linear independence property
of Sµ,ν(ζ) will be given in the appendix.

1We mentioned that the same transformations were also considered independently by Pearson
[27, p. 98] in 1880.
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Let χ± := 1
2 (µ ± ν + 1). We define the constants

K := 2µ−1Γ (χ+)Γ (χ−),

K+ := Ki[1 + e(−µ+ν)πi] cos( 1
2 (µ + ν)π),

K ′
± := π2ν−2ie−mνπiΓ (ν)[Um−1(cos νπ)e(m±1)νπi − m],

K ′′
± := − 1

4 (mπ2(m ± 1)),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.1)

where Γ is the gamma function and where Um(cos νπ) := sinmνπ/ sin νπ is the
Chebyschev polynomial of the second kind.

When µ ± ν �= 2p + 1 for any integer p, we have the following lemma.

Lemma 3.1 (Chiang and Yu [10, theorem 3.4]). Let m be an integer.

(i) We have

Sµ,ν(ζe−mπi)

= (−1)me−mµπiSµ,ν(ζ) + K+[Pm(cos νπ, e−µπi)H(1)
ν (ζ)

+ e−νπiPm−1(cos νπ, e−µπi)H(2)
ν (ζ)],

(3.2)

where Pm(cos νπ, e−µπi) is a rational function of cos νπ and e−µπi given by

Pm(cos νπ, e−µπi)

=
Um−1(cos νπ) + e−µπiUm(cos νπ) + (−1)m+1e−(m+1)µπi

[1 + e−(µ+ν)πi][1 + e−(µ−ν)πi]
. (3.3)

(ii) Furthermore, the coefficients Pm(cos νπ, e−µπi) and Pm−1(cos νπ, e−µπi) are
not identically zero simultaneously for all µ, ν and all non-zero integers m.

When either µ + ν or µ − ν is an odd negative integer −2p − 1, where p is a
non-negative integer, then we have another set of analytic continuation formulae
which are given by the following lemma.

Lemma 3.2. (Chiang and Yu [10, lemmas 3.6, 3.8, 3.10]). Let m be an integer. Then
we have the following.

(i) If −ν �∈ {0, 1, 2, . . . }, then we have

Sν−2p−1,ν(ζe−mπi) = e−mνπiSν−2p−1,ν(ζ)

+
(−1)p

22pp!(1 − ν)p
[K ′

+H(1)
ν (ζ) + K ′

−H(2)
ν (ζ)].

(ii) If ν = 0, then we have

S−2p−1,0(ζe−mπi) = S−2p−1,0(ζ) +
(−1)p

22p(p!)2
[K ′′

+H
(1)
0 (ζ) + K ′′

−H
(2)
0 (ζ)].
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(iii) We define δm = 1 + (−1)m−1 and, for every polynomial Pn(ζ) of degree n,
we define P̂n(ζ) to be the polynomial containing the term of Pn(ζ) with odd
powers in ζ and P̄n(ζ) := Pn(ζ) − δmP̂n(ζ). If ν = −n is a positive integer n,
then we have

S−n−2p−1,−n(ζe−mπi) = (−1)mnS−n−2p−1,−n(ζ) +
(−1)(m+1)n+p

22p+nn!(p!)2(1 + n)p
ζ−n

× {−δm[Ân(ζ) + B̂n(ζ)S−1,0(ζ) + ζĈn(ζ)S′
−1,0(ζ)]

+ B̄n(ζ)[K ′′
+H

(1)
0 (ζ) + K ′′

−H
(2)
0 (ζ)]

− ζC̄n(ζ)[K ′′
+H

(1)
1 (ζ) + K ′′

−H
(2)
1 (ζ)]},

where An(ζ), Bn(ζ) and Cn(ζ) are polynomials in ζ of degree at most n such
that A1(ζ) = B1(ζ) ≡ 0, C1(ζ) ≡ 1 and, when n � 2, that they satisfy the
following recurrence relations:

An(ζ) = −2(n − 1)An−1(ζ) + ζA′
n−1(ζ) + Cn−1(ζ),

Bn(ζ) = −2(n − 1)Bn−1(ζ) + ζB′
n−1(ζ) − ζ2Cn−1(ζ),

Cn(ζ) = −2(n − 1)Cn−1(ζ) + Bn−1(ζ) + ζC ′
n−1(ζ).

⎫⎪⎬
⎪⎭ (3.4)

4. Applications of Wright’s result

Suppose that a is a non-zero complex number such that a = Aeiα, where −π <
α � π and A = |a| �= 0. Wright [29,30] obtained precise asymptotic locations of the
zeros of the equation

zez = a (4.1)

in terms of rapidly convergent series by constructing the Riemann surface of the
inverse function of z + log z. This result is of considerable scientific interest, par-
ticularly in the theory of, and various applications of, difference–differential equa-
tions [5,28]. For further applications of this equation, we refer the interested reader
to [7, 11,25].

In this section we first describe Wright’s result in lemma 4.1. We then apply
Wright’s result to obtain finer estimates of the real and imaginary parts of the
solutions of (4.1) in lemmas 4.3 and 4.4, which we need to construct a certain
contour needed in the proof of the main result in proposition 5.3.

Suppose that n is an integer. We let z(n) = x(n) + iy(n) be solutions of equa-
tion (4.1), where x(n) and y(n) are real, and are given in the following result.

Lemma 4.1 (Wright [29,30]). Let a = Aeiα, where −π < α � π and A = |a| �= 0.
Let sgn(n) be the sign of the non-zero integer n. We define

Hn := 2|n|π + sgn(n)α − 1
2π, βn := log

A

Hn
, (4.2)

taking log A/Hn real. If |n| is sufficiently large such that

2Hn|βn| < (Hn − 1)2, (log A)2 < (Hn − 1
2π)2 + 2(1 + log A) log Hn + 1, (4.3)
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then the solutions of equation (4.1) are given by

x(n) = (Hn + ηn) tan ηn, y(n) = sgn(n)(Hn + ηn), (4.4)

where

ηn =
+∞∑
j=0

(−1)jQ2j+1(βn)H−2j−1
n ,

and {Qm(t)} is the sequence of polynomials defined by

Q1(t) := t, Qm+1(t) := Qm(t) + m

∫ t

0
Qm(s) ds, (4.5)

where m is a positive integer.

Remark 4.2. We deduce from the definition (4.2) that βn < 0 for all n sufficiently
large and βn → −∞ as n → ±∞. We also note that it follows from (4.5) that Qm(t)
is a polynomial of degree at most m. This and the series representation of ηn show
that ηn = O(βn/Hn), ηn < 0 and ηn → 0 as n → ±∞.

As mentioned in § 1, we would like to apply Rouché’s theorem to suitable con-
tours. To construct one of these contours, it is necessary to derive accurate bounds
for x(n) and y(n) from the following lemma by Wright. We include the argument
leading to the inequalities to familiarize our readers for later applications.

Lemma 4.3 (Wright [30, p. 196]). Suppose that Hn and A are as defined in (4.2).
Then the upper and lower bounds for the real and imaginary parts of the solutions
to (4.1) are given, respectively, by

2 log
A

(2|n| + 1)π
− 1 < x(n) < log

A

2(|n| − 1)π
+ 1 (4.6)

and

(2n − 1)π + α < y(n) < 2nπ + α if n is large positively,
2nπ + α < y(n) < (2n + 1)π + α if n is large negatively.

}
(4.7)

Proof. It is easy to see that the inequalities (4.7) follow easily from definitions (4.2),
(4.4) and the properties of ηn in remark 4.2. For inequality (4.6) representing the
real part of z(n), we deduce from the power series of tan ηn and equation (4.4) that

x(n) = ηn(Hn + ηn)
tan ηn

ηn
= ηn(Hn + ηn)(1 + 1

3η2
n + · · · ).

This implies that inequalities ηn(Hn + ηn)(1 − ηn) � x(n) � ηn(Hn + ηn) hold
when n is sufficiently large. On the other hand, lemma 4.1 and remark 4.2 assert
that βn − 1

2 < ηnHn < βn + 1
2 when n is sufficiently large. Combining these two

inequalities and the fact 0 < 1 − ηn < 2, we deduce

x(n) � ηn(Hn + ηn) = ηnHn + η2
n < βn + 1

2 + η2
n < βn + 1 < 0 (4.8)

and

x(n) � ηn(Hn + ηn)(1 − ηn) > 2ηn(Hn + ηn) > 2βn − 1 + 2η2
n > 2βn − 1, (4.9)
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since ηn(Hn + ηn) < 0. Hence, we deduce from inequalities (4.8) and (4.9) the
inequalities

2βn − 1 < x(n) < βn + 1 < 0. (4.10)

Since −π < α � π, we must have −π < sgn(n)α � π for every non-zero integer n.
Then the desired inequalities (4.6) follow from this fact, the inequalities (4.10) and
the definition (4.2). This completes the proof of the lemma.

Lemma 4.4. Let m be a fixed positive integer such that log A − log mπ + 1 < −3.
We define dr := 2mπr2 − α − π for every real r > 0 and let nk = −mk2, where
k is a sufficiently large positive integer such that nk satisfies the inequalities (4.3).
Then we have

−5 log k < x(nk) < −2 log k − 2, −dk+1 < y(nk) < −dk. (4.11)

Proof. Since nk is large and negative, so the inequalities (4.11) for y(nk) follow eas-
ily from the second set of inequalities in (4.7). We next observe that both inequalities

log(2mk2 + 1)π � log mk2π + log π and log(2mk2 − 1)π � log mk2π − log π

hold for k sufficiently large. Hence, it follows from the inequalities (4.6) that

x(nk) > 2 log A − 2 log(2mk2 + 1)π − 1

> 2 log A − 2 log mk2π − 2 log π − 1
= −4 log k + (2 log A − 2 log mπ − 2 log π − 1)
> −5 log k

and

x(nk) < log A − log(2mk2 − 1)π + 1

< log A − log mk2π − log 2 + log π + 1
= (log A − log mπ + 1) − 2 log k − log 2 + log π

< −2 log k − 3 + log π − log 2
< −2 log k − 2,

completing the proof of the lemma.

Remark 4.5. We remark from inequalities (4.11) that the particular set of zeros
z(nk) of equation (4.1) must lie inside the rectangles whose vertices are given by
the points (−5 log k,−dk), (−2 log k − 2,−dk), (−5 log k,−dk+1) and (−2 log k −
2,−dk+1) in the complex z-plane.

5. Zeros of an auxiliary function

In the proof of our main results, it will become clear in § 6 that we need to know
the locations of zeros of the auxiliary function

g(ζ) = Ĉeiζ + σ̂ζµ−(1/2), (5.1)
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where µ, Ĉ, σ̂ are non-zero complex constants such that µ �= 1
2 , and ζµ−(1/2) takes

the principal branch.2 We apply the results from § 4 to investigate the asymptotic
locations of zeros for g(ζ). To do so, we first transform the equation g(ζ) = 0 into
the form of (4.1), where

z =
iζ

1
2 − µ

, a =
i

1
2 − µ

(−σ̂Ĉ−1)1/((1/2)−µ), assuming that − π < arg a � π.

(5.2)
Let ζ(n) = u(n) + iv(n) and 1

2 − µ = beiφ, where n is an integer, b = | 12 − µ| > 0
and −π < φ � π. Then it follows from (5.2) and z(n) = x(n) + iy(n) that, for
sufficiently large positive or negative integers n,

u(n) = (b cos φ)y(n) + (b sin φ)x(n), v(n) = (b sin φ)y(n) − (b cos φ)x(n). (5.3)

In order to find precise asymptotic locations of zeros of the function (5.1), we
first consider the particular case that φ = π in (5.3). This forces µ > 1

2 and

ζ(n) = u(n) + iv(n) = b(−y(n) + ix(n)),

where b = µ − 1
2 > 0. Therefore, we obtain the following lemma from lemma 4.4

and remark 4.5.

Lemma 5.1. Let φ = π and nk be defined as in lemma 4.4. Then, for k sufficiently
large, we have

0 < bdk < u(nk) < bdk+1, −5b log k < v(nk) < −2b log k − 2b < 0. (5.4)

In other words, the zeros ζ(nk) must lie inside the rectangles Rk whose vertices
are given by the points (bdk,−5b log k), (bdk,−2b log k − 2b), (bdk+1,−5b log k) and
(bdk+1,−2b log k − 2b) in the ζ-plane.

Remark 5.2. In view of lemma 5.1, we easily see that, when φ = π, all such zeros
ζ(nk) lie in the fourth quadrant of the ζ-plane and the real part of each ζ(nk) is
increasing much faster than the imaginary part in such a way, so that the argument
arg ζ(nk) is always negative and arg ζ(nk) → 0 as nk = −mk2 → −∞ (or as
k → +∞).

Now we are ready to define one of the contours that will be used in the proof
of theorem 1.3. For any given function g of the form (5.1), the contour is formed
by the curves Γ1(g), Γ2(g) and the line segments �1(g), �2(g), which are defined as
follows:

Γ1(g) := {b(dr − 2i log r) : k � r � 2k},

Γ2(g) := {b(dr − 6i log r) : k � r � 2k},

�1(g) := {b(dk + iv) : − 6 log k � v � −2 log k},

�2(g) := {b(d2k + iv) : − 6 log(2k) � v � −2 log(2k)}.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.5)

We join the line segments �1(g), �2(g) and the curves Γ1(g), Γ2(g) to form the
contour Ω(g, k) for each integer k. We then glue the Ω(g, k) together along each

2The remaining case when µ = 1
2 will be discussed in lemma 6.2.
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−2b log k

−2b log k − 2b
−2b log (k + j) − 2b

−5b log k
−5b log (k + j)

−6b log k

bdk bdk+1 bdk+j bdk+j+1

Γ1(g)

Γ2(g)

l1(g)

ζ(nk)

ζ(nk+j)

-planeζ

Figure 1. The rectangles Rk+j and a part of the contour Ω(g, k) when φ = π.

pair of �1(g), �2(g) and the resulting set is denoted by Ω(g) =
⋃+∞

k=1 Ω(g, k). Then
we define ei(π−φ)Ω(g, k) and ei(π−φ)Ω(g) as follows:

ei(π−φ)Ω(g, k) := {ei(π−φ)ζ : ζ ∈ Ω(g, k)},

ei(π−φ)Ω(g) := {ei(π−φ)ζ : ζ ∈ Ω(g)}.

}
(5.6)

Thus, we have the following result.

Proposition 5.3. Let k be a large positive integer and let µ �= 1
2 . Then the func-

tion g(ζ) as defined in (5.1) has at least k distinct zeros lying inside the contour
ei(π−φ)Ω(g, k) and infinitely many zeros lying inside the set ei(π−φ)Ω(g).

Proof. It suffices to prove the first statement. We suppose first that φ = π so that
the contour and the sets given by (5.6) are Ω(g, k) and Ω(g), respectively, and all
the zeros ζ(nk) lie in the fourth quadrant of the ζ-plane by remark 5.2. We note
that, for each j ∈ {0, 1, . . . , k − 1}, the vertices of the rectangle Rk+j are given by
(bdk+j ,−5b log(k + j)), (bdk+j ,−2b log(k + j) − 2b), (bdk+j+1,−5b log(k + j)) and
(bdk+j+1,−2b log(k + j) − 2b). Since we have

−2 log(k + j) − 2 < −2 log r, −6 log r < −5 log(k + j),

where k + j � r � k + j + 1, it means geometrically that the upper (respectively,
lower) edge of Rk+j is below (respectively, above) the curve Γ1(g) (respectively,
Γ2(g)) (see figure 1 for an illustration).

Thus, all the k rectangles Rk+j for j ∈ {0, 1, . . . , k − 1} are contained in the
contour Ω(g, k). By lemma 5.1, each rectangle Rk+j contains the zero ζ(nk+j) for
j ∈ {0, 1, . . . , k − 1}. These zeros are distinct because we have Rk+j ∩ Rk+j′ = ∅
whenever j �= j′. Hence, the result follows in this particular case.

Next we suppose that −π < φ < π. Then it may happen that not all zeros ζ(nk)
lie in the fourth quadrant of the ζ-plane. In this general case, we rotate the ζ-plane
through the angle (π − φ) to the ζ ′-plane, where ζ ′ := ei(π−φ)ζ. Thus, it follows
from relations (5.3) that

ζ ′(nk) = ei(π−φ)ζ(nk) = b(−y(nk) + ix(nk))

so that all the zeros ζ ′(nk) of G(ζ ′) = g(ei(φ−π)ζ ′) lie in the fourth quadrant of
the ζ ′-plane by lemma 5.1 and remark 5.2. Thus, the argument in the first part
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applies to this general case with respect to the contour ei(π−φ)Ω(g, k) and the set
ei(π−φ)Ω(g), thus completing the proof of the proposition.

6. Proof of theorem 1.3

6.1. Sufficiency part

Suppose that f(z) is subnormal. Then remark 1.5 asserts that we must have A =
B = 0 and one of the equations in (1.10) holds. Thus, according to (1.11), we have
λ(f) < +∞. This proves the sufficiency part of the theorem.

6.2. Necessary part

In order to complete the proof of theorem 1.3, that is, in order to find the values
of µj ± ν under the assumption that λ(f) < +∞, we consider the function f(z) in
the form (2.3). First, we need the following result.

Theorem 6.1. If C �= 0 or D �= 0, then λ(f) = +∞.

Proof of theorem 6.1. We let y(ζ) in the form (2.2) be the general solution of (1.14).
Since lemma A.2 asserts that the Lommel functions Sµj ,ν(ζ), j = 1, 2, . . . , n, are
linearly independent over C and that not all σj are zero, so the summand in (2.2)
is not identically zero.

Without loss of generality, we may assume that σn �= 0 and the constants µj ,
j = 1, 2, . . . , n, in theorem 1.3 satisfy Re(µ1) < Re(µ2) < · · · < Re(µn). In order to
prove theorem 6.1, we show that the general solution (2.2) has infinitely many zeros
in the principal branch of H

(1)
ν (ζ), H

(2)
ν (ζ) and Sµ,ν(ζ).3 The idea of our proof is to

apply asymptotic expansions of the corresponding special functions and Rouché’s
theorem on suitably chosen contours.

When −π < arg ζ < π, we substitute the asymptotic expansions (A 4)–(A 6) into
the solution (2.2) to yield4

ŷ(ζ) = (1
2πζ)1/2y(ζ)

= Ĉeiζ
[ p−1∑

k=0

(ν, k)
(−2iζ)k

+ O(ζ−p)
]

+ D̂e−iζ
[ p−1∑

k=0

(ν, k)
(2iζ)k

+ O(ζ−p)
]

+
n∑

j=1

σ̂jζ
µj−(1/2)

[ p−1∑
k=0

(−1)kck,j

ζ2k
+ O(ζ−2p+1)

]
,

where

(ν, k) :=
(−1)k( 1

2 − ν)k( 1
2 + ν)k

k!
,

Ĉ := Ce−i((1/2)νπ+(1/4)π),

D̂ := Dei((1/2)νπ+(1/4)π),

σ̂j := σj( 1
2π)1/2, where j = 1, 2, . . . , n.

3That is, −π < arg ζ < π.
4This refers to the principal branch of the Hankel functions H

(1)
ν (ζ), H

(2)
ν (ζ) and the Lommel

functions Sµj ,ν(ζ), j = 1, 2, . . . , n.
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This gives, when p = 1, that

ŷ(ζ) = Ĉeiζ [1 + O(ζ−1)] + D̂e−iζ [1 + O(ζ−1)] +
n∑

j=1

σ̂jζ
µj−(1/2)[1 + O(ζ−1)]. (6.1)

We distinguish two main cases: case 1, µn �= 1
2 , and case 2, µn = 1

2 , which will
then be further split into different subcases.

6.3. Case 1

We suppose that µn �= 1
2 .

Without loss of generality, we may assume that C �= 0 so that Ĉ �= 0. We choose
the function (5.1) to be

g(ζ) = Ĉeiζ + σ̂nζµn−(1/2), (6.2)

where 1
2 − µn = beiφ, b = | 12 − µn| and −π < φ � π. Moreover, we assume that the

chosen integer m in lemma 4.4 also satisfies the inequality

(bmπ)| Re(µn)−(1/2)||σ̂n| > 2|Ĉ|e| Im(µn)|π. (6.3)

There are two subcases in case 1. They are subcase A, φ = π, and subcase B,
φ �= π.

6.3.1. Subcase A: φ = π

The definition shows that 1
2 − µn = beiπ = −b, which implies that µn must be a

real number such that µn > 1
2 and b = µn − 1

2 > 0. We obtain from (6.1) and (6.2)
that

|ŷ(ζ) − g(ζ)| =
∣∣∣∣[D̂e−iζ + ĈeiζO(ζ−1) + D̂e−iζO(ζ−1)]

+ O(ζµn−(3/2)) +
n−1∑
j=1

σ̂jζ
µj−(1/2)[1 + O(ζ−1)]

∣∣∣∣
� |D̂e−iζ + ĈeiζO(ζ−1) + D̂e−iζO(ζ−1)| + O(|ζ|κ), (6.4)

where κ is defined by

κ := max{Re(µn−1) − 1
2 , Re(µn) − 3

2} < |µn − (1/2)| = b. (6.5)

We show that the inequality

|ŷ(ζ) − g(ζ)| < |g(ζ)| (6.6)

holds on the contour Ω(g, k) for all k sufficiently large. In fact, it is always true
that |ĈeiζO(ζ−1)| < |Ĉeiζ |, |D̂e−iζO(ζ−1)| < |D̂e−iζ | and

|ζκ| < |ζ(b+κ)/2|, (6.7)

so it suffices to compare the values of |D̂e−iζ |, |Ĉeiζ | and |ζ(b+κ)/2| along the contour
Ω(g, k). If ζ ∈ �1(g), then we have ζ = b(dk − iγ log k) (see (5.5)), where 2 � γ � 6,
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and if ζ ∈ Γ1(g), then we have ζ = b(dr − 2i log r), where k � r � 2k. We deduce
that

|e±iζ | =

{
k±bγ if ζ ∈ �1(g),
r±2b if ζ ∈ Γ1(g),

(6.8)

and, for k sufficiently large, that

bmπk2 < |ζ| < 4bmπk2 if ζ ∈ �1(g),

bmπr2 < |ζ| < 4bmπr2 if ζ ∈ Γ1(g).

}
(6.9)

On the one hand, for all sufficiently large k, it follows from (6.3) and (6.9) that

2|Ĉ|k2b < (bmπ)b|σ̂n|k2b

< |σ̂nζb| < (4bmπ)b|σ̂n|k2b if ζ ∈ �1(g),

2|Ĉ|r2b < (bmπ)b|σ̂n|r2b

< |σ̂nζb| < (4bmπ)b|σ̂n|r2b if ζ ∈ Γ1(g).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.10)

But the triangle inequality

|g(ζ)| � ||Ĉeiζ | − |σ̂nζµn−(1/2)|| (6.11)

with relations (6.8) and (6.10) imply, for k � k0 for some positive integer k0, that

|g(ζ)| �
{

||Ĉ|kbγ − |σ̂nζb|| if ζ ∈ �1(g),
||σ̂nζb| − |Ĉ|r2b| if ζ ∈ Γ1(g),

>

{
1
2 |Ĉ|kbγ if ζ ∈ �1(g),
1
2 |Ĉ|r2b if ζ ∈ Γ1(g),

where the lower estimate for the case ζ ∈ �1(g) is trivial when γ = 2 and the case
when γ > 2 follows since the factor (4bmπ)b from (6.10) is a constant. On the other
hand, we obtain from the relations (6.4) and (6.7)–(6.9) that

|ŷ(ζ) − g(ζ)|

�
{

|D̂|k−bγ + K1(|Ĉ|kbγ + |D̂|k−bγ)k−2 + K2|ζ|(b+κ)/2 if ζ ∈ �1(g),
|D̂|r−2b + K3(|Ĉ|r2b + |D̂|r−2b)r−2 + K4|ζ|(b+κ)/2 if ζ ∈ Γ1(g),

(6.12)

�
{

|D̂|k−bγ + K5k
bγ−2 + K6k

b+κ if ζ ∈ �1(g),
|D̂|r−2b + K7r

2b−2 + K8r
b+κ if ζ ∈ Γ1(g),

�
{

K9k
κ1 if ζ ∈ �1(g),

K10r
κ2 if ζ ∈ Γ1(g),

(6.13)

where

κ1 := max{−bγ, bγ − 2, b + κ}, κ2 := max{−2b, 2b − 2, b + κ}
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and K1, K2, . . . , K10 are some fixed positive constants depending only on b, m (see
lemma 4.4) and k0. Note that it is easy to check that bγ > κ1 and 2b > κ2 hold
trivially. We deduce from inequalities (6.12) and (6.13) that inequality (6.6) holds
on �1(g) and Γ1(g), then, similarly, it also holds on �2(g) and Γ2(g). Hence, the
desired inequality (6.6) holds on the contour Ω(g, k).

6.3.2. Subcase B

If φ �= π, then it may happen, as described in the proof of proposition 5.3, that
not all zeros ζ(nk) lie in the fourth quadrant of the ζ-plane, where the integers nk

are also defined in lemma 4.4. However, one can rotate the ζ-plane through the
angle (π − φ) as described in proposition 5.3 (see also its proof) so that all such
zeros can only lie in the fourth quadrant of the ζ ′-plane.

In this circumstance, we note that the inequalities (6.4) and (6.11) are now
replaced by

|Ŷ (ζ ′) − G(ζ ′)| � |D̂ exp{−iei(φ−π)ζ ′} + Ĉ exp{iei(φ−π)ζ ′}O(ζ ′−1)

+ D̂ exp{−iei(φ−π)ζ ′}O(ζ ′−1)| + O(|ζ ′|κ) (6.14)

and

|G(ζ ′)| � ||Ĉ exp{iei(φ−π)ζ ′}| − |σ̂nζ ′ Re(µn)−(1/2)|exp{− Im(µn) arg(ei(φ−π)ζ ′)}|
(6.15)

respectively, where Ŷ (ζ ′) = ŷ(ei(φ−π)ζ ′), G(ζ ′) = g(ei(φ−π)ζ ′) and the constant κ is
given by (6.5). Moreover, the relations (6.8) and the inequalities (6.9) are replaced
by

|exp{±iei(φ−π)ζ ′}| =

{
k±bγ if ζ ′ ∈ ei(π−φ)�1(g),
r±2b if ζ ′ ∈ ei(π−φ)Γ1(g),

(6.16)

and
bmπk2 < |ζ ′| < 4bmπk2 if ζ ′ ∈ ei(π−φ)�1(g),

bmπr2 < |ζ ′| < 4bmπr2 if ζ ′ ∈ ei(π−φ)Γ1(g)

}
(6.17)

respectively, where b = | 12 − µn| > Re(µn) − 1
2 , 2 � γ � 6, k � r � 2k, where �1(g)

and Γ1(g) are defined in (5.5).
Now we further distinguish between

(i) Re(µn) > 1
2 ,

(ii) Re(µn) < 1
2 .

(i) If Re(µn) > 1
2 , then Re(µn) − 1

2 > 0 and it follows from inequalities (6.3) and
(6.17) that the inequalities (6.10) are replaced by

2|Ĉ|e| Im(µn)|πk2(Re(µn)−(1/2))

< |σ̂nζ ′ Re(µn)−(1/2)|
< (4bmπ)Re(µn)−(1/2)|σ̂n|k2(Re(µn)−(1/2)) if ζ ′ ∈ ei(π−φ)�1(g), (6.18 a)
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2|Ĉ|e| Im(µn)|πr2(Re(µn)−(1/2))

< |σ̂nζ ′ Re(µn)−(1/2)|
< (4bmπ)Re(µn)−(1/2)|σ̂n|r2(Re(µn)−(1/2)) if ζ ′ ∈ ei(π−φ)Γ1(g) (6.18 b)

for sufficiently large k. Thus, inequality (6.15) together with (6.18) yield, for k � k1
for some sufficiently large positive integer k1, that

|G(ζ ′)| >

{
1
2 |Ĉ|kbγ if ζ ′ ∈ ei(π−φ)�1(g),
1
2 |Ĉ|r2b if ζ ′ ∈ ei(π−φ)Γ1(g).

(6.19)

(ii) If Re(µn) < 1
2 , then we have 1

2 − Re(µn) > 0, and the inequalities (6.10) are
now replaced by

(4bmπ)Re(µn)−(1/2)|σ̂n|
k2((1/2)−Re(µn)) < |σ̂nζ ′ Re(µn)−(1/2)|

<
(bmπ)Re(µn)−(1/2)|σ̂n|

k2((1/2)−Re(µn)) if ζ ′ ∈ ei(π−φ)�1(g),

(4bmπ)Re(µn)−(1/2)|σ̂n|
r2((1/2)−Re(µn)) < |σ̂nζ ′ Re(µn)−(1/2)|

<
(bmπ)Re(µn)−(1/2)|σ̂n|

r2((1/2)−Re(µn)) if ζ ′ ∈ ei(π−φ)Γ1(g)

for k sufficiently large. Therefore, we deduce from these that

lim
k→+∞

ζ′∈ei(π−φ)	1(g)

|σ̂nζ ′ Re(µn)−(1/2)| = 0,

lim
r→+∞

ζ′∈ei(π−φ)Γ1(g)

|σ̂nζ ′ Re(µn)−(1/2)| = 0.

On the one hand, these limits show that inequality (6.15) implies, for k � k2 for
some sufficiently large positive integer k2, that the inequalities (6.19) hold in this
case. On the other hand, it follows from the relations (6.7), (6.14), (6.16) and (6.17)
that the inequalities

|Ŷ (ζ ′) − G(ζ ′)| �
{

K11k
κ1 if ζ ′ ∈ ei(π−φ)�1(g),

K12r
κ2 if ζ ′ ∈ ei(π−φ)Γ1(g)

(6.20)

hold in this subcase B, where K11, K12 are some positive constants,

κ1 = max{−bγ, bγ − 2, b + κ} and κ2 = max{−2b, 2b − 2, b + κ}

so that (6.19) and (6.20) imply the inequality

|Ŷ (ζ ′) − G(ζ ′)| < |G(ζ ′)|

holds on the contour ei(π−φ)Ω(g, k) for all sufficiently large k. Hence, our desired
inequality (6.6) still holds in this general case after we transform the ζ ′-plane back
to the ζ-plane.
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6.4. Case 2

Next, we suppose that µn = 1
2 .

Unfortunately, the contour Ω(g, k) and the auxiliary function defined in (5.5)
and (6.2), respectively, do not seem to apply in this case. This is because the zeros
of (6.2) distribute evenly on a straight line parallel to the real axis, and hence the
region enclosed by the contour Ω(g, k) can only contain finitely many such zeros
for every positive integer k. We choose the alternative auxiliary function to be

ĝ(ζ) = Ĉeiζ + D̂e−iζ + σ̂n. (6.21)

Without loss of generality, we continue to assume that Ĉ �= 0. It remains to con-
struct a suitable contour that contains the zeros of (6.21), which are given by the
following lemma.

Lemma 6.2. Let k be an integer.

(i) If D̂ �= 0, then the zeros of (6.21) are given by

ζ±(k) = 2kπ + θ± + i log |∆±|, (6.22)

where ∆−1
± are solutions of the quadratic equation Ĉx2 + σ̂nx + D̂ = 0, which

are given by ∆−1
± := (−σ̂n ±

√
σ̂2

n − 4Ĉ · D̂)/2Ĉ and θ± are the principal argu-
ments of ∆−1

± .

(ii) If D̂ = 0, then the zeros of (6.21) are given by

ζ0(k) = 2kπ + θ0 + i log |∆0|, (6.23)

where ∆−1
0 := −σ̂n/Ĉ and θ0 is the principal argument of ∆−1

0 .

We omit its proof.

Remark 6.3. We remark that none of the ∆+, ∆− or ∆0 can be zero. Otherwise,
D̂ or Ĉ would be zero, which contradicts the assumption. Moreover, let L+ and
L− be two horizontal straight lines on which the zeros of equation (6.22) fall, such
that L+ corresponds to the zeros of ζ+ and L− corresponds to the zeros of ζ− in
lemma 6.2(i). Similarly, we let L0 denote the straight line representing the zeros of
equation (6.23) in lemma 6.2(ii). Both L0, L+ and L− are parallel to the real axis
in the ζ-plane.

The construction of the contour is divided into different cases depending on
whether the D vanishes. These are subcase A, D̂ �= 0, and subcase B, D̂ = 0.
Subcase A is further divided into

1. |∆+| �= |∆−|,

2. |∆+| = |∆−|.
Subsubcase 2 is divided into

(i) θ+ = θ−,

(ii) θ+ �= θ−.

Now we can start the construction of the contour.
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l4(g)ˆ

ζ+ (k − 1) ζ+ (k) ζ+ (k + 1) ζ+ (2k) ζ+ (2k + 1)
log |      |∆+  

l1(g)ˆ

l3(g)ˆ

l2(g)ˆ
d/2

ζ+ (k − 1) ζ+ (k) ζ+ (k + 1) ζ+ (2k)

d/2

l4(g)ˆ

ζ+ (2k + 1)
log |      |∆+  

l2(g)ˆ

log |   |∆

l3(g)ˆ

l1(g)ˆ

log |      |∆−  

log |      |∆−  

Figure 2. The contour Ω(ĝ, k) when |∆+| �= |∆−|.

6.4.1. Subcase A

Suppose that D̂ �= 0. By remark 6.3, we define a constant d as follows:

d :=

{
| log |∆+| − log |∆−|| if |∆+| �= |∆−|,
1 if |∆+| = |∆−|.

(6.24)

It is easy to see from (6.24) that we must have d > 0. We distinguish two cases
between subsubcase 1, |∆+| �= |∆−|, and subsubcase 2, |∆+| = |∆−|.
1. If |∆+| �= |∆−|, then we define, for each integer k � k0 for some suitably large
positive integer k0, the line segments �1(ĝ), �2(ĝ), �3(ĝ) and �4(ĝ) as follows:

�1(ĝ) := {(2k − 1)π + θ+ + i(log |∆+| + 1
2dy) : − 1 � y � 1},

�2(ĝ) := {(4k + 1)π + θ+ + i(log |∆+| + 1
2dy) : − 1 � y � 1},

�3(ĝ) := {x + θ+ + i(log |∆+| − 1
2d) : (2k − 1)π � x � (4k + 1)π},

�4(ĝ) := {x + θ+ + i(log |∆+| + 1
2d) : (2k − 1)π � x � (4k + 1)π}.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.25)

Then the line segments �j(ĝ), j = 1, 2, 3, 4, are concatenated to form the rectangular
contour Ω(ĝ, k). We also form the set Ω(ĝ) =

⋃+∞
k=1 Ω(ĝ, k) (see figure 2).

Instead of inequality (6.6), we shall show that the inequality

|ŷ(ζ) − ĝ(ζ)| < |ĝ(ζ)| (6.26)

holds on Ω(ĝ, k) for all sufficiently large k.
On one hand, we note from lemma 6.2(i), remark 6.3 and definition (6.25) that,

for every integer k, exactly k + 1 distinct zeros of ĝ(ζ) lie inside the Ω(ĝ, k), but
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all ζ− lie outside the Ω(ĝ, k) (see figure 2 for an illustration). Therefore, we must
have the fact that ĝ(ζ) does not pass through any zero along the Ω(ĝ, k) for every
positive integer k. In other words, there exists a positive constant ∆1(k), depending
only on k, such that the inequality

|ĝ(ζ)| > ∆1(k) > 0 (6.27)

holds on Ω(ĝ, k) for every positive integer k. To obtain the desired inequality (6.26),
we must show that the constant ∆1(k) can be chosen independent of k. To see this,
we note that, for each positive integer k, we have

e±iζ =

⎧⎪⎨
⎪⎩

−|∆+|∓1e∓dy/2e±iθ+ if ζ ∈ �1(ĝ) ∪ �2(ĝ),
|∆+|∓1e±d/2e±i(x+θ+) if ζ ∈ �3(ĝ),
|∆+|∓1e∓d/2e±i(x+θ+) if ζ ∈ �4(ĝ),

(6.28)

and so

ĝ(ζ) =

⎧⎪⎪⎨
⎪⎪⎩

−Ĉ|∆+|−1e−dy/2eiθ+ − D̂|∆+|edy/2e−iθ+ + σ̂n if ζ ∈ �1(ĝ) ∪ �2(ĝ),

Ĉ|∆+|−1ed/2ei(x+θ+) + D̂|∆+|e−d/2e−i(x+θ+) + σ̂n if ζ ∈ �3(ĝ),

Ĉ|∆+|−1e−d/2ei(x+θ+) + D̂|∆+|ed/2e−i(x+θ+) + σ̂n if ζ ∈ �4(ĝ).
(6.29)

Hence, this implies that ∆1(k) can be chosen independent of k. We denote this
positive number by ∆1. Thus, we have the inequality

|ĝ(ζ)| > ∆1 > 0 (6.30)

holds on Ω(ĝ, k) for every positive integer k.
On the other hand, it follows from (6.1) and the chosen function (6.21) that

|ŷ(ζ) − ĝ(ζ)|

=
∣∣∣∣ĈeiζO(ζ−1) + D̂e−iζO(ζ−1) + O(ζ−1) +

n−1∑
j=1

σ̂jζ
µj−(1/2)[1 + O(ζ−1)]

∣∣∣∣
� ∆2|eiζ |

|ζ| +
∆3|e−iζ |

|ζ| + O(|ζ|−1) +
n−1∑
j=1

O(|ζ|Re(µj)−(1/2)), (6.31)

where ∆2 and ∆3 are some fixed positive constants. Since µn = 1
2 , the definition

(6.5) implies that κ is negative and κ � −1, κ � Re(µj) − 1
2 for all 1 � j � n − 1.

Thus, the relations (6.28) and (6.31) imply that

|ŷ(ζ) − ĝ(ζ)| � ∆2|eiζ |
|ζ| +

∆3|e−iζ |
|ζ| + O(|ζ|κ)

<
∆4

kπ
+

∆5

(kπ)|κ| , (6.32)

holds on the contour Ω(ĝ, k), where ∆4 and ∆5 are two fixed positive constants
independent of k. Hence, we obtain from (6.30) and (6.32) that the desired inequal-
ity (6.26) holds on Ω(ĝ, k) for all sufficiently large k.
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ζ+ (k − 1) ζ+ (k) ζ+ (k + 1)

ζ− (k) ζ− (k + 1) ζ− (2k)

ζ+ (2k)

l1(g)ˆ′ l3(g)ˆ′ l2(g)ˆ′

l4(g)ˆ′

1
log |      |∆+   = log |     |∆−

Figure 3. The modified contour Ω′(ĝ, k) when |∆+| = |∆−|.

2. If |∆+| = |∆−|, then the definition (6.24) gives d = 1. In addition, all the ζ+(k)
and ζ−(k) lie on the same straight line L = L+ = L− (see remark 6.3) so that,
for every integer k, we have |ζ+(k) − ζ−(k)| = |θ+ − θ−|. Thus, there are two
possibilities, (i) θ+ = θ− and (ii) θ+ �= θ−.

(i) If θ+ = θ−, then ζ+(k) = ζ−(k) for every integer k. Hence, the above contour
Ω(ĝ, k) and the argument leading to the inequality (6.26) can be applied
without any change.

(ii) If θ+ �= θ−, then it may happen that �1(ĝ) or �2(ĝ) passes through the zeros
ζ−(k − 1), ζ−(k), ζ−(2k) or ζ−(2k + 1), so we need to modify the contour
Ω(ĝ, k) defined in (6.25). In fact, we can replace (2k − 1)π and (4k + 1)π by
2kπ − 1

2 (θ+ − θ−) and 4kπ − 1
2 (θ+ − θ−), respectively, in definitions (6.25).

We then denote the modified line segments by �′
1(ĝ), �′

2(ĝ), �′
3(ĝ) and �′

4(ĝ),
respectively:

�′
1(ĝ) := {2kπ − 1

2 (θ+ − θ−) + θ+ + i(log |∆+| + 1
2dy) : − 1 � y � 1},

�′
2(ĝ) := {4kπ − 1

2 (θ+ − θ−) + θ+ + i(log |∆+| + 1
2dy) : − 1 � y � 1},

�′
3(ĝ) := {x + θ+ + i(log |∆+| − 1

2d) : 2kπ

− 1
2 (θ+ − θ−) � x � 4kπ − 1

2 (θ+ − θ−)},

�′
4(ĝ) := {x + θ+ + i(log |∆+| + 1

2d) : 2kπ

− 1
2 (θ+ − θ−) � x � 4kπ − 1

2 (θ+ − θ−)}.

Then the contour and the infinite strip are defined similarly and denoted by
Ω′(ĝ, k) and Ω′(ĝ), respectively (see figure 3).

Since d = 1 in (6.24), the relations (6.28) and (6.29) are replaced by

e±iζ =

⎧⎪⎪⎨
⎪⎪⎩

|∆+|∓1e∓y/2e±i(θ++θ−/2)/2 if ζ ∈ �′
1(ĝ) ∪ �′

2(ĝ),

|∆+|∓1e±1/2e±i(x+θ+) if ζ ∈ �′
3(ĝ),

|∆+|∓1e∓1/2e±i(x+θ+) if ζ ∈ �′
4(ĝ),
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and

ĝ(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ĉ|∆+|−1e−y/2ei(θ++θ−)/2

+D̂|∆+|ey/2e−i(θ++θ−)/2 + σ̂n if ζ ∈ �′
1(ĝ) ∪ �′

2(ĝ),

Ĉ|∆+|−1e1/2ei(x+θ+)

+D̂|∆+|e−1/2e−i(x+θ+) + σ̂n if ζ ∈ �′
3(ĝ),

Ĉ|∆+|−1e−1/2ei(x+θ+)

+D̂|∆+|e1/2e−i(x+θ+) + σ̂n if ζ ∈ �′
4(ĝ),

respectively. Thus, inequalities (6.30)–(6.32) can be similarly deduced with a
possibly different set of the positive constants ∆1, ∆2, . . . ,∆5.

Remark 6.4. It is trivial to check that there are exactly 2k+1 distinct zeros inside
the modified contour Ω′(ĝ, k) for every positive integer k.

6.4.2. Subcase B

Suppose that D̂ = 0. Then it is easy to see that this can be regarded as the
degenerated case in subcase A(2)(i) with the constant |∆+| and the straight line
L+ replaced by |∆0| and L0, respectively.

We now continue the proof of theorem 6.1.
So Rouché’s theorem implies that the functions ŷ(ζ) and g(ζ) (respectively, ĝ(ζ))

have the same number of zeros inside Ω(g, k) (respectively, Ω(ĝ, k) or Ω′(ĝ, k)).
Proposition 5.3 (respectively, lemma 6.2) asserts that g(ζ) (respectively, ĝ(ζ)), and
hence ŷ(ζ), has infinitely many distinct zeros inside Ω(g) (respectively, Ω(ĝ) or
Ω′(ĝ)). Let n(D, f) denote the number of zeros of the function f(z) inside the set
D. Then, for any given 0 < ε < 1, there exists an infinite sequence {ζn} of zeros
of ŷ(ζ), and hence of y(ζ), with |ζn| = ρn inside Ω(g) (respectively, Ω(ĝ) or Ω′(ĝ))
such that

n(Ω(g), y(ζ)) � ρ1−ε
n

(respectively, n(Ω(ĝ), y(ζ)) � ρ1−ε
n or n(Ω′(ĝ), y(ζ)) � ρ1−ε

n )

for all sufficiently large n. By the substitution LeMz = ζ, where z = reiθ and
ζ = ρeiϕ. Then, for choosing rn and θn such that rn → +∞ as n → +∞ and
θn + b = 0 for all positive integers n, where b is the principal argument of M , we
must have ρn = |L|e|M |rn → +∞ as n → +∞, and then

log n({z : |z| � (1/|M |) log ρn}, f(z))
log rn

� log n({ζ : (|L|/ρn) � |ζ| � |L|ρn, arg ζ �= π}, y(ζ))
log rn

� log(ρn)1−ε

log rn

=
(1 − ε) log ρn

log log ρn

→ +∞
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as n → +∞, which implies that λ(f) = +∞, thus completing the proof of the
theorem.

We can now continue the proof of theorem 1.3.
Recall that f(z) = e−Nzy(LeMz), where y(ζ) is a solution to equation (1.14). So

the requirement λ(f) < +∞ is independent of the branches of the function y(ζ).
It follows from theorem 6.1 that we must have C = D = 0 and, hence, so are
A = B = 0. Hence, the solution (1.9) is expressed in the form

f(z) = e−Nz
n∑

j=1

σjSµj ,ν(LeMz). (6.33)

To complete the proof of theorem 1.3, we need to prove that when σj is non-zero,
µj and ν must satisfy either

cos( 1
2 (µj + ν)π) = 0 or 1 + e(−µj+ν)πi = 0, (6.34)

where j ∈ {1, 2, . . . , n}. Following [10, p. 145], we have from remark 1.6 that
Sµ1,ν(LeMz), Sµ2,ν(LeMz), . . . , Sµn,ν(LeMz) are entire functions in the z-plane and
that each Sµj ,ν(LeMz), j = 1, 2, . . . , n, is independent of the branches of Sµj ,ν(ζ).
We choose for a j ∈ {1, 2, . . . , n} such that σj �= 0. So we can rewrite the solution
(6.33) as

f(z) = σje−NzSµj ,ν(LeMze−mπi) +
n∑

k=1, k �=j

σke−NzSµk,ν(LeMz), (6.35)

where the function Sµj ,ν(ζ) belongs to the branch −(m+1)π < arg ζ < −(m− 1)π
and the other Lommel functions Sµ1,ν(ζ), . . . , Sµj−1,ν(ζ), Sµj+1,ν(ζ), . . . , Sµn,ν(ζ)
are in the principal branch −π < arg ζ < π and m is an arbitrary but otherwise
fixed non-zero integer.

Remark 6.5. We note again that, in the following discussion, we only consider the
case where µj − ν = −2pj − 1. The other case µj + ν = −2pj − 1 can be dealt with
similarly by applying the property that each Sµj ,ν(ζ) is an even function of ν.

Suppose that µj − ν = −2pj − 1 for some non-negative integer pj = p. If −ν �∈
{0, 1, 2, . . . } or ν = 0, then it follows from lemma 3.2(i) and (ii) that the solution
(6.35) can be expressed in the form (2.3) with

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σj(−1)pK ′
+

22pp!(1 − ν)p
if − ν �∈ {0, 1, 2, . . . },

σj(−1)pK ′′
+

22p(p!)2
if ν = 0,

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σj(−1)pK ′
−

22pp!(1 − ν)p
if − ν �∈ {0, 1, 2, . . . },

σj(−1)pK ′′
−

22p(p!)2
if ν = 0,

https://doi.org/10.1017/S0308210510000223 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210510000223


Complex oscillation, function-theoretic quantization of ODEs 471

where K ′
± and K ′′

± are the constants defined in (3.1). In order to apply theorem 6.1,
we may closely follow the argument used in [10, proposition 4.4(i), (ii)], where if
we have C �= 0 or D �= 0 for any integer m, then we will obtain a contradiction to
the free choice of the integer m. Hence, λ(f) = +∞ and then either C or D must
be zero. This implies that (6.34) holds, as required.

If ν = −n for a positive integer n, then it follows from lemma 3.2(iii) that the
solution (6.35) (with m replaced by 2m) is given by

f(z) =
(−1)n+pσje−Nz

22p+nn!(p!)2(1 + n)p
(LeMz)−n

× {Bn(LeMz)[K ′′
+H

(1)
0 (LeMz) + K ′′

−H
(2)
0 (LeMz)]

− (LeMz)Cn(LeMz)[K ′′
+H

(1)
1 (LeMz) + K ′′

−H
(2)
1 (LeMz)]}

+
n∑

j=1

σje−NzSµj ,ν(LeMz).

It is obvious that the above expression is not in the form (2.3), so theorem 6.1 does
not apply in this case. In order to find an alternative approach to show λ(f) = +∞,
we show that the function h(ζ) defined by

h(ζ) := ζ−n{Bn(ζ)[K ′′
+H

(1)
0 (ζ) + K ′′

−H
(2)
0 (ζ)]

− ζCn(ζ)[K ′′
+H

(1)
1 (ζ) + K ′′

−H
(2)
1 (ζ)]} +

n∑
j=1

σjSµj ,ν(ζ) (6.36)

has infinitely many zeros in the principal branch of H
(1)
0 (ζ), H

(2)
0 (ζ), H

(1)
1 (ζ),

H
(2)
1 (ζ) and Sµj ,ν(ζ). Therefore, we suppose that −π < arg ζ < π. Then the asymp-

totic expansions (A 4)–(A 6), setting p = 1, yield

ĥ(ζ) := (1
2πζ)1/2h(ζ)

= ζ−n[D+
n (ζ)K ′′

+e−iπ/4eiζ + D−
n (ζ)K ′′

−eiπ/4e−iζ

+ D+
n (ζ)K ′′

+e−iπ/4eiζO(ζ−1) + D−
n (ζ)K ′′

−eiπ/4e−iζO(ζ−1)]

+
n∑

j=1

σ̂jζ
µj−(1/2)[1 + O(ζ−1)], (6.37)

where D±
n (ζ) = Bn(ζ) ± iζCn(ζ). To find the number of zeros of h(ζ) in −π <

arg ζ < π, we need the following result.

Lemma 6.6. Suppose that n is a positive integer. Then at least one of D+
n (ζ) or

D−
n (ζ) has degree n.

Proof of lemma 6.6. We let

Bn(ζ) :=
n∑

j=0

βjζ
j and Cn(ζ) :=

n∑
j=0

γjζ
j ,

where β1, . . . , βn, γ1, . . . , γn are complex constants. We prove the lemma by induc-
tion on n. When n = 1, we have D±

1 (ζ) = ±iζ, so the statement is true. Assume
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that it is also true when n = k for a positive integer k. Without loss of generality,
we may assume that deg D+

k (ζ) = k, so that

βk + iγk �= 0. (6.38)

When n = k + 1, it follows from the recurrence relations (3.4) for Bn(ζ) and
Cn(ζ) that

D±
k+1(ζ) = −2kD±

k (ζ) + ζB′
k(ζ) ± iζ2C ′

k(ζ) ± iζD±
k (ζ).

It is easy to check that the coefficients of the ζk+1 in D±
k (ζ) are given by ±ikγk ±

i(βk ± iγk), respectively. If deg D±
k+1(ζ) � k, then we have ±ikγk ± i(βk ± iγk) = 0 so

that both γk and βk are zero, which certainly contradicts our inductive assumption
(6.38). Hence, we must have deg D+

k+1(ζ) = k+1 or deg D−
k+1(ζ) = k+1, completing

the proof of the lemma.

We can now complete the proof of the theorem. We recall that we have assumed
µj − ν = −2pj − 1 for some non-negative integer pj = p and ν = −n for a positive
integer n, see the paragraphs following remark 6.5. By lemma 6.6, we may suppose
that D±

n (ζ) = C±ζn + · · · and Ĉ± = C±e∓iπ/4, where C+ �= 0. Then the expression
(6.37) induces

ĥ(ζ) = Ĉ+K ′′
+eiζ [1 + O(ζ−1)] + Ĉ−K ′′

−e−iζ [1 + O(ζ−1)]

+
n∑

j=1

σ̂jζ
µj−(1/2)[1 + O(ζ−1)],

which is in the form (6.1) with Ĉ and D̂ replaced by Ĉ+K ′′
+ and Ĉ−K ′′

−, respectively.
Therefore, the proof of theorem 6.1 can be applied without change to show that if
at least one of Ĉ+K ′′

+ �= 0 or Ĉ−K ′′
− �= 0, then the function h(ζ) has infinitely many

zeros in −π < arg ζ < π and thus λ(f) = +∞, which is a contradiction. Hence, we
conclude that µj − ν cannot be an odd negative integer.

Now we can apply the analytic continuation formula in lemma 3.1 with this fixed
integer m to obtain

Sµj ,ν(LeMze−mπi) = K+Pm(cos νπ, e−µjπi)H(1)
ν (LeMz)

+ K+e−νπiPm−1(cos νπ, e−µjπi)H(2)
ν (LeMz)

+ (−1)me−mµjπiSµj ,ν(LeMz), (6.39)

where Pm(cos νπ, e−µjπi) is the polynomial as defined in lemma 3.1. Then the
expressions (6.35) and (6.39) give

f(z) = K+σje−NzPm(cos νπ, e−µjπi)H(1)
ν (LeMz)

+ K+σje−Nze−νπiPm−1(cos νπ, e−µjπi)H(2)
ν (LeMz)

+ (−1)mσje−mµjπi−NzSµj ,ν(LeMz) +
n∑

k=1, k �=j

σke−NzSµk,ν(LeMz).

(6.40)
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If either of the coefficients of H
(1)
ν (LeMz) and H

(2)
ν (LeMz) in (6.40) is non-zero,

then theorem 6.1 again implies that λ(f) = +∞, which is impossible. Thus, we
must have

K+Pm(cos νπ, e−µjπi) = 0 = K+e−νπiPm−1(cos νπ, e−µjπi). (6.41)

Now we are ready to derive equations (6.34), we again recall that the value of
λ(Sµj ,ν(LeMz)) must be independent of branches of the function Sµj ,ν(ζ), which is
equivalent to equations (6.41) holding for each integer m. It is clear from part (ii)
of lemma 3.1 that Pm(cos νπ, e−µjπi) ≡ 0 and Pm−1(cos νπ, e−µjπi) ≡ 0 do not hold
simultaneously for any integer m. Thus, K+ = 0 must hold, i.e. when σj �= 0,

cos( 1
2 (µj + ν)π) = 0 or 1 + e(−µj+ν)πi = 0, (6.34)

where j ∈ {1, 2, . . . , n}. Hence, we deduce the first and the second conditions in
(1.10) from the first and the second equations in (6.34), respectively. A detailed
deduction can be found in [10, pp. 154, 155]. This completes the proof of the
theorem.

7. Proof of corollary 1.4

If n = 1, then the assumption gives σ1 �= 0 so that F (ζ) = σ1Sµ1,ν(ζ) �≡ 0. If n � 2,
then it follows from lemma A.2 that F (ζ) �≡ 0. Thus, the function F (ζ) as defined
in (1.13) is non-trivial so that we may suppose that the function (1.13) has finitely
many zeros in every branch of ζ. Then the entire function

f(z) = F (ez) =
n∑

j=1

σjSµj ,ν(ez)

is certainly a solution of equation (1.8) with L = M = 1 and λ(f) < +∞. Hence,
theorem 1.3 implies that either µj +ν = 2pj +1 or µj −ν = 2pj +1 for non-negative
integers pj , where j = 1, 2, . . . , n.

Conversely, if either µj + ν = 2pj + 1 or µj − ν = 2pj + 1 for non-negative
integers pj , where j = 1, 2, . . . , n, then remark A.1 shows that each Sµj ,ν(ζ)/ζµj−1

is a polynomial in 1/ζ so that Sµj ,ν(ζ) has only finitely many zeros in every branch
of ζ, where j = 1, 2, . . . , n. Thus, this implies that the function (1.13) has finitely
many zeros in every branch of ζ. This completes the proof of corollary 1.4.

8. Non-homogeneous function-theoretic quantization-type results

The explicit representation and the zeros distribution of an entire solution f(z) of
either the equation

y′′ + ezy = Ky (8.1)

or the equation
y′′ + (− 1

4e−2z + 1
2e−z)y = Ky (8.2)

were studied in [1,3] (see also [23]). Later, these results were strengthened by [8]. In
fact, they discovered that the solutions of (8.1) and (8.2) can be solved in terms of
Bessel functions and Coulomb wave functions, respectively. Besides, they identified
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Table 1. Special cases of (8.3).

Solutions with
finite exponent of

Cases Corresponding K convergence of zeros

(1) µ = 1 p2 2σez/2O2p(2ez/2)

(2) µ = 0 1
4 (2p + 1)2

2σ

2p + 1
ez/2O2p+1(2ez/2)

(3) µ = −1 (p + 1)2
σ

4(p + 1)
S2p+2(2ez/2)

(4) µ = ν 1
16 (2p + 1)2 σ2p−(1/2)√πp![Hp+(1/2)(2ez/2) − Yp+(1/2)(2ez/2)]

that two classes of classical orthogonal polynomials (Bessel and generalized Bessel
polynomials, respectively) appeared in the explicit representation of solutions under
the boundary condition that the exponent of convergence of the zeros of the solution
f(z) is finite, i.e.

λ(f) = lim
r→+∞

log n(r, (1/f))
log r

< +∞.

This also results in a complete determination of the eigenvalues and eigenfunctions
of the equations. We call such a phenomenon a function-theoretic quantization result
for the differential equations (8.1) and (8.2).

It is also well known that both equations have important physical applications.
For example, equation (8.1) is derived as a reduction of a nonlinear Schrödinger
equation in a recent study of the Benjamin–Feir instability phenomenon in deep
water [22], while the second equation (8.2) is an exceptional case of a standard
classical diatomic model in quantum mechanics introduced in [21]5 and is a basic
model in recent PT -symmetric quantum mechanics research [31] (see also [6]).

In [10, theorem 6.1], the following differential equation was considered:

f ′′ + (ez − K)f = σ2µ−1e(µ+1)z/2, (8.3)

which is a special case of equation (1.8) when L = 2, M = 1
2 , N = 0 and n = 1

in theorem 1.3, where K = 1
4ν2. They obtained the necessary and sufficient con-

dition on K so that equation (8.3) admits subnormal solutions that are related to
classical polynomials and/or functions, i.e. Neumann’s polynomials, Gegenbauer’s
generalization of Neumann’s polynomials, Schläfli’s polynomials and Struve’s func-
tions. This exhibits a kind of function-theoretic quantization phenomenon for non-
homogeneous equations.

Now the following result holds trivially by our main theorem 1.3.

Theorem 8.1. With each choice of parameters as indicated in table 1, we have a
necessary and sufficient condition on K that depends on the non-negative integer
p so that equation (8.3) admits a solution with finite exponent of convergence of
zeros. Furthermore, the forms of such solutions are given explicitly in table 1.

5See [24, pp. 1–4] for a historical background of the Morse potential.
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Here O2p(ζ) and O2p+1(ζ) are the Neumann polynomials of degrees 2p and 2p+1,
respectively; Sp(ζ) is the Schläfli polynomial and Hp+(1/2)(ζ) is the Struve function
[27, §§ 9.1, 9.3, 10.4].

Appendix A. Preliminaries on the Bessel and Lommel functions

A.1. Bessel functions

Let m be an integer. Here we record the following analytic continuation formulae
for the Bessel functions [27, 3.62]:

Jν(ζemπi) = emνπiJν(ζ), (A 1)

Yν(ζemπi) = e−mνπiYν(ζ) + 2i sin(mνπ) cot(νπ)Jν(ζ). (A 2)

We recall that the Bessel functions of the third kind of order ν [27, § 3.6] are given
by

H(1)
ν (ζ) = Jν(ζ) + iYν(ζ), H(2)

ν (ζ) = Jν(ζ) − iYν(ζ). (A 3)

They are also-called the Hankel functions of order ν of the first and second kinds.
The asymptotic expansions of H

(1)
ν (ζ) and H

(2)
ν (ζ) are also recorded as follows:

( 1
2πζ)1/2H(1)

ν (ζ) = exp{i(ζ − 1
2νπ − 1

4π)}
[ p−1∑

k=0

( 1
2 − ν)k( 1

2 + ν)k

k!(2iζ)k
+ R(1)

p (ζ)
]
, (A 4)

where R
(1)
p (ζ) = O(ζ−p) in −π < arg ζ < 2π;

( 1
2πζ)1/2H(2)

ν (ζ) = exp{−i(ζ− 1
2νπ− 1

4π)}
[ p−1∑

k=0

( 1
2 − ν)k( 1

2 + ν)k

k!(−2iζ)k
+R(2)

p (ζ)
]
, (A 5)

where R
(2)
p (ζ) = O(ζ−p) in −2π < arg ζ < π (see [27, § 7.2]).

A.2. An asymptotic expansion of Sµ,ν(ζ) and linear independence of
Lommel’s functions

It is known that when µ ± ν are not odd positive integers, then Sµ,ν(ζ) has the
asymptotic expansion

Sµ,ν(ζ) = ζµ−1
[ p−1∑

k=0

(−1)kck

ζ2k

]
+ O(ζµ−2p) (A 6)

for large |ζ| and |arg ζ| < π, where p is a positive integer (see also [27, § 10.75]). As
a result, we see that the asymptotic expansions (A 4)–(A 6) are valid simultaneously
in the range −π < arg ζ < π.

Remark A.1. It is clear that (A 6) is a series in descending powers of ζ starting
from the term ζµ−1 and that (A 6) terminates if one of the numbers µ±ν is an odd
positive integer. In particular, if µ − ν = 2p + 1 for some non-negative integer p,
then we have K+ = 0 in the analytic continuation formula (3.2) and thus, in this
degenerate case, formula (3.2) becomes

S2p+1+ν,ν(ζe−mπi) = e−mνπiS2p+1+ν,ν(ζ)

for every integer m and |arg ζ| < π.
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The following lemma concerns the linear independence of the Lommel functions
Sµj ,ν(ζ).

Lemma A.2 (Chiang and Yu [10, lemma 3.12]). Suppose n � 2, and µj and ν to
be complex numbers such that Re(µj) are all distinct for j = 1, 2, . . . , n. Then the
Lommel functions Sµ1,ν(ζ), Sµ2,ν(ζ), . . . , Sµn,ν(ζ) are linearly independent.
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